
Programming web-course analysis: how to introduce
computer programming?

Romenig da Silva Ribeiro
Instituto de Matemática e Estatística – DCC

University of São Paulo
São Paulo, Brazil

romenig@ime.usp.br

Leônidas de Oliveira Brandão
Instituto de Matemática e Estatística – DCC

University of São Paulo
São Paulo, Brazil
leo@ime.usp.br

Tulio Vitor Machado Faria
Escola de Artes Ciências e Humanidades – EACH

University of São Paulo
São Paulo, Brazil
tuliofaria@usp.br

Anarosa Alves Franco Brandão
Escola Politécnica – PCS
University of São Paulo

São Paulo, Brazil
anarosa.brandao@poli.usp.br

Abstract— Nowadays, computer programming and logical
thinking skills have been proposed as a fundamental knowledge,
even to young learners. On one hand, in undergraduate STEM
(Science, Technology, Engineering and Math) courses, the first
contact of students with the logic of programming usually results
in high failure rates. The literature and experiments conducted
by the authors point out that this occurs regardless the adopted
programming language. On the other hand, the literature
presents some positive results when the paradigm used to
introduce the subject is Visual Programming (VP), where the
learners use icons to build their programs. This approach is
successful even with young learners. In this context, a relevant
question is whether, and how, the Visual Programming can help
learners to understand a traditional textual programming
language. The proposal of this work is to study differences
between visual and traditional programming by analyzing the
mental workload of using both paradigms during the
introduction of algorithms and basic concepts of programming in
the context of an online course of introductory programming. In
order to perform such analysis, we adopted the NASA TLX
protocol.

Keywords— visual programming; textual programming;
MOOC; iVProg; iAssign; Moodle; VPL; NASA TLX; mental
workload; web-learning; elearning; introduction to programming.

I. INTRODUCTION

Nowadays, logical reasoning and computer programming
are proposed as fundamental abilities for students and their
introduction in early stages of education has been adopted in
an increasing rate. This adoption is part of the movement
towards increasing the number of professionals that have
degrees on STEM (Science, Technology, Engineering, and
Mathematics) courses, since a bottled up demand of such
professionals is a reality in several regions world wide,
including Brazil.

Moreover, introducing logical reasoning and computer
programming earlier may address some challenges that are
currently faced by teachers and students of STEM courses that

are related to teaching and learning introductory
programming. Part of the problem is related to the
introduction of a formal language (programming language),
which allows students to solve problems computationally.
This involves the use of some programming environment to
describe the problem solution in the programming language
(create the program), debugging, compiling and running the
program. It seems simple but sometimes debugging activities
may be so hard that compromise the students’ performance
[1].

In order to overcome this problem, there are some
proposals of using visual systems to support the learning of
introductory programming [1][2]. Such systems use visual
resources like flowcharts or draggable codeblocks to guide
students on building programs without any concern related to
the programming language syntax, decreasing the effort of the
debug activity. They also offer the possibility of compiling
and running programs within them, avoiding the use of
programming environments during introductory programming
early stages. For instance, initiatives of using systems like
Scratch [3] and Alice [4] have shown that the direct
manipulation of the code blocks can reduce difficulties
concerning the syntax of traditional programming languages
and motivate students in the learning process [5]. This
indicates that students may focus their attention to the problem
solution and, consequently, increasing their logical reasoning
skills. This approach of programming is called Visual
Programming (VP). A definition for VP is given in [6] as "any
system that allows the user to specify a program in a two (or
more) dimensional fashion". In the same paragraph, Bentrad
and Meslati also explain that "conventional textual languages
are not considered two dimensional since the compilers or
interpreters process them as long, one-dimensional streams".

In this scenario, we would like to investigate differences
between the use of textual and VP environments for
introducing computer programming, in order to analyze
whether and how the adoption of a VP approach may help
students to understand and use a programming language in its

textual representation. Therefore, we initiate such analysis
with the adoption of the NASA Task Load Index (NASA
TLX) [7] for evaluating the mental workload of using both
programming paradigms in the context of an online computer
programming course.

An experiment was conducted in order to perform the
aforementioned analysis. It consisted of the creation of two
similar web-courses of Introductory Programming delivered
through the Moodle (Modular Object Oriented Dynamic
Learning Environment) [8]. Both courses used the same
instructional content but different programming paradigms:
one adopted VP and the other adopted textual programming.
The course using VP used the new version of our interactive
Visual Programming system (iVProg) integrated to Moodle
by the iAssign package [9]. The textual programming course
used the C language that was integrated to Moodle by the
plugin Virtual Programming Lab (VPL) [10]. All these are
free software, and iVProg [11] and iAssign [9] are developed
by our research group LInE.

In both courses all programming activities used automatic
evaluation, provided by iVProg+iAssign and by C+VPL.
Nevertheless VPL allows the use of other compiled languages,
we decided to adopt C by two reasons: it is one of the most
used language in engineering schools and do not demand
explanation of more sophisticated concepts, such as Oriented
Objects.

Section II presents the two programming systems and the
NASA TLX protocol, section III contains the experiment
description, in section IV a discussion and the main findings
are presented.

II.BACKGROUND: IVPROG, VPL AND NASA TLX

Before describing the experiment, we briefly present the
systems that were used in it and the protocol adopted for
analyzing the mental workload.

A.iVProg

iVProg, was firstly deployed in 2009. It was developed as
an Interactive Learning Module (iLM) based on Alice. In this
version, the mouse was the interaction instrument for
dragging-and-dropping some code components to build
algorithms. In 2012, our research group started a Software
Product Line (SPL) for iLM [12][13] and released the first
version of a framework to iLM. The new version of iVProg
was developed using this framework. The system still uses
drag-and-drop for ordering the code components, but
interaction was improved based on usability issues and
currently, drag-and-drop is combined with the pointing and
click approach. Even being designed from the Alice software,
both the first and the second version of iVProg were created
and adapted to teach procedural programming, while Alice is
used for teaching object-oriented programming.

Automated assessment of iVProg is based on test cases.
Basically, the system compares the expected outputs provided
by the teacher with those generated from the student's
algorithm. Moreover, iVProg can execute code with a single
click on the play button. The default output is done at a built-
in console simulator.

Fig. 1. iVProg screenshot on Moodle.

As an iLM, iVProg can be used as an applet integrated
with Moodle through iAssign. Figure 1 shows a screenshot of
the system running on Moodle.

B.VPL

The VPL system is a Moodle module developed at
Universidad de las Palmas Gran Canaria, Spain. It allows
algorithms constructing under a range of textual programming
languages inside an applet. The applet contains a code editor
with syntax highlighting. Furthermore, the student can test the
algorithm, since the code is compiled and executed (at the
server side) with a single button click. The VPL also has an
automated assessment based on test cases constructed by the
teacher. Due to security issues, VPL needs a jail system
installed on a virtual machine different from the one of the
Moodle server, meaning that two servers are needed to
execute it properly: one hosting Moodle and another running
the VPL jail system. Figure 2 shows a VPL screenshot running
on Moodle.

Fig. 2. VPL screenshot on Moodle

C.NASA TLX

The NASA TLX protocol was initiated in 1980 years and
has been used by the community Human-Computer Interaction
to evaluate software. It is an assessment tool that rates
perceived workload, been used to measure how the user faces
a task or a system. The literature points that it is used in the
development of complex computer interfaces to aviation
industries and power plants. However, we can also find its
usage in educational software, link in Ph.D. thesis of Santos
[14], where the author studied the influence of the insertion of

new computational tools in distance learning courses using
two groups, one of them as control group. The author
measured the cognitive workload considering during some
activities in both groups. This measures can be important in
educational process [15].

In our case, we used the protocol to measure the workload
incurred to the students during the execution of course
activities, intending to compare the influence of the
programming paradigm. The workload is defined in [7] as a
hypothetical construct that represents the cost of someone
finishing a task and reaching a certain level of performance.
Thus, the workload is not defined only by the tasks' demand
themself, but they also reflect multiple attributes that may
have different relevance for different individuals. Therefore,
the workload is an implicit combination of several factors. The
protocol divides the workload into six components (named as
scales) that are listed and described in the sequence:

 Mental Demand (MD): How much mental and
perceptual activity was required (e.g., thinking, deciding,
calculating, remembering, looking, searching, etc.)?

 Physical Demand (PD): How much physical activity
was required (e.g., clicking, typing, pushing, pulling, turning,
controlling, activating, etc.)?

 Temporal Demand (TD): How much time pressure did
you feel due to the rate or pace at which the tasks or task
elements occurred?

 Own Performance (OP): How successful do you think
you were in accomplishing the goals of the task set by the
experimenter (or yourself)?

 Effort (EF): How hard did you have to work (mentally
and physically) to accomplish your level of performance?

 Frustration (FR): How insecure, discouraged, irritated,
stressed and annoyed versus secure, gratified, content, relaxed
and complacent did you feel during the task?

The protocol consists of filling out a questionnaire with the
above six scales varying from 0 to 100. After filling scales, the
students need to choose, among fifteen screens, one of two
components that strongly appeared while performing the task
(exercises). To apply the protocol during the course we
adapted the HTML available in
http://keithv.com/software/nasatlx/ and created a Moodle
module that displays both: the six scales of the questionnaire
and the fifteen screens for a pairwise choice between the
components of the workload. Filling scales occurs by simply
selecting a cell within a range. Choices between pairs of
components are made from button clicks.

Figure 3 shows a screenshot of the scale filling in Moodle.
Figure 4 shows one of the fifteen screens that may occur
during the choice between pairs of components of the
workload.

Fig. 3. Screenshot of NASA TLX scales on Moodle.

Fig. 4. Screenshot of NASA TLX pairwise choice on Moodle.

After obtaining data from the protocol, it is possible to
analyze what were the components that had the greatest
influence during the activities. Following the protocol, we also
can get an overall value of the workload during the activities
and identify which were the most weighted factors.

In section III – B, we explain how this analysis was made.
In the next section, we will make a description of the
experiment.

III.EXPERIMENT DESCRIPTION

A. Setting the course

The course of Introductory Programming was created as
short course, to introduce the first concepts of programming,
from variable concepts to looping constructs.

The course registration was completely opened to the
public, not requiring any document or verification, nor
restricted to a specific educational institution. However, its
propaganda was performed for a short period of time (4
weeks), and mainly restricted to the University of São Paulo
(USP). Some member of our research group made propaganda
of it in two more institutions, resulting in 54% of the students
enrolled were from USP.

The course divulgation was conducted through 3 different
channels, an oral disclosure (a presentation of no more than 5
min) to 15 classes of freshman at the USP, with the
distribution of printed flyers in USP and the use of social
networking of two research group team.

The registration to the course was open, through the web,
under the confirmation of a valid email.

The course had 144 volunteers enrolled, from several
educational institutions. However, most of the volunteers were
from the engineering school of the University of São Paulo.

The reason must be that this school concentrated the majority
of the freshmen's classes with oral disclosure, 11 classes.

The enrolled students were divided into two groups, G1
and G2. The group G1 worked with Visual Programming, and
G2 with textual programming.

Since our purpose is to evaluate the mental workload of
using the visual programming model versus the textual
programming model, we created equivalent environments
within Moodle for both groups. They were not randomly
assigned. Instead, we tried to balance them by adopting the
following criteria: a) we balanced the number of students per
institution in each group, b) for each institution, we balanced
the number of students who had experience with programming
in each group c) for each institution, we also balanced the
number of students who had no experience with programming
in each group. Following this protocol, we could check the
rate of permanence and participation for groups of students
with different profiles.

Instructional content was designed independently of the
programming paradigm and it consisted of four modules, each
one containing a block of activities to be done followed by
discursive activities and an evaluation of the mental workload
to perform them using the NASA TLX protocol.

For some explanation related to the course, a flowchart
model was introduced for both groups. Furthermore, to avoid
Java installation problems and some settings that would
prevent the applet execution, tutorial videos were prepared to
explain how to prepare supporting tools for conducting the
course. Students received the credentials to access the system
and had access to tutorials for a period of one week before the
beginning of the courses' activities.

Theoretical and practical content were presented in four
modules and involved concepts of algorithms, variables an
associated types, data input and output, arithmetic and boolean
expressions, selection and looping constructs. More
specifically, module 1 was called "Algorithms" and it is
composed of the definition of algorithms and basic concepts of
programming (variables and their types, data input and output,
boolean expressions and arithmetic expressions). Module 2
was called "Selection" and it is composed of comments about
the previous module, definition of selection with examples.
Module 3 was called "Looping Constructs" and it is composed
of comments about the previous module, definition of the
looping constructs while, for and repeat. Module 4 was called
"Closing" and it is composed of complex activities involving
the content of the previous modules and discursive activities
related to the course as a whole and a final NASA-TLX
activity.

The course was delivered through Moodle in two versions:
one using iVProg as the programming environment and the
other using VPL with C. The first was prepared for G1 and the
second for G2. Having established the course content, a
methodology for conducting the experiment was defined and it
is described in the next section.

B. Methodology

After setting the course, we generated data on the
workload required by obtaining the answers from NASA TLX
forms of each list of exercises. These data were separated and
prepared for analysis. The protocol scale provides the students'
perception about the incurred workload during the activities
performance. The pairwise choice between the components
(mental demand, physical demand, temporal demand, etc)
provides a weight for each one of them. It is possible to obtain
an overall workload, which is calculated as the sum of the
products of each scale by its respective weight. The higher is
the overall value the higher is the workload during a task
performance. However, we decided to analyze the scales
separately.

However, it is important to note which are the factors that
most influenced the overall value. After all, the variable with
the greatest impact in the study was the programming
environments used by G1 and G2.

The reason we used a nonparametric test to analise the data
is the low number of respondents, besides the apparent non-
symmetrical distribution of data. Thus, the analysis as a whole
will suffer less influence of outliers and the number of
respondents. Considering the distribution of values to the same
scale in both groups, we used the nonparametric method
Wilcoxon-Mann-Whitney (WMW). Briefly, the test consists
of defining ranks based on the samples values. The higher the
value of the collected data, the higher its rank. Thus, is
possible to find which group has the highest ranks for a given
scale with a certain level of significance (we used α=0.05),
inferring about the population from which that sample was
obtained. The analysis of ranks allows the identification of the
sample distribution, if it is balanced or uneven. Thus, consider
that H0 : distributionG1 = distributionG2 e H1: distributionG1 <
distributionG2 to any of the scales (eg MD, PD, etc.).

In addition to the data from NASA protocol, we evaluated
the number of submission attempts to each activity. We also
conducted a qualitative analysis with students through an
online form. Since the course was delivered through the
internet, the option of in-loco interview was not possible, since
many participants were physically distant. This research tried
to lift especially if there were problems in the student access to
course, and their opinions about the teaching methodology
adopted and the tools used.

On the next section, we will describe the analysis of the
data collected.

C. Enrollment analysis

Despite more than 300 student requested inscrition in
couse, only 144 students have confirmed registration and 46 of
them never accessed the system. Another negative data is the
number of students that did not perform a single activity: 88
students. This is showed in Table I, in which the column
labeled "With exp." means the students that declared having
previous experience with programming, while the column
"Without exp." is the opposite situation. Tables I to II also
presented the data separating the students in accordance with
their group in the web-course, the group G1 with iVProg and
the group VPL.

TABLE I – No show in G1 and G2

Group System With exp. Without exp. Total

G1 iVProg 9 16 25

G2 VPL 7 14 21

Considering all the students enrolled in the web-course,
about half of them have declared previous experience with
programming. This is presented at Table II.

TABLE II – Student distribution over the groups G1 and G2

Group System With
exp.

Without
exp.

Total

G1 iVProg 31 41 72

G2 VPL 31 41 72

62 82 144

The low participation could be explained by three facts:
the course period; the origin of the students enrolled; and, the
students are volunteers. About 82 of them were freshmen at
the University of São Paulo (USP), and the course period
colided with the final exams of the students in the USP.

Besides, the last week in our web-course occurred at the
end of the semester at the USP, probably explaining the very
low number of students doing the activities. This is showed at
Table III, with only 16 students doing the final activities, that
included the last NASA TLX questionnaire.

TABLE III – Students that accessed the last week of the course

Group System With exp. Without exp. Total

G1 iVProg 3 3 6

G2 VPL 2 8 10

Since we did not interviewed the students it is not possible
to explain the low rate of participation. However the
hypothesis of volunteers' basis and the absence of certification
is in accordance with other author [16].

In the next section are analyzed the data obtained.

D. Analysis of activities (programming and questionnaires)

The NASA TLX protocol allowed interesting observations
about the use of VPL and iVProg tools during the execution of
course activities. The protocol analyses: the mental demand
(MD), physical demand (PD), temporal demand (TD), own
performance (OP), effort (EF) and frustration (FR), in
accordance with the student point of view.

The objective of each NASA TLX questionnaire is to
identify the perception of the student considering the six scales
MD, PD, TD, OP, EF, and FR. It was applied after each block
of activities with iVProg (in G1) or with C (in G2). Each
application were formed by 15 pairwise choice (each
combination of two scales) to order them considering the
difficult identified by the student. Our interest was to identify
the item (scale) which demands more effort in each activity,
comparing iVProg with C.

In figures 5 and 6 are presented the NASA TLX to groups

G1 and G2 to the first block of activities. In it is observed that,
in G1, the most significative demand was EF (effort), with
median 8. In group G2 the EF was smaller, however MD
(mental demand) and TD (temporal demand) was significantly
bigger. The MD was 4 in G1, and 8 in G2. However, the
biggest value in G2 (C) are between 25 and 30. To confirm
this observation it was used the WMW test, that is presented
in table IV. In this table the values p is calculated to all scale
to G1 and G2, with hypothesis: H0 : distributionG1 =
distributionG2 ; and H1: distributionG1 < distributionG2, with one
exception to the OP* scale, to which was considered as H1:
distributionG1 > distributionG2.

To each value of p there is no evidence to reject the null
hypothesis. However, it is noteworthy that the values relatad
to mental effort and time, respectively, MD and TD is quite
smaller, as observed in table IV.

Fig. 5. NASA TLX: G1 block 1 weighted scales (22 students' responses)

Fig. 6. NASA TLX: G2 block 1 weighted scales (12 students' responses)

TABLE IV – WMW p-value for G1 and G2, block 1

EF FR MD OP* PD TD

p-value 0.6409 0.6676 0.1167 0.3002 0.8272 0.1132

The data collected from the students activities is in
accordance to the perceptions above. The number of attempts
of solving the problems in G2 group, using C+VPL (textual
programming), were up to 15 times and it was not uncommon
to find a number greater than five attempts. The G1 group
(iVProg) used 4 attempts at most (only 1 student), more than
that, the most common situation was the student submit the
correct answer in first trial.

In figures 7 and 8 are presented the median to NASA-TLX
to the second block of activities. Again the MD is smaller in
G1 (6.33), than in G2 (11.33).

Fig. 7. NASA TLX: G2 block 2 weighted scales (6 students' responses)

Fig. 8. NASA TLX: G2 block 2 weighted scales (6 students' responses)

In table V is presented the WMW test. The value of p were

computed to each scale to the second block of activities. Once
more, there is no evidence to reject the null hypothesis.
However, must be noticed that the p-values to the scales EF
and MD are significantly smaller than the others. This is
confimed under the figures 7 and 8, in which EF and MD is
smaller in G1 than in G2, respectively, 4.835 against 9.165
and 6.33 against 11.33.

TABLE V – WMW p-value for G1 and G2, block 2

EF FR MD OP* PD TD

p-value 0.07441 0.8935 0.1473 0.2071 0.2023 0.532

The number of submissions in G2 (C+VPL) is
significantly higher than in G1 (iVProg). Again, in G2 the
maximum number of attempts to solve a problem was 12 and
the most common situation is the use of 5 attempts.
Nevertheless, in G1, the maximum number of attempts was 4
and the most common situation was students sending the
correct answer in their first trial.

In figures 9 and 10 are presented the median to NASA
TLX to the third block of activities. In this blok the highlight
is scale EF, about 6 in G1, against 13.33 in G2.

Fig. 9. NASA TLX: G1 block 3 weighted scales (5 students' responses)

Again, we constructed a table showing the calculated p-
values, that is presented in table VI.

TABLE VI – WMW p-value for G1 and G2, block 3

EF FR MD OP* PD TD

p-value 0.1452 0.6028 0.4353 0.7435 0.9642 0.6028

Fig. 10. NASA TLX: G2 block 3 weighted scales (7 students' responses)

The analysis of the third block of activities allowed us to
observe that the median of MD were 15 in G1 and 16 in G2, a
small difference compared with the other blocks. EF in G1
were 6 and in G2 were 13.33. Regarding the number of
submissions for G1 few students did the activities, however,
their submission was correct on only 1 attempt. In G2, The
number of submissions was slightly higher, however, the
number of attempts reached the maximum of 17.

As aforementioned, the number of NASA TLX
submissions for the forth and fifth blocks were not sufficient
to make any comparison. The NASA TLX also showed that in
some cases, users have shown a little bit frustrated during the
execution of the proposed tasks.

In order to understand this phenomenon and, moreover, to
collect qualitative data about the web-course we designed a
simple online survey. We also would like to find out why such
a high rate of users never accessed the system. The survey
questionnaire was answered by 26 students. Among them, 23
were able to access the course satisfactorily and carry out the
necessary tasks. In addition, only 3 responses were from users
who had never accessed the system. Two of them claimed they
did not receive the e-mail with information on the course and
one person said he forgot the password and could not retrieve
it.

The survey was basically composed by three questions:

1. If you have not accessed the course system or did not
accomplished the module I could share the reason with us? If
yes, fill out the form below telling us why.

2. If you did the activities and read the instructional
material, do you have any suggetion of improvement to the
environment or to the material?

3. What is your opinion about the tool used to create
algorithms?

Generally, participants reported being very satisfied with
the course, with the methodology and the tools used. Some
participants had had problems with the Java Applet, that was a

central technology to VPL and iVProg. We received 3 emails
from students asking for help with the installation of Java and
the security level setting to allow execution of Java in the
browser. Additionally, another participant wrote at the
questionnaire that “... Despite a slight problem with the java
configuration at the beginning, it worked very well, I could
use it without any trouble”.

Praise for the course and methodology were numerous, as
in: “I was quite intrigued with the tool, how it provides inputs
to the application without arguments in main function and
after reading it selectively outputs is very practical for the
correction of exercises, plus this the fact that there is instant
feedback was very useful. I have nothing to complain about
the tool, in fact, if possible, would like to know more about it
because I found the concept interesting: the interaction
between the tool and the algorithms at run time, I was pleased
to see that application in teaching programming”. Another
one: “I believe that this tool will serve for the initial teaching
of algorithms”. However there were two students who
criticized the agility of the iVProg. One of them wrote: “The
idea of the tool as a method for teaching programming logic is
good, but who spends much time to make the code (declare
variables all the time, etc.)”.

Considering the content there were some suggestions, like
this one: “Working examples of various algorithms (parity
check, count digits, etc..) could be presented next to its
theoretical content. This would facilitate the learning and
appreciation of these topics to users without solid
mathematical basis”.

Considering the questionnaire answers, some relations
could be established between it and the NASA-TLX protocol.
An example is identified in the third block of activities, when
the algorithms became more complexes. The current interface
of iVProg demands much more time when the algorithm is
bigger, i.e., the time consumption seems to increase more then
a linear function with complexity.

In the next section we present a discussion and intentions
for future work.

IV.DISCUSSION

Since the course adopted an online approach, complete
optional to the students, with no certification at all, we
observed a consistent reduction in the students participation.

Initially the course had the enrollment of 144 students,
however, 32% of them have never accessed the system. Some
of them because their email served blocked the email sent to
them with user name and password. Furthermore, the students
participation in the last activities were drastically reduced. The
last block of activities had only 8 students performed the last
activity, considering both groups (G1 and G2). We believe
that this can be explained by the liberty of the course model,
students were volunteers, almost all of them freshmen in
university. With the activities in the university increasing, the
participation drop down.

Another common problem in online courses is the relation
between the student participation and the level of difficulty in
the activitiy, that is inversely proportional. A clear example of

this relation is observed in the article [16] that analysed a
MOOC (Massive Open Online Course) about circuits and
electronic components promoted by the MIT (Massachusetts
Institute of Technolog). The authors stated that the rate of
students who never accessed the course was 29% (46000 from
154000 never appeared). This makes us think that this number
may be an intrinsic part of the MOOC mode. Moreover, in
[16] is reported that students competing for certificate are
more dedicated and the drop-out rate decrease in MOOC. Our
web-course did not offer certificates due to its experimental
characteristic.

Despite the reduced quorum in our web-course, the NASA
TLX protocol indicated that visual programming seems to be a
nice option to introduce programming concepts. Indeed, the
number of submissions to both models indicated that visual
programming led less mental demand and less effort for users
to accomplish the tasks. In terms of frustration, to carry out the
activities, students in G1 felt more frustrated than students in
G2 while accomplishing more complex exercises.

At the end of the web-based course a survey questionnaire
was used to identify the reason to low quorum and possible
frustrations. From the answer it became clear that the main
reason to frustrations were problems with the Java applet
technology and the difficulties with its configuration.

Considering all collected data, from NASA TLX, activities
log, and the survey, we can observe that visual programming
is a good model to teach algorithms and programming.
However the low number of respondents do not allow stronger
assertions.

V.FUTURE WORKS

Since the reduced number of enrolled students prevented
us of any statistical conclusions, we intend to perform a new
course edition, this time as MOOC.

Another future work is to analyse if a new version of
iVProg, now implemented using HTML5 technology can
reduce the students frustrations with Java security issues.

Besides, this first course edition comparing visual with
textual programming arose several questions that must be
investigated in future.

One of them is how to compare the effective learning. Is it
possible to compare both models?

Another question is related to the necessity of the
traditional textual programming. Is it enough the visual model
to Science, Technology, Engineering, and Mathematics
(STEM) students?

Another future work must be a quantitative experiment.
With the first tested version of content materials and activities,
our intentions is start a new course, this time with a more
general invitation, not restricted to some freshmen in one
university.

Acknowledgment
This work is partially supported by grant #011/10926-2

São Paulo Research Foundation (FAPESP).

References
 Carlisle, M. C. "Raptor: a visual programming environment for teaching
object-oriented programming".Journal of Computing Sciences in Colleges,
vol. 24, issue 4, April 2009, pp. 275-281.

 Kölling, M. "The Greenfoot Programming Environment".ACM
Transactions on Computing Education (TOCE), vol. 10, issue 4, November
2010.

 Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. "The
Scratch programming language and environment".ACM Transactions on
Computing Education (TOCE), vol. 10, issue 4, November 2010.

 Cooper, S., Dann, W., Pausch, R. "Alice: a 3-D tool for introductory
programming concepts". Journal of Computing Sciences in Colleges, vol. 15,
issue 5, May 2000, pp.107-116.

 Hundhausen, C. D., Farley, S., Brown, J. L. "Can direct manipulation
lower the barriers to programming and promote positive transfer to textual
programming? An experimental study".Visual Languages and IEEE
Symposium on Human-Centric Computing, September 2006, pp. 157-164.

 Myers, B. A. "Taxonomies of visual programming and program
visualization".Journal of Visual Languages & Computing, vol. 1, issue 1,
March 1990, pp. 97-123.

 Hart, S. G., Staveland, L. E. "Development of NASA-TLX (Task Load
Index): Results of Empirical and Theoretical Research". 1988, pp. 139-183.

 Moodle: Modular Object-Oriented Dynamic Learning Environment,
http://moodle.org. Accessed: 20/04/2014.

 VPL: Virtual Programming Lab, http://vpl.dis.ulpgc.es/. Accessed:
20/04/2014.

 Brandão, L. O., Ribeiro, R. S., Brandão, A. A. F. "A system to help
teaching and learning algorithms". Frontiers in Education Conference (FIE),
October 2012, pp. 1-6.

Rodrigues, P. A., Brandão, L. O., Brandão., A. A. F. "Interactive
Assignment: a Moodle component to enrich the learning process".Frontiers in
Education Conference (FIE), October 2010, pp. T4F-1-T4F-6.

 D. L. Dalmon, L. O. Brandão. "Uma linha de produtos de software para
módulos de aprendizagem interativa".Anais do Simpósio Brasileiro de
Informática na Educação, 2012, pp..

 Dalmon, D. L., Brandão, L. O., Brandão, A. A. F., Isotani, S. "A Domain
Engineering for Interactive Learning Modules".Journal of Research and
Practice in Information Technology, vol. 44, 2012, pp.309-330.

 Santos, L. M. A. "A inserção de um agente conversaciaonal animado em
um ambiente virtual de aprendizagem a partir da teoria da carga
cognitiva".PhD Tesis, 2009, pp.114.

 Windell, D., Wiebe, E. N. "Measuring Cognitive Load in Multimedia
Instruction: A Comparison of Two Instruments".Annual meeting of the
American Educational Research Association, 2007.

 Seaton, D. T., Bergner, Y., Chuang, I., Mitros, P., Pritchard, D. E. "Who
Does What in a Massive Open Online Course? (MOOCs)".Communications
of the ACM, vol. 57, issue 4, April 2014.

