MAT 0222 Álgebra Linear II Lista 2

- 1. Seja $T: \mathbb{C}^2 \to \mathbb{C}^2$ definida por $T(x_1, x_2) = (x_1, 0)$. Seja $B = \{v_1, v_2\}$ com $v_1 = (1, i)$ e $v_2 = (-i, 2)$. Ache as matrizes: $[T]_{can,B}, [T]_{B,can}, [T]_{can}$ e $[T]_B$. (Aqui can designa a base canônica de \mathbb{C}^2 .)
- 2. Seja $A \in M_n(\mathbb{K})$ uma matriz fixa e seja $T_A : M_n(\mathbb{K}) \to M_n(\mathbb{K})$ definida por

$$T_A(M) = AM - MA$$
.

Mostre que T_A é uma transformação linear.

- 3. Exiba uma função $T:\mathbb{C}\to\mathbb{C}$ que seja \mathbb{R} -linear mas que não seja \mathbb{C} -linear.
- 4. Sejam V e W espaços vetoriais de dimensão finita sobre \mathbb{K} . Sejam $T:V\to W$ e $S:W\to V$ transformações lineares. Mostre que se $\dim V>\dim W$ então a composta $S\circ T$ não é invertível.
- 5. Seja V um espaço vetorial de dimensão finita e $T:V\to V$ linear tal que posto $(T^2)=$ posto(T). Prove que $\mathrm{Ker} T\cap \mathrm{Im} T=\{0\}.$
- 6. Seja $\theta \in \mathbb{R}$. Prove que as matrizes

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \quad e \quad \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$$

são matrizes semelhantes em $M_n(\mathbb{C})$.

7. Seja V um espaço vetorial de dimensão 2 sobre o corpo \mathbb{K} e seja T um operador linear em V tal que $T^2 = T$. Prove que ou T é o operador nulo, ou T é a identidade ou existe B base de V tal que

$$[T]_B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right].$$

8. Seja V um espaço vetorial de dimensão n sobre o corpo \mathbb{K} e seja T um operador linear em V tal que $T^n = 0$ e $T^{n-1} \neq 0$. Seja $v \in V$ tal que $T^{n-1}v \neq 0$. Prove que o conjunto

$$B = \{v, Tv, T^{2}v, ..., T^{n-1}v\}$$

é uma base de V. Qual é a matriz $[T]_B$?

EXERCÍCIOS DO LIVRO TEXTO:

Esses exercícios correspondem aos exercícios (2) e (4) e de (7) a (14) da Lista 2 extraída do livro $Um\ curso\ de\ Álgebra\ Linear.$