Linial's Conjecture for Matching-Spine Digraphs

Jadder Bismarck de Sousa Cruz¹, Cândida Nunes da Silva² and Orlando Lee¹ ¹Universidade Estadual de Campinas, Campinas SP, Brazil

{bismarck, lee}@ic.unicamp.br ²Universidade Federal de São Carlos, Sorocaba SP, Brazil candida@ufscar.br

UNICAMP

Definitions

For a digraph D, let V(D) denote its vertex set and let A(D) denote its arc set. Let P be a path. We denote by V(P) the set of vertices of P. The order of P, denoted by |P|, is the number of its vertices.

A path partition \mathcal{P} of a digraph D is a set of disjoint paths which cover V(D). Let $\pi(D)$ denote the cardinality of a minimum path partition of D. Given a positive integer k, the k-norm of \mathcal{P} is defined as $\sum_{P \in \mathcal{P}} \min\{|P|, k\}$.

A path partition of minimum k-norm is called k-optimal and its k-norm is denoted by $\pi_k(D)$. Note that $\pi(D) = \pi_1(D)$.

A stable set S in a digraph D is a subset of vertices of V(D) such that no two vertices of S are adjacent. Let $\alpha(D)$ denote the cardinality of a maximum stable of D. Let k be a positive integer. A partial k-coloring C of D is a set of k disjoint stable sets. The weight of C is defined as $\sum_{C \in C} |C|$. A partial k-coloring of maximum weight is called optimal and its weight is denoted by $\alpha_k(D)$. Note that $\alpha(D) = \alpha_1(D)$.

Canonical Structures

We define a *canonical path partition* \mathcal{P} of D as the one containing a Hamilton path of D[X] together with all maximal paths of D[Y]; clearly $\pi_k(D) \leq |Y| + \min\{|X|, k\}$. Consider the partition of Y into sets Y⁰, Y⁺, Y^{-} such that Y^{0} contains the isolated vertices, Y^{+} the sources and Y^{-} the sinks in D[Y]. We define a *canonical partial k-coloring* C of D as the one containing the sets $Y^0 \cup Y^-$, Y^+ and min $\{|X|, k-2\}$ singletons of X; clearly $\alpha_k(D) \ge |Y| + \min\{|X|, k-2\}$. Therefore $\pi_k(D) \le \alpha_k(D) + 2$.

Linial's Conjecture

In 1950, Dilworth proved that the equality $\pi(D) = \alpha(D)$ holds when D is a transitive acyclic digraph. In 1960, Gallai and Milgram generalized Dilworth's Theorem to arbitrary digraphs establishing that $\pi(D) \leq \alpha(D)$ for every digraph D. Later, in 1976, Greene and Kleitman generalized Dilworth's theorem, showing that for every transitive acyclic digraph D and every positive integer k, equality $\pi_k(D) = \alpha_k(D)$ holds. In 1981, Linial conjectured that one could generalize Greene-Kleitman's Theorem to arbitrary digraphs as follows.

Conjecture (Linial, 1981)

Let D be a digraph and let k be a positive integer. Then $\pi_k(D) \leq \alpha_k(D)$.

Our Results

We split the class of matching-spine digraphs into two classes: k-loose and k-tight digraphs. The former class is defined so as to guarantee that $\alpha_k(D) \geq |Y| + \min\{|X|, k\}$, thus ensuring that Linial's Conjecture holds trivially in this case. Our main contribution is a proof that if D is in the latter class, then $\pi_k(D) \leq |Y| + \min\{|X|, k-1\}$. The technique used in this proof is a (non-trivial) extension of the one used by Sambinelli, Nunes da Silva and Lee to prove Linial's Conjecture for spine digraphs (a subclass of matching-spine digraphs). Specifically, the technique involves finding a pair of paths whose union contains |X| + k + 1 vertices, thus providing a path partition of k-norm $|Y| + \min\{|X|, k - 1\}$, one unit smaller than that of a canonical path partition. So, when $\alpha_k(D) \ge |Y| + \min\{|X|, k-1\}$, we guarantee that Linial's Conjecture also holds. The remaining case occurs when $\alpha_k(D) = |Y| + \min\{|X|, k-2\}$. Note that in this case it must be shown that $\pi_k(D) \leq |Y| + \min\{|X|, k-2\}$. We believe it is possible to prove the validity of this inequality, which would settle Linial's conjecture for matching- spine digraphs.

References

Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics pp. 161–166

This conjecture remains open, but there are some particular cases which were already solved.

Matching-Spine Digraphs

Let D be a digraph and let X, Y be a partition of V(D). We say that D[X, Y]is a matching-spine digraph if D[X] has a Hamilton path and the arc set of D[Y] is a matching. In this work we give partial results on the validity of Linial's Conjecture for matching-spine digraphs.

(1950)

Gallai, T., Milgram, A.: Verallgemeinerung eines graphentheoretischen satzes von Rédei. Acta Sc. Math 21, 181-186 (1960)

Greene, C., Kleitman, D.J.: The structure of Sperner *k*-families. Journal of Combinatorial Theory, Series A 20(1), 41–68 (1976)

Linial, N.: Extending the Greene-Kleitman theorem to directed graphs. Journal of Combinatorial Theory, Series A **30**(3), 331–334 (1981)

Sambinelli, M., Nunes da Silva, C., Lee, O.: On Linial's conjecture for spine digraphs. Discrete Mathematics 340(5), 851-854 (2017)

