

On total chromatic number of circulant graphs

Mauro Nigro Alves Junior - Diana Sasaki Nobrega

State University of Rio de Janeiro, Rio de Janeiro - PPGCCOMP

Total Coloring and Circulant Graph

A k-total coloring of a graph G is an assignment of k colors to the elements of G such that adjacent elements have different colors. **Theorem 1.** [Sasaki [4], 2013] If a k-regular graph G does not have maximal matching of maximum lenght $\left\lfloor \frac{|E|}{k+1} \right\rfloor$, then does not exists (k+1)-total coloring of G

the elements of G such that adjacent elements have different colors. The total chromatic number $\chi''(G)$ is the smallest integer k for which G has a k-total coloring. Clearly, $\chi''(G) \ge \Delta + 1$, and the Total Coloring Conjecture (TCC) states that for any simple graph $G, \chi''(G) \le \Delta + 2$, where Δ is the maximum degree of G [1]. Graphs with $\chi''(G) = \Delta(G) + 1$ are called Type 1, and graphs with $\chi''(G) = \Delta(G) + 2$ are called Type 2.

A circulant graph $C_n(d_1, d_2, \dots, d_l)$ with $1 \leq d_1 < \dots < d_l \leq \lfloor \frac{n}{2} \rfloor$ has vertex set $V = \{v_0, v_1, \dots, v_{n-1}\}$ and edge set $E = \bigcup_{i=1}^l E_i$ where $E_i = \{e_0^i, e_1^i, \dots, e_{n-1}^i\}$ and $e_j^i = (v_j, v_{j+d_i})$ where the indexes of the vertices are considered modulo n. An edge of E_i is called edge of length d_i .

The main goal of this current work is to determine the total chromatic number of all circulant graphs $C_n\left(1, \left\lfloor \frac{n}{2} \right\rfloor\right)$. It is well known by Chetwynd [2] that when n is even the graph is Type 2. So, we focus on the odd case.

Main Result

Theorem 2. The graph $C_7(1,3)$ is Type 2. Supposing that $C_7(1,3)$ has a maximal matching M of lenght $\left\lfloor \frac{14}{5} \right\rfloor = 2$. Let $e \in M$, we can consider two cases:

• if an edge has length 1, that is, $e \in E_1(C_7(1,3))$

• if an edge has length 3, that is, $e \in E_2(C_7(1,3))$

Figure 1:Example of circulant graph $C_7(1,3)$

Auxiliar Result

We prove that $C_7(1,3)$ is Type 2, by using the following theorem to prove that this graph does not have any 5-total coloring.

Agradecimentos

In any case, we do not have a maximal matching of lenght 2 for $C_7(1,3)$. Concluding that there is no 5-total coloring of $C_7(1,3)$.

Referências

- [1] Behzad, M. Graphs and Their Chromatic Numbers. *PhD Thesis, Michigan University*, 1965.
- [2] Chetwynd, A. G and Hilton, A. J. W. Some refinements of the total chromatic number conjecture, *Congr. Numer.*, v. 66, pp. 195–216, 1988.
- [3] Khennoufa, R and Togni, O. Total and fractional total colourings of circulant graphs. Discrete Math., v. 309, pp. 6316–6329, 2008.

