Linial's Conjecture for Matching-Spine Digraphs*

Jadder Bismarck^{1[0000-0003-1729-5856]}, Cândida Nunes da Silva^{2[0000-0002-4649-0274]}, and Orlando Lee^{1[0000-0004-4462-3325]}

¹ Universidade Estadual de Campinas, Campinas SP, Brazil {bismarck, lee}@ic.unicamp.br
² Universidade Federal de São Carlos, Sorocaba SP, Brazil candida@ufscar.br

Abstract. In 1981, Linial conjectured that for every positive integer k, the k-norm of a k-optimal path partition of a digraph D is at most the weight of an optimal partial k-coloring of D. In this work, we present some partial results on this conjecture for the class of matching-spine digraphs.

Keywords: graph theory \cdot digraph \cdot path partition \cdot stable set.

1 Introduction

For a digraph D, let V(D) denote its set of vertices and let A(D) denote its set of arcs. Let P be a path. We denote by V(P) the set of vertices of P. The order of P, denoted by |P|, is the number of its vertices and we denote by ter(P) the terminal vertex v_{ℓ} of P.

A path partition \mathcal{P} of a digraph D is a set of disjoint paths which cover V(D). Let $\pi(D)$ denote the cardinality of a minimum path partition of D. Given a positive integer k, the k-norm of \mathcal{P} is defined as $\sum_{P \in \mathcal{P}} \min\{|P|, k\}$. A path partition of minimum k-norm is called k-optimal and its k-norm is denoted by $\pi_k(D)$. Note that $\pi(D) = \pi_1(D)$.

A stable set S in a digraph D is a subset of vertices of V(D) such that no two vertices of S are adjacent. Let $\alpha(D)$ denote the cardinality of a maximum stable of D. Let k be a positive integer. A partial k-coloring C of D is a set of k disjoint stable sets. The weight of C is defined as $\sum_{C \in \mathcal{C}} |C|$. A partial k-coloring of maximum weight is called optimal and its weight is denoted by $\alpha_k(D)$. Note that $\alpha(D) = \alpha_1(D)$.

In 1950, Dilworth [1] proved that the equality $\pi(D) = \alpha(D)$ holds when D is a transitive acyclic digraph. In 1960, Gallai and Milgram [2] generalized Dilworth's Theorem to arbitrary digraphs establishing that $\pi(D) \leq \alpha(D)$ for every digraph D. Later, in 1976, Greene and Kleitman [3] generalized Dilworth's

^{*} This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The third author was supported by CNPq Proc. 303766/2018-2, CNPq Proc 425340/2016-3 and FAPESP Proc. 2015/11937-9.

theorem, showing that for every transitive acyclic digraph D and every positive integer k, we have $\pi_k(D) = \alpha_k(D)$. In 1981, Linial [4] conjectured that one could generalize Greene-Kleitman's Theorem to arbitrary digraphs as follows.

Conjecture 1 (Linial [4]) For every digraph D and every positive integer k, we have $\pi_k(D) \leq \alpha_k(D)$.

2 Matching-Spine Digraphs

We say that D[X, Y] is a matching-spine digraph if D[X] has a Hamilton path and the arc set of D[Y] is a matching. In this work we give partial results on the validity of Linial's Conjecture for matching-spine digraphs. The strategy involves finding, for an arbitrary matching-spine digraph, a path partition and a partial k-coloring that give an upper bound for the k-norm and a lower bound for the weight of an optimal path partition and partial k-coloring, respectively.

We define a canonical path partition \mathcal{P} of a digraph D as any Hamilton path P of D[X] together with all maximal paths of D[Y]; clearly $\pi_k(D) \leq |Y| + \min\{|X|, k\}$. Consider the partition of the vertices of Y into sets Y^0, Y^+, Y^- such that Y^0 contains the isolated vertices, Y^+ the sources and Y^- the sinks in D[Y]. We define a canonical partial k-coloring \mathcal{C} as the stable sets $Y^0 \cup Y^-, Y^+$ and $\min\{|X|, k-2\}$ singletons of X; clearly $\alpha_k(D) \geq |Y| + \min\{|X|, k-2\}$. Therefore $\pi_k(D) \leq \alpha_k(D) + 2$.

We split the class of matching-spine digraphs into two classes: k-loose and k-tight digraphs. For the former class, we can show that $\pi_k(D) \leq \alpha_k(D)$ and so Linial's conjecture follows in this case. Our main result is to prove that if D is in the latter class, then $\pi_k(D) \leq |Y| + \min\{|X|, k-1\}$. The technique used in this proof is a (non-trivial) extension of that used in [5] to prove Linial's Conjecture for spine (a subclass of matching-spine) digraphs. Specifically, it involves finding a pair of paths whose union contains |X| + k + 1 vertices, thus providing a path partition of k-norm $|Y| + \min\{|X|, k-1\}$. So, when $\alpha_k(D) \leq |Y| + \min\{|X|, k-1\}$, Linial's conjecture also holds. The remaining case occurs when $\alpha_k(D) \leq |Y| + \min\{|X|, k-2\}$ and the conjecture is still open. We conjecture that in this case, $\pi_k(D) \leq |Y| + \min\{|X|, k-2\}$, which would settle Linial's conjecture for matching-spine digraphs.

References

- 1. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics pp. 161–166 (1950)
- Gallai, T., Milgram, A.: Verallgemeinerung eines graphentheoretischen satzes von Rédei. Acta Sc. Math 21, 181–186 (1960)
- Greene, C., Kleitman, D.J.: The structure of Sperner k-families. Journal of Combinatorial Theory, Series A 20(1), 41–68 (1976)
- Linial, N.: Extending the Greene-Kleitman theorem to directed graphs. Journal of Combinatorial Theory, Series A 30(3), 331–334 (1981)
- Sambinelli, M., da Silva, C.N., Lee, O.: On Linial's conjecture for spine digraphs. Discrete Mathematics 340(5), 851–854 (2017)