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Abstract. It is known that every pair of longest paths in a connected
graph intersect each other in at least one vertex. Hippchen [1] conjectured
that, for k-connected graphs, every pair of longest paths intersect each
other in at least k vertices and prove it for k = 3. In this paper we
prove Hippchen’s conjecture for k = 4. We also show, for every k > 0,
a family of k-connected graphs in which there is a pair of longest paths
intersecting each other in exactly k vertices.
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1 Main Theorem

All graphs in this paper are simple and notation used is standard [2]. We begin
by showing a useful lemma. For space reasons, the proof of it is not presented.

Lemma 1. Let P and Q be two longest paths in a graph G. Let u ∈ V (P )∩V (Q).
Let v ∈ V (P ) \ {u} be such that P [u, v] contains no vertex of V (Q) \ {u}. Let
w ∈ V (Q) \ {u} be such that P [u,w] contains no vertex of V (P ) \ {u}. Then,
there is no vw-path internally disjoint from P and Q.

Theorem 1. Every pair of longest paths in a 4-connected graph intersect each
other in at least four vertices.

Proof Sketch. Let G be a 4-connected graph and let P and Q be two longest
paths in G. Suppose by contradiction that |V (P ) ∩ V (Q)| < 4. As G is 3-
connected, P and Q intersect in exactly three vertices [1, Lemma 2.2.3], say
a, b and c. Suppose, without loss of generality, that abc is a subsequence in P .
Without loss of generality we have two cases, depending on the ordering in
which a, b and c appear in Q. Also, as G is 4-connected, the graph G− {a, b, c}
is connected. Hence, by Lemma 1, and without loss of generality, we have two
cases, stated in Fig 1. In each of these cases we obtain a contradiction.

2 Tight Families

As Hippchen mentioned [1, Figure 2.5], in the graph Kk,k+2, there exists a pair
of longest paths intersecting each other in exactly k vertices. As Kk,k+2 is k-
connected, this make the conjecture tight. In this section we show that in fact
there is an infinite family of graphs, for every k, that make the conjecture tight.
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Fig. 1. Cases in the proof of Theorem 1. In both cases, we obtain two paths whose
lengths sum |P |+ |Q|+2|R|, which is a contradiction, as P and Q are longest paths. (a)
Paths Px·R·Pyc·Qcb·Qba·Qa and Py ·R·Pxa·Pab·Pbc·Qc, (b) paths Pa·Pax·R·Pyc·Pcb·Qb

and Qa ·Qac ·Qcb · Pbx ·R · Py.

Theorem 2. For every k-connected graph, there exists an infinite family of
graphs with a pair of longest paths intersecting each other in exactly k vertices.

Proof Sketch. Let S = {s1, s2, . . . , sk}, and ` be a positive integer. For every
i ∈ [k + 1], let Xi = {ai1, ai2, . . . , ai`} and Yi = {bi1, bi2, . . . , bi`}. Let G be a
graph with V (G) = S ∪ {Xi : i ∈ [k + 1]} ∪ {Yi : i ∈ [k + 1]}, and E(G) = {sv :
s ∈ S, v ∈ V (G) \ S} ∪ {aijai(j+1) : i ∈ [k + 1], j ∈ [` − 1]} ∪ {bijbi(j+1) : i ∈
[k + 1], j ∈ [`− 1]} (Fig. 2). It is easy to see that G is k-connected and that P =
a11a12 · · · a1`s1a21a22 · · · a2`s2 · · · ak1ak2 · · · ak`ska(k+1)1a(k+1)2 · · · a(k+1)` and
Q = b11b12 · · · b1`s1b21b22 · · · b2`s2 · · · bk1bk2 · · · bk`skb(k+1)1b(k+1)2 · · · b(k+1)` are
both longest paths, intersecting in exactly k vertices.
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Fig. 2. The graph used in the construction of Theorem 2, in the case ` = 2.
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