
Journal of Multivariate Analysis 167 (2018) 319–330

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

A model selection approach for multiple sequence
segmentation and dimensionality reduction
Bruno M. Castro a,*, Renan B. Lemes b, Jonatas Cesar b, Tábita Hünemeier b,
Florencia Leonardi c
a Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Brazil
b Instituto de Biociências, Universidade de São Paulo, Brazil
c Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil

a r t i c l e i n f o

Article history:
Received 30 April 2018
Available online 22 May 2018

AMS 2010 subject classifications:
62G05
62G20

a b s t r a c t

In this paper we consider the problem of segmenting n aligned random sequences of equal
length m into a finite number of independent blocks. We propose a penalized maximum
likelihood criterion to infer simultaneously the number of points of independence as well
as the position of each point.We show how to compute exactly the estimator bymeans of a
dynamic programming algorithm with time complexity O(m2n). We also propose another
method, called hierarchical algorithm, that provides an approximation to the estimator
when the sample size increases and runs in time O{m ln(m)n}. Our main theoretical results
are the strong consistency of both estimators when the sample size n grows to infinity. We
illustrate the convergence of these algorithms through some simulation examples and we
apply the method to identify recombination hotspots in real SNPs data.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The problem of multiple sequence segmentation and dimensionality reduction is of crucial importance for many applied
areas, including the analysis of multiple alignments of DNA/RNA and Amino Acid (AA) sequences. In these cases, one of
the main goals is to investigate some aspects of the genetic variation, for example, inferring which genomic regions can
be considered putative hotspots of genetic recombination. Another application on practical ground is to look for small
subregions in the sequences that are related to a phenotypic variable. One example of this is the genome-wide association
studies (GWAS) of Single Nucleotide Polymorphisms (SNPs), where the interest is to find positions in the genome associated
with a given phenotypic trait. Traditionally, this task is performed by making a simultaneous hypotheses test on each
individual position or on small sub-windows of fixed length, as in the PLINK suite [6,20]. But considering all variables as
mutually independent does not translate the intrinsic relations present in genomic data and can result in weak or spurious
discoveries. This fact has led the community to develop methods that take into account the dependence between adjacent
or even non-adjacent variables; see, e.g., [16].

Many other authors have also considered the problem of inferring local dependencies in data, using a wide range of
probabilistic models. In a recent paper, Algama and Keith [1] present a detailed review about themost well-known sequence
segmentation techniques and the models assumed in each case. Their list contains sliding window analysis [22], hidden
Markov models [3,10], recursive segmentation algorithms [8,18] and multiple change-point analysis [9,21]. They also refer
to other methods for sequence segmentation and pattern identification based on least squares estimation [13] or onwavelet

* Corresponding author.
E-mail address: bruno.monte19@gmail.com (B.M. Castro).

https://doi.org/10.1016/j.jmva.2018.05.006
0047-259X/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmva.2018.05.006
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2018.05.006&domain=pdf
mailto:bruno.monte19@gmail.com
https://doi.org/10.1016/j.jmva.2018.05.006

320 B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330

analysis [23]. We refer the reader to the work [1] where a brief explanation of these methods is presented, and also other
references for the problem of sequence segmentation are given.

Our main goal in this paper is to introduce a new approach for the problem of multiple sequence segmentation into
independent blocks. We are interested in inferring the maximal set of points of independence, when the number of such
points is unknown. To do this we propose a penalized maximum likelihood criterion to infer simultaneously the number of
points of independence and their positions, for n aligned random sequences of equal length m. We show how to compute
exactly this estimator by means of a dynamic programming algorithm and we prove its almost sure convergence to the true
set of points of independence when the sample size n increases. In cases where the size m of the sequences is large, we
propose a suboptimal but more efficient algorithm that also converges almost surely to the set of points of independence
when the sample size n increases. The main advantage of our procedure is that we do not need to assume a fixed number of
segments and the optimal number of points of independence can be learned from the data. Ourmethod can be used to reduce
drastically the dimensionality of the joint probability distributions from exponential to linear functions of the length of the
sequences, given by m, somehow sharing the same objectives of correspondence analysis, a principal component method
for nominal categorical data.

A related approach is considered by Gwadera et al. [12], who present a method to determine the optimal number of
segments in a sequence using a Variable Length Markov Chain (VLMC) model on each segment. They propose to use the
Bayesian Information Criterion (BIC) and a variant of the MinimumDescription Length (MDL) Principle to select the number
of segments for the given sequence. Their method consists in estimating change points on a unique stationary sequence
while ours looks for points of independence on non-stationary aligned sequences. In stark contrast to their approach, we do
not need to assume a specific probabilistic model on each segment and we can estimate a general multivariate distribution
on each segment. Moreover, Gwadera et al. [12] do not present a formal proof that their method succeeds to detect the
number and position of the change-points.

This paper is organized as follows. In Section 2 we present background material, show how to compute the estimators,
and state the main theoretical results. In Section 3 we report the results of simulations illustrating the performance of the
segmentation method, and in Section 4 we show a practical application on real data. In Section 5 we discuss the results and
in the Appendix we include the proofs of the theoretical results presented in Section 2.

2. Likelihood function and model selection

2.1. Notation and definitions

Let X = (X1, . . . , Xm) be a random vector taking values in A1 ×· · ·×Am, where Ai is a finite alphabet for all i ∈ {1, . . . ,m}.
The cardinal of the finite set Ai will be denoted by |Ai|. We say that j ∈ {1, . . . ,m − 1} is a point of independence for X if the
random vectors (X1, . . . , Xj) and (Xj+1, . . . , Xm) are independent.

Given two integers r ≤ s, denote by r : s the integer interval r, . . . , s. We say Ur:s ⊂ r : (s − 1) is a maximal set of points
of independence for the interval r : s if no v ∈ r : (s − 1) \ Ur:s is a point of independence for X. For each random vector X
and each interval r : s there is only one maximal set of points of independence; from now on this special set will be denoted
by U∗

r:s. In the special case r = 1, s = m we will simply write U∗.
Without loss of generality we will also suppose that the set Ur:s is ordered; in this case Ur:s = (u1, . . . , uk) with ui < uj if

i < j. From Ur:s it is possible to obtain the set of blocks of independent variables as the set B(Ur:s) = {I1, . . . , Ik+1} of integer
intervals given by I1 = r : u1, Ii = (ui−1 + 1) : ui for all i ∈ {2, . . . , k}, and Ik+1 = (uk + 1) : s.

Given an integer interval I = r : s denote by AI the set of finite strings on Ar × · · · × As with positive probability, viz.

AI
= {w ∈ Ar × · · · × As : Pr(w) > 0}.

Assume we observe an iid sample x(1), . . . , x(n) of X, denoted by x. Then, the likelihood function for the set U can be
written as

L(U; x) =

n∏
i=1

∏
I∈B(U)

Pr(Xj = x(i)j : j ∈ I). (1)

Denote by xr:s the iid sample x(1)r:s , . . . , x
(n)
r:s . Given a finite string ar:s ∈ Ar:s, define

N(ar:s) =

n∑
i=1

1{x(i)r:s = ar:s}.

Then L(U; x) can be rewritten as

L(U; x) =

∏
I∈B(U)

∏
aI∈AI

Pr(XI = aI)N(aI). (2)

Denote by P̂r(aI) the maximum likelihood estimators for the probabilities Pr(aI), i.e., the values maximizing (2). It can be
proved that for any interval I and any aI ∈ AI , the estimator P̂r(aI) is given, for all aI ∈ AI , by

P̂r(aI) = N(aI)/n.

B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330 321

Then we can plug-in these estimators in (2) obtaining the value of the maximum likelihood, given by

L̂(U; x) =

∏
I∈B(U)

∏
aI∈AI

P̂r(aI)N(aI).

For simplicity in the sequel we will work with the logarithm of the estimated likelihood function. For this reason, we
define

ℓ̂(U; x) =

∑
I∈B(U)

Q (I, x),

where

Q (I, x) =

∑
aI∈AI

N(aI) ln P̂r(aI).

Now we introduce the model selection criterion based on the maximization of the penalized log-likelihood.

Definition 1. Given a sample x and a constant c > 0, define

PML(U, x) = ℓ̂(U, x) + c(|U | + 1)
√
n

with |U | the number of points in U and let

Û(x) = arg max
U⊆1:(m−1)

{PML(U, x)}. (3)

The estimator Û(x) is a penalized maximum log-likelihood estimator for the true set of points of independence U∗. The
penalizing factor |U | + 1 represents a measure of the complexity of the model when the set of points of independence is U .
Observe that in the case of the multivariate distribution whose likelihood function is given in (2), the number of parameters
decreases asU increases. Therefore, by adding the term c(|U |+1)

√
n the estimator (3) favorsmodelswith less parameters (or

more blocks). In Definition 1 and in the proof of the main theoretical results, we use this specific penalizing term in order to
maintain the simplicity of the approach, but many other functions are possible. In particular, the estimators remain strongly
consistent if we use as penalty term the total number of parameters of themultivariate distributionwith independent blocks
B(U), as is usual in the BIC penalty term, that is given by

∑
I∈B(U)(|A|

|I|
− 1).

Remark 1. Even though the approach presented in this paper is totally nonparametric, many other definitions for the
likelihood function in (2) are possible taking into account some parametric model. For example we can assume a Markov
chain structure of any given order or a Variable Length Markov Chain for each block. This is overall appealing for large m
and |U | small relative to m where the large number of parameters of the multivariate distribution can lead to substantial
overestimation errors.

Remark 2. In the general case of the multivariate distribution without any independence structure, we would need to
estimate |A|

m
− 1 parameters to compute the likelihood function (1). In contrast, by using the information contained in the

independence setU∗ the number of parameters decreases to
∑

I∈B(U∗)(|A|
|I|

−1), that can be as small as (|A|−1)mwhen allm
variables are independent. For this reason, the estimator Û(x) can reduce considerably the dimensionality of the estimated
probability distribution for X, overall in cases where the sample size n is not very large related to the sequences lengthm.

2.2. Computation of the independence set estimator

In this sectionwe showhow to compute efficiently the penalizedmaximum likelihood estimator given inDefinition 1. The
first part, mostly inspired in [15], presents a dynamic programming algorithm that computes exactly the optimal argument
of (3), performingO(m2n) operations; see also [2] and references therein. In the second part we propose a divide and conquer
approximation for the optimum in (3), at amore efficient computing time.We show that this second algorithm also retrieves
the true set of points of independence with probability 1 when the sample size grows.

2.2.1. Dynamic programming algorithm
Let Fk+1(m) denote the maximum value of the function in (3) corresponding to a k-dimensional vector U for the sample

x, i.e.,

Fk+1(m) = max
U,|U |=k

{ℓ̂(U, x) + c(|U | + 1)
√
n}.

It is easy to see that the optimal k-dimensional vector U leading to Fk+1(m) consists of k − 1 independence points over 1 : i
and a single block (i+1) :m, where i is the rightmost point of independence. Moreover, the k blocks over 1 : imust maximize
the function (3) for the sample x1:i, attaining Fk(i). In this way, the dynamic programming recursion is

F1(m) = Q̃ (1 :m, x), Fk+1(m) = max
i∈{k,...,m−1}

{Fk(i) + Q̃ ((i + 1) :m, x)},

322 B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330

where Q̃ is given by

Q̃ (I, x) = Q (I, x) + c
√
n.

The estimator Û(x) in Definition 1 is computed by tabulating F1(i) for all i up to m, and then by computing F2(i) for all i
and so on up to Fm(m). The optimal value of k is obtained by the equation

k̂ = arg max
k∈{1,...,m}

{Fk(m)} − 1.

and the vector Û(x) = (û1, . . . , ûk̂) is given by

ûk̂ = arg max
i∈{k̂,...,m−1}

{Fk̂(i) + Q̃ ((i + 1) :m, x)},

ûi = arg max
j∈{i ...,ûi+1−1}

{Fi(j) + Q̃ ((j + 1) : ûi+1, x)}, i ∈ {1, . . . , k̂ − 1}.

2.2.2. Hierarchical algorithm
Here we present a more efficient divide-and-conquer algorithm to approximate the estimator given by Definition 1, with

computational cost O{m ln(m)n}. Let I = r : s be an integer interval (with the convention that I = ∅ if s < r). Define

h(I, x) = arg max
i∈I

{Q̃ (r : (i − 1), x) + Q̃ (i : s, x)} − 1, (4)

where also by convention Q̃ (∅, x) = 0.
The idea of this algorithm is to compute the best point of independence for the interval I (if there is one point in the

interval leading to a maximum of the penalized likelihood or a point outside I otherwise) and then to iterate this criterion
on both segments separated by this point, until nomore points are detected.We describe the different steps of the algorithm
with the following procedure:

1. Initialize Ûha(x) = ∅ and I = 1 :m, with m the number of columns of x.
2. Compute h(I, x); if h(I, x) ∈ I , add h(I, x) to Ûha(x).
3. Repeat Step 2 for the intervals I1 = I ∩ {i : i ≤ h(I, x)} and I2 = I ∩ {i : i > h(I, x)}, until no more points can be added

to Ûha(x).

When m is large in relation to the sample size n, as in many real applications, both the exact dynamic programming
algorithm and the hierarchical algorithm as described above are not very efficient in terms of computing time to estimate
the set of points of independence. In these cases, andwhen a big set U with small segments’ sizes is expected, we canmodify
the hierarchical algorithm to identify its first change point near the variable with indexm/2, and taking into account at most
3L variables around this point, where L is an upper bound for the block size |I|, with I ∈ B(U∗). This procedure splits the
original dataset into two matrices of almost equal length, and therefore the recursive procedure is more efficient. When
each split part has size smaller than 3L, the original hierarchical algorithm is applied instead.

Themodification of the hierarchical algorithm described above leads to the estimator Ûfha(x) (fast hierarchical algorithm)
that can be described by the following procedure. First, for I = r : s with s − r + 1 > 3L, define i1 = ⌊(r + s)/2 − 3L/2⌋,
i2 = ⌈(r + s)/2 + 3L/2⌉, Ĩ = (i1 + L) : (i2 − L) and

h̃(I, x) = arg max
i∈Ĩ

{Q̃ (i1 : i, x) + Q̃ ((i + 1) : i2, x)}.

1. Initialize Ûfha(x) = ∅ and I = 1 :m, with m the number of columns of x.
2. Ifm > 3L compute h̃(I, x) and add it to Ûfha(x); ifm ≤ 3L compute h(I, x) and proceed as in the hierarchical algorithm.
3. Repeat Step 2 for the intervals I1 = I ∩ {i : i ≤ h̃(I, x)} and I2 = I ∩ {i : i > h̃(I, x)}, until no more points can be added

to Ûfha(x).

2.3. Theoretical results

We present in this section the strong consistency of the estimator defined by (3) and computed by the dynamic
programming algorithm presented in Section 2.2. We also show that the approximation given by the hierarchical algorithm
is also strongly consistent when the sample size n → ∞. That is, we show that for m fixed, each estimator is equal to the
true set U∗ eventually almost surely when n is large enough. In other words, with probability 1, there exists n0 (depending
on the infinite sample x(1), x(2), . . .) such that for all n ≥ n0 we have Û(x) = U∗ (respectively Ûha(x) = U∗).

Theorem 1. For m fixed, the estimator Û(x) given by (3) is strongly consistent, i.e., Û(x) = U∗ eventually almost surely when
n → ∞.

The proof of Theorem 1 is postponed to the Appendix.

B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330 323

Although the hierarchical algorithm gives an approximate solution to the maximum in (3), we can also prove that it is a
consistent estimator of U∗.

Theorem 2. For m fixed, the estimator Ûha(x) given by the hierarchical algorithm is strongly consistent, i.e., Ûha(x) = U∗

eventually almost surely as n → ∞.

As a corollary we obtain that when the sizes of the blocks I ∈ B(U∗) are bounded by L, the fast hierarchical algorithm is
also strongly consistent.

Corollary 1. Suppose

max
I∈B(U∗)

(|I|) ≤ L.

Then for m fixed, the estimator Ûfha(x) is strongly consistent, i.e., Ûfha(x) = U∗ eventually almost surely as n → ∞.

The proofs of Theorem 2 and Corollary 1 are also postponed to the Appendix.

3. Simulations

In this section we show the results of different simulation experiments to test the exact penalized maximum likelihood
estimator of the set of points of independence and the hierarchical estimator, introduced in Section 2.2. We consider two
different models for sequences of lengthm = 15, with two and one point of independence, respectively.

ForModel 1we consider a randomvectorX = (X1, . . . , X15), where eachXi assumes values in the setA = {0, 1}, composed
by three independent blocks of length 5. That is we define

Y1, Y3 ∼ U(A) (independent),
Y2 = Y1 − Y3 (mod) |A|, Y4 = Y1 + Y3 (mod) |A|, Y5 = Y1

and we take (X1, . . . , X5), (X6, . . . , X10) and (X11, . . . , X15) to be independent and identically distributed, with the same
distribution as (Y1, . . . , Y5). It is clear that for this distribution the set of points of independence is U∗

= (5, 10).
For Model 2 we take (X1, . . . , X5) and (X11, . . . , X15) as before, but we redefine (X6, . . . , X10) as X6 = X10 = X1,

X7 = X1 − X3 (mod) |A|, X8 = X3 and X9 = X1 + X3 (mod) |A|. With this modification, it is then immediate that the set
of points of independence becomes U∗

= (10). The idea of this example is to have segments with different lengths, to see
the performance of the algorithms in these cases.

For each estimator we simulated n independent realizations of the vector X = (X1, . . . , X15) for each one of the models
presented above. To measure the performance of each estimator to detect the true set of points of independence we used
the Hausdorff distance defined on sets, given, for all U, V ⊆ R, by

d(U, V) = max
[
max
u∈U

{min
v∈V

(|u − v|)},max
v∈V

{min
u∈U

(|u − v|)}
]
.

In each run we computed this measure between the estimated set of points Û(x) (or Ûha(x) for the hierarchical algorithm)
and the true set of points U∗, each point divided by the number of variables m in order to normalize the measure in some
way. Moreover, without losing any information on themeasurement, we added to these sets the ‘‘extreme’’ points 0 and 1 in
order to avoid empty sets and a non-defined measure. For each algorithmwe performed 100 replications and we computed
the mean Hausdorff distance. The results for both models and for the alphabets A = {0, 1} and A = {0, 1, 2} are given in
Fig. 1.

In order to evaluate the computing time of both methods on larger sequences, we implemented another simulation
taking multiple alignments of different column size. The results are shown in Fig. 2, where we have a clear idea of the
time requirements of both algorithms when the size of the sequences grows. The algorithms were implemented in the
open-source software R and are available upon request. The time reported in these experiments was estimated on a single
run of the algorithms, in a MacBook Air (11-inch, Mid 2013) with 1,3 GHz Intel Core i5 processor and running OS X 10.11.6.

4. Identifying recombination hotspots

A possible application of our method is to identify recombination hotspots in a given population. In a simplified view,
linkage disequilibrium corresponds to a non-randomassociation among consecutive loci of a short DNA sequence (haplotype
block). In a population, the few common haplotypes were separated by genotype recombination hotspots across which little
association remains [14,19]. Therefore, if we consider chromosome data as being completely independent, the edges of the
segments should, in general, overlap with recombination hotspots.

We applied our segmentationmethod in the data obtained from157 European individuals fromHumanGenomeDiversity
Project (HGDP) database, which were genotyped for a set of around 600,000 SNP markers from Illumina HuHap 650k
platform [17] (HGDP dataset 2 available at ftp://ftp.cephb.fr/hgdp_supp1/). The accurate haplotype inference was made by

ftp://ftp.cephb.fr/hgdp%5Fsupp1/

324 B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330

Fig. 1. Comparison between the exact dynamic programming algorithm (DPA) and the hierarchical algorithm (HA) for samples of different sizes of Model 1
(left) and Model 2 (right), with |A| = {0, 1} (top) and |A| = {0, 1, 2} (bottom). The figures show the mean Hausdorff distance between the true vector of
points of independence and the estimated vector, for each method, on 100 independent replications, with different penalizing constants.

Fig. 2. Computation time of the exact dynamic programming algorithm (DPA) and the hierarchical algorithm (HA) for samples of size n = 100 and different
sizes of themultiple alignment. The sequences were obtained by concatenating a different number of blocks from the vector X in Model 1, with |A| = {0, 1}
(left) and |A| = {0, 1, 2} (right). The time was estimated in a single run of the algorithm, in a Mac Book Pro (13-inch, 2017) with 2,3 GHz Intel Core i5
processor and running OS X 10.12.6.

phasing these samples through the software Beagle v.4.1 [5]. In order to identify population recombination hotspots, the
resulting phased chromosomes were considered completely independent.

Recombination rates estimated fromHapMappopulations [14] obtained from ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombi
nation/were used as the ‘‘truth’’ to be compared to the independent segments estimated using the fast hierarchical algorithm
described in Section 2.2, considering different penalizing constant values. Fig. 3 shows the values of recombination rates by
locus (y axis), highlighting the independent segments obtained from HGDP European population represented by horizontal
bars. To make it easier to visualize the data, we chose to show an arbitrary stretch of chromosome 1, but this pattern can
also be observed throughout the genome.

ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/

B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330 325

Fig. 3. Recombination rates (r) per locus (y-axis), according to its order in genomic physical position. Horizontal bars represent the putative independent
segments. The y-axis position and the thickness of the bars are, respectively, the average and the standard deviation of the rates within the segments.
Different bar colors denote segments created considering different penalizing constants c. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Observed recombination rate mean, bootstrap mean and p-value for different penalizing constants c. The bootstrap values were obtained by randomly
selecting sets of SNPs in the entire dataset of the same size as the corresponding estimated sets of points of independence.

Penalizing constant c Observed mean Bootstrap mean Bootstrap p-value

0.1 3.779764 2.498357 0.0
0.01 3.547373 2.498901 0.0
0.001 4.348381 2.498227 0.0
1e−04 4.528738 2.498667 0.0
1e−05 3.447744 2.497623 0.0
1e−06 4.575773 2.498265 0.0
1e−07 5.255874 2.497928 0.0
1e−08 5.481127 2.498848 0.0
1e−09 4.790805 2.499632 0.0
1e−10 3.274655 2.498607 2e−04
1e−11 4.085479 2.499059 0.0
1e−12 4.515567 2.498170 0.0
1e−13 4.757720 2.498965 0.0
1e−14 4.897905 2.497790 0.0
1e−15 4.321468 2.497402 0.0

From Fig. 3 one can see that most segment edges rely on SNPs with high observed recombination rates, suggesting that
our method could be a good predictor of these regions. The sizes of the windows are highly dependent on the values of
the penalyzing constant c , since lower c values create larger segments. We tested the hypothesis of a significantly different
recombination rate mean at the edges of the estimated blocks for constants c ranging from 10−1 to 10−15. We did this by a
usual bootstrap test with 100,000 random samples extracted from the entire chromosome and with the same length as the
estimated vector. The estimated recombination rates and the corresponding p-values for each constant are summarized in
Table 1. We suggest that the selection of the optimal c value should be more deeply investigated in further studies.

5. Discussion

In this paper we presented a novel and simple method to identify independent blocks in multiple aligned sequences. One
of the main advantages of our approach is its generality, in the sense that we do not assume a maximal number of segments
and we do not impose a specific model on each segment; the method estimates the nonparametric multivariate distribution

326 B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330

on each segment and the optimal number of such segments. But the use of specificmodels on each segment as in [3,10] is also
possible and should bemore explored in the future, enabling the generalization of themethod to a high dimensional setting,
in which the dimension of sequences could grow with the sample size. Moreover, the method and the theoretical results
could also be extended to the case considered in [12], where a unique stationary sequence is modeled by a concatenation
of Variable Length Markov chains. The use of other penalizing functions is also possible because the main argument in the
proof of the consistency results are the asymptotic bounds given by Lemmas 3 and 4. Any penalizing term lying between
these two bounds could also result in consistent estimators.

By the computational complexity, the exact algorithm seems to be only appropriate for sequences of relatively small
length. In contrast, the approximate hierarchical algorithm and its faster version assuming an upper bound in the block’s size
can be applied to very big sequences, as in the case of the SNPs data analyzed in Section 4. Nevertheless the algorithms used
in our analyses were coded in the R language to illustrate the performance of the estimators on simulated data and to show
the potential applicability of the method, but the computational efficiency was not the primarily goal of our contribution.
Faster algorithms could certainly be developed in the future, by using more sophisticated programming techniques.

The exploratory application of our method showed that the average of recombination rate in the edges of the segments
obtained considering different penalizing constant values are significantly different than the one obtained over the genome.
This is consistent with what is expected for recombination hotspots. The lengths of the resulting segments are highly
dependent on the value of the constant c , and there is no standard methodology to optimize this value. While in the
experiments presented in this articlewe chose rather arbitrary constants, the search for a ‘‘constant-free’’method to estimate
the vector of points of independence is desirable. This could be addressed, e.g., by using a similar approach as in [11]. This
constitutes a goal for future research in this area.

Acknowledgments

Florencia Leonardi is partially supported by a CNPq-Brazil fellowship (304836/2012-5). This article was produced as part
of the activities of FAPESP Research, Innovation and Dissemination Center for Neuromathematics, grant 2013/07699-0, and
FAPESP’s project ‘‘Structure selection for stochastic processes in high dimensions’’, grant 2016/17394-0, São Paulo Research
Foundation.

Appendix. Proof of the theoretical results

Let I ⊂ 1 : m be an integer interval. Given two probability distributions P1 and P2 over AI , let D(P1 ∥ P2) denote the
Kullback–Leibler divergence between P1 and P2, i.e.,

D(P1 ∥ P2) =

∑
aI :P2(aI)>0

P1(aI) ln {P1(aI)/P2(aI)} ,

where, by convention, 0 ln 0/p = 0 for all p ∈ (0, 1]. A well-known property about the Kullback–Leibler divergence between
two probability distributions states that D = 0 if and only if P1 = P2.

For any j ∈ 1 :m denote by P̃rj the probability distribution given, for all a1:m ∈ A1:m, by

P̃rj(a1:m) = Pr(a1:j) Pr(a(j+1):m),

and let

α = min{D(Pr ∥ P̃rj) : j ̸∈ U∗
}. (A.1)

By the definition of P̃rj and the basic property of the Kullback–Leibler divergence we must have α > 0.
We state without proof a basic lemma from [7] (see Lemma 6.3 therein) that will be useful later.

Lemma 1. For probability distributions P1 and P2 on AI ,

D(P1 ∥ P2) ≤

∑
aI :P2(aI)>0

|P1(aI) − P2(aI)|2

P2(aI)
.

Now we prove a lemma that provides us the rate of convergence of D(P̂r ∥ Pr) to 0 when n → ∞.

Lemma 2. For any interval I ⊂ 1 :mwe have D(P̂r ∥ Pr) < 8|AI
| ln ln(n)/n, eventually almost surely as n → ∞.

Proof. Define, for a fixed aI ∈ AI , the random variables given, for i ∈ {1, . . . , n}, by

Yi(aI) = 1{x(i)I = aI} − Pr(aI),

and

Zn(aI) =

n∑
i=1

Yi(aI) = N(aI) − n Pr(aI).

B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330 327

The variables Y1(aI), . . . , Yn(aI) are independent and identically distributed, with E{Yi(aI)} = 0 and E{Yi(aI)2} = Pr(aI){1 −

Pr(aI)}. Then, by the Law of the Iterated Logarithm (see Theorem 3.52 in [4]) we have, for all ϵ > 0,

|Zn(aI)| < (1 + ϵ) Pr(aI){1 − Pr(aI)}
√
2n ln ln n

eventually almost surely as n → ∞. Dividing both sides of the last inequality by n
√
Pr(aI) and taking ϵ = 1 we obtain

|Zn(aI)/n|
√
Pr(aI)

=
|P̂r(aI) − Pr(aI)|

√
Pr(aI)

< 2

√
2 ln ln(n)

n
(A.2)

eventually almost surely as n → ∞. Now by Lemma 1 and (A.2) we have

D(P̂r| Pr) ≤

∑
aI :Pr(aI)>0

|P̂r(aI) − Pr(aI)|2

Pr(aI)
≤ |AI

|max
aI

|P̂r(aI) − Pr(aI)|2

Pr(aI)
≤

8|AI
| ln ln(n)
n

eventually almost surely as n → ∞ and this completes the proof. □

Lemma 3. Let I = r : s ⊂ 1 :m and suppose (I \ {s}) ∩ U∗
= ∅, i.e., there is no point of independence belonging to I \ {s}. Then

min
i∈I\{s}

{Q (I; x) − Q (r : i; x) − Q ((i + 1) : s; x)} > αn

eventually almost surely when n → ∞, where α is given by (A.1).

Proof. Note that for any ar:i ∈ Ar:i we have N(ar:i) =
∑

a(i+1):s
N(ar:ia(i+1):s) and analogously for any a(i+1):s ∈ A(i+1):s,

N(a(i+1):s) =
∑

ar:i
N(ar:ia(i+1):s). Then we can write

Q (I; x) =

∑
ar:s∈AI

N(ar:s) ln P̂r(ar:s)

and

Q (r : i; x) + Q ((i + 1) : s; x) =

∑
ar:s∈AI

N(ar:s) ln P̂r(ar:i)P̂r(a(i+1):s),

therefore

Q (I; x) − Q (r : i; x) − Q ((i + 1) : s; x) =

∑
ar:s∈AI

N(ar:s) ln

{
P̂r(ar:s)

P̂r(ar:i)P̂r(a(i+1):s)

}
.

Dividing by n and taking limit when n → ∞ we have that the expression above converges almost surely to∑
ar:s∈AI

Pr(ar:s) ln

{
Pr(ar:s)

Pr(ar:i) Pr(a(i+1):s)

}
= D(Pr ∥ P̃ri) ≥ α > 0. □

Lemma 4. Let I = r : s ⊂ 1 :m and suppose there exists i ∈ (I \ {s}) ∩ U∗, i.e., there is a point of independence in the interval I.
Then we have Q (I; x) − Q (r : i; x) − Q ((i + 1) : s; x) < 8|AI

| ln ln(n) eventually almost surely when n → ∞.

Proof. As in the proof of Lemma 3 we can write

Q (I; x) =

∑
ar:s∈AI

N(ar:s) ln P̂r(ar:s)

and

Q (r : i; x) + Q ((i + 1) : s; x) =

∑
ar:s∈AI

N(ar:s) ln P̂r(ar:i)P̂r(a(i+1):s).

As P̂r(·) is the maximum likelihood estimator of Pr(·) and i is a point of independence, we have

Q (r : i; x) + Q ((i + 1) : s; x) ≥

∑
ar:s∈AI

N(ar:s) ln Pr(ar:i) Pr(a(i+1):s) =

∑
ar:s∈AI

N(ar:s) ln Pr(ar:s).

Then by combining this last inequality and Lemma 2 we have

Q (I; x) − Q (r : i; x) − Q ((i + 1) : s; x) ≤

∑
ar:s∈AI

N(ar:s) ln
P̂r(ar:s)
Pr(ar:s)

= nD(P̂r ∥ Pr) < 8|AI
| ln ln(n)

eventually almost surely as n → ∞. □

328 B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330

Proof of Theorem 1. Wewill show that eventually almost surely the maximizer of (3) is U∗. Define the sets E1 = {U : U∗
̸⊆

U} and E2 = {U : U∗
⊆ U}. First we will prove that eventually almost surely Û(x) must belong to E2. Let U ∈ E1 and assume

U∗
̸= ∅, because if U∗

= ∅ then E1 = ∅ and the assertion is trivial. Assume U∗
= (u∗

1, . . . , u
∗

K), with K ≥ 1, U = (u1, . . . , uk),
with k ≥ 0, and let i be the first index such that u∗

i ̸∈ U . Define U ′
= U ∪{u∗

i } = (u1, . . . , uj−1, u∗

i , uj, . . . , uk); see Fig. 4. Note
that B(U ′) has the two blocks I1 = uj−1 :u∗

i and I2 = (u∗

i + 1) :uj replacing the single block I = uj−1 :uj in B(U). Therefore,

ℓ̂(U ′
; x) − ℓ̂(U; x) = Q (I1, x) + Q (I2, x) − Q (I, x)

and by Lemma 4 we have

ℓ̂(U ′
; x) − ℓ̂(U; x) > −8|AI

| ln ln(n)

eventually almost surely as n → ∞. Moreover,

c(|U ′
| + 1)

√
n − c(|U | + 1)

√
n = c

√
n

then

PML(U ′
; x) − PML(U; x) > c

√
n − 8|AI

| ln ln(n) > 0

eventually almost surely as n → ∞. Therefore the penalized log-likelihood increases when we add the missing points in U∗

to any set U ∈ E2, showing that the global maximizer of (3), given by Û(x), must belong to E2 eventually almost surely when
n → ∞. Now we will show that in E2 there is a global maximizer of the penalized log-likelihood given by U∗, and this will
imply the result. To show this assume U∗

= (u∗

1, . . . , u
∗

K), with K ≥ 0, and let U = (u1, . . . , uk) ∈ E2, with k ≥ 1. As before
let i1 be the first index such that ui1 ̸∈ U∗. Define U (0)

= U and U (1)
= U \ {ui1} = (u1, . . . , ui1−1, ui1+1, . . . , uk); see Fig. 5.

In this case we have that B(U (1)) has the single block I = (ui1−1 + 1) : ui1+1 replacing the two blocks I1 = (ui1−1 + 1) : ui1
and I2 = (ui1 + 1) : ui1+1 in B(U (0)). Then

ℓ̂(U (1)
; x) − ℓ̂(U (0)

; x) = Q (I, x) − Q (I1, x) − Q (I2, x).

By (A.1) and Lemma 3, as ui1 ̸∈ U∗ we have that eventually almost surely

ℓ̂(U (1)
; x) − ℓ̂(U (0)

; x) > αn.

Moreover we have

c(|U (1)
| + 1)

√
n − c(|U (0)

| + 1)
√
n = −c

√
n

then

PML(U (1)
; x) − PML(U (0)

; x) > αn − c
√
n.

By iterating this procedure and removing all the points u ∈ U \ U∗ we obtain the sequence of vectors U (0), . . . ,U (s), with
s ≤ m, satisfying U (0)

= U , U (m)
= U∗ and

PML(U∗
; x) − PML(U; x) =

s−1∑
j=0

PML(U (j+1)
; x) − PML(U (j)

; x) > αn − c
√
n > 0

eventually almost surely as n → ∞. Therefore we have

PML(U∗
; x) > max

U∈E2\{U∗}

PML(U; x)

eventually almost surely as n → ∞, and then Û = U∗. This concludes the proof of Theorem 1. □

Proof of Theorem 2. First consider the case U∗
= ∅. By Lemma 3we have that eventually almost surely as n → ∞ the value

of i maximizing (4) will be i = 1, giving h(1 : m, x) = 0. Therefore Ûha(x) = ∅ = U∗ eventually almost surely as n → ∞.
Now suppose there is a point of independence u ∈ U∗. We will prove that eventually almost surely u ∈ Ûha(x). As u ∈ U∗,
for any integer r < u and any integer s > uwe have by Lemma 4 that

Q (r :u, x) + Q ((u + 1) : s, x) − Q (r : s, x) > −8|AI
| ln ln(n)

eventually almost surely as n → ∞. Then eventually we will have

Q (r :u, x) + Q ((u + 1) : s, x) − Q (r : s, x) > −c
√
n

and therefore h(r : s, x) = u, or equivalently u ∈ Ûha(x). As in any iteration of the algorithm there is an interval that contains
u and the inequality above is true for any r < u and s > u, then u ∈ Ûha(x) eventually almost surely as n → ∞. □

B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330 329

Fig. 4. A generic set U ∈ E1 , with U∗
̸⊆ U , and the corresponding modification U ′

= U ∩ {u∗

i }.

Fig. 5. A generic set U ∈ E2 , with U∗ ⊊ U , and the corresponding modification U ′
= U \ {ui}.

Proof of Corollary 1. Follows directly by an adaptation of the proof of Theorem 2, by observing that whenm > 3L and

max
I∈B(U∗)

(|I|) ≤ L

then theremust exist at least one point u ∈ U∩ Ĩ . For n big enough this point is detected by the algorithm and the consistency
follows by the iteration of this argument on the split samples. □

References

[1] M. Algama, J.M. Keith, Investigating genomic structure using changept: A Bayesian segmentation model, Comput. Struct. Biotechnol. J. 10 (2014)
107–115.

[2] J. Bai, P. Perron, Computation and analysis of multiple structural change models, J. Appl. Econometrics 18 (2003) 1–22.
[3] R.J. Boys, D.A. Henderson, A Bayesian approach to DNA sequence segmentation, Biometrics 60 (2004) 573–581.
[4] L. Breiman, Probability, SIAM, Philadelphia, PA, 1992.
[5] S.R. Browning, B.L. Browning, Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of

localized haplotype clustering, Am. J. Hum. Genet. 81 (2007) 1084–1097.
[6] C.C. Chang, C.C. Chow, L.C. Tellier, S. Vattikuti, S.M. Purcell, J.J. Lee, Second-generation PLINK: Rising to the challenge of larger and richer datasets,

GigaScience 4 (2015) 7.
[7] I. Csiszar, Z. Talata, Context tree estimation for not necessarily finite memory processes, via BIC and MDL, IEEE Trans. Inform. Theory 52 (2006)

1007–1016.
[8] S. Deng, Y. Shi, L. Yuan, Y. Li, G. Ding, Detecting the borders between coding and non-coding DNA regions in prokaryotes based on recursive

segmentation and nucleotide doublets statistics, BMC Genomics 13 (2012) S19.
[9] A. Finkelstein, M. Roytberg, Computation of biopolymers: A general approach to different problems, Biosystems 30 (1993) 1–19.

[10] J. Fridlyand, A.M. Snijders, D. Pinkel, D.G. Albertson, A.N. Jain, Hidden Markov models approach to the analysis of array CGH data, J. Multivariate Anal.
90 (2004) 132–153.

[11] A. Galves, C. Galves, J.E. García, N.L. Garcia, F. Leonardi, Context tree selection and linguistic rhythm retrieval from written texts, Ann, Appl. Stat. 6
(2012) 186–209.

[12] R. Gwadera, A. Gionis, H. Mannila, Optimal segmentation using tree models, Knowl. Inf. Syst. 15 (2008) 259–283.
[13] N. Haiminen, H. Mannila, Discovering isochores by least-squares optimal segmentation, Gen 394 (2007) 53–60.
[14] International HapMap Consortium, A second generation human haplotype map of over 3.1 million SNPs, Nature 449 (2007) 851–861.
[15] D.M. Hawkins, Point estimation of the parameters of piecewise regression models, J. Roy. Statist. Soc. Ser. C Appl. Statist. 25 (1976) 51–57.
[16] C.J. Hoggart, J.C. Whittaker, M. De Iorio, D.J. Balding, Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies, PLoS

Genet. 4 (2008) 1–8.
[17] J.Z. Li, D.M. Absher, H. Tang, A.M. Southwick, A.M. Casto, S. Ramachandran, H.M. Cann, G.S. Barsh,M. Feldman, L.L. Cavalli-Sforza, R.M.Myers,Worldwide

human relationships inferred from genome-wide patterns of variation, Science 319 (2008) 1100–1104.
[18] W. Li, P. Bernaola-Galván, F. Haghighi, I. Grosse, Applications of recursive segmentation to the analysis of DNA sequences, Comput. Chem. 26 (2002)

491–510.

http://refhub.elsevier.com/S0047-259X(18)30233-1/sb1
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb1
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb1
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb2
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb3
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb4
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb5
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb5
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb5
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb6
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb6
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb6
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb7
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb7
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb7
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb8
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb8
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb8
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb9
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb10
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb10
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb10
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb11
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb11
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb11
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb12
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb13
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb14
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb15
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb16
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb16
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb16
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb17
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb17
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb17
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb18
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb18
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb18

330 B.M. Castro et al. / Journal of Multivariate Analysis 167 (2018) 319–330

[19] S. Pääbo, The mosaic that is our genome, Nature 421 (2003) 409.
[20] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. Maller, P. Sklar, P.I. de Bakker, M.J. Daly, P.C. Sham, PLINK: A tool set for

whole-genome association and population-based linkage analyses, Am. J. Hum. Genet. 81 (2007) 559–575.
[21] V.E. Ramensky, V.J. Makeev, M.A. Roytberg, V.G. Tumanyan, DNA segmentation through the Bayesian approach, J. Comput. Biol. 7 (2000) 215–231.
[22] F. Tajima, Determination of window size for analyzing DNA sequences, J. Mol. Evol. 33 (1991) 470–473.
[23] S.-Y. Wen, C.-T. Zhang, Identification of isochore boundaries in the human genome using the technique of wavelet multiresolution analysis, Biochem.

Biophys. Res. Commun. 311 (2003) 215–222.

http://refhub.elsevier.com/S0047-259X(18)30233-1/sb19
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb20
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb20
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb20
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb21
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb22
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb23
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb23
http://refhub.elsevier.com/S0047-259X(18)30233-1/sb23

	A model selection approach for multiple sequence segmentation and dimensionality reduction
	Introduction
	Likelihood function and model selection
	Notation and definitions
	Computation of the independence set estimator
	Dynamic programming algorithm
	Hierarchical algorithm

	Theoretical results

	Simulations
	Identifying recombination hotspots
	Discussion
	Acknowledgments
	Proof of the theoretical results
	References

