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Abstract We congratulate Gérard Biau and Erwan Scornet for an interesting paper
on an important topic, namely towards better understanding of random forests and
related ensemble schemes. We provide some additional comments and an outlook for
the setting with heterogeneous data.
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1 Some further thoughts on the paper

Biau and Scornet (referred to in the sequel as “BS”) present a nice overview on recent
developments for random forests. As mentioned in BS, already Amit and Geman
(1997) proposed randomly selecting covariables (or “features”) during the process of
learning decision trees, and average at the final stage: their motivation was mainly of
computational nature, to dealwith verymany features. In fact, Breiman (2001) refers to
the paper byAmit andGeman, but he certainly is the personwho hasmade a pioneering
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240 P. Bühlmann, F. Leonardi

contribution with random forests pointing out its stunning accuracy in a wide range
of problems, its versatility and introducing also concepts of variable importance.

1.1 Improving the performance of random forests?

Random forests as proposed by Breiman (2001) is surprisingly accurate for regression
and classification problems, and there is empirical support that it is among the “best off-
the-shelf classifiers/estimators”. In particular, the fact that the performance of the algo-
rithm is rather insensitive to the choice of the tuning parameters justifies its usewithout
the need to carefully choose a regularization parameter with e.g. cross-validation. We
note that this finding is very different from other nonparametric or high-dimensional
estimation schemes such as the Lasso (Tibshirani 1996) or versions thereof.

Improving random forests, with respect to awide range of applications and datasets,
has been found to be very difficult. Recently, Cannings and Samworth (2015) proposed
a random projection ensemble method for classification, and they report a couple
of scenarios where random forests can be outperformed by some of their random
projection ensemble classifiers. However, when random forests compete against one
of their proposed random projection methods, the empirical results do not point very
clearly in favour of one or the other method.

1.2 Subsampling and bootstrapping

The theoretical arguments for random forests seem to be much better developed for its
version with subsampling instead of bootstrapping. We point here to an older result of
Freedman (1977), saying that subsampling with subsample size an is closest to boot-
strap resampling with respect to the total variation norm for an = �n/2�. This fact
has been also empirically exploited in Bühlmann and Yu (2002) with their subagging
procedure when compared to bagging (Breiman 1996). The theory described in BS is
interesting: for example, the median forest is consistent if an = o(n) (Scornet 2015),
and asymptotic normality holds if an = o(

√
n) (Mentch and Hooker 2015). All these

results exclude the range where an ∼ Cn for some 0 < C < 1. Is it a fundamental lim-
itation that an = o(n) (e.g. for consistency) or is it rather a lack of techniques to deal
with U-statistics of order an where an is very large and asymptotically proportional
to n?

1.3 Variable importance

Variable importance is very crucial for many practical applications. Constructing
importance measures based on random forests is very interesting, as it enables
applications with mixed data types (continuous and categorical data): for example,
Fellinghauer et al. (2013) make use of random forests variable importance for con-
structing conditional independence graphs.

The importance measures which have been proposed so far seem to work “rea-
sonably well”, but they seem to lack a more rigorous multivariate justification. For
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example, the ̂MDA measure and its population version MDA∗ reflect a marginal
aspect, as ̂MDA is based on marginal permutation of the variable of interest. A mul-
tivariate interpretation, e.g. as for a regression coefficient in a (generalized) linear
model, cannot be easily achieved, unless one adopts the computationally cumbersome
conditional importance measure (Strobl et al. 2008).

This remains a topic of future research.

1.4 Extensions based on random forests

As BS points out, random forests can be used in settings other than classification or
regression.

Missing data problems are briefly mentioned in BS. Another powerful method is
MissForest (Stekhoven and Bühlmann 2012): it uses random forest regression itera-
tively to impute the missing values. The method enjoys the same advantage as random
forests for regression and classification, namely that it can be easily used for mixed-
type data, taking nonlinearities and interactions into account.

For survival problems, random forests and other ensemble methods have been
proposed also in Hothorn et al. (2006), based on the idea of weighted resampling with
inverse probability of censoring (IPC) weights (van der Laan and Robins 2003, cf.).

2 Some outlook: inhomogeneous large-scale data

The random forests methodology and also the presented theory in BS rely on the
assumption that the data are i.i.d. realizations of (X1,Y1), . . . , (Xn,Yn). In particular
for large-scale data (or “big data”) where n is large, the i.i.d. assumption is question-
able. It can be weakened by assuming that the data come from G unknown groups,
with i.i.d. realizations within each group. If the groups are completely unstructured,
this corresponds to a mixture model with G components. For example, a mixture of
high-dimensional regression models has been considered by Städler et al. (2010). In
view of no further structural assumption about the groups, the problem of estimating
the mixture components is rather difficult. An easier case occurs when the groups
contain consecutive observations: such a scenario then corresponds to a change point
problem. Especially for large-scale (“big”) data, we believe that a change point model
of the following form is a reasonable approximation:

Yi = fi (Xi ) + σεi (i = 1, . . . , n),

ε1, . . . , εn i.i.d. with E[εi ] = 0, Var(εi ) = 1, (1)

where fi (·) is piecewise constant as a function of i , and εi is independent of Xi . That
is, when having G segments with corresponding change points scaled to the interval
[0, 1], namely, α0 = 0 < α1 < · · · < αG = 1,

fi (x) =
G∑

g=1

f (g; x)I(i/n ∈ (αg−1, αg]),
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involving G nonparametric regression functions f (1; ·), . . . , f (G; ·) for the G differ-
ent segments. A related, but high-dimensional parametric linear change point model
has been proposed by Leonardi and Bühlmann (2016). There, the regression function
f (g; x) is fitted with an �1-norm penalized linear function βT

g x : replacing it by a
random forests regression function, we propose the following joint estimator for the
change points and the nonparametric regression functions: for γ > 0

α̂ = argmin
G, α

{ G∑

g=1

Ln(αg−1, αg) + γG
}
, (2)

where the loss function Ln is given by

Ln(αg−1, αg) = n−1
n∑

i=1

(
yi − f̂ (g; xi )

)2
I(i/n ∈ (

αg−1, αg]
)
, (3)

the functions f̂ (g; ·) are the random forest regression functions estimated on the
subsample {(Xi ,Yi ) : I(i/n ∈ (αg−1, αg]} from a segment (αg−1, αg], and the
minimization in (2) is over the set of all vectors α = (α0, . . . , αG) satisfying
0 = α0 < α1 < · · · < αG = 1 and αg − αg−1 ≥ δ for all g, with δ > 0. The
parameter δ ensures that the estimated segments will not become too small, contain-
ing at least δ · n data points.

2.1 Binary segmentation algorithm

It is proved in Leonardi and Bühlmann (2016) for a high-dimensional linear change
point model that a binary segmentation algorithm leads to an estimator which has the
same statistical properties as the global estimator in (2), in terms of an oracle inequality
which bears some similarity to the one from high-dimensional regression (Bühlmann
and van de Geer 2011, cf.). The algorithm here is as follows.

For 0 ≤ u < v ≤ 1, define

h(u, v) = argmin
s∈{u}∪[u+δ,v−δ]

{ Ln(u, s) + Ln(s, v) + γ (1 + I(s > u)) } . (4)

The binary segmentation algorithm works by computing the best single change point
for the interval (0, 1] (obtained when h(0, 1) �= 0) and then to iterate this criterion
on both segments separated by this point, until no more change points are found (due
to the penalty in the objective function). We can describe this algorithm by using a
binary tree structure T with nodes labeled by sub-intervals (u, v] ⊂ (0, 1]. The steps
of the algorithm are given by:

1. Initialize T to the tree with a single root node labeled by (0, 1].
2. For each terminal node (u, v] in T, compute s = h(u, v). If s > u, add to T the

additional nodes (u, s] and (s, v] as descendants of node (u, v].
3. Repeat 2. until no more nodes can be added to T .
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The set of terminal nodes in T , denoted by T 0, can be identified with the estimated
change point vector α̂, by picking up the extremes in these intervals; that is,

α̂ =
⋃

(u,v]∈T 0

{u, v}.

2.2 Some numerical illustrations

Consider the following regression model with change points as in (1):

εi ∼ N (0, 1), σ = 1; Xi ∼ Np(0,Σ), Σi j = 0.8|i− j | ∀i, j;
α0 = 0, α1 = 0.3, α2 = 0.7, α3 = 1;

f (g = 1; x) = sin(x (1)) + x (2) + x (3) + x (1)x (2),

f (g = 2; x) = sin(x (1)) + x (p−1) + x (p) + x (p−2)x (p−1),

f (g = 3; x) = x (1) + x (1)x (20) + sin(x (50)) (5)

with p = 2n and n ∈ {50, 100, . . . , 250}. For 20 independent replications of sample
size n, we compute the estimated change points and the number of groups given
by the binary segmentation algorithm of Sect. 2.1, using the loss function based on
random forests defined in (3). The box plots corresponding to the first estimated
change point and the bar plots for the estimated number of groups for each sample
size n are summarized in Fig. 1, suggesting asymptotic consistency as n → ∞ (while
p = 2n → ∞ as well). For the simulations, we used δ = 0.1 and a γ parameter
depending on n and p, given by γ (n) = √

log(p)/n. In practice, the number of
groups can be selected by a cross-validation procedure as proposed in Leonardi and
Bühlmann (2016).
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Fig. 1 First estimated change point fraction α̂1 (left panel) and number of groups G (right panel) as a
function of sample size n and p = 2n. We used δ = 0.1 and γ = √

log(p)/n
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2.3 Maximin aggregation: magging

Besides the nonparametric segmentation which is interesting in its own right, we have
access to the output statistics of the random forest estimates, namely the functions
f̂ (g; ·) as well as the importance measures ̂MDA(g; X ( j)) [see formula (6) in the the
paper by BS].

We can aggregate the estimates of the different segments to a single estimated
regression function or a single variable importance measure. Instead of mean aggre-
gation (Breiman 1996), it is perhaps more interesting to ask for some sort of “stability”
across all the G groups. This can be achieved by maximin aggregation called “mag-
ging” (Meinshausen and Bühlmann 2015; Bühlmann and Meinshausen 2016). The
idea is to find the convex combination of f̂ (1; ·), . . . , f̂ (G; ·) which optimizes the
explained variance in the worst case scenario across the G groups. It can be shown
that this corresponds to a convex aggregation whose �2-norm is minimized:

f̂magging =
G∑

g=1

ŵg f̂ (g; ·), (6)

where the convex combination weights can be computed from a quadratic program

ŵ = argminw∈CG

∥∥∥∥∥∥

G∑

g=1

wg( f̂ (g; X1), . . . , f̂ (g; Xn))
T

∥∥∥∥∥∥

2

2

, (7)

with CG = {w ∈ R

G; wg ≥ 0,
∑G

g=1 wg = 1}. The aggregated regression estimator
with magging, as in (6), is useful for predicting response variables at new X variables:
not on average, but with some robustness against the worst case. Furthermore, the
aggregated variable importance measure with magging

̂MDAmagging

(
X ( j)

)
=

G∑

g=1

ŵg ̂MDA
(
g; X ( j)

)
,

with ŵ as in (7), for each variable X ( j) ( j = 1 . . . , p), summarizes the variable
importance across all G segments. If a variable is important in all the segments, it
should be picked up by a large value of ̂MDAmagging(·).

If we do not have access to the groups, we can estimate them as described in (2)
and Sect. 2.1, and then plug in the estimated version into the magging procedure.

We compute the importance measure for the model in Sect. 2.2 for a single sample
of size n = 250 points and with p = 500 covariables, with the estimated change
points using the method described above. The values of the ̂MDA(g; ·) importance
measure for each group and each covariable and the aggregated ̂MDAmagging measure
based on magging are shown in Fig. 2. The weights ŵ computed by (7) are ŵ =
(0.000, 0.128, 0.872), saying in particular that the magging estimate for optimizing
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Fig. 2 Top importance measure ̂MDA(g; ·) for each estimated group g = 1, 2, 3 of model (5). Bot-
tom “pooled” importance measure ̂MDA given by random forests on the whole data and aggregated
importance measure ̂MDAmagging, with weights given by (7). The vector of weights ŵ in (7) is

ŵ = (0.000, 0.128, 0.872). For ̂MDA, the top seven most important variables are 2, 3, 498, 1, 4, 499
and 500; and for ̂MDAmagging the top seven important variables are 1, 499, 2, 3, 498, 500 and 50

the worst case performance (across groups) is putting weight zero to the first group
with g = 1. In contrast, if we would pool all the data without taking the groups, this
would correspond approximately to the average weights, each having the value 1/3,
which would provide a rather different solution that does not protect against the worst
case performance as argued inMeinshausen and Bühlmann (2015) and Bühlmann and
Meinshausen (2016). As described in the caption of Fig. 2, the true active variable 50
is found to be important in magging, while it does not appear to be “relevant” in the
pooled data.

3 Conclusions

Biau and Scornet have provided a very insightful review of the theory and method-
ology of random forests. The theory and methodology is assuming that the data are
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homogeneous, being i.i.d. realizations from the same distribution or realizations from
a stationary stochastic process. We propose here that for heterogeneous data, which
is rather the rule than an exception in large-scale problems, one should segment or
group the data first, then use random forests (or other flexible and powerful regression
or classification methods), and finally aggregate the estimates from each estimated
segment or group. The latter step can be done with magging (maximin aggregation)
which optimizes the predictive performance in a worst case scenario.
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