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INTRODUCTION
Let G = (V,E) be a graph with |V | vertices
and |E| edges, with distinct tokens placed on
it’s vertices. The objective is to reconfigure this
initial token placement called f0 : V 7→ V into
the identity token placement fi, that maps ev-
ery node to itself, through a sequence of pairs
of adjacent graph vertices that swap the to-
kens between these vertices. The aim is to
know if it is possible to have a swap sequence
S that achieve the objective in k or less swaps,
with k ∈ N.
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Figure 1: TS instance with graph 1a and token con-
figuration 1b.

The problem was shown to be polynomial
time solvable for some graph classes, but only
for very special cases [1, 2, 3, 4, 5]. Appli-
cations of the TS problem encompass a wide
range of fields. From computing efficient in-
terconnection network structures, [6], com-
putational biology [7, 8], modelling Wireless
Sensor Networks (WSS) [9], protection rout-
ing [10] to qubit allocation for quantum com-
puters [11, 12].
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SWAPPING TOKENS ON COGRAPHS

The Cycle Matching Graph H of a cograph G has each cycle on C0 as vertice set and two vertices
are adjacent if the lowest common ancestor of all vertice pairs in the vertice union in T (G) is an
1-node. Let µ(H) be the maximum matching in this graph.
It is possible to prove that each independent cycle C ∈ CS can be solved in |C| + 1 or |C| − 1
swaps depending on whether this cycle is part of C0 or C1, respectively. Also, it is possible to
show that cycle interaction is restricted in the best-case scenario and the best improvement on
swaps can be calculated on the value of the maximum matching of the cycle matching graph H .
The following theorem implies the polynomial time solvability of Token Swap for cographs.

Theorem. Let G be a cograph with an initial token placement f0. The minimum number of required
swaps is given by |V (G)|+ |C0| − |C1| − 2× |µ(H)|.

This behavior is also being used to find more efficient algorithms in other graph classes like bi-
partite chain, wheel and gear. Each possible swap is either called a merge or a split and changes
the cycle set CS(CGf ) by merging two cycles or splitting a cycle into two, respectively. By un-
derstanding the interactions of merge and split swaps over the two classes of cycles in the cycle
set and initial configuration, it is possible to achieve a polynomial time algorithm for Token Swap
in Cographs. Figure 2 shows an example of an swap that merges two cycles of a configuration.
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Figure 2: Representation of the instance of Figure 1 after the application of a merge swap (c, d).

PRELIMINARIES

A Conflict Graph CGf := (V (G), ECG) is a di-
graph that, for a token placement f of a graph
G, an edge (u, v) ∈ ECG if and only if f(u) = v.
Each node has outdegre 1 and the digraph may
contain self-loops.
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Figure 3: Example of a cograph.

A cograph is defined recursively as follows:
a graph on a single vertice is a cograph; if
G1, G2, . . . , Gk are cographs, then so is their
disjoint union; if G is a cograph, then so is its
complement G. A cotree T (G) of a cograph
G = (V,E) is a rooted tree representing it’s
structure. The leaves of T (G) are exactly V
and each internal node is either a 0-node and

1-node. The children of an 1-node are 0-nodes
or leaves and the children of a 0-node are 1-
nodes or leaves. Two vertices are adjacent in
a cograph if and only if their lowest common
ancestor is an 1-node.
The set of permutation cycles of CG for f is
defined as CS(CGf ) = {C1, C2, . . . , Ck}. Let
C1 ⊆ CS be the set of cycles that have a lowest
common ancestor of all vertice pairs of V (C)
as an 1-node in the cotree or is a cycle of size
one and let C0 = CS \ C1.
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Figure 4: Cotree and conflict graph joint representa-
tion.
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