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Introduction
The Integer Knapsack Cover set is defined as X = {x ∈ Zn+ :

∑
i∈N aixi ≥ b} for some

positive integer n, where N = {1, . . . , n}. We assume that a1, . . . , an, b are positive
integers satisfying a1 < a2 < . . . < an < b (see [4]). The inequality defining X is called
cover constraint.
Let m and M be fixed parameters such that m < b < M. We are interested in the
convex hulls of the sets (1) and (2). These sets appear as a substructure of the cutting
stock problem (CSP) polyhedron if the demand b can be satisfied with overproduction
and setup constraints are considered (XS) and minimum lot sizes are also imposed (XSM)
[3]. In this context, yi is a binary variable indicating if cutting pattern i is used or not, xi
indicates the number of times a cutting pattern is used, and ai is the number of itens in
the cutting pattern i.

XS = {(x, y) : x ∈ X, y ∈ {0, 1}n, xi ≤Myi, ∀i ∈ N} (1)

XSM = {(x, y) : x ∈ X, y ∈ {0, 1}n,myi ≤ xi ≤Myi, ∀i ∈ N} (2)
Throughout this work, ei denotes the ith canonical vector of Rn and depending on the
context, 1 can denote the n-dimensional all-ones vector.

On the dimension of conv(XS) and conv(XSM)
• Mazur [1] first proved that conv(X) is full-dimensional. One way to prove the full-
dimensionality of conv(X) is to take an integer feasible set Y = {z1, y1, y2, . . . , yn} of
distinct points in which z1 belongs to the x1-axis and each yi belongs to the xi-axis.
Such a set can be proven to be affinely independent. We extend Mazur’s result for
both conv(XS) and conv(XSM).

Proposition 1 For sufficiently large M, conv(XSM) is full-dimensional.
Proof. Consider the following 2n+ 1 feasible integer points.

wi = (αiei, ei), αi = m

b

ai

 + 1, ∀i ∈ N

zi = (βiei, ei), βi = m

b

ai

 + 2, ∀i ∈ N

z =
∑
i∈N

(λiei, ei), λi = m

b

ai

, ∀i ∈ N.

• Taking the linear combination (3) leads to the pair of linear equations (4).
n∑
i=1

γiwi +
n∑
i=1

δizi + δz = 0, where
n∑
i=1

(γi + δi) + δ = 0. (3)
∑n
i=1(γiαi + δiβi)ei +

∑n
i=1 δλiei = 0∑n

i=1(γi + δi)ei +
∑n
i=1 δei = 0.

(4)

• A system of equations (5) on the coefficients γi, δi, δ can be obtained by the linear
independence of {ei}i, and for which the only solution is γi = δj = δ = 0, for all
i, j ∈ N. 

∑n
i=1(γiαi + δiβi + δλi)ei = 0∑n
i=1(γi + δi + δ)ei = 0

(5)

• Hence, if follows that the set of points {wi : i ∈ N} ∪ {zi : i ∈ N} ∪ {z} is affine
independent.

�

Corollary 1 For sufficiently large M, conv(XS) is full-dimensional
Proof. It follows from the fact that XSM ⊂ XS.

�

On the facets of conv(XS) and conv(XSM)
• For the polyhedron conv(XS), we introduce a class of valid inequalities. We claim
that for each j ∈ N, the inequality (6) is valid for conv(XS).∑

i∈N\{j}

yi +
1

db/aje
xj ≥ 1 (6)

• Indeed, by the assumption b > 0, at least one item must be used so the demand can
be satisfied. Fix one item j. If some other item i ∈ N \ {j} is used, then yi = 1 and
inequality (6) holds. If none of the items i ∈ N \ {j} are used, the only item left is j
and we need at least db/aje copies of j to satisfy the demand. In this case, (6) also
holds.

Theorem 1 For each j ∈ N, the valid inequality (6) is facet-defining for conv(XS).

Proof.
• Let αi := db/aie, for all i ∈ N and for some k 6= j, consider the following points of
XS.

wi = (αiei, ei), i = 1, . . . , n

zi = (2αiei, ei), i = 1, . . . , n, i 6= j (7)
z = (αkek, ek + ej)

• All of the points in (7) satisfy (6) at equality, since for each of them, only one item
is used. We will show that they are are affinely independent by proving that they are
linearly independent. Let (8) be an arbitrary linear combination.∑

i∈N
βiw

i +
∑
i∈N\{j}

γiz
i + δz = 0 (8)

• Rewriting (8) in terms of e ′is and linear independence of {ei}i lead to (9), a system
that only admits the trivial solution.

βj = 0

βk + 2γk + δ = 0

βi + 2γi = 0, i ∈ N \ {j, k} (9)
βj + δ = 0

βk + γk + δ = 0

βi + γi = 0, i ∈ N \ {j, k}

�

• For the polyhedron conv(XSM), we prove that the minimum lot sizes constraint is
facet-defining.

Theorem 2 For each j ∈ N, the inequality xj ≥ myj is facet-defining for conv(XSM).

Proof.
• Let αi := db/aie, for all i ∈ N and consider the following points of XSM satisfying
xj = myj.

wi = (αiei, ei), ∀i 6= j (10)
zi = (2αiei, ei), ∀i 6= j (11)
w =

mej +
∑
i∈N\{j}

αiei, 1
 (12)

z =

∑
i∈N\{j}

αiei, 1− ej

 (13)

• Let (µ, λ)(x, y) = µ0 be a generic hyperplane containing these points. We will show
that this hyperplane must be xi −myi = 0.
• By applying the points (10), (11), (12) e (13) into the hyperplane equation, we obtain
the relations (14), (15), (16) and (17).

αiµi + λi = µ0, ∀i 6= j (14)
2αiµi + λi = µ0, ∀i 6= j (15)

mµj +
∑
i∈N\{j}

αiµi +
∑
i∈N

λi = µ0 (16)∑
i∈N\{j}

αiµi +
∑
i∈N\{j}

λj = µ0 (17)

• Equations (14), (15) and (17) imply µi = λi = 0, for all i 6= j and µ0 = 0. By
setting to zero these coefficients in equation (16), we conclude that mµj + λj = 0,
i. e. the initial hyperplane equation must be µjxj − (mµj)yj = 0.

�
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