

A Student’s Guide to Python
for Physical Modeling

Updated Edition

A Student’s Guide to Python
for Physical Modeling

Updated Edition

Jesse M. Kinder and Philip Nelson

Princeton University Press
Princeton and Oxford

Copyright © 2018 by Princeton University Press.
All rights associated with the computer code in this work are retained by Jesse M. Kinder and Philip

Nelson.

Published by Princeton University Press, 41 William Street,
Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press, 6 Oxford Street,
Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

All Rights Reserved
Original edition published by Princeton University Press 2015

Updated edition published 2018
Second printing 2019

Library of Congress Control Number: 2017959122

ISBN 978-0-691-18056-4
ISBN (pbk.) 978-0-691-18057-1

British Library Cataloging-in-Publication Data is available.

This book has been composed using the LATEX typesetting system.

The publisher would like to acknowledge the authors of this volume for providing the camera-ready
copy from which this book was printed.

Printed on acid-free paper. ∞

Printed in the United States of America

3 5 7 9 10 8 6 4 2

The front cover shows a Mandelbrot set, an image that you will be
able to generate for yourself after you work through this book.

Although the authors have sought to provide accurate and up-
to-date information, they assume no responsibility for errors or
omissions, nor any liability for damages resulting from the use of
the information contained within this document. The authors make
no claim that suggestions and code samples described herein will
work in future versions of Python or its extended environments.

For Oliver Arthur Nelson – PN

Contents

Let’s Go xiii

1 Getting Started with Python 1

1.1 Algorithms and algorithmic thinking 1

1.1.1 Algorithmic thinking 1

1.1.2 States 2

1.1.3 What does a = a + 1 mean? 3

1.1.4 Symbolic versus numerical 4

1.2 Launch Python 4

1.2.1 IPython console 5

1.2.2 Error messages 9

1.2.3 Sources of help 9

1.2.4 Good practice: Keep a log 11

1.3 Python modules 11

1.3.1 import 11

1.3.2 from ... import 12

1.3.3 NumPy and PyPlot 12

1.4 Python expressions 13

1.4.1 Numbers 13

1.4.2 Arithmetic operations and predefined functions 13

1.4.3 Good practice: Variable names 15

1.4.4 More about functions 15

2 Organizing Data 17

2.1 Objects and their methods 17

2.2 Lists, tuples, and arrays 19

2.2.1 Creating a list or tuple 19

2.2.2 NumPy arrays 19

2.2.3 Filling an array with values 21

2.2.4 Concatenation of arrays 22

2.2.5 Accessing array elements 23

2.2.6 Arrays and assignments 24

2.2.7 Slicing 24

2.2.8 Flattening an array 26

vii

viii

2.2.9 Reshaping an array 26

2.2.10 T2 Lists and arrays as indices 26

2.3 Strings 27

2.3.1 Formatting strings with the format() method 29

2.3.2 T2 Formatting strings with % 30

3 Structure and Control 31

3.1 Loops 31

3.1.1 for loops 31

3.1.2 while loops 33

3.1.3 Very long loops 33

3.1.4 Infinite loops 33

3.2 Array operations 34

3.2.1 Vectorizing math 34

3.2.2 Matrix math 36

3.2.3 Reducing an array 36

3.3 Scripts 37

3.3.1 The Editor 37

3.3.2 T2 Other editors 38

3.3.3 First steps to debugging 38

3.3.4 Good practice: Commenting 40

3.3.5 Good practice: Using named parameters 43

3.3.6 Good practice: Units 44

3.4 Contingent behavior: Branching 44

3.4.1 The if statement 45

3.4.2 Testing equality of floats 46

3.5 Nesting 47

4 Data In, Results Out 48

4.1 Importing data 48

4.1.1 Obtaining data 49

4.1.2 Bringing data into Python 49

4.2 Exporting data 52

4.2.1 Scripts 52

4.2.2 Data files 52

4.3 Visualizing data 54

4.3.1 The plot command and its relatives 55

4.3.2 Manipulate and embellish 57

4.3.3 T2 More about figures and their axes 59

4.3.4 T2 Error bars 60

4.3.5 3D graphs 60

4.3.6 Multiple plots 61

4.3.7 Subplots 62

Jump to Contents Jump to Index

ix

4.3.8 Saving figures 62

4.3.9 T2 Using figures in other applications 63

5 First Computer Lab 64

5.1 HIV example 64

5.1.1 Explore the model 64

5.1.2 Fit experimental data 65

5.2 Bacterial example 66

5.2.1 Explore the model 66

5.2.2 Fit experimental data 66

6 More Python Constructions 68

6.1 Writing your own functions 68

6.1.1 Defining functions in Python 69

6.1.2 Updating functions 71

6.1.3 Arguments, keywords, and defaults 71

6.1.4 Return values 72

6.1.5 Functional programming 73

6.2 Random numbers and simulation 74

6.2.1 Simulating coin flips 74

6.2.2 Generating trajectories 75

6.3 Histograms and bar graphs 76

6.3.1 Creating histograms 76

6.3.2 Finer control 77

6.4 Contour plots and surfaces 77

6.4.1 Generating a grid of points 78

6.4.2 Contour plots 78

6.4.3 Surface plots 79

6.5 Numerical solution of nonlinear equations 79

6.5.1 General real functions 80

6.5.2 Complex roots of polynomials 81

6.6 Solving systems of linear equations 81

6.7 Numerical integration 82

6.7.1 Integrating a predefined function 82

6.7.2 Integrating your own function 83

6.7.3 Oscillatory integrands 84

6.7.4 T2 Parameter dependence 84

6.8 Numerical solution of differential equations 84

6.8.1 Reformulating the problem 85

6.8.2 Solving an ODE 86

6.8.3 T2 Parameter dependence 87

6.9 Vector fields and streamlines 88

6.9.1 Vector fields 88

6.9.2 Streamlines 89

Jump to Contents Jump to Index

x

7 Second Computer Lab 91

7.1 Generating and plotting trajectories 91

7.2 Plotting the displacement distribution 91

7.3 Rare events 93

7.3.1 The Poisson distribution 93

7.3.2 Waiting times 94

8 Still More Techniques 96

8.1 Image processing 96

8.1.1 Images as NumPy arrays 96

8.1.2 Saving and displaying images 97

8.1.3 Manipulating images 97

8.2 Displaying Data as an Image 98

8.3 Animation 99

8.3.1 Creating animations 99

8.3.2 Saving animations 100

HTML movies 100
T2 Using an encoder 102

8.4 Analytic calculations 103

8.4.1 The SymPy library 103

8.4.2 Wolfram Alpha 104

9 Third Computer Lab 106

9.1 Convolution 106

9.1.1 Python tools for image processing 107

9.1.2 Averaging 108

9.1.3 Smoothing with a Gaussian 108

9.2 Denoising an image 109

9.3 Emphasizing features 109

Get Going 111

A Installing Python 113

A.1 Install Python and Spyder 113

A.1.1 Graphical installation 114

A.1.2 Command line installation 115

A.2 Setting up Spyder 116

A.2.1 Working directory 116

A.2.2 Interactive graphics 117

A.2.3 Script template 117

A.2.4 Restart 118

A.3 Keeping up to date 118

A.4 Installing FFmpeg 118

Jump to Contents Jump to Index

xi

A.5 Installing ImageMagick 119

B Jupyter Notebooks 120

B.1 Getting Started 120

B.1.1 Launch Jupyter Notebooks 120

B.1.2 Open a notebook 121

B.1.3 Multiple notebooks 121

B.1.4 Quitting Jupyter 122

B.1.5 T2 Setting the default directory 122

B.2 Cells 123

B.2.1 Code cells 123

B.2.2 Graphics 124

B.2.3 Markdown cells 124

B.2.4 Edit mode and command mode 125

B.3 Sharing 125

B.4 More details 125

B.5 Pros and Cons 125

C Errors and Error Messages 127

C.1 Python errors in general 127

C.2 Some common errors 128

D Python 2 versus Python 3 131

D.1 Division 131

D.2 Print command 131

D.3 User input 132

D.4 More assistance 133

E Under the Hood 134

E.1 Assignment statements 134

E.2 Memory management 135

E.3 Functions 135

E.4 Scope 137

E.4.1 Name collisions 138

E.4.2 Variables passed as arguments 139

E.5 Summary 140

F Answers to “Your Turn” Questions 141

Acknowledgments 145

References 147

Index 149

Jump to Contents Jump to Index

Let’s Go

Why teach yourself Python, and why do it this way

Learning to program a computer can change your perspective. At first, it feels like you are struggling

along and picking up a couple of neat tricks here and there, but after a while, you start to realize

that you can make the computer do almost anything. You can add in the effects of friction and

air resistance that your physics professor is always telling you to ignore, you can make your own

predator–prey simulations to study population models, you can create your own fractals, you can

look for correlations in the stock market—the list is endless.

In order to communicate with a computer, you must first learn a language it understands. Python

is an excellent choice because it is easy to get started and its structure is very natural—at least

compared to some other computer languages. Soon, you will find yourself spending most of your time

thinking about how to solve a problem, rather than how to explain your calculation to a computer.

Whatever your motivation for learning Python, you may wonder whether it’s really necessary to

wade through everything in this book. Bear with us. We are working scientists, and we have used

our experience to prepare you to start exploring and learning on your own as efficiently as possible.

Spend a few hours trying everything we recommend, in the order we recommend it. This will save

time in the long run. We have eliminated everything you don’t need at the outset. What remains is a

set of basic knowledge and skills that you will almost certainly find useful someday.

How to use this tutorial

Here are a few ideas about how you might teach yourself Python using this book.
• Many code samples that appear in this document, as well as errata, updates, data sets, and more

are available via press.princeton.edu/titles/11349.html .

• After the first few pages, you’ll need to work in front of a computer that is running Python. (Don’t

worry—we’ll tell you how to set it up.) On that same computer, you’ll probably want to have open

a text document named code_samples.txt, which is available via the website above.

• Next to the computer you may have a hard copy of this book, or the eBook on a tablet or other

device. Alternatively, the eBook can be open on the same computer that runs Python.

• This book will frequently ask you to try things. Some of those things involve snippets of code given

in the text. You can copy and paste code from code_samples.txt into your Python session,

see what happens, then modify and play with it.

• You can also access the snippets interactively. A page with links to individual code samples is

available via the website above. In the eBook, you can also click on the words [get code] at the

top of a code sample to visit the web page. Either way, you can copy and paste code from the web

page into Python.

• A few sections and footnotes are flagged with this “Track 2” symbol: T2 . These are more advanced

and can be skipped on a first reading.

And now . . . Let’s go.

xiii

https://press.princeton.edu/titles/11349.html

C H A P T E R 1

Getting Started with Python

The Analytical Engine weaves algebraical patterns, just as the Jacquard loom

weaves flowers and leaves.

— Ada, Countess of Lovelace, 1815–1853

1.1 ALGORITHMS AND ALGORITHMIC THINKING

The goal of this tutorial is to get you started in computational science using the computer language

Python. Python is open-source software. You can download, install, and use it anywhere. Many good

introductions exist, and more are written every year. This one is distinguished mainly by the fact

that it focuses on skills useful for solving problems in physical modeling.

Modeling a physical system can be a complicated task. Let’s take a look at how we can use the

powerful processors inside your computer to help.

1.1.1 Algorithmic thinking

Suppose that you need to instruct a friend how to back your car out of your driveway. Your friend

has never driven a car, but it’s an emergency, and your only communication channel is a phone

conversation before the operation begins.

You need to break the required task down into small, explicit steps that your friend understands

and can execute in sequence. For example, you might provide your friend the following set of

instructions:

1 Put the key in the ignition.
2 Turn the key until the car starts, then let go.
3 Push the button on the shift lever and move it to "Reverse."
4 ...

Unfortunately, for many cars this “code” won’t work, even if your friend understands each instruction:

It contains a bug. Before step 3, many cars require that the driver

Press down the left pedal.

Also, the shifter may be marked R instead of Reverse. It is difficult at first to get used to the high

degree of precision required when composing instructions like these.

Because you are giving the instructions in advance (your friend has no mobile phone), it’s also

wise to allow for contingencies:

If a crunching sound is heard, press down on the left pedal ...

1

2 Chapter 1 Getting Started with Python

Breaking the steps of a long operation down into small, explicit substeps and anticipating

contingencies are the beginning of algorithmic thinking.

If your friend has had a lot of experience watching people drive cars, then the instructions above

may be sufficient. But a friend from Mars—or a robot—would need much more detail. For example,

the first two steps may need to be expanded to something like

Grab the wide end of the key.
Insert the pointed end of the key into the slot on the lower right side

of the steering column.
Rotate the key about its long axis in the clockwise direction

(when viewed from the wide end toward the pointed end).
...

These two sets of instructions illustrate the difference between low-level and high-level languages

for communicating with a computer. A low-level computer program is similar to the second set of

explicit instructions, written in a language that a machine can understand.1 A high-level system

understands many common tasks, and therefore can be programmed in a more condensed style,

like the first set of instructions above. Python is a high-level language. It includes commands for

common operations in mathematical calculations, processing text, and manipulating files. In addition,

Python can access many standard libraries, which are collections of programs that perform advanced

functions such as data visualization and image processing.

Python also comes with a command line interpreter—a program that executes Python commands

as you type them. Thus, with Python, you can save instructions in a file and run them later, or you

can type commands and execute them immediately. In contrast, many other programming languages

used in scientific computing, like C, C++, or fortran, require you to compile your programs before

you can execute them. A separate program called a compiler translates your code into a low-level

language. You then run the resulting compiled program to execute (carry out) your algorithm. With

Python, it is comparatively easy to quickly write, run, and debug programs. (It still takes patience

and practice, though.)

A command line interpreter combined with standard libraries and programs you write yourself

provides a convenient and powerful scientific computing platform.

1.1.2 States

You have probably studied multistep mathematical proofs, perhaps long ago in geometry class. The

goal of such a narrative is to establish the truth of a desired conclusion by sequentially appealing

to given information and a formal system. Thus, each statement’s truth, although not evident in

isolation, is supposed to be straightforward in light of the preceding statements. The reader’s “state”

(list of propositions known to be true) changes while reading through the proof. At the end of the

proof, there is an unbroken chain of logical deductions that lead from the axioms and assumptions to

the result.

An algorithm has a different goal. It is a chain of instructions, each of which describes a simple

operation, that accomplishes a complex task. The chain may involve a lot of repetition, so you won’t

want to supervise the execution of every step. Instead, you specify all the steps in advance, then

stand back while your electronic assistant performs them rapidly. There may also be contingencies

that cannot be known in advance. (If a crunching sound is heard, ...)

1 Machine code and assembly language are low-level programming languages.

Jump to Contents Jump to Index

1.1 Algorithms and algorithmic thinking 3

In an algorithm, the computer has a state that is constantly being modified. For example, it has

many memory cells, whose contents may change during the course of an operation. Your goal might

be to arrange for one or more of these cells to contain the result of some complex calculation once

the algorithm has finished running. You may also want a particular graphical image to appear.

1.1.3 What does a = a + 1 mean?

To get a computer to execute your algorithm, you must first express it in a programming language.

The commands used in computer programming can be confusing at first, especially when they

contradict standard mathematical usage. For example, many programming languages (including

Python) accept statements such as these:

1 a = 100
2 a = a + 1

In mathematics, this makes no sense. The second line is an assertion that is always false; equivalently,

it is an equation with no solution. To Python, however, “=” is not a test of equality, but an instruction

to be executed. These lines have roughly the following meaning:2

1. Assign the name a (a variable) to an integer object with the value 100.

2. Extract the value of the object named a. Calculate the sum of that value and 1. Assign the name

a to the result, and discard whatever was previously stored under the name a.

In other words, the equals sign instructs Python to change its state. In contrast, mathematical

notation uses the equals sign to create a proposition, which may be true or false. Note, too, that

Python treats the left and right sides of the command x=y differently, whereas in math the equals

sign is symmetric. For example, Python will give an error message if you say something like b+1=a;

the left side of an assignment must be a name that can be assigned to the result of evaluating the

right side.

We do often wish to check whether a variable has a particular value. To avoid ambiguity between

assignment and testing for equality, Python and many other computing languages use a double equals

sign for the latter:

1 a = 1
2 a == 0
3 b = (a == 1)

The above code again creates a variable a and assigns it to a numerical value. Then it compares this

numerical value with 0. Finally, it creates a second variable b, and assigns it a logical value (True or

False) after performing another comparison. That value can be used in contingent code, as we’ll see

later.

Do not use = (assignment) when == (test for equality) is required.

This is a common mistake for beginning programmers. You can get mysterious results if you make

this error, because both = and == are legitimate Python syntax. In any particular situation, however,

only one of them is what you want.

2 T2 Appendix E gives more precise information about the handling of assignment statements.

Jump to Contents Jump to Index

4 Chapter 1 Getting Started with Python

1.1.4 Symbolic versus numerical

In math, it’s perfectly reasonable to start a derivation with “Let b = a2 − a,” even if the reader

doesn’t yet know the value of a. This statement defines b in terms of a, whatever the value of a may

be.

If you launch Python and immediately give the equivalent statement, b=a**2-a, the result is

an error message.3 Every time you hit <Return/Enter>, Python tries to compute values for every

assignment statement. If the variable a has not been assigned a value yet, evaluation fails, and

Python complains. Other computer math packages can accept such input, keep track of the symbolic

relationship, and evaluate it later, but basic Python does not.4

In math, it’s also understood that a definition like “Let b = a2 − a” will persist unchanged

throughout the discussion. If we say, “In the case a = 1, . . . ” then the reader knows that b equals

zero; if later we say, “In the case a = 2, . . . ” then we need not reiterate the definition of b for the

reader to know that this symbol now represents the value 22 − 2 = 2.

In contrast, a numerical system like Python forgets any relation between b and a after executing

the assignment b=a**2-a. All that it remembers is the value now assigned to b. If we later change

the value of a, the value of b will not change.5

Changing symbolic relationships in the middle of a proof is generally not a good idea. However,

in Python, if we say b=a**2-a, nothing stops us from later saying b=2**a. The second assignment

updates Python’s state by discarding the value calculated in the first assignment statement and

replacing it with the newly computed value.

1.2 LAUNCH PYTHON

Rather than reading about what happens when you type some command, try out the commands for

yourself. Appendix A describes how to install and launch Python. From now on, you should have

Python running as you read: Try every snippet of code and observe what Python does in response.

For example, this tutorial won’t show you any graphics or output. You must generate these yourself

as you work through the examples.

Reading this tutorial won’t teach you Python. You can teach yourself

Python by working through all the examples and exercises here, and then

using what you’ve learned on your own problems.

Set yourself little challenges and test them out. (“What would happen if . . . ?” “How could I

accomplish. . . ?”) Python is not some expensive piece of lab apparatus that could break or explode

if you type something wrong! Just try things. This strategy is not only more fun than passively

accumulating facts—it is also far more effective.

A complete Python programming environment has many components. See Table 1.1 for a brief

description of the ones that we’ll be discussing. Be aware that we use “Python” loosely in this guide.

In addition to the language itself, Python may refer to a Python interpreter, which is a computer

3 The notation ** denotes exponentiation. See Section 1.4.2.
4 The SymPy library makes symbolic calculations possible in Python. See Section 8.4.1.
5 In math, the statement b = a2 − a essentially defines b as a function of a. We can certainly do that in Python by

defining a function that returns the value of a2 − a and assigning that function the name b (see Section 6.1), but this

is not what “=” does.

Jump to Contents Jump to Index

1.2 Launch Python 5

Python A computer programming language. A way to describe algorithms to a computer.

IPython A Python interpreter: A computer application that provides a convenient, interactive

mode for executing Python commands and programs.

Spyder An integrated development environment (IDE): A computer application that includes

IPython, a tool to inspect variables, a text editor for writing and debugging programs,

and more.

Jupyter A notebook-style interface for Python.

NumPy A standard library that provides numerical arrays and mathematical functions.

PyPlot A standard library that provides visualization tools.

SciPy A standard library that provides scientific computing tools.

Anaconda A distribution: A single download that includes all of the above and provides access

to many additional libraries for special purposes. It also includes a package manager

that helps you to keep everything up to date.

Table 1.1: Elements of the Python environment described in this tutorial.

application that accepts commands and performs the steps described in a program. Python may also

refer to the language together with common libraries.

Most of the code that follows will run with any Python distribution. However, since we can-

not provide instructions for every available version of Python and every integrated development

environment (IDE), we have chosen the following particular setup:

• The Anaconda distribution of Python 3, available at anaconda.com.

Many scientists instead use an earlier version of Python (such as version 2.7). Appendix D discusses

the minor changes needed to adapt the codes in this tutorial for earlier versions.

• The Spyder IDE, which comes with Anaconda or can be obtained at www.spyder-ide.org. Any

programming task can be accomplished with a different IDE—or with no IDE at all—but this

tutorial will assume you are using Spyder. Other IDEs are available, such as IDLE, which comes

with every distribution of Python. Browser-based Jupyter Notebooks are another popular platform.6

The choice of distribution is a matter of personal preference. We chose Anaconda because it is

simple to install, update, and maintain, and it is free. You may find a different distribution is

better suited to your needs. Enthought Canopy is another free, widely used Python distribution:

store.enthought.com/downloads.

1.2.1 IPython console

Upon launch, Spyder opens a window that includes several panes. See Figure 1.1. There is an Editor

pane on the left for editing program files (scripts). There are two panes on the right. The top one may

contain Variable Explorer, File Explorer, and Help tabs. If necessary, click on the Variable Explorer’s

tab to bring it to the front. The bottom-right pane should include a tab called “IPython Console”; if

necessary, click it now.7 It provides the command line interpreter that allows you to execute Python

commands interactively as you type them.

6 If you prefer the notebook interface, see Appendix B to get started. Many code samples are available in notebook

format via this book’s blog.
7 If no IPython console tab is present, you can open one from the menu at the top of the screen:

Consoles>Open an IPython console.

Jump to Contents Jump to Index

https://anaconda.com
https://www.spyder-ide.org/
https://store.enthought.com/downloads

6 Chapter 1 Getting Started with Python

Figure 1.1: The Spyder display. Red circles have been added to emphasize (from top to bottom) the
�� ��Run

button, a variable in the Variable Explorer, the tab that brings the Variable Explorer to the front in its pane, the�� ��Stop and
�� ��Options buttons, the IPython command prompt, and the IPython Console tab. Two scripts are

open in the Editor; untitled1.py has been brought to the front by clicking its tab at the top of the Editor

pane.

If your window layout gets disorganized, do not worry. It is easy to adjust. The standard format

for Spyder is to open with a single window, divided into the three panes just described. Each pane

can have multiple tabs. If you have unwanted windows, close them individually by clicking on their�� ��+Close buttons. You can also use the menu View>Panes to select panes you want to be visible and

deactivate those you do not want. View>Window layouts>Spyder Default Layout will restore

the standard layout.

Click in the IPython console. Now, things you type will show up after the command prompt . By

default, this will be something like

In[1]:

Try typing the lines of code in Section 1.1.3, hitting <Return/Enter> after each line. Python responds

immediately after each <Return/Enter>, attempting to perform whatever command you entered.8

Python code consists entirely of plain text.

All fonts, typefaces, and coloring in the code samples of this tutorial were added for readability.

These are not things you need to worry about while entering code. Similarly, the line numbers shown

on the left of code samples are there to allow us to refer to particular lines. Don’t type them. Spyder

will assign and show line numbers when you work in the Editor, and Python will use them to tell you

where it thinks you have made errors. They are not part of the code. Note also that most blank spaces

are optional, except when used for indentation. We use extra blank spaces to improve readability,

but these are not required.

8 This tutorial uses the word “command” to mean any Python statement that can be executed by an interpreter.

Assignments like a=1, function calls like plt.plot(x,y), and special instructions like %reset are commands.

Jump to Contents Jump to Index

1.2 Launch Python 7

This tutorial uses the following color and font scheme when displaying code:

• Built-in functions and reserved words are displayed in boldface green type:

print("Hello, world!"). You do not need to import these functions.

• Python errors and runtime exceptions are displayed in boldface red type: SyntaxError. These are

also part of basic Python.

• Functions and other objects from NumPy and PyPlot are displayed in boldface black type:

np.sqrt(2), or plt.plot(x,y). We will assume that you import NumPy and PyPlot at the

beginning of each session and program you write.9

• Functions imported from other libraries are displayed in blue boldface type:

from scipy.special import factorial .

• Strings are displayed in red type: print("Hello, world!") .

• Comments are displayed in oblique blue type: # This is a comment.

• Keywords in function arguments are displayed in oblique black type:

np.loadtxt('data.csv', delimiter=','). Keywords are not arbitrary; they must be spelled

exactly as shown.

• Keystrokes are displayed within angled brackets: <Enter/Return> or <Ctrl-C>.

• Buttons you can click with a mouse are displayed in small capitals within a rectangle:
�� ��Run . Some

buttons in Spyder have icons rather than text, but hovering the mouse pointer over the button will

display the text shown in this tutorial.

• Most other text is displayed in normal type.

Click on the Variable Explorer tab. Each time you enter a command and hit <Return/Enter>,

the contents of this pane will reflect any changes in Python’s state: Initially empty, it will display a

list of your variables and a summary of their values.10 When a variable contains many values (for

example, an array), you can double-click its entry in this list to open a spreadsheet that contains all

the values of the array. You can copy from this spreadsheet and paste into other applications.

At any time, you can reset Python’s state by quitting and relaunching it, or by executing the

command

%reset

Since you are about to delete everything that has been created in this session, you will be asked to

confirm this irreversible operation.11 Press <y> then <Return/Enter> to proceed. (Commands that

begin with a % symbol are magic commands, that is, commands specific to the IPython interpreter.

They may not work in a basic Python interpreter, or in scripts that you write. To learn more about

these, type %magic at the IPython command prompt.)

9 See Section 1.3 (page 11).
10 Some variables will not appear. You can control which variables are excluded through the

�� ��Options menu, in the

upper-right corner of the Variable Explorer pane.
11 If IPython does not seem to respond to %reset, try scrolling the IPython console up manually to see the confirm

query.

Jump to Contents Jump to Index

8 Chapter 1 Getting Started with Python

Example: Use the %reset command, then try the following commands at the prompt. Explain

everything you see happen:

q
q == 2
q = 2
q
q == 2
q == 3

Solution: Python complains about the first two lines: Initially, the symbol q is not associated with

any object. It has no value, and so expressions involving it cannot be evaluated. Altering Python’s

state in the third line above changes this situation, so the last three lines do not generate errors.

Example: Now clear Python’s state again. Try the following at the prompt, and explain everything

that happens. (It may be useful to refer to Section 1.1.4.)

a = 1
a
b = a**2 - a
b
a = 2
print(a)
print(b)
b = a**2 - a
a, b
print(a, b)

Solution: The results from the first four lines should be clear: We assign values to the variables a

and b. In the fifth line, we change the value of a, but because Python remembers only the value of b

and not its relation to a, its value is unchanged until we update it explicitly in the eighth line.

When entering code at the command prompt, you may run into a confusing situation where

Python seems unresponsive and displays “...:” instead of executing commands.

If a command contains an unmatched (, [, or {, then Python continues

reading more lines, searching for the corresponding),], or }.

If you cannot figure out how to match up your brackets, or if there is some other problem, you can

force execution with <Shift + Return/Enter> or abort the command by pressing <Esc>.12

The examples above illustrate an important point: An assignment statement does not display the

value that it assigns to a variable. To see the value assigned to a variable in an IPython session, enter

the variable name on a line by itself. Alternatively, the print() command can be used to display

values.13 Note that “print” does not cause anything to come out of a printer; instead, it displays

the requested information in the IPython console. If you need hard copy output, you can have your

program write the desired information to a plain text file (see Section 4.2.2), then print that file in

the usual way.

12 <Esc> cancels the current command in Spyder. In another IDE or interpreter, you may need to use <Ctrl-C>

instead.
13 In scripts that you write, Python will evaluate an expression without showing anything on the screen; if you want

output, you must give an explicit print() command. Scripts will be discussed in Section 3.3.

Jump to Contents Jump to Index

1.2 Launch Python 9

The last two lines of the example above illustrate how to see the values of multiple objects at

once. Notice that the output is not exactly the same.

You can end a command by starting a new line. Or, if you wish, you can end a command with a

semicolon (;) and then add another command on the same line.

It is also possible to make multiple assignments with a single = command. This is an alternative

to using semicolons. Both of the following lines assign the same values to their respective variables:

a = 1; b = 2; c = 3
a, b, c = 1, 2, 3

Either side of the second command may be enclosed in parentheses without affecting the result.

The preceding paragraph demonstrates ways to save space and reduce typing with Python.

Sometimes this is convenient, but it’s best not to make too much use of this ability. You should

instead try to make the meaning of your code as clear as possible. Human readability is worth a few

extra seconds of typing or a few extra lines in a file.

In some situations, you may wish to use a very long command that doesn’t fit on one line. For

such cases, you can end a line with a backslash (\). Python will then continue reading the next line

as part of the same command. Try this:

q = 1 + \
2
q

A single command can even stretch over multiple lines:

xv\
a\
l\
= 1 + \

5 2

This will create a variable xval assigned to the value 3. To write clear code, you should use this

option sparingly.

1.2.2 Error messages

You should have encountered some error messages by now. When Python detects an error, it tells

you where it encountered the error, provides a fragment of the code surrounding the statement that

caused the problem, and tells you which general kind of error it detected among the many types

it recognizes. For example, Python responds with a NameError whenever you try to evaluate an

undefined variable. (Recall the Example on page 8.) See Appendix C for a description of common

Python errors and some hints for interpreting the resulting messages.

1.2.3 Sources of help

The definitive documentation on Python is available online at www.python.org/doc . However, in

many cases you’ll find the answers you need more quickly by other means, such as asking a friend,

searching the web, or visiting stackoverflow.com .

Suppose that you wish to evaluate the square root of 2. You type 2**0.5 and hit <Return/Enter>.

That does the job, but Python is displaying 16 digits after the decimal point, and you only want 3.

Jump to Contents Jump to Index

https://www.python.org/doc
https://stackoverflow.com

10 Chapter 1 Getting Started with Python

You think there’s probably a function called round in Python, but you are not sure how to use it

or how it works. You can get help directly from Python by typing help(round) at the command

prompt. You’ll see that this is indeed the function you were looking for:

round(2**0.5, 3)

gives the desired result.

In Spyder, there are additional ways to get help. Type round at the command prompt, but do

not hit <Return/Enter>. Instead hit <Cmd-I> or <Ctrl-I> (for “Information”). The information

that was displayed in the IPython console when you issued the help command now shows up in the

Help tab, and in a format that is easier to navigate and read, especially for long entries. You can

also use the Help tab without entering anything at the command prompt: Try entering pow in the

“Object” field at the top of the pane. The Help tab will provide information about an alternative to

the ** operation for raising a number to a power.

In IPython, you can also follow or precede the name of a module,14 function, or variable by a

question mark to obtain help: round? or ?round provides the same information as help(round)

and is easier to type.

When you type help(...), Python will print out the information it has about the expression in

parentheses if it recognizes the name. Unfortunately, Python is not as friendly if you don’t know

the name of the command you need. Perhaps you think there ought to be a way to take the square

root of a number without using the power notation. After all, it is a pretty basic operation. Type

help(sqrt) to see what happens when Python does not recognize the name you request.

To find out what commands are currently available to you, you can use Python’s dir() command.

This is short for “directory,” and it returns a list of all the modules, functions, and variable names

that have been created or imported during the current session (or since the last %reset command).

Ask Python for help on dir to learn more. Nothing in the output of dir looks promising, but there

is an item called __builtins__. This is the collection of all the functions and other objects that

Python recognizes when it first starts up. It is Python’s “last resort” when hunting for a function or

variable.15 To see the list of built-in functions, type

dir(__builtins__)

There is no sqrt function or anything like it. In fact, none of the standard mathematical functions,

such as sin, cos, or exp show up!

Python cannot help you any further at this point. You now have to turn to outside resources.

Good options include books about Python, search engines, friends who know more about Python

than you do, and so on.

In the beginning, a lot of your coding time will be spent using a search

engine to get help.

The sqrt function we seek belongs to a library. Later we will discuss how to access libraries of useful

functions that are not automatically available with Python.

Your
Turn
1A

Before proceeding, try a web search for

how to take square roots in python

14 Modules will be discussed in Section 1.3.
15 Appendix E explains how Python searches for variables and other objects.

Jump to Contents Jump to Index

1.3 Python modules 11

1.2.4 Good practice: Keep a log

As you work through this tutorial, you will hit many small roadblocks—and some large ones. How

do you evaluate a modified Bessel function? What do you do if you want a subscript in a graph axis

label? The list is endless. Every time you resolve such a puzzle (or a friend helps you), make a note

of how you did it in a notebook or in a dedicated file somewhere on your computer. Later, looking

through that log will be much easier than scanning through all the code you wrote months ago (and

less irritating than asking your friend over and over).

1.3 PYTHON MODULES

We discovered that Python does not have a built-in sqrt function. Even your calculator has that!

What good is Python? Think for a moment about how, exactly, your calculator knows how to find

square roots. At some point in the past, someone came up with an algorithm for computing the

square root of a number and stored it in the permanent memory of your calculator. Someone had to

create a program to calculate square roots.

Python is a programming language. A Python interpreter understands a basic set of commands

that can be combined to perform complex tasks. Python also has a large community of developers

who have created entire libraries of useful functions. To gain access to these, however, you need to

import them into your working environment.

Use the import command to access functions that do not come standard

with Python.

1.3.1 import

At the command prompt, type

import numpy

and hit <Return/Enter>. You now have access to many useful functions. You have imported the

NumPy module, a collection of tools for numerical calculation using Python: “Numerical Python.”

(Do not capitalize its name in your code.)

To see what has been gained, type dir(numpy). You will find nearly 600 new options at your

disposal, and one of them is the sqrt function you originally sought. You can search for the function

within NumPy by using the command numpy.lookfor('sqrt') (This will often return more than

you need, but the first few lines can be quite helpful.) Now that you have imported NumPy, try

sqrt(2)

What’s going on? You just imported a square root function, but Python tells you that sqrt is not

defined! Try instead

numpy.sqrt(2)

The sqrt function you want “belongs” to the numpy module you imported. Even after importing,

you still have to tell Python where to find it before you can use it.

After you have imported a module, you can call its functions by giving

the module name, a period, and then the name of the desired function.

Jump to Contents Jump to Index

12 Chapter 1 Getting Started with Python

1.3.2 from ... import

There is another way to import functions. For example, you may wish access to all of the functions

in NumPy without having to type the “numpy.” prefix before them. Try this:

from numpy import *
sqrt(2)

This is convenient, but it can lead to trouble when you want to use two different modules

simultaneously. There is a module called math that also has a sqrt function. If you import all of the

functions from math and numpy, which one gets called when you type sqrt(2)? (This is important

when you are working with arrays of numbers.) To keep things straight, it is usually best to avoid the

“from module import *” command. Instead, import a module and explicitly call numpy.sqrt or

math.sqrt as appropriate. However, there is a middle ground. You can give a module any nickname

you want. Try this:

import numpy as np
np.sqrt(2)

Now we can save typing and still avoid confusion when functions from different modules have the

same name.

There may be times when you only want a specific function, not a whole library of functions. You

can ask for specific functions by name:

from numpy import sqrt, exp
sqrt(2)
exp(3)

We now have just two functions from the NumPy module, which can be accessed without the “numpy.”

prefix. Notice the similarity with the “from numpy import *” command. The asterisk is a “wildcard”

that tells the import command to grab everything.

There is one more useful variant of importing that allows you to give the function you import a

custom nickname:

from numpy.random import random as rng
rng()

We now have a random number generator with the convenient nickname rng.

This example also illustrates a module within a module: numpy contains a module called

numpy.random, which in turn contains the function numpy.random.random . When we typed

import numpy , we imported many such subsidiary modules. Instead, we can import just one

function by using from and providing a precise specification of the function we want, where to find

it, and what to call it.

1.3.3 NumPy and PyPlot

The two modules we will use most often are called NumPy and PyPlot. NumPy provides the numerical

tools we need to generate and analyze data, and PyPlot provides the tools we need to visualize data.

PyPlot is a subset of the much larger Matplotlib library. From now on, we will assume that you have

issued the following commands:

import numpy as np
import matplotlib.pyplot as plt

Jump to Contents Jump to Index

1.4 Python expressions 13

This can also be accomplished with the single command

import numpy as np, matplotlib.pyplot as plt

You should execute these commands at the start of every session. You should also add these lines at

the beginning of any scripts that you write. You will also need to reimport both modules each time

you use the %reset command.

Give the %reset command, then try importing these modules now. Explore some of the functions

available from NumPy and PyPlot. You can get information about any of them by using help()

or any of the procedures described in Section 1.2.3. You will probably find the NumPy help files

considerably more informative than those for the built-in Python functions. They often include

examples that you can try at the command prompt.

Now that we have these collections of tools at our disposal, let’s see what we can do with them.

1.4 PYTHON EXPRESSIONS

The Python language has a syntax—a set of rules for constructing expressions and statements. In this

section, we will look at some simple expressions to get an idea of how to communicate with Python.

The basic building blocks of expressions are literals, variable names, operators, and functions.

1.4.1 Numbers

You can enter explicit numerical values (numeric literals) in various ways:

• 123 and 1.23 mean what you might expect. When entering a large number, however, don’t separate

groups of digits by commas. (Don’t type 1,000,000 if you mean a million.)

• 2.3e5 is convenient shorthand for 2.3 · 105.

• 2+3j represents the complex number 2 + 3
√
−1. (Engineers may find the name j for

√
−1 familiar;

mathematicians and physicists will have to adjust to Python’s convention.)

Python stores numbers internally in several different formats. However, it will usually convert from

one type to another when necessary. Beginners generally don’t need to consider this. Just be aware

that Python sometimes requires an integer. Even if a value has no fractional part, Python may not

interpret it as an integer (for example, a=1.0). If you need to force a value to be an integer (for

example, when indicating an entry in a list), you can use the function int.

1.4.2 Arithmetic operations and predefined functions

Python includes basic arithmetic operators, for example, +, -, * (multiplication), / (division), and **
(exponentiation).

Python uses two asterisks, **, to denote raising a number to a power.

For example, a**2 means “a squared.” (The notation aˆ2 is used by some other math software but

means something quite different to Python.)

Unlike standard mathematics notation, you may not omit multiplication signs. Try typing

Jump to Contents Jump to Index

14 Chapter 1 Getting Started with Python

(2)(3)
a = 2; a(3)
3a
3 a

Each of these commands produces an error message. None, however, generates a message like, “You

forgot a ’*’!” Python used its evaluation rules, and these expressions didn’t make sense. Python

doesn’t know what you were trying to express, so it can’t tell you exactly what is wrong. Study these

error messages; you’ll probably see them again. See Appendix C for a description of these and other

common errors.

Arithmetic operations have the usual precedence (ordering).

You can use parentheses to override operator precedence.

Unlike math textbooks, Python recognizes only parentheses (round brackets) for ordering operations.

Square and curly brackets are reserved for other purposes. We have already seen that parentheses

can also have another meaning (enclosing the arguments of a function). Yet another meaning will

appear later: specifying a tuple. Python uses context to figure out which meaning to use.

For example, if you want to use the number 1
2π , you might type 1/2*np.pi. (Basic Python does

not know the value of π, but NumPy does.) Try it. What goes wrong, and why? You can fix the

expression by inserting parentheses. Later we’ll meet other kinds of operators such as comparisons

and logical operations. They, too, have a precedence ordering, which you may not wish to memorize.

Instead, use parentheses liberally to specify precisely what you mean.

To get used to Python arithmetic operations, figure out what famous math problem these lines

solve, and check that Python got it right:

a, b, c = 1, -1, -2
(-b + np.sqrt(b**2 - 4*a*c))/(2*a)

Recall that np.sqrt is the name of a function that Python does not recognize when it launches, but

that becomes available once we import the NumPy module. When Python encounters the expression

in the second line, it does the following:

1. Evaluate the argument of the np.sqrt function—that is, everything inside the pair of parentheses

that follows the function name—by substituting values for variables and evaluating arithmetic

operations. (The argument may itself contain functions.)

2. Interrupt evaluation of the expression and execute a piece of code named np.sqrt, handing that

code the result found in step 1.

3. Substitute the value returned by np.sqrt into the expression.

4. Finish evaluating the expression as usual.

How do you know what functions are available for you? See Section 1.2.3 above: Type dir(np)

and dir(__builtins__) at the IPython console prompt.

A few symbols in Python and NumPy are predefined. These do not require any arguments or

parentheses. Try np.pi (the constant π), np.e (the base of natural logarithms e), and 1j (the

constant
√
−1). NumPy also provides the standard trig functions, but be alert when using them:

The trig functions np.sin, np.cos, and np.tan all treat their arguments

as angles expressed in radians.

Jump to Contents Jump to Index

1.4 Python expressions 15

1.4.3 Good practice: Variable names

Note that Python offers you no protection against accidentally changing the value of a symbol: If

you say np.pi=22/7, then until you change it or reset Python, np.pi will have that value. It is

even possible to create a variable whose name supplants a built-in function, for example, round=3.16

This illustrates another good reason for using the “import numpy as np” command instead of the

“from numpy import *” command: You are quite unlikely to use the “np.” prefix and name your

own variables np.pi or np.e. Those variables retain their standard values no matter how you define

pi and e.

When your code gets long, you may inadvertently reuse variable names. If you assign a variable

with a generic name like x in the beginning, you may later choose the same name for some completely

different purpose. Later still, you will want the original x, having forgotten about the new one.

Python will have overwritten the value you wanted, and puzzling behavior will ensue. You have a

name collision.

It’s good practice to use longer, more meaningful names for variables. They take longer to type,

but they help avoid name collisions and make your code easier to read. Perhaps the first variable you

were planning to call x could instead be called index, because it indexes a list. Perhaps the second

variable you were planning to call x could logically be called total. Later, when you ask for index,

there will be no problem.

Keep in mind, however, that “meaningful” in this context implies “meaningful to a human reader.”

Python itself pays no attention to the meaning of your variable names; for example, naming a variable

filename will not tell Python how to use that variable.

Variable names are case sensitive, and most predefined names are lowercase. Thus, you can avoid

some name collisions by including capital letters in variable or function names you define.

Blank spaces and periods are not allowed in variable names. Some coders use capitalization in

the middle of variable names (“camel humps”) to denote word boundaries—for example, whichItem.

Others use the underscore, as in which_item. Variable names may also contain digits (myCount2),

but they must start with a letter.

Some variable names are forbidden. Python won’t let you name variables if, for, lambda, or a

handful of other reserved words. You can find them with a web search for python reserved words.

1.4.4 More about functions

You may be accustomed to thinking of a function, for example, square root, as a machine that eats

one number (its argument) and spits out another number (its result). Some Python functions do

have this character, but Python has a much broader notion of function. Here are some illustrations.

(Some involve functions that we have not seen yet.)

• A function may have a single argument, multiple arguments separated by commas, or no arguments

at all.

• A function may allow a variable number of arguments, and behave differently depending on how

many you supply. For example, we will see functions that allow you to specify options by using

keyword arguments. Each function’s help text will describe the allowed ways of using it.

• A function may also return more than one value. The number of values returned can even vary

16 This can be undone by deleting your version of round: Type del(round). Python will revert to its built-in

definition.

Jump to Contents Jump to Index

16 Chapter 1 Getting Started with Python

depending on the arguments you supply. You can capture the returned values by using a special

kind of assignment statement.17

• A function may change your computer’s state in ways other than by returning a result. For example,

plt.savefig saves a plot to a file on your computer’s hard drive. Other possible side effects

include writing text into the IPython console: print('hello').

If you use a function name without any parentheses, you are referring to the function instead of

evaluating it. In mathematics, f is a function; f(2) is the value of the function when its argument

is 2. Type np.sqrt with no parentheses at the IPython command line to see how Python handles

function names.

When evaluating a function, always include parentheses—even if there are

no arguments.

If a function accepts two or more arguments, how does it know which is which? In mathematical

notation, the order of arguments conveys this information. For example, if we define f(x, y) = x e−y,

then later f(2, 6) means 2 · e−6: The first given value (2) gets substituted for the first named variable

in the definition (x), and so on. This positional argument scheme is also the standard one used by

Python. But when a function accepts many arguments, relying on order can be annoying and prone to

error. For this reason, Python has an alternative approach called keyword arguments. For example,

f(y=6, x=2)

instructs Python to execute a function named f, initializing a variable named y with the value 6 and

another named x with the value 2. You need not adhere to any particular order in giving keyword

arguments. (However, keyword arguments must follow all positional arguments and you must use

their correct names, which you can learn from the function’s documentation.) Many functions will let

you omit specifying values for some or all of their keyword arguments; if you omit them, the function

supplies default values. Keyword arguments will be discussed further in Section 6.1.3.

You now know enough Python to start doing simple calculations. Try the examples from this

chapter and play around on your own. In the next chapter, we will explore how to write simple

programs in Python.

17 Section 6.3.1 (page 76) discusses the values returned by functions in more detail. T2 More precisely, a Python

function always returns a single object. However, this object may be a tuple that contains several items.

Jump to Contents Jump to Index

C H A P T E R 2

Organizing Data

Heisenbug: A computer bug that disappears or alters its characteristics when

an attempt is made to study it.

— Wikipedia

Much of the power of computation comes from the ability to do repetitive tasks extremely rapidly.

You need to understand how to formulate instructions for this sort of task, so that your electronic

assistant can do all the steps without your supervision. An important part of the process is organizing

the data. This chapter describes several Python data structures that are useful in scientific computing.

2.1 OBJECTS AND THEIR METHODS

In Python, everything is an object. An object is a combination of data and functions. Even simple

things like integers are objects in Python. (Type dir(1) to see all the data and functions associated

with what you might have thought was “just a number.”) When processing an assignment statement,

Python attaches, or binds, a name (a symbol like x or filename) to an object.1 Later, you can refer

to the object by this name, or you can reassign the name to a different object. Names used in this

way are also called variables.

Let’s look at a few examples to see how this works.

When you type i=5280, Python begins by evaluating the right-hand side of the assignment

statement. The only thing it finds is a numeric literal, that is, an expression whose value is the

expression itself. (Thus, 1+1 is an expression, but it is not a literal because its value is 2. In contrast,

5280 is a literal because its value is 5280.) Continuing with the assignment, Python creates an integer

(object of type int) to store the number 5280. To complete the assignment, Python binds the name

i to the new object. If no variable with the name i exists, then Python will create one. If i already

exists, Python reassigns it to the new integer object.

When you type f=2.5, or f=2.5e30, Python creates a different type of object, called a float,

which is short for floating-point number. As in scientific notation, the decimal point can “float” to

give a constant number of significant figures, regardless of how large or small the number is.

Similarly, typing s='Hello' creates a str object, whose value is the string literal 'Hello',

then binds the name s to that object. (Section 2.3 will discuss strings.) It does not matter if s

was previously bound to a float or some other sort of object. Types belong to objects, not to the

variables that point to them.

Writing L=[1,2,3] creates a list object whose value is a sequence of three int objects. The

value of an int object is restricted to be an integer. (Section 2.2 will discuss lists.)

1 T2 Appendix E describes in greater detail how Python handles assignment statements.

17

18 Chapter 2 Organizing Data

There is more to an object than just its value. In general, objects consist of both data attributes

(which are often numbers) and methods (which are functions) The value of an object is one of its

data attributes. A method of an object is a specialized function that can act on its data attributes.

A method may also accept additional arguments. To access a method, you have to provide the name

of the object, followed by a period, the name of the method, and a pair of parentheses enclosing

any arguments. Try the following with the float object f, the str object s, and the list object L

introduced above:

1. f.is_integer() : Every float object has a method called is_integer that determines whether

its value is equivalent to an integer. The method returns True if the fractional part of the

value is zero. Because the value of f is 2.5, the method returns the value False. The function

f.is_integer does not require any additional arguments, but we must nevertheless place an

empty pair of parentheses after its name.

2. s.swapcase() : Every str object has a method called swapcase that returns a new string whose

value is the original string with the case of every letter reversed (upper↔lower).

3. L.reverse(): Every list object has a method called reverse that does not return a value but

does modify the value of L. The output of print(L) will show that the order of the list has been

reversed.

4. L.pop(0) : Every list also has a method called pop that will return the item at a specified location

and remove it from the list. Thus, this method returns a value and modifies the object’s data.

When called with no argument, L.pop() will remove the last item in the list.

These examples illustrate that every object possesses a suite of data attributes and methods.

Even literals have the standard methods appropriate to their type: Try 'Hello'.swapcase(), or

(5.0).is_integer(). You can see all the methods associated with an object by using the dir

function.

A method can use its parent object’s data (examples 1–4 above). It can modify that data

(examples 3, 4) or not (examples 1, 2). It can return a value (examples 1, 2, 4) or not (example 3).

It can accept additional arguments in parentheses (example 4) or not (examples 1–3). Each method’s

documentation describes its behavior.

There are some objects in Python whose values are fixed once the object is created. They are

called immutable objects.

The methods of an immutable object do not change its value.

String and numeric objects are immutable, which is why examples 1 and 2 above do not change their

values.2 Lists are mutable: Their methods can modify their data. Examples 3 and 4 illustrated this.

Shortly, we’ll introduce NumPy arrays, which are also mutable.

Try creating all the example objects mentioned in this section and see how they appear in Spyder’s

Variable Explorer pane. Experiment with some of their methods.

Many objects have data attributes that describe properties of the object other than its value.

These are stored as part of the object and require no computation. Python just looks up the

data attribute and returns its value (see Section 2.2.2). The syntax for accessing such attributes

is object.attribute. For example, try q=1+3j followed by q.imag. No parentheses are needed

because a data attribute is not a function. The expression starts with the name of the broader thing

(here q), followed by a period and the name of a specific thing (here imag).

2 The method swapcase returns a modified copy of the original string; it does not affect the original string.

Jump to Contents Jump to Index

2.2 Lists, tuples, and arrays 19

You can create your own objects, and give them whatever data and methods you like, but that

goes beyond the scope of this tutorial. To learn more, try a web search for “python classes.”

2.2 LISTS, TUPLES, AND ARRAYS

Much of the power of computer programming comes when we handle numbers in batches. A batch of

numbers could represent a single mathematical object such as a force vector, or it could be a set

of points at which you wish to evaluate a function. To process a batch of numbers, we first need

to collect them into a single data structure. The most convenient Python data structure for our

purposes is the NumPy array, described below. Lists and tuples are also useful.

2.2.1 Creating a list or tuple

Python comes with a built-in list object type. Any set of objects enclosed by square brackets and

separated by commas creates a list:3

L = [1, 'a', max, 3 + 4j, 'Hello, world!']

A tuple is similar to a list, but immutable. To create a tuple object, type t=(2,3,4). Note the

use of round parentheses, (), in contrast to the square brackets, [], of a list. Python knows you want

a tuple because it scans the text between the parentheses and finds a comma. Without any commas,

parentheses are interpreted as specifying the order of operations.4 Like a list, a tuple consists of an

ordered sequence of objects. Unlike a list, however, a tuple is immutable. Its elements cannot be

reassigned, nor can their order be modified. We will use tuples to specify the shape of an array in

Section 2.2.2 and later sections. In addition, functions may return a tuple containing several objects.

2.2.2 NumPy arrays

A list is a sequence (ordered collection) of objects, endowed with methods that can perform certain

operations on its contents like searching and counting. You can do numerical calculations with lists;

however, a list object is generally not the most convenient data type for such work. What we usually

want is a numerical array—a grid of numbers, all of the same type. The NumPy module provides a

class of array objects ideally suited to our needs. Knowing that all of the elements in an array are

numbers of the same type allows NumPy to do efficient calculations on an entire array. Because

Python lists can contain any mix of object types, processing their elements is far less efficient.

A Python list is not the same as a NumPy array.

We will almost always use NumPy arrays.

You can create a one-dimensional array by using the command

a = np.zeros(4)

The function np.zeros requires one argument that describes the shape of the array; in this case, the

integer 4 specifies an array with four elements. It sets all the entries to zero.

In mathematics, we often need arrays of numbers with two or more dimensions. Try

3 A list can contain just one object, but note that 2.71, a float object, is not the same thing as [2.71], a list

containing one float object. A list can even contain no objects: L=[].
4 If you want a tuple with just one element, write (0,).

Jump to Contents Jump to Index

20 Chapter 2 Organizing Data

a = np.zeros((3, 5))

and see what you get. Here np.zeros again accepts a single argument. In this case, it is the tuple

(3,5). The function creates an array with 15 entries, all equal to zero, arranged in three rows and

five columns. The name a now refers to a ndarray object (an “n-dimensional NumPy array”) that

conforms to the mathematical notion of a 3× 5 matrix.

Your
Turn
2A

Create a by using the preceding code. Then, find it in the Variable

Explorer. Double-click its value to look inside the array. Repeat with the

function np.ones in place of np.zeros and see what you get. Finally,

try np.eye(3).

A row vector is a special case of a two-dimensional array with just one row: np.zeros((1,5)).

Similarly, a column vector is a two-dimensional array with just one column: np.zeros((3,1)).

Python will give you exactly what you ask for, so be aware of what you are requesting:

If you want a column vector of N zeros, use np.zeros((N,1)), not

np.zeros(N). If you want a row vector of N zeros, use np.zeros((1,N)).

The functions np.ones and np.random.random can also create two-dimensional arrays, using the

same syntax.

Python can report how big an array is. After setting up a, use the command np.size(a) and see

what you get. Also try np.shape(a). This information is also displayed in the Variable Explorer.

A NumPy array is an object with its own data attributes. For example, it can report its own

size and shape (a.shape and a.size). A NumPy array also has methods for acting on its data.

Try a.sum(), a.mean(), and a.std(). (Of course, these methods are more useful when the array

contains something other than zeros!)

Compare the output of np.zeros(3), np.zeros((1,3)), and np.zeros((3,1)). Note, in par-

ticular, the shape of each. NumPy regards the first as neither a row nor a column vector. It is a

one-dimensional array—an array with only one index. In some cases, NumPy will treat all three

types of arrays the same. However, in certain matrix and vector operations, the shape of the array

is important. Be certain you have arrays of the shape you need when performing these operations.

You can reshape a one-dimensional array into a column vector or row vector if necessary. (See

Section 2.2.9.)

Python can also handle arrays with more than two dimensions. Try

A = np.zeros((2, 3, 4))
B = np.ones((2, 3, 4, 3))

and inspect the resulting arrays.

Don’t confuse the concept of “three-dimensional array” with that of “three-dimensional vector.”

The variable A defined earlier is a three-dimensional array; it could represent grid points filling a

volume of space, each holding a single quantity (a scalar). In contrast, a three-dimensional vector is

just a set of three numbers (the components of the vector); it could be represented by an array like

np.ones(3) or np.ones((3,1)).5

5 T2 A three-dimensional grid of three-dimensional vectors can be represented by a four -dimensional NumPy array!

Jump to Contents Jump to Index

2.2 Lists, tuples, and arrays 21

2.2.3 Filling an array with values

Perhaps you’d like to set up an array with more interesting values. The command

a = [2.71, 3.14, 3000]

creates a Python list—not a NumPy array—with the specified values. It contains the values we want,

but we cannot perform the operations we would like with the list. To create a NumPy array from

these values, we can call the function np.array on the list:

a = np.array([2.71, 3.14, 3000])

Making each element of the list its own list—that is, enclosing each entry in square brackets—returns

a column vector, a two-dimensional array with three rows and one column:

a = np.array([[2.71], [3.14], [3000]])

Your
Turn
2B

Try

a = np.array([[2, 3, 5], [7, 11, 13]])

and explain the result.

Usually you don’t want to specify each entry in an array explicitly. For example, we frequently

want to create a NumPy array of evenly spaced values over some range. NumPy provides two useful

functions to do this: np.arange and np.linspace.

The function np.arange(M,N) creates a one-dimensional array with M as its first entry, M+1 as

the second, and so on, stopping just before it reaches a value that equals or exceeds N.

Example: Try the following commands. Inspect and describe the resulting arrays.

a = np.arange(1, 10)
b = np.arange(5)
c = np.arange(2.1, 5.4, 0.1)

The last command creates a series, but each entry is greater than its predecessor by 0.1, not by the

default increment of 1.

The arange syntax is np.arange(start,end,increment). The incre-

ment and starting value are optional. The default start value is 0; the

default increment is 1. The end value is not included in the array.

Type help(np.arange) at the command prompt to learn more.

The function np.linspace(A,B,N) does a similar job. It creates a one-dimensional array with

exactly N evenly spaced entries. The first entry equals A. Unlike the np.arange function, however,

the last entry equals B exactly. You don’t get to specify the spacing; Python determines what is

needed to cover the range from A to B with N equally spaced points.

The linspace syntax is np.linspace(start,end,num_points). The

end value is included in the array.

Jump to Contents Jump to Index

22 Chapter 2 Organizing Data

Your
Turn
2C

a. Try

a = np.arange(0, 10, 2)
b = np.linspace(0, 10, 6)

and explain the results. See if you can use np.arange and np.linspace

to create identical arrays. [Hint: What happens when you add the

increment to the end value in np.arange?]

b. Now try

a = np.arange(0, 10, 1.5)
b = np.linspace(0, 10, 7)

Describe how a and b differ. Explain why, and decide which form you

should use if you want to evaluate a function over the range 0 to 10.

When creating a series to compute the values of a function over a range, np.linspace is the

appropriate function. It allows you to explicitly choose the start and end of the range (and the

number of points in the series). However, when the exact spacing between points is important, use

np.arange instead.

If you want to control both the end point and the spacing, the following construction will do the

job:

x_min = 0
x_max = 10
dx = 0.1
x_array = np.arange(x_min, x_max + dx, dx)

Python also has a built-in function called range, but it does not create a numerical array of

values. Instead, it creates an object that returns a sequence of values, one at a time. This makes

range useful for loops, as described in Section 3.1, but it should not be used in place of an array.

2.2.4 Concatenation of arrays

NumPy offers two useful methods for building up an array from smaller ones. Each takes a single

argument, a list, or tuple whose entries are the arrays to be combined:

• np.hstack (horizontal stack): The resulting array has the same number of rows as the original

arrays. The arrays to be stacked must have the same number of rows.

• np.vstack (vertical stack): The resulting array has the same number of columns as the original

arrays. The arrays to be stacked must have the same number of columns.

Try these examples, and describe the results:

a = np.zeros((2, 3))
b = np.ones((2, 3))
h = np.hstack([a, b])
v = np.vstack([a, b])

Look at the contents of h and v, and compare their shapes with those of a and b.

Jump to Contents Jump to Index

2.2 Lists, tuples, and arrays 23

2.2.5 Accessing array elements

Once you have created an array, you can access each of its entries individually. Try the following

code at the command prompt:

A = np.array([2, 4, 5])
A[0]
A[1] = 100
print(A)

Array indices (offsets) are enclosed in square brackets, not parentheses.

Using round (ordinary) parentheses when requesting array elements is a common error for Python

beginners.

The third line above changes just one entry in the array, but it may not be the entry you expect.

In Python, the indices of lists, tuples, arrays, and strings all start with 0. Thus, A[1] is the second

element of A. The same indexing scheme can access individual characters in strings. This is not the

convention that math texts use for vectors and matrices.6

Indices in Python start at 0. If A is a one-dimensional array with N

elements, the first element is A[0] and the Nth element is A[N-1]. Asking

for element A[N] will result in an error.

A math text would refer to A[N-1] as AN . The notation A−1 would probably not appear in most

math texts, but Python interprets a negative index as an offset from the end of a list or array. More

precisely, A[-1] will access the last entry of an array, and A[-n] refers to the nth element from the

end of an array.

To understand how to access elements in a two-dimensional array, try the following:

A = np.array([[2, 3, 5], [7, 11, 13]])
A[0]
A[0][1]
A[1][2] = 999

In the second line above, A[0] returns an array whose elements are [2,3,5] (the first row). In the

third line, A[0][1] then asks for the second item in that array, which is the number 3. NumPy

arrays also understand an abbreviated indexing scheme:

A = np.array([[2, 3, 5], [7, 11, 13]])
A[0, 1]
A[1, 2] = 999

Both A[i][k] and A[i,k] return the entry at the intersection of row i+1 and column k+1. A

mathematics text would call this entry Ai+1,k+1. Again, Python’s behavior is easier to understand if

you think in terms of offsets: A[i,k] is the entry i steps down and k steps to the right from the

upper-left corner of the array.

6 T2 The convention in Python is inherited from an older programming language called C. In that language, the name

of an array is linked to the location in memory where its first value is stored. An index is interpreted as an offset.

Thus, to get the first entry in the array, we need an offset of zero: A[0].

Jump to Contents Jump to Index

24 Chapter 2 Organizing Data

2.2.6 Arrays and assignments

An assignment statement for a variable, such as f=2.5, looks similar to an assignment statement

for an element of an array, such as A[1]=2.5. However, these statements are handled differently in

Python, and it is important to understand the distinction.

When we access and assign elements of an array, we are using methods of an ndarray object to

view and modify its data.7 In contrast, when we assign a value to a variable, as in f=2.5, Python

binds the variable name to a new object. There is little difference in behavior until we have two

names bound to the same object.

Suppose that we create two variables that point to the same float object and two variables that

point to the same ndarray object:

f = 2.5
g = f
A = np.zeros(3)
B = A

Inspect all four variables, A, B, f, and g, before and after these commands:

g = 3.5
A[0] = 1
B[1] = 3

There is no effect on f, even though the value of g is changed. However, A and B remain equal to each

other. The reason is that A and B are bound to the same ndarray object, and each used a method of

that object to modify its data.

If multiple variables are bound to the same array, they can all use its

methods to modify its data.

This includes assignment of individual elements.

Lists behave in a similar way. Tuples are immutable objects that do not allow reassignment of

their elements, so A[0]=1 results in an error if A is a tuple.

There is another important difference between variable assignment and array assignment. If you

type A=1, Python does not raise an error, even if A was previously undefined. However, if you try

A[0]=1 before defining A, Python returns an error message. The reason is that A[0]=1 is attempting

to use a method of an object named A to modify its data. Since no such object exists, Python cannot

proceed. If you need to set the entries of an array one by one, you should first create an array of the

appropriate size, for example, A=np.zeros(100).

2.2.7 Slicing

Often you will wish to extract more than one element from an array. For example, you may wish

to examine the first ten elements of an array or the 17th column of a matrix. These operations are

possible using a technique called slicing.

In Python, a colon indicates slicing when it is part of an index. The most general command for

slicing a one-dimensional array is a[start:end:stride]. This returns a new array whose entries are

7 T2 The expression A[1] is shorthand for a method called A.__getitem__(1), and A[1]=2.5 calls the method

A.__setitem__(1,2.5).

Jump to Contents Jump to Index

2.2 Lists, tuples, and arrays 25

a[start], a[start + stride], a[start + 2*stride], ..., a[start + M*stride]

where M is the largest integer for which start + M*stride < end.

The syntax for slicing is a[start:end:stride]. The stride comes last. If

it is omitted, the default is 1. If start or end are omitted, their defaults

correspond to the first and last entries, respectively.

If the stride is omitted, the second colon may also be omitted.

Thus, if you want to see the first ten entries in a, you could use the expression a[0:10:1],

or more concisely a[:10]. The same syntax can be used to slice along each dimension of a mul-

tidimensional array. For example, to get a slice of the third column of a matrix, you could use

A[start:end:stride,2].

Suppose that you have been given experimental data in an array A with two columns. For your

analysis, you need to split the two columns of data into separate arrays. If you don’t know the number

of rows in A, you could start by finding it, and then assign the slices to separate variables:

N = np.size(A, 0)
x = A[0:N:1, 0]
y = A[0:N:1, 1]

A colon all by itself represents every allowed value of an index (that is, start=0, end=-1, stride=1).

We can use this shortcut to specify our slices more concisely:

x = A[:, 0]
y = A[:, 1]

Your
Turn
2D

Try the following commands to familiarize yourself with slicing:

a = np.arange(20)
a[:]
a[::]
a[5:15]
a[5:15:3]
a[5::]
a[:5:]
a[::5]

Explain the output you get from each line. Can you construct a slicing

operation that returns only the odd entries of a?

Negative index values can also be used in slicing. This can be especially useful if you only want

to see the last few entries in an array whose size is unknown. For example, a[-10:] will return the

last ten elements stored in a (if a has at least ten elements).

An array slice can also appear in an assignment statement:

A = np.zeros(10)
A[0:3] = np.ones(3)

This code replaces a block of values in A, leaving the rest unchanged. (See Section 2.2.6.)

Jump to Contents Jump to Index

26 Chapter 2 Organizing Data

2.2.8 Flattening an array

An array may have any number of dimensions. In some cases, you may wish to repackage all of its

values as a one-dimensional array. The function np.ravel does exactly this. It can be accessed as a

NumPy function or an array method. NumPy arrays can also flatten themselves. Try the following

commands, and inspect the results:

a = np.array([[1, 2], [2, 1]])
b = np.ravel(a)
c = a.ravel()
d = a.flatten()

Notice, in particular, that neither ravel nor flatten changes a. Each returns a one-dimensional

array that contains the same elements as a. There is a significant difference between the methods,

however. The flatten method returns a new, independent array; ravel returns an ndarray object

with access to the same data as a, but with a different shape. To see this, compare the effects of

d[1]=11 and b[2]=22 on all four arrays.

2.2.9 Reshaping an array

Flattening an array is just one way to change its shape. An array can be recast into any shape

consistent with its number of elements by using np.reshape or an array’s own reshape method.

Try the following, and inspect each array:

a = np.arange(12)
b = np.reshape(a, (3, 4))
c = b.reshape((2, 6))
d = c.reshape((2, 3, 2))

The reshape method takes a tuple of numbers, like (3,4) or (2,3,2), as its argument. As long as

the product of these numbers is equal to the number of elements in the original array, the command

will return a new array. Like ravel, these reshape methods return an ndarray object with access

to the same data as a, but with a different shape. Modifying the elements of any of the arrays in this

example will affect all four of them.8

2.2.10 T2 Lists and arrays as indices

Python has an even more flexible method for slicing NumPy arrays: You can use a list where an

index is expected. Using a list of integers will return an array that contains just the elements of the

original array at the offsets specified by the list. Try

a = np.arange(10, 21)
b = [2, 4, 5]
a[b]

This method can be extremely useful if the list b was itself generated automatically. For example, b

could be a list of time points at which we wish to sample a signal contained in a.

8 T2 Array slicing, reshaping, and NumPy’s ravel method each return a view of the original array. That is, the

resulting object has access to the same data as the original array. Any changes to a view change the original object—and

all other views of that object. See Appendix E.

Jump to Contents Jump to Index

2.3 Strings 27

You can also use a Boolean array (an array whose entries are either True or False) to select

entries from another array of the same shape. This technique is called logical indexing. Try the

following example:

a = np.arange(-10, 11)
less_than_five = (abs(a) < 5)
b = a[less_than_five]

The comparison in the second line returns an array with the same shape as a whose entries are

True or False, depending on whether the particular element in a satisfies the comparison.9 When

less_than_five is used as an index to a, Python returns an array containing only those elements

of a for which the corresponding element in less_than_five is True.

It is not necessary to create a named array to use as an index. The following line is equivalent to

the last two lines of the example above:

b = a[abs(a) < 5]

2.3 STRINGS

Python can manipulate text as well as numbers. Next to an array, the second most important data

structure for our purposes is the string. A string may contain any number of characters. You can

create one with

s = 'Hello, world!'

Notice how s looks in the Variable Explorer.

The expression on the right side of the equals sign above is a string literal. The equals sign assigns

this short sentence (without the quotes) as the value of s. Python allows you to use either a single

quote (') or a double quote (") to define a string; however, you must begin and end the string with

the same character.

A string literal starts and ends with a single quote or a double quote.

A single quote is the same as the apostrophe on your keyboard. Elsewhere on your keyboard there’s

a different key, the grave accent. You may be tempted to use it, as in `string'. Python won’t

understand that.

If you need an apostrophe inside a string, you can enclose the whole string in double quotes:

"Let's go!" If you need both an apostrophe and double quotes, you will have to use a back-

slash (\) before the symbol that encloses the string. Write either "I said, \"Let's go!\"" or

'I said, "Let\'s go!"' More generally, inside a string, the backslash is an escape character that

means, “Interpret the next character literally.” In these examples, it instructs Python that the double

quotes and the apostrophe, respectively, are part of a string, not the beginning or end of a string.10

A string may contain a collection of digits that looks like a number, for example, s='123'.

However, Python still considers such a value to be a string, not the number 123. Try typing

9 This is an example of vectorized computation, which will be discussed in Section 3.2.1.
10 Another use of backslash is to code special characters, such as newline (\n) and tab (\t). See page 54. You can

even code backslash itself via \\ .

Jump to Contents Jump to Index

28 Chapter 2 Organizing Data

a = '123'
b = a + 1

Python issued a TypeError when you tried to add a number to a string. However, you can convert a

string to a number. (This may be necessary if you are getting input from a keyboard.) Python can do

sensible conversions like creating an integer from "123" or a floating point number from "3.14159",

but it does not know how to directly create an integer from a string that contains a decimal point.

Try the following:

s = '123'
pie = '3.142'
x = int(s) + 1
y = float(pie) + 1

5 z_bad = int(s) + int(pie)
z_good = int(s) + int(float(pie))

Python does know how to “add” two strings together. Try this:

"2" + "2"

The result is not what you learned in kindergarten. Python uses the plus sign (+) to join (concatenate)

strings:

s = 'Hello, world!'
t = 'I am Python.'
s + t

Your
Turn
2E

The result of the last evaluation doesn’t look quite right. Replace the last

line with s+' '+t and explain the operations that lead to the output.

Some Python functions require arguments that are strings. For example, graph titles and legends

must be specified as strings. (See Section 4.3.) You may wish to include the value of a variable in

such a string. If the value is not already a string, one option is to convert it. Just as Python can

convert strings to integers and floating point numbers, it can convert numbers to strings. The built-in

function str will try to create a string using whatever input you provide:

s = "Poisson distribution for $\\mu$ = " + str(mu_val)

This string can now be used by PyPlot to generate a graph title. In this expression,

• The + sign joins two strings.

• The first string is a literal. It contains some special characters that PyPlot can use to produce the

Greek letter µ.11

• The second string is obtained from the current value of a variable named mu_val.

Python will display up to 16 digits when printing floating point numbers, and this is what the

str command will generate in the example above if µ has that many digits. This may be satisfactory,

11 T2 Python will interpret the text between dollar signs ($...$) as LATEX typesetting instructions. The first backslash

escapes the second one and prevents it from being interpreted as an escape character itself.

Jump to Contents Jump to Index

2.3 Strings 29

but Python offers much more control over the appearance of strings. You can control how numbers

appear in strings by using special commands involving the percent sign (%) or the format method

that every string possesses. The percent sign works in all versions of Python and is widely used, so

we will briefly describe it below. However, the format method behaves more like other functions in

Python, so we will discuss it first and use it throughout the remainder of the tutorial.

2.3.1 Formatting strings with the format() method

Let’s look at some examples that use the format() method:12

string_format.py [get code]
"The value of pi is approximately " + str(np.pi)
"The value of {} is approximately {:.5f}".format('pi', np.pi)
s = "{1:d} plus {0:d} is {2:d}"

5 s.format(2, 4, 2 + 4)
"Every {2} has its {3}.".format('dog', 'day', 'rose', 'thorn')
"The third element of the list is {0[2]:g}.".format(np.arange(10))

When evaluating a string’s format method, Python interprets a pair of curly brackets ({}) as a

placeholder, where values will be inserted. The arguments of format are expressions whose values

will be inserted at the designated points. They can be strings, numbers, lists, or more complicated

expressions. These examples illustrate several properties of the format method:

• An empty pair of curly brackets will insert the next item in the series of expressions, as illustrated

in the third line. The item can be formatted if the brackets contain a colon (:) followed by a

formatting command. For example, “{:.5f}” means, “Format the current argument as a floating

point number with 5 digits after the decimal point.”

• Items can also be explicitly referenced by their location in the series of expressions passed to format.

For example, the fourth line in the examples above defines s as a string with three placeholders to

be filled later. It will take the second, then the first, then the third arguments and insert them

at the designated locations. The syntax “{1:d}” means, “Insert the second argument here, and

display it as a decimal (base 10) integer.” (Python can also represent integers as binary, octal, or

hexadecimal by using {:b}, {:o}, and {:x}, respectively.)

• Line 6 shows that not all arguments need to be used.

• The last line demonstrates how you can reference an individual item of an array passed to format:

The replacement field 0[2] refers to the third element of the first argument, and the format specifier

:g then instructs Python to display a number using the fewest characters possible (general format).

It may choose exponential notation, and it will leave off trailing zeros in floating point numbers.

Python’s help(str) information provides basic descriptions of the available string methods.

There are also many references online if you wish to explore string processing beyond the rudimentary

introduction provided here. However, it can be quicker and more fun to

Experiment in the console to discover how things work.

12 The hash symbol # in the following code snippet introduces a comment. (See Section 3.3.4.) The comment here

tells you the name of the code snippet, so that you can find it in the book’s online resources.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#string_format

30 Chapter 2 Organizing Data

2.3.2 T2 Formatting strings with %

Try the following at the command prompt to see how the % syntax works:

string_percent.py [get code]
"The value of pi is approximately " + str(np.pi)
"The value of %s is approximately %.5f" % ('pi', np.pi)
s = "%d plus %d is %d"

5 s % (2, 4, 2 + 4)

When a string literal or variable is followed by the % operator, Python expects that you are going

to provide values to be formatted and inserted into that string. The desired insertion point(s) are

indicated by additional % characters within the string. These can be followed by information about

how each value should be formatted, as described in Section 2.3.1. As these examples show, you can

insert multiple values into a string, and each value can be the result of evaluating an expression. You

must provide the values in the order they are to appear in the string.

Thus, in the third line of the example above, “%s” means, “Insert a string here.” Similarly, “%.5f”

means, “Insert a floating point number here with 5 digits after the decimal point.” In the third line

of the example, “%d” means, “Insert a decimal (base 10) integer here.”

In addition to formatting strings, the percent sign can also function as an arithmetic operator

in Python. In an expression like 5%2, the percent sign represents the modulo operation. It returns

the remainder upon division. (Try it.) Although this particular operation is not used frequently in

physical modeling, we mention it because it can cause puzzling behavior when you have a bug that

involves a percent sign.

This chapter has introduced the most common Python data structures in scientific computing.

This is enough to get started with array processing and string manipulation. However, to get the

most out of Python we need to do more than enter instructions at the command line. It is time to

look at the flow of operations in a chain of instructions—that is, at computer programs.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#string_percent

C H A P T E R 3

Structure and Control

When you come to a fork in the road, take it.

— Yogi Berra

The previous chapter introduced some useful structures for storing and organizing data. To utilize

them effectively, we now need to automate repetitive operations on the data. This chapter describes

how to group code into repeated blocks (looping) and contingent blocks (branching), and how to

assemble code blocks into reusable computer programs called scripts.

3.1 LOOPS

So far, we have described Python as a glorified calculator with some string processing capabilities.

However, we can continue to build on what we have learned and do increasingly complex tasks. In

this section, we will explore two control structures that will allow us to repeat a set of operations as

many times as we need: for loops and while loops.

3.1.1 for loops

Instead of solving a quadratic equation, let’s go a step further and create a table of solutions for

various values of a, holding b and c fixed. To do this, we will use a loop. Try typing the following in

the IPython console:

for_loop.py [get code]
b, c = 2, -1
for a in np.arange(-1, 2, 0.3):

x = (-b + np.sqrt(b**2 - 4*a*c)) / (2*a)
5 print("a= {:.4f}, x= {:.4f}".format(a, x))

(Hit <Return/Enter> on a blank line to terminate the loop and run it.)

Note the colon after the for statement. This is essential. It tells Python that the next lines of

indented code are to be associated with the for loop. The colon is also used in while loops and if,

elif, and else statements, which will be discussed shortly.

The keyword for instructs Python to perform a block of code repeatedly. It works as follows:

1. The function np.arange(-1,2,0.3) indicates a series of values with which to execute the indented

block of code. Python starts with the first entry and cycles over each value in the array.

2. Python initially assigns a the value −1. Then, it evaluates a solution to the quadratic equation and

prints the result. (Without the print statement, nothing would be displayed as the calculation

proceeds.)

31

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#for_loop

32 Chapter 3 Structure and Control

3. The end of the indented code block tells Python to move back to the beginning of the loop, update

the value of a, and execute the block again. Eventually, Python reaches the end of the array.

Python then jumps to the next block of unindented code (in this case, nothing). We say that it

“exits the loop.”

Note that a is an ordinary variable whose value can be accessed in calculations. It is generally not

good practice to modify its value within the loop, however. When Python reaches the end of an

indented block, it will continue on to the next value in the array and discard any changes you made

to the value of a.

The example above illustrates a very important feature of Python:

Blocks of code are defined only by their indentation.

In many programming languages, special characters or commands separate blocks of code. In Java,

C, or C++, the instructions in a for loop are enclosed in curly brackets ({...}). In other languages,

the end of a block of code is designated by a keyword (for example, end in matlab). In Python,

the indentation of a statement—and nothing else—determines whether it will be executed inside

or outside a loop. This forces you to organize the text of your programs exactly as you intend the

computer to execute it. You can tell at a glance which commands are inside a loop and where a

block of code ends, and your code is not cluttered with dangling curly brackets or a pyramid of end

statements at the end of a complex loop.

How much should you indent? The only requirements in Python are the following:

(i) Indentation consists of blank spaces or tabs.

(ii) Indentation must be consistent within a block. (For example, you cannot use four spaces on one

line and a single tab on the next, even if the tab appears to indent the block by four spaces.)

(iii) The indentation level must increase when starting a new block, and go back to the previous level

when that block ends.

Try this modified set of instructions and explain why the output differs from before (before typing

the last line, hit backspace to undo the automatic indentation):

b, c = 2, -1
for a in np.arange(-1, 2, 0.3):

x = (-b + np.sqrt(b**2 - 4*a*c)) / (2*a)
print("a= {:.4f}, x= {:.4f}".format(a, x))

We can tell by looking that this version of the loop will cycle over the values of a, and then display

the final values of a and x once Python exits the loop.

IPython’s command line interpreter aids you in setting up indentation. When you typed the

first line of the for loop and hit <Return/Enter>, the next line was automatically indented. When

you write your own programs, you will have to make sure statements are indented properly. (Many

semi-intelligent editing programs, including the Editor in Spyder, will also help you with indentation.)

If the body of a loop is very brief, you can just write it on the same line as the for statement

after the colon, and forget about indentation:

for i in range(1, 21): print(i, i**3)

Jump to Contents Jump to Index

3.1 Loops 33

3.1.2 while loops

A second example of a control structure is useful when you wish to repeat a block of code as long as

some general condition holds but you do not know how many iterations will be required. A while

loop will exit the first time its condition is False. For example, you could calculate solutions to a

quadratic equation until the discriminant changes sign as follows:

while_loop.py [get code]
a, b, c = 2, 2, -1
while (b**2 - 4*a*c >= 0):

x = (-b + np.sqrt(b**2 - 4*a*c)) / (2*a)
5 print("a = {:.4f}, x = {:.4f}".format(a, x))

a = a - 0.3
print("done!")

Note that we now need to change the value of a explicitly within the loop (line 6), because we are

not iterating over an array. Also, be aware that a different choice of values for a, b, and c could

result in an infinite loop. (See Section 3.1.4 below.)

As with a for loop, the indentation of statements tells Python which commands to execute inside

a while loop; it also tells Python at what point to pick up again after the loop has completed. In

the example above, the code prints out a short message after finishing the loop.

3.1.3 Very long loops

Some calculations take a long time to complete. While you’re waiting, you may be wondering whether

your code is really working. It’s a good idea to make your code provide updates on its progress. If

you have a loop like for ii in range(10**6):, then inside the loop you may wish to place

if ii % 10**5 == 0: print("{:.0f} percent complete".format(100*ii/10**6))

Here the percent sign is being used to determine a remainder.

You may want to do some other task while waiting for your code to complete. In that case, it’s

convenient to get audible bulletins. The simplest is print("\a"). Try it!

3.1.4 Infinite loops

When working with loops, there is the danger of entering an infinite loop that will never terminate.

This is usually a bug, and it is useful to know how to halt a program with an infinite loop without

quitting Spyder itself.

The easiest way to halt a Python program is to issue a KeyboardInterrupt by typing <Ctrl-C>.

This will work on most programs and commands. Try it now. At the IPython command prompt, type

while True: print("Here we go again ...")

When you hit <Return/Enter>, Python will enter an infinite loop. Halt this loop by typing <Ctrl-C>.

<Ctrl-C> can also be used to halt commands or scripts that are taking too long, or lengthy

calculations that you realize are using the wrong input. Just click in the IPython console pane, and

type <Ctrl-C>. There is also a red
�� ��Stop button in the upper-right corner of the IPython console

that will issue a KeyboardInterrupt from within Spyder (see Figure 1.1, page 6). Run the infinite

loop command again, and halt it with the
�� ��Stop button.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#while_loop

34 Chapter 3 Structure and Control

It may take a while for Python to respond, depending on what it is doing, but <Ctrl-C> or

the
�� ��Stop button will usually halt a program or command. However, if Python is completely

unresponsive, you may have to exit Spyder or force it to quit with the Restart kernel option

in the
�� ��Options menu to the right of the

�� ��Stop button on the IPython console pane (again see

Figure 1.1, page 6). If this happens, you could lose everything you have not saved, so be sure to save

your work frequently.

3.2 ARRAY OPERATIONS

One reason to use arrays is that NumPy has a very concise syntax for handling repetitive operations

on arrays. NumPy can directly calculate the square root of every element in an array or the sum

of each column in a matrix much more rapidly than a for loop designed to do the same thing.

Applying an operation to an entire array instead a single number (scalar) is called vectorization. An

operation that combines elements of an array to create a smaller array—like summing the columns

of a matrix—is called array reduction. Let’s look at examples of both of these operations.

3.2.1 Vectorizing math

We can calculate the solutions to the quadratic equation in Section 3.1.1 by using the following code:

vectorize.py [get code]
b, c = 2, -1
a = np.arange(-1, 2, 0.3)
(-b + np.sqrt(b**2 - 4*a*c)) / (2*a)

We type the last command exactly as we would for a single value of a, but Python evaluates the

operation for every element of a and returns the results in an array.

To evaluate the expression on the fourth line, Python essentially carries out the following steps:1

1. Python starts with the innermost subexpression, first calculating b**2 and saving the result. In

evaluating 4*a*c, it notices that the array a is to be multiplied by 4. Python interprets this as a

request to multiply each element by 4. This is the standard interpretation in math: When you

multiply a vector by a scalar, each component is multiplied by that quantity. Similarly, Python

then multiplies the resulting array by c.

2. After evaluating 4*a*c, Python sees that you’ve asked it to combine this result with the single

quantity b**2. Unlike standard math usage (where it does not make sense to add a vector and a

scalar together), Python interprets this as a request to create a new array, in which the entry

indexed by k is equal to b**2 - 4*a[k]*c. That is, addition and subtraction of an array and a

scalar are also evaluated item by item.

3. Python then passes the array generated in step 2 to the np.sqrt function as an argument.

NumPy’s square root function will accept a single number, but like many functions in the NumPy

module (including sin, cos, and exp), it can also act on an array. The function acts item by item

on each entry and returns a new array containing the results.2

1 Python may actually use a more efficient procedure.
2 The module we are using is important: The sqrt function in the math module will not accept an array as an

argument.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#vectorize

3.2 Array operations 35

4. Python adds -b to the array from 3 using the same rule as in 2.

5. Python divides the array from 4 by 2*a. This operation involves two arrays and will be discussed

in a moment. It is also evaluated item by item.

The code in vectorize.py is a vectorized form of the earlier for loop. Vectorized code often

runs much faster than equivalent code written with explicit for loops, because clever programmers

have optimized NumPy functions to run “behind the scenes” with compiled programs written in C

and fortran, avoiding the usual overhead of Python’s interpreter.

Vectorization can also help you write clearer code. Long, rambling code can be hard to read,

making it difficult to spot bugs. Of course, extremely dense code is also hard to read. Your coding

style will evolve as you get more experienced. Certainly if a code runs fast enough with for loops,

then there’s no need to go back and vectorize it.

Not every mathematical operation on an array will act item by item, but most common operations

do. Suppose that you wanted to graph the function y = x2. You could set up an array of x values by

x=np.arange(21). Then, y=x**2 or y=x*x gives you what you want.

We can now finish explaining the example at the start of this section. The variable a is an

array; therefore, -b + np.sqrt(b**2-4*a*c) and 2*a are arrays, too. When two NumPy arrays

of the same shape are joined by +, -, *, /, or **, Python performs the operation on each pair of

corresponding elements, and returns the results in a new array of the same shape.

Your
Turn
3A

a. We often wish to evaluate the function y = e−(x
2) over a range of x

values. Figure out how to code this in vectorized notation.

b. We often wish to evaluate the function e−µµn/(n!) over the integer

values n = 0, 1, . . . , N . Here, the exclamation point denotes the factorial

function. Figure out how to code this in vectorized notation for N = 10

and µ = 2. (You may want to import the factorial function from

SciPy’s collection of special functions, scipy.special.)

The item-by-item operations work equally well with multidimensional arrays. Again, the arrays

to be combined must have the same shape. The expressions a+b and a*b generate error messages

unless a.shape==b.shape is True or a and b can be “broadcast” to a common shape. (For example,

you can always add a number to an array of any shape. For more information, try a web search for

numpy broadcasting.)

Most math operations on NumPy arrays are performed item by item.

Vectorized operations apply only to NumPy arrays. Most mathematical operators are not defined

for Python lists, tuples, or strings. Some are, but they do not carry out arithmetic. Execute the

following commands to see why we do not use Python’s list data structure:

x = [1, 2, 3, 4, 5, 6]
2 * x
x + 2
x * x

5 x - x

Jump to Contents Jump to Index

36 Chapter 3 Structure and Control

If you “add” two lists, two tuples, or two strings with a +, the result will be to join, or concatenate,

them. Python’s list objects are useful in many computing applications, but fast mathematical

calculation on large collections of numbers is not one of them.

3.2.2 Matrix math

Sometimes, instead of item-by-item operations, you may want to combine arrays by the rules of matrix

math. For example, the “dot product” of two vectors (or, more generally, matrix multiplication)

requires a special function call. Compare the output of the two operations below:

a = np.array([1, 2, 3])
b = np.array([1, 0.1, 0.01])
a*b
np.dot(a, b)

The number of elements in a equals the number of elements in b, so the dot product is defined. In

this case, it is the single number a · b = a1b1 + a2b2 + a3b3.

3.2.3 Reducing an array

In contrast to ordinary functions like sin, which act item by item when given an array, some functions

combine elements of an array to produce a result that has fewer elements than the original array.

Sometimes the result is a single number. Such operations are said to reduce an array.

A common array reduction is finding the sum of the elements in each row or column, or the sum

of all the elements in the array. Try

a = np.vstack((np.arange(20), np.arange(100, 120)))
b = np.sum(a, 0)
c = np.sum(a, 1)
d = np.sum(a)

The function np.sum(a,n) takes an array a and an integer n and creates a new array. Each entry in

the new array is the sum of the entries in a over all allowed values of index number n, holding the

other indices fixed. In the example above, n=0 specifies the first axis; thus, b contains the column

sums of a. Setting n=1 specifies the second axis; thus c contains the row sums of a. When no index

is given, as for d, np.sum adds up all of the elements in the array.

Python also has a built-in sum function that does not work the same way. Try the example above

using sum without the “np.” prefix to see what happens, then look at help(sum) and help(np.sum)

to understand the difference between the two functions.

You can use experimentation and the help command to explore the useful related functions

np.prod, np.mean, np.std, np.min, and np.max. Alternatively, every array comes with methods

that evaluate these functions on the array’s own data. For instance, the example above could also

have been written as follows:

a = np.vstack((np.arange(20), np.arange(100, 120)))
b = a.sum(0)
c = a.sum(1)
d = a.sum()

See if you can explain how the following code calculates 10!:

ten_factorial = np.arange(1, 11).prod()

Jump to Contents Jump to Index

3.3 Scripts 37

3.3 SCRIPTS

You can do many useful things from the IPython Console, which is what we have been using up to

this point. However, retyping the same lines of code at the command prompt over and over is tedious,

and many tasks involve code that is far more complex than the examples above. Your code will go

through many versions as you get it right, and it’s tiresome to keep retyping things and making

new errors. You’ll want to work on it, take a break, return to it, close Spyder, move to a different

computer, and so on. And you will wish to share code with other people in a “pure” form, free from

all the typos, missteps, and output made along the way. For all these reasons, you will want to do

most of your coding in the form of scripts.

A script is simply a text file that contains a series of commands. You edit a script in a text editor,

and then execute it by calling it with a single command or a mouse click.

3.3.1 The Editor

You can use Spyder’s Editor to create and edit scripts. To use the Editor, simply click on its pane

or use the keyboard shortcut <Cmd-Shift-E>. If the Editor is not open, the keyboard shortcut will

open it. To create a script, you can open a new document from the File menu, you can click on the

blank page icon at the upper left, or you can use the keyboard shortcut <Cmd-N>.3

Write a script that contains any of the code fragments above. As you enter text in a script, hitting

<Return/Enter> only moves the cursor to the next line. No commands are executed because Python

has no knowledge of your script yet. It is just a text file somewhere in your computer’s memory.

When you finish editing, you can execute your file by clicking the
�� ��Run button, selecting “Run”

from the Run menu at the top of the window, or by using the shortcut key <F5>. Python executes the

code in the Editor’s active tab and displays any output in the IPython console. Before it does that,

however, it saves the code, prompting you for a file name if necessary. It is customary to end Python

code file names with the extension .py.4 You can also execute the code by typing %run followed

by your file name (with or without the .py extension) at the command prompt, but you will need

to import modules and define variables within the script instead of relying on what you may have

already done in the IPython console.

It’s good practice to type %reset at the command prompt before running

any script.

That way, you know exactly what state Python is in when the script begins. Keep in mind that

%reset will delete all imported modules. (See Section 1.2.1.) Thus, you will probably want to include

the following lines at the top of every script you write:

import numpy as np
import matplotlib.pyplot as plt

You can have Spyder add these lines to every new script by default. See Appendix A.

3 On Windows systems, use <Ctrl-Shift-E> and <Ctrl-N>. You can also use IPython to run scripts that you create

outside of Spyder. See Section 3.3.2.
4 When naming your script, do not use a Python reserved word (such as for.py), nor the name of a module you may

want (such as numpy.py).

Jump to Contents Jump to Index

38 Chapter 3 Structure and Control

3.3.2 T2 Other editors

If you prefer another text editor, you can edit and save files outside of Spyder and then run them

within Spyder. Give your code file the extension .py (not .txt).

You can use the %run command at the IPython command prompt to execute any plain text

Python file in the current directory. Formatted text files such as .rtf, .doc, or .docx files won’t

work, however. It’s best to use a “plain text” editor that has three key features:

• Your editor should have an autoindent feature that will ensure consistent spacing in indented

blocks of code. Many text editors also allow you to convert tabs into an equivalent number of

spaces. If you do not use either feature, you could accidentally mix tabs with spaces in indented

blocks. The code may look correctly indented on the screen, but it won’t run properly.

• Your editor should also have syntax highlighting. This useful feature displays Python commands

and keywords in different colors or fonts, allowing you to spot some coding errors at a glance. If

your editor supports syntax highlighting, it will operate automatically whenever you open a file

with extension .py.

• Your editor should support bracket matching, which identifies unmatched brackets such as a “(”

without a “)”, or an extra “)”.

Vim and Emacs are classic text editors included with most Unix and Linux systems. Atom is a more

recent open-source editor for all operating systems (atom.io). Other options include Notepad++ for

Windows (notepad-plus-plus.org), TextWrangler for macOS (www.barebones.com), and gedit

for Linux (wiki.gnome.org/Apps/Gedit), all of which are free.

If you are running IPython without Spyder—for instance, from your operating system’s command

line—then IPython’s magic commands can accommodate you in editing files and running scripts.

You can open a script for editing by typing %edit my_script.py. This will open my_script.py in

your default text editor. Once you have created or edited the file, save it and quit the editor. IPython

may automatically run your file. You can also run the script by typing %run my_script.py.

Finally, you can execute a Python script directly from your operating system’s command line,

outside of any IDE, with the command

$ python my_script.py

3.3.3 First steps to debugging

If you make an error in your code while you are typing it in the Editor, Spyder may catch it before

you even click
�� ��Run . Lines with potential errors are flagged by yellow triangles and red diamonds

with an exclamation point inside. A red diamond means your script will not run; a yellow triangle

means it may not run.5 Type the following lines in the Editor to see the two types of errors:

s = str 3
prnt(s)

(You may need to save the file before Spyder checks it for errors.) Spyder recognizes that you are

using the known function str incorrectly in the first line (a syntax error) and flags it with a red

diamond. Move the mouse cursor over the red diamond to get a brief explanation. The information

provided is sometimes cryptic, but just knowing the general location of an error is quite helpful.

5 T2 Spyder’s syntax checking is performed by the pyflakes module, which can be run independently of Spyder.

Another popular syntax checker is pylint.

Jump to Contents Jump to Index

https://atom.io/
https://notepad-plus-plus.org
https://www.barebones.com
https://wiki.gnome.org/Apps/Gedit

3.3 Scripts 39

Fix the first line so that s is assigned the string representation of 3. Now, a yellow triangle will

appear next to the second line. (If there is a fatal error, Spyder will not bother warning you about

other potential trouble. Thus, if there is more than one fatal error, Spyder will usually recognize

only the first.) In this case, Spyder is not aware of any function called prnt, but you may have

defined it somewhere else. If you click
�� ��Run , Spyder will attempt to execute the code. When Python

encounters the prnt command, it discovers that no such name is defined, and so it raises an exception

called NameError. That is, it prints a runtime error message in the IPython console and aborts any

further processing.

A lot of information may print out when Python encounters an error.

Generally, the last few lines are the most helpful.

The last portion of the error message will cite the line number where Python first noticed something

wrong, display a portion of the script near this line, and describe the type of error encountered. The

script may contain other errors, but Python quits when it hits the first one. Fix it and try again.

The most common cause of NameError is misspelling.

Variable names are case sensitive, so inconsistent case is a form of spelling mistake. For example, if

you define myVelocity=1 and later attempt to use myvelocity, Python treats the second instance

as a totally new, undefined variable. Scanning the Variable Explorer can help you find such errors.

Another common cause of NameError is forgetting to prefix a function

name with the name or nickname of the module containing it.

Runtime errors generate messages in the IPython console when you run the code. Most cause

Python to halt immediately. A few, however, are “nonfatal.” For example, try

for x in np.arange(-1, 8):
print(x, np.log(x))

Python finds nothing syntactically incorrect here, but NumPy recognizes a problem when it attempts

to calculate the first two values. It gives these values names in this case (nan for “not a number”

and -inf for “infinity”), but it knows these values could cause problems later, so it issues two

RuntimeWarning messages, and even explains what happened.6

Still other situations generate no message at all—you just get puzzling results. You will encounter

many situations of this sort, and then you’ll need to debug your code.

Whole books are written about the art of debugging. When a code generates messages or output

that you don’t understand, you need to look for clues. Here are some ideas:

• Read your code carefully. This is often the quickest route to insight.

• Build your code slowly. Most scripts are designed to execute a complicated task by breaking it into

a series of simple tasks. Make sure each step does exactly what it is supposed to. If every step does

exactly what it is supposed to do and your code still does not work, you have a theory bug, not a

programming bug.

• Start with an easier case. You’re using a computer because you can’t do the problem by hand, but

maybe there’s another case that you can do by hand. Adapt your code for that case (perhaps just

a matter of changing a few parameter values), and compare the output to the answer you know to

be correct.

6 Not all modules are as forgiving. Try importing the math module and using its log function inside the loop instead.

Jump to Contents Jump to Index

40 Chapter 3 Structure and Control

• Probe your variables. After a code finishes (or terminates with an error), all of its variables retain

their most recent values; check them to see if anything seems amiss.

• Insert diagnostics. Somewhere prior to where you suspect there’s an error, you can add a few lines

that cause Python to print out the values of some variables at that moment in the code’s execution.

When you run the program again, you can check whether they’re what you expect.

• Be proactive as you write. Make sure that what you think should be true actually is true when

a command is executed. Python offers a very useful tool for this: the assert statement. At any

point in your code, you can insert a line of the form

assert (condition), "Message string"

If the condition is True, then Python will continue executing your code. If it is False, however,

Python will stop the code, give an AssertionError, then print your message. For example, in the

code above, we could insert the following line above the print statement:

assert (x > 0), "I do not know how to take the log of {}!".format(x)

When the code runs, it will not only stop when it tries to take the logarithm of a bad value—it

will also print out the value that caused the problem. Of course, you can’t foresee every possible

exceptional case. But you will develop a sense of what bugs are likely after some practice.

• Explain the code line-by-line out loud to another person or inanimate object. The latter practice

is often called Rubber Duck Debugging. Professional developers commonly force themselves to

explain malfunctioning code to a rubber duck or similar totem to avoid having to involve another

developer. The act of describing what the code is supposed to do while examining what it actually

does quickly reveals discrepancies.

• Ask a more experienced friend. This may be embarrassing, because almost all coding errors appear

“stupid” once you’ve found them. But it’s not as embarrassing as asking your instructor. And either

one is better than endlessly banging your head on the temple wall. You need to become self-reliant,

eventually, but it doesn’t happen all at once.

• Ask an online forum. An amazing, unexpected development in human civilization was the emergence

of sites like stackoverflow.com where people pose queries at every level, and total strangers

freely help them. The turnaround time can be rather slow; however, your question may already be

asked, answered, archived, and available.

• Learn about breakpoints. This topic goes beyond the scope of this tutorial, but there may come a

day when your code is complex enough to need it.

Maybe the single most important point to appreciate about debugging is that it always takes

longer than you expect. The inevitable corollary is

Don’t wait till the day before an assignment is due to start.

Some puzzles don’t resolve until your subconscious has had time to unravel them. If you need help

from a friend, lab partner, or instructor, that takes time too. Respect the subtlety of coding, and

give yourself enough time.

3.3.4 Good practice: Commenting

Another key advantage of writing scripts is that you are free to include as many remarks to your

reader—and yourself—as you like.

Jump to Contents Jump to Index

https://stackoverflow.com

3.3 Scripts 41

Let’s apply our example of calculating solutions to the quadratic equation by giving it some

physical meaning. Suppose you are planning a prank on a friend and need to know how long a

snowball remains in the air when thrown upward with a particular initial speed. You recall from

introductory physics that the height of a ball thrown upward is

y(t) = y0 + v0 t−
1

2
g t2.

After you recall the meaning of all the symbols, you realize that you need the value of t for which

y(t) = 0. Rearranging things a bit, you obtain

1

2
gt2 − v0t− y0 = 0.

This is the quadratic equation we already solved, but now the parameters all have physical meanings.

You can use the following code to plan your prank:

projectile.py [get code]
Jesse M. Kinder -- 2019
"""
Calculate how long an object is in the air when thrown from a specified height

5 with a range of initial speeds assuming constant acceleration due to gravity:
0.5 * g * t**2 - v0 * t - y0 = 0

"""
import numpy as np
import matplotlib.pyplot as plt

10

#%% Initialize variables.
initial_speed = 0.0 # v0 = initial vertical speed of ball [m/s]
impact_time = 0.0 # t = time of impact [s] (computed in loop)

15 #%% Initialize parameters.
g = 9.8066 # Gravitational acceleration [m/sˆ2]
initial_height = 2.0 # y0 = height ball is thrown from [m]
speed_increment = 5.0 # Speed increment for each iteration [m/s]
cutoff_time = 10.0 # Stop computing after impact time exceeds cutoff.

20

#%% Calculate and display impact time. Increment initial speed each step.
Repeat until impact time exceeds cutoff.
while impact_time < cutoff_time:

Use quadratic equation to solve kinematic equation for impact time:
25 impact_time = (np.sqrt(initial_speed**2 + 2 * g * initial_height) \

+ initial_speed) / g
print("speed= {} m/s; time= {:.1f} s".format(initial_speed, impact_time))
initial_speed += speed_increment

print("Calculation complete.")

(The syntax x+=1 is a concise and descriptive shorthand for x=x+1. Other arithmetic operations

can be called in a similar way. For example, x*=2 will double the value of x.)

Compare this code to what was written in Section 3.1.1. The code here accomplishes a similar

task, but the purpose and function of the script are now easy to understand because of the comments,

whitespace, and meaningful variable names.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#projectile

42 Chapter 3 Structure and Control

• The opening lines now tell us who wrote the program, when, and why.

• The first two commands import NumPy and PyPlot (which will be described later).

• Lines 11–19 assign values and meaningful names to the parameters and variables. (By “parameter”

we simply mean a variable whose value is not going to change throughout the execution of the

code.) Comments describe the role of each.

• The first parts of lines 12–13 and lines 16–19 are code, but everything after the hash signs (#) is

commentary explaining the meaning of the assignments.

• Lines 21–22 introduce the main loop of the program and explain the condition for exiting the loop.

The script is certainly longer than the bare code introduced in Section 3.1.1, but which is easier

to read? Which would you rather read, if you wanted to reuse this code after a month or two of not

working on it?

Every coder eventually learns that good comments save time in the long

run. . . as long as comments are updated to reflect changes in the code.

You will probably ignore this advice until you return to a script you wrote several weeks earlier,

cannot figure out what any of it means, and have to rewrite the whole thing from scratch. At least

you were warned.

The script makes use of two different types of comments: One type is enclosed within triple quotes

("""), and the other is preceded by the hash sign (#). The hash sign is an inline comment character.

Python will ignore everything that follows a hash sign on a single line. Comments can start at the

beginning of a line or in the middle. Placing a short comment on the same line as the code being

discussed is a good way to ensure that you’ll remember to update the comment if you change the

line later.

Some comments begin with the hash sign followed by two percent signs (#%%). These mean

nothing special to Python, but they divide the code into logical units called cells. Besides looking

good on the screen (try it), this structuring allows you to run individual cells separately within

Spyder. To see how this works, click anywhere inside such a cell, then click the
�� ��Run cell button

(immediately to the right of the
�� ��Run button) or use the shortcut <Ctrl-Enter>. Also try the

alternative
�� ��Run cell and advance (immediately to the right of the

�� ��Run cell button), which

has the shortcut <Shift-Enter>. Breaking code into cells by using comments is another useful

debugging tool.

Triple quotes provide a convenient way to create comments or strings that span multiple lines.

They can also be used to create special kinds of comments called documentation strings, or docstrings

for short. A string enclosed in triple quotes becomes a docstring when it is placed at the beginning of

a file or immediately after a function declaration.7 Anywhere else in the file, a string enclosed in

triple quotes is treated as an ordinary string.

Python uses docstrings to provide information about modules and functions you write. For

example, the docstring in a function can tell a user what arguments are required, what the function

will return, and so on. The script above is not a very useful module, but to see how the help feature

works with the docstrings you write, you can import it anyway. Type import projectile (the

file name without the .py extension) at the command prompt. Now type help(projectile). You

should see the text between the triple quotes.

Here is a final comment about comments: As you hack together a workable code, you may want

to try out some temporary change, but preserve the option to revert your code to its preceding

7 Section 6.1 discusses user-defined functions.

Jump to Contents Jump to Index

3.3 Scripts 43

version. A simple method is simply to keep the old lines of code, but “comment them out” so that

they become invisible to Python. If you want them back later, simply “uncomment” them. Spyder

(like most other editors) offers a menu item to comment or uncomment a selected region of text, or

you can use the shortcut <Cmd-1>.

The sample script above also illustrates proper use of indentation and other forms of whitespace

(spaces, tabs, and blank lines).

• Proper indentation is crucial in Python. It also makes the code easier to read and understand.

There is no ambiguity about which lines of code belong to the while loop and which do not.

• Python ignores blank lines, but they make the code much easier to read and interpret by dividing

it into logical units.

3.3.5 Good practice: Using named parameters

Why did we clutter the code above with a variable name like initial_height instead of y0? Why did

we bother to name the fixed parameters at all? We could have “hard coded” everything, replacing g,

initial_height, and speed_increment by the numerical values 9.8066, 2.0, and 5.0 everywhere.

There are at least four reasons:

1. We have separated what the code does from its input. This type of abstraction allows you to

easily adapt your code for other purposes. You can run the same calculation with different values

for the fixed parameters, embed the main loop of this code inside a loop in another program that

evaluates many values of initial_height, or use the main loop inside a function that accepts

the parameter values as input. Keeping them symbolic helps.

2. Using meaningful names for quantities improves your code’s readability and clarity, even if those

quantities stay fixed. Would you be as likely to understand the purpose of the program if there

were no comments and we had just used short, uninformative variable names like x1, x2, and x3?

You can probably recall taking notes in a physics or math class and momentarily forgetting what

quantity a particular symbol stands for. It is much faster to write y0 on the chalkboard or in your

notebook, but the meaning is not always clear. There is no ambiguity about what the variable

initial_height represents.

3. Naming parameters also keeps their values distinct, even when they are numerically equal. What

if there were two parameters with different physical meanings that had the same numerical value

of 5.0? If you give variables and parameters different, meaningful names, then you won’t get

confused by such coincidences.

4. Using named parameters to control the size of a calculation is extremely useful. For instance, you

may intend to set up ten arrays with five million entries each, and perform a thousand calculations

on the collection of arrays. Such a code could take a long time to execute. It would waste a lot of

time to wait for it to execute every time you fix a small bug or add a feature. It’s better to set

up some parameters (perhaps called num_elements and max_iterations) near the beginning of

the script that control how big the calculation is going to be. You can choose small values for the

development phase, and switch to the larger desired values only when you near the final version.

Moreover, you can be certain that every array in the calculation will have the same number of

elements.

These points are part of a bigger theme of coding practice:

Don’t duplicate. Define once, and reuse often.

Jump to Contents Jump to Index

44 Chapter 3 Structure and Control

That is, if the same parameter appears twice, give it a name and set its value once. If you don’t

implement this principle, then when you wish to change a value, inevitably you will find and change

all but one instance. The one you missed will cause problems, and it could be hard to find. Worse

yet, you may accidentally change something else!

Later we will see how “don’t duplicate” can be applied not just to parameter values but also to

code itself when we discuss functions in Section 6.1.

3.3.6 Good practice: Units

Most physical quantities carry units, for example, 3 cm. Python doesn’t know about units; all its

values are pure numbers. If you are trying to code a problem involving a quantity L with dimensions

of length, you’ll need to represent it by a variable length whose value equals L divided by some unit.

That’s fine, as long as you are consistent everywhere about what unit to use.

You can make things easier on yourself if you include a block of comments at the head of your

code declaring (to yourself and others) the variables you’ll use, and the units chosen to make them

pure numbers:

Variables:
--
length = length of the microtubule [um]
velocity = velocity of motor [um/s]

5 # rate_constant = rate constant [1/days]
...

(The notation um is an easy-to-type substitute for µm.) As you work on the code, you can refer back

to this section of your comments to keep yourself consistent. Such fussy hygiene will save you a lot of

confusion someday.

Later on, when you start to work with data files, you need to learn from whoever created the file

what units are being used to express quantities. Ideally this will be spelled out in a text file (perhaps

called README.txt) accompanying the data file, or in the opening lines of the data file. (You should

document data files that you create in this way.)

3.4 CONTINGENT BEHAVIOR: BRANCHING

We have now explored several ways to automate repetitive calculations. Two of these methods, for

loops and while loops, used control structures of the Python language to repeat a block of code.

The while loop above modified its behavior on the fly when it decided whether to execute its block

of code again depending on the result of an intermediate calculation. Every programming language,

including Python, has a more general mechanism for specifying contingent behavior, called branching.

Try entering this code in the Editor and running it:8

branching.py [get code]
""" This script illustrates branching. """

import numpy as np, matplotlib.pyplot as plt

8 In Python 2, input attempts to evaluate its argument as a Python expression. To run this script, users of Python 2

should replace input with raw_input or redefine input as raw_input. See Appendix D.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#branching

3.4 Contingent behavior: Branching 45

5

for trial in range(5):
userInput = input('Pick a number: ')
number = float(userInput)
if number < 0:

10 print('Square root is not real.')
else:

print('Square root of {} is {:.4f}.'.format(number, np.sqrt(number)))
userAgain = input('Another [y/n]? ')
if userAgain != 'y':

15 break
#%% Check whether the loop terminated normally.
if trial == 4:

print('Sorry, only 5 per customer.')
elif userAgain == 'n':

20 print('Bye!')
else:

print('Sorry, I did not understand that.')

3.4.1 The if statement

The code above illustrates several new ideas:

• The input function displays a prompt in the IPython console, then waits for you to type something

followed by <Return/Enter>. Its return value is a string containing that input.9 In this case, we

assign that string to a variable called userInput, then convert it to a float for use later in the

program.

• Line 9 contains an if statement. The keyword if is followed by a logical (Boolean) expression and

a colon. If Python evaluates the expression and finds that it’s True, then it executes the next

indented block of code. If the expression is False, Python skips the block of code.

• The conditional block of the first if statement is followed by the keyword else and a colon. If the

condition in the if statement is True, then Python skips the indented block following the else

statement on line 11. If the condition is False, then Python executes the indented block following

the else statement.

• The input function appears again in line 13. This time, the string returned by the function is

what we want, so no conversion is necessary.

• The notation != in line 14 means “is not equal to.” You can also use the keyword not to negate a

Boolean value, so we could have written if not(userAgain=='y').

• Sometimes a loop should terminate prematurely (before the condition in its for or while statement

is satisfied). In line 15, the keyword break instructs Python to exit the indented block of the for

loop and proceed from line 16, regardless of whether the loop is done.

• Line 17 starts a three-way branch whose behavior depends on how the loop terminated. This is

accomplished using the elif statement, short for “else if.” There can be as many elif statements

as you like. Python will drop down from the opening if statement through the elif statements

9 See footnote 8.

Jump to Contents Jump to Index

46 Chapter 3 Structure and Control

until it finds one that evaluates to True or it reaches an else statement. In any circumstance, only

one of lines 18, 20, or 22 will be executed.

In short,

A branch construction starts with an if statement. This can be followed

by a single block of indented code or multiple blocks separated by elif or

else statements.

Include an else statement when you want something to happen, even when none of the if or elif

statements are satisfied.

The code listed above used the relation operators <, ==, and != to generate Boolean (True or

False) values. Other operators that return Boolean values include >, <=, and >=. You can generate

more complex conditionals with the Boolean operators and, or, and not.

3.4.2 Testing equality of floats

Numerical comparisons involving floating point numbers can be dangerous. You are unlikely to ask

Python whether two floats representing physical quantities are equal via a==b. (Physical effects such

as thermal motion, quantum fluctuation, and chaos ensure that this is never the case.) However,

consider the following loop:

m, k = 0.0, 0.3
while m != k:

print(m)
m = m + 0.1

It looks harmless enough, but this loop never terminates! On the third iteration, the computer’s

internal representation of m is almost, but not quite, the same as its representation of k.10 Python

continues printing indefinitely because m is always not equal to k.

The cure for this particular loop is to use an inequality: while m<=k: However, you may

run into a related problem if you test for equality, thinking that two variables are integers when, in

fact, one or both have been converted to floats.

Never compare floats with == or !=. Compare integers, or use inequalities.

If you need to compare two floats, you should probably compare their difference to within some

reasonable tolerance appropriate for the problem. NumPy also provides a convenient function to test

for “reasonable agreement” between floats, and even allows you to define what is reasonable: See

help(np.isclose).

T2 On truth Python defines True rather broadly. Any nonzero numerical value evaluates to True

upon conversion to type bool, as does any nonempty list, string, tuple, or array. The following

expressions evaluate to False: False, None, [], (), {}, 0, 0.0, 0j, "", ''. Almost everything else

evaluates to True.

10 T2 The binary representation of 1/10 is a repeating decimal: 0.0001100110011. . . . This cannot be accurately

represented with a finite number of bits. Thus, due to roundoff error, 3*0.1 will not evaluate to exactly the same

floating point number as 0.3.

Jump to Contents Jump to Index

3.5 Nesting 47

3.5 NESTING

In many cases, we may wish to embed one for loop inside another for loop, embed a for loop

within a while loop, or create some other combination. For example, when dealing with probability,

we sometimes wish to create an array A where the value of A[i,k] depends on the indices i and k.

We can do this with a code like the following:

nesting.py [get code]
rows = 3
columns = 4
A = np.zeros((rows, columns))

5 for i in range(rows):
for k in range(columns):

A[i, k] = i**2 + k**3

Notice that

• Before the loops, the code creates an array with np.zeros. NumPy does not build arrays on the

fly. It sets aside a block in the computer’s memory to store the array, so it needs to know how big

that block should be.11 Thus, we create an array, and then fill it up with the values we want.

• Python’s range function is used to iterate over values of i and k. It is similar to np.arange, but,

instead of an array, it creates an object that generates values as they are needed.12

Use np.arange when you need an array. Use range in for loops.

• Line 7 sits inside two for loops, so it is executed 3 × 4 = 12 times. One loop inside another is

called a nested loop. Note that if statements and while loops can also be nested.

• Line 7 must be executed inside the inner loop, so it is indented twice.

• Descriptive variable names and Python’s forced use of indentation make comments nearly superflu-

ous in this code fragment. A reader might only wonder why you are computing Ai+1,k+1 = i2 + k3

and not some other function.

11 You can later resize the array if you need to, but this usually indicates poor planning. If you need a data structure

with a variable size, you might use a Python list instead.
12 T2 The range function in Python 3 is equivalent to the xrange function in Python 2. In Python 2, range creates

an actual list of integers. It will work in for loops, but xrange is often preferable, especially for large loops. There is

no function called xrange in Python 3.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#nesting

C H A P T E R 4

Data In, Results Out

Computers in the future may. . . perhaps only weigh 1.5 tons.

— Popular Mechanics magazine, 1949

Most data sets are too big to enter by hand, often because they were generated by automated

instruments. You need to know how to bring such a data set into your Python computing session

(import it). You will also want to save your own work to files (export it) so that you do not have to

repeat complex calculations. Python offers simple and efficient tools for reading and writing files.

Also, most results are too complex to grasp if presented as tables of numbers. You need to know

how to present results in a graphical form that humans (including you) can understand. The PyPlot

module provides an extensive collection of resources for visualizing data sets.1

In this chapter, you will learn to

• Load data from a file;

• Save data to a file; and

• Create plots from a data set.

4.1 IMPORTING DATA

Much scientific work involves collections of experimental data, or data sets. In order to crunch a data

set, Python must first import it. Many data sets are available in plain text files, including

• Comma-separated value (.csv) files: Each line of the file represents a row of an array, with entries

in that row separated by commas.

• Tab-separated value (.tsv) files: Each line represents a row of an array, with entries in that row

separated by tabs, spaces, or some combination of the two. Spacing does not have to be consistent.

Python treats any amount of whitespace between entries as a single separator.

The file extensions .txt and .dat are also used for data files with comma or whitespace separation.

Python has built-in support for reading and writing such files, and NumPy includes additional tools

for loading and saving array data to files.

The SciPy library provides a module called scipy.io that will allow you to read and write data

in a variety of formats, including matlab files, idl files, and .wav sound files. See docs.scipy.org.

1 T2 All of the data processing described in this chapter—and much more—can be accomplished with the pandas

module. Though it falls outside the scope of this tutorial, pandas provides an extensive suite of tools for working with

large data sets. It combines the functionality of NumPy, PyPlot, spreadsheets, and databases into a single interface.

The pandas library is part of the Anaconda distribution. See pandas.pydata.org.

48

https://docs.scipy.org/doc/scipy/reference/io.html
https://pandas.pydata.org

4.1 Importing data 49

4.1.1 Obtaining data

Before you can import a data set, you must obtain the file of interest and place it in a location where

Python can find it. It is good practice to keep all of the files associated with a project—data, scripts,

supporting information, and the reports you produce—in a single folder (also called a directory).

You can tell Spyder to use a particular folder by setting the current working directory in the

Preferences menu.2 Select Current working directory from the choices on the left. On the right

select “the following directory:”. Then choose a folder3 and click
�� ��Apply then

�� ��OK . Close

Spyder and relaunch. Now each time you launch Spyder, it will start in this folder. This is also where

Spyder will attempt to load and save all data files by default. The IPython command %run myfile.py

will also look in this folder.

It is possible to switch to a different working directory during a session in Spyder. We recommend

keeping things simple by working in a single folder.

Once you have set up your working directory, you can place data files into it. To download the

data sets described in this tutorial, go to

press.princeton.edu/titles/11349.html

Here, you will find a link to a zipped file that contains a collection of data sets.4 Follow the instructions

to save the zipped file to your computer. It will probably be saved into your Downloads folder unless

you specify a different destination. Double-click on the file to unzip it. This will create a new folder

called PMLSdata in the current folder. You will find all of the data sets described in this tutorial,

plus several more. Move PMLSdata to a permanent location. If you place PMLSdata in your working

directory, you will be able to access it easily from within Spyder.

You do not have to limit yourself to the data sets described here. Someday, you’ll use data from

another source. You may have an instrument in the lab that creates it, or you may get it from a

public repository or a coworker. Scientific publications that contain quantitative data in the form

of graphs are another source. A graph is a visual representation of a set of numbers, and can be

converted back to numbers with a special purpose application. Applications that convert graphs to

numbers include
• Engauge Digitizer (markummitchell.github.io/engauge-digitizer/),

• Plot Digitizer (plotdigitizer.sourceforge.net),

• GraphClick (www.arizona-software.ch/graphclick/download.html),

• DataThief (www.softpedia.com/get/Science-CAD/DataThief.shtml), and

• GetData (www.getdata-graph-digitizer.com).

4.1.2 Bringing data into Python

After you have obtained the data sets, find the entry called 01HIVseries. This folder contains a file

called HIVseries.csv. There is also an information file called README.txt that describes the data

set. Copy these two files into your working directory.

Arrays

You are now ready to launch Python and load the data set. First, inspect the data using the Editor

2 One way to access the Preferences is by clicking the wrench icon.
3 We recommend a generic name, like scratch or curr. After you are done with a project, you can archive the files

to a different folder, and start the next one in the original scratch folder.
4 Resources mentioned here are also maintained at a mirror site: physicalmodelingwithpython.blogspot.com .

Jump to Contents Jump to Index

https://press.princeton.edu/titles/11349.html
https://markummitchell.github.io/engauge-digitizer/
http://plotdigitizer.sourceforge.net
http://www.arizona-software.ch/graphclick/download.html
https://www.softpedia.com/get/Science-CAD/DataThief.shtml
http://www.getdata-graph-digitizer.com
https://physicalmodelingwithpython.blogspot.com

50 Chapter 4 Data In, Results Out

by typing %edit HIVseries.csv. (You can also open files in the Editor by using the File>Open

menu option or by clicking in the Editor window and using <Cmd-O>, but you may need to tell Spyder

to look for “all files” instead of just Python files.) You should see 16 lines of data, each containing

two numbers separated by a comma. You can open the information file README.txt to find out what

the numbers mean.

To load the data into a NumPy array, you can use the np.loadtxt command. This command

attempts to read a text file and transform the data into an array. By default, NumPy assumes that

data entries are separated by spaces and/or tabs. To load a .csv file, you must instruct np.loadtxt

to use a comma as the delimiter. A look at the help file (try typing np.loadtxt?) shows that you

can do this by including a keyword argument called delimiter. Keywords are optional arguments

you can pass to a function to modify its behavior (see Section 1.4.4).5

To load the data, use the command

data_set = np.loadtxt("HIVseries.csv", delimiter=',')

Notice how this command is used:

1. The function returns an array. We assign the variable name data_set to this array.

2. We must give np.loadtxt the file name as a string.

3. We must specify the delimiter as a string, in this case ','.

Python will look for the file in the current working directory. In Spyder, you can see the working

directory in a text box in the upper-right corner of the screen. You can use the IPython magic

command %pwd to print the name of the directory to the screen. If the file fails to load, either it is

located in the wrong folder or Spyder is looking in the wrong folder. If Spyder is no longer in its

default working directory, you may wish to restart Spyder and try again. If the file is in the wrong

location, move it to the working directory and try to load it again. An alternative to moving the file

is to specify its complete path to the file. For example, on a Mac where the PMLSdata folder is still

in the Downloads folder, you could write6

data_file = "/Users/username/Downloads/PMLSdata/01HIVseries/HIVseries.csv"
data_set = np.loadtxt(data_file, delimiter=',')

Path names are formatted differently in Windows:

data_file = r"c:\windows\Downloads\PMLSdata\01HIVseries\HIVseries.csv"

The modifier r before the string tells Python that this is a raw string. In raw strings, backslashes are

interpreted literally, not as an escape character.

If you are working with multiple files outside the current working directory, specifying the complete

path can lead to a lot of typing. Also, you might move the data to a different folder at some point

in the future. For these reasons, it is often convenient to “define once, reuse often” in scripts. For

example, with the following two commands near the top of the script, you can easily load multiple

data files from the same folder:

home_dir = "/Users/username/"
data_dir = home_dir + "Downloads/PMLSdata/01HIVseries/"
data_set = np.loadtxt(data_dir + "HIVseries.csv", delimiter=',')

5 T2 By default, np.loadtxt will ignore any line in the file that starts with #. You can adjust which header lines are

discarded by changing the default values of the keyword arguments comments and skiprows.
6 Substitute your own username in the place indicated. If you do not know a file’s full path, find the file in Finder or

File Explorer and drag it into the IPython console. You can then copy and paste the file’s path into your code.

Jump to Contents Jump to Index

4.1 Importing data 51

Later, if you work on a different computer (where home_dir will change) or move the data on your

own computer (where data_dir will change), you will only have to modify one or two lines to get

your code running again.

Once you have successfully imported the data, look at the array. It has two columns. You can

see its size and its entries in the Variable Explorer, or by using the IPython Console. There is no

description of what the numbers mean. For this, you need to consult README.txt.

T2 Other kinds of text

The data file you need to load may not be in any conveniently delimited format. One way to handle

such files is to process the file line by line. The following will generate the same array as np.loadtxt,

but it can be adapted to more exotic formats.

import_text.py [get code]
my_file = open("HIVseries.csv")
temp_data = []
for line in my_file:

5 print(line)
x, y = line.split(',')
temp_data += [(float(x), float(y))]

my_file.close()
data_set = np.array(temp_data)

The second line creates an object that can read the data file.7 The third line creates an empty list

to store the data. (We use a list instead of an array because we do not know how many lines the

file contains.) The for loop uses a special Python construction to process the file one line at a time.

line is a string that contains the current line of the file. It is updated during each iteration of the

loop. Inside the loop, Python displays the line being processed, and then uses the string method

line.split(',') to break the line into numbers using the comma as a delimiter. Next, it converts

the text into numbers and stores the data from each line as a new ordered pair at the end of the list

of data points. The loop will terminate once it reaches the end of the file. After the loop exits, we

close the file and convert the list of data points to a NumPy array.

The block of code within the for loop that processes the data file can be modified to extract

data from other types of text files.

T2 Direct import from the web

Instead of saving a data set to your computer and then reading that file, you can combine these steps

and read a file directly from the web. Try the following:

import urllib
web_file = urllib.request.urlopen("https://www.physics.upenn.edu/biophys/" + \

"PMLS/Datasets/01HIVseries/HIVseries.csv")
data_set = np.loadtxt(web_file, delimiter=',')

After the call to urlopen, Python can read the data in web_file by using np.loadtxt (or any

other method for processing text files), as if the data set were located in a local file.8

7 There is no file object type in Python 3, but open('temp.txt') returns an object similar to a Python 2 file

object.
8 T2 In Python 2, the relevant command is urllib.urlopen.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#import_text

52 Chapter 4 Data In, Results Out

4.2 EXPORTING DATA

Saving your work is always important when working on a computer. It is even more important when

you are working in the IPython console.

Data on the screen is fleeting. Data saved in files is permanent.

If you have been working for hours and finally finish crunching numbers and making plots, great!

But the moment you quit Spyder, all that work is gone. Only data and code that you have saved to

files will outlast your session.

4.2.1 Scripts

Scripts are a good way to save your work. (See Section 3.3.) If you keep adding lines to a script as

you work through a problem, then you will have a record of your work and a program that will

reconstruct the state of the system right up to the last line of the script. It can build and fill arrays,

load data, carry out complicated analyses, create plots, and much more. (If you have been working

at the IPython command line, copying and pasting commands from Spyder’s “History log” can help

turn your interactive session into a reusable script.)

Each time you run a script, Spyder first saves it. Unless you have modified the current working

directory in the Preferences, however, the default folder is probably not what you want. You can

use File>Save As... to specify the destination. Be sure you know where your script is saved. (See

Section 4.1.1 and Appendix A.)

You can also store all or part of your script in other files. Because scripts are plain text files, you

can easily copy and paste code into a word processor, a homework assignment, your personal coding

log, or an e-mail.

4.2.2 Data files

In contrast to scripts, Python does not automatically save its state or the values of any variables

created during a session. Hence, the importance of writing scripts: They can reconstruct the state

from scratch. However, with large data sets and complex analyses, rerunning the script could take a

long time. Once you have generated the data you need, you can save it to a file and simply load it

the next time you want to use it.

Data to be read by Python

NumPy provides three convenient functions for saving data stored in arrays to a file:

• np.save – save a single array as a NumPy archive file (not human readable), with extension .npy

• np.savez – save multiple arrays as a single NumPy archive file (not human readable), with

extension .npz

• np.savetxt – save a single array as a text file (human readable), with any extension

Jump to Contents Jump to Index

4.2 Exporting data 53

For example, the following code will store two arrays in five different files:

save_load.py [get code]
x = np.linspace(0, 1, 1001)
y = 3*np.sin(x)**3 - np.sin(x)

5 np.save('x_values', x)
np.save('y_values', y)
np.savetxt('x_values.dat', x)
np.savetxt('y_values.dat', y)
np.savez('xy_values', x_vals=x, y_vals=y)

Explore the resulting files, which have been created in the current working directory. Those created by

np.save and np.savez have the extensions .npy and .npz, respectively, whereas those created by

np.savetxt have the .dat extension we provided. (They contain tab-separated values. To generate

comma-separated values, again you must use the delimiter keyword argument.)

You can view any of these files by opening them in a text editor. Do not save any changes to a

.npy or .npz file when you close it—that will corrupt the data. If you need to show your results to

someone else, or use them outside of Python, use np.savetxt. As you will see, .npy and .npz files

are not easy to read.

To recover the saved data at any point—in the current session or in the future—use np.load or

np.loadtxt, depending on the file type:

x2 = np.load('x_values.npy')
y2 = np.loadtxt('y_values.dat')
w = np.load('xy_values.npz')

The variables x2 and y2 now refer to arrays containing the same data as x and y. In the third

example, w is not an array at all; however, our data is stored inside it.9 If you type list(w.keys()),

Python will return a list with two elements: the two strings 'x_vals' and 'y_vals'. These are the

names we provided as keyword arguments in the strange-looking call to np.savez above. We can

access our data from w by using the keys. Executing the following lines demonstrates that the data

have been faithfully saved and loaded:

x2 == x
y2 == y
w['x_vals'] == x
w['y_vals'] == y

From these examples, you can see that np.savez offers a convenient way to save several arrays in a

single object. Be sure you provide descriptive names for your arrays as keyword arguments. If you do

not, NumPy will use the unenlightening names “arr_0, arr_1, ...”

Data to be read by humans

Not all the data you generate will be in arrays. Even with array data, sometimes you will need to

write information to a text file, and you may want more control over its format than np.savetxt

offers. (Perhaps the file will be read by a colleague, or by an application other than Python.)

9 T2 It is a special object whose contents can be accessed like those of a Python dictionary. This tutorial won’t discuss

dictionaries, but they are a useful data type. See, for example, Guttag, 2016 or Libeskind-Hadas & Bush, 2014.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#save_load

54 Chapter 4 Data In, Results Out

Recall Section 3.3.4, where snowball impact times were simply displayed in the console. When

the session ends, this information will be lost unless you write it to a file. For small amounts of

information, you can simply copy from the IPython console (or History log) and paste into a text

editor or word processor.

For large data sets, you will want to write data to a file without displaying it on the screen.

Python’s built-in function open will allow you to write directly to a file. To illustrate the method,

let’s display the first ten powers of 2 and 3 and store these data for later use. The following script

accomplishes both tasks:

print_write.py [get code]
my_file = open('power.txt', 'w')
print(" N \t\t2**N\t\t3**N") # Print labels for columns.
print("---\t\t----\t\t----") # Print separator.

5 my_file.write(" N \t\t2**N\t\t3**N\n")# Write labels to file.
my_file.write("---\t\t----\t\t----\n")# Write separator to file.
#%% Loop over integers from 0 to 10 and print/write results.
for N in range(11):

print("{:d}\t\t{:d}\t\t{:d}".format(N, pow(2,N), pow(3,N)))
10 my_file.write("{:d}\t\t{:d}\t\t{:d}\n".format(N, pow(2,N), pow(3,N)))

my_file.close()

Compare the output displayed to the screen with the content of power.txt.

Writing text to a file is similar to printing to the display.

The differences are that

• You must open a file before writing to it: my_file=open('file.txt','w'). (The 'w' option

means this file will be opened for writing. This erases any existing file of the same name without

any warning or request for confirmation.)

• You must explicitly tell Python where you want a line to start and end. Wherever you have typed

'\\n', Python will insert a new line. (Similarly, wherever you have typed '\\t', Python will

insert a tab.)

• When you are done writing, you should close a file with the command my_file.close().

Python is a powerful tool for reading, writing, and manipulating files, but we will not explore

these capabilities any further. You can already accomplish quite a lot using the basic commands

above in combination with the string formatting methods of Section 2.3.

What should you name your file? Python will accept any valid string you type, but your operating

system may not be as flexible. It is good practice to restrict filenames to letters, numbers, underscore

(_), hyphen (-), and period.

4.3 VISUALIZING DATA

With data in hand, we are ready for graphics. Python has no built-in graphing functions. Almost all

of the graphing tools we discuss come from the PyPlot module, which is part of the larger Matplotlib

module. To gain access to these functions, you must import the PyPlot module:

import matplotlib.pyplot as plt

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#print_write

4.3 Visualizing data 55

4.3.1 The plot command and its relatives

PyPlot will make an ordinary, two-dimensional graph for you if you supply it with a set of (x, y)

pairs. It’s up to you to space those points appropriately. Try

simple_plot.py [get code]
import numpy as np, matplotlib.pyplot as plt
num_points = 5
x_min, x_max = 0, 4

5 x_values = np.linspace(x_min, x_max, num_points)
y_values = x_values**2
plt.plot(x_values, y_values)
plt.show()

The last line may be necessary in your Python environment. If no figure window opens, try uncom-

menting the last line or typing plt.show() at the IPython command prompt.

The figure window may appear automatically, but it can still be hard to find. Try hiding your

other applications and moving the Spyder window around. Your plot may be behind it. Changing to

a different graphics back end may help.10 (See Section A.2.2, page 117.)

The code given above is a basic plotting script. Notice what happens when you execute it:

• A new window appears. (See Section A.2 if it does not.) This is now the current figure. Python

will name it “Figure 1” if no other figure windows are open.

• Inside the current figure, PyPlot has drawn and labeled some axes. These are now the current axes.

• PyPlot has automatically drawn a region of the xy plane that contains all the points you supplied.

• The plot function takes the items in its first argument one at a time, combines them with the

corresponding items in the second argument to make (x, y) pairs, and joins those points by a solid

blue line. This graph is a bit jagged, but you can improve that by specifying a larger value for

num_points. Try it.

• With some back ends, the figure window remains “live” until you close it. That is, you can continue

to modify the figure by issuing additional commands at the IPython prompt. Other back ends

may force you to close a figure before you can type any more commands.11 See Section A.2.2 for

instructions on how to change the back end.

• Changing the data in y_values will not automatically update your plot. You must issue another

plot command to see such changes.

• You can close a figure window manually in the usual way (clicking on a red dot or “X” in the corner

of the figure window), or from the IPython command prompt with the command plt.close().

You can close all open figure windows with the command plt.close('all').

The two arrays that you supply to plt.plot must be of exactly the same length. That may sound

obvious, but it’s surprising how often you can get just one extra element in one of them. If you’re not

sure exactly how many elements you’ll get from a=np.arange(0,26,0.13), just take a few seconds

to type len(a) at the IPython console prompt and find out. The function len is Python’s built-in

function for counting the number of elements in a data structure. You can also use np.shape(a), to

10 In the blog that accompanies this book, we describe a way to raise a figure window to the foreground using the Qt

back end. (See press.princeton.edu/titles/11349.html).
11 Calling the function plt.ion() from the IPython command line will turn interactive plotting on, if possible.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#simple_plot
https://press.princeton.edu/titles/11349.html

56 Chapter 4 Data In, Results Out

ask an array about its shape, or request the data attribute a.shape.

Get in the habit of checking the lengths of your arrays.

Python’s assert command provides a useful test (Section 3.3.3, page 38). For the example above,

you could insert a single statement before the plot command:

assert len(x_values) == len(y_values), \
"Length-mismatch: {:d} versus {:d}".format(len(x_values), len(y_values))

plt.plot(x_values, y_values)

PyPlot will issue its own error message if you try to plot lists of unequal lengths, but an assert

statement provides you with more information about the problem. To see the difference, rewrite

the script to change the length of x_values after defining y_values and run the script with and

without the assert statement.

You can avoid many of these length mismatch errors by adhering to the principle of “Define once,

and reuse often.” For example, if the length of every array is determined by the single parameter

num_points, then they will all have the same length.

Plotting options

Every visual aspect of a graph can be changed from its default. You can specify these when you

create a plot; most can also be changed later. Unless you only want to look at a rough plot of some

data once and then discard the graph, you should write a script to generate your plot. Otherwise,

you will find yourself retyping a lot of commands just to change a label or the color of a single curve

in the plot. Here are some of the more common adjustments you can make:

• You can change the color of a curve when you first plot it by adding an optional argument:

plt.plot(x_values,y_values,'r') produces a solid red line. Other line styles include

– 'b' (blue), 'k' (black), 'g' (green), and so on.

– ':' (join data points with a dotted line), '--' (dashed line), '-' (solid line), and so on.

Remember that red, blue, and other colors look similar on a grayscale printout. Dotted and

dashed lines are much easier to distinguish.

– '.' (draw a small dot at each data point), 'o' (larger dot), and so on. For an open circle, use

'o', markerfacecolor='none'.

To some extent, options can be combined: For example, plt.plot(x_values,y_values,'r--o')

plots a red dashed line with red circles at each point. Python’s default is to draw a solid line. If

you specify a point style, but no line style, no line will be drawn.

• You can change Python’s choice of plot region even after creating the plot. Use the command

plt.xlim(1,6) to display the region 1 ≤ x ≤ 6, using the default for y. Similarly, plt.ylim

adjusts the vertical region. Both functions will also accept keyword arguments,12 or a list, tuple, or

array containing the lowest and highest values to display on the axis: plt.xlim(xmax=6, xmin=1),

plt.xlim([1,6]), plt.xlim((1,6)) .

• The command plt.axis('tight') effectively issues xlim and ylim commands to make the axes

just fit the range of the data, without extra space around it. (Note the spelling: plt.axis, with

an ‘i’, modifies the current axes; plt.axes, with an ‘e’, creates new axes.)

12 Keyword arguments will be discussed in Section 6.1.3.

Jump to Contents Jump to Index

4.3 Visualizing data 57

• PyPlot determines the height and width of the figure and then scales the x and y axes by different

amounts to make everything fit into the figure. You may not like the distortion of your figure that

arises from scaling x and y independently. The command plt.axis('equal') forces each axis to

use the same scaling; that is, equal coordinate distances give equal distances in the plot. Without

this option, a circle may come out looking like an ellipse. The command plt.axis('square')

does the same thing, but moreover adjusts the coordinate limits so that the graph is actually

square in shape.

The documentation on plt.plot is quite helpful. Type help(plt.plot) or plt.plot? at the

command prompt to read it. It describes the available marker and line styles, describes other

adjustable parameters, and provides several examples.

Some of the commands just mentioned illustrate common themes: Plot attributes can be set by

passing strings as arguments to plt.plot. Some must appear in a specific position in the list of

arguments, like 'r'. Alternatively, any data attribute can be modified by pairing a keyword with the

desired value, as in linestyle='r--' or its abbreviated form ls='r--'.

If you don’t want to join your plotted points with a line, there is a separate function called

plt.scatter that can be called instead of using the options listed above. It gives you more control

over the size, style, and color of individual symbols than plt.plot.

Log axes

If you’d prefer a logarithmic vertical axis, use plt.semilogy in place of plt.plot. You can also

call plt.semilogy() after creating a plot. For a logarithmic horizontal axis, use plt.semilogx; for

a log-log plot, use plt.loglog. In the two latter cases, you may want to evaluate your function

at a set of values that are uniformly spaced on a logarithmic scale. See help(np.logspace) for a

function that creates such arrays.

4.3.2 Manipulate and embellish

There is no limit to the time you can spend improving your graphs. Here we introduce a few more

useful adjustments. You can locate many others by using your favorite search engine. (Try searching

the web for “python graph triangle symbol”.) Just remember: When you close a figure, your

graph is gone. However, if you write a script to construct the figure and add all of your embellishments,

you can easily reconstruct it later.

The commands below may look strange at first, but you will get used to them with practice,

especially if you record the ones you use in your coding log (see Section 1.2.4).

You see a plot as an image on your screen, but to Python, a plot is an object with many associated

attributes. The object has methods for modifying its data attributes. To adjust the properties of an

existing figure, first assign a variable to the plot object:

graph_modifications.py [get code]
ax = plt.gca()

In this command, plt.gca() (get current axes) returns an object that controls many of the attributes

of the plot in the current figure. It is called an Axes object, and it includes the axes you see, tick

marks, labels, plot data like curves and symbols, and much more. An Axes object is fairly complex,

with more than 450 attributes and methods! However, you can accomplish a lot by using only a few

of these. The commands fall into two general categories: getting data from the object and setting

values of data attributes that you want to adjust. These operations have fairly descriptive names,

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#graph_modifications

58 Chapter 4 Data In, Results Out

like ax.get_xticks() and ax.set_xlabel(). Many of these operations can also be accomplished

with functions from the PyPlot module itself.

Here are a few useful operations:13

Title: You can add a title with ax.set_title("My first plot"). If you don’t like the default

font, you can change it by using keyword arguments:

ax.set_title("My first plot", size=24, weight='bold')

Alternatively, you may use

plt.title("My first plot", size=24, weight='bold')

Axis labels: You can—and should—label the axes with

ax.set_xlabel("speed")
ax.set_ylabel("kinetic energy")

or

plt.xlabel("speed")
plt.ylabel("kinetic energy")

Even better, you can—and should—include units: ax.set_xlabel("speed [um/s]"). Again,

“um” is an informal abbreviation for micrometer. But it’s almost as easy to write $\\mu$m

instead, which will produce the standard abbreviation µm. (See Section 2.3.) Even if you are

reporting a dimensionless quantity, like concentration relative to its value at time zero, help

your readers by stating “c/c(0) [unitless]” or “concentration [a.u.].”

Tick labels: You can change the font and size of the numbers labeling the tick marks along each

axis by first creating the plot, then giving the commands

ax.set_xticklabels(ax.get_xticks(), family='monospace', fontsize=10)
ax.set_yticklabels(ax.get_yticks(), family='monospace', fontsize=10)

Line style: You can change the data attributes of the plotted lines after the initial plot command

has been executed. First, we need to gain access to the objects Python uses to draw the lines,

then set their properties using PyPlot’s plt.setp command:

lines = ax.get_lines() # Lines is a list of line objects.
Make the first line thick, dashed, and red.
plt.setp(lines[0], linestyle='--', linewidth=3, color='r')

Legend: You can add a legend—a descriptive label for each line. You can do this in three ways: Give

each line a label when it is created by using the label keyword, use the set_label method of

a line object, or use the legend method of an Axes object.

Use "label" keyword to set labels when plotting.
plt.plot(x_values, y_values, label="Population 1")
plt.plot(x_values, x_values**3, label="Population 2")
plt.legend() # Display legend in plot.

13 The following commands were tested on the Qt5Agg back end. They may not work correctly with all graphics back

ends.

Jump to Contents Jump to Index

4.3 Visualizing data 59

Use line objects to set labels after plotting.
ax = plt.gca()
lines = ax.get_lines()
lines[0].set_label("Infected Population")

5 lines[1].set_label("Cured Population")
ax.legend() # Display legend in plot.

Use Axes object to set labels after plotting.
ax.legend(("Healthy", "Recovered"))

No legend will appear in your plot until you call ax.legend() or plt.legend().

These examples show that you can add a lot of useful information to a plot and make it visually

appealing. You can also see that this involves a lot of typing. Once you have your plot looking the

way you want—or once you get a single aspect of it looking the way you want—copy the commands

you used into a script. At the end of the process, you will have a file that can generate the same

wonderful graphics at any time on any computer that runs Python.

Your
Turn
4A

Start with the code at the beginning of Section 4.3.1 and write a script

to produce a figure with a smooth, thick red line. Add labels for the axes,

a title, and a legend. Make the text big enough to read easily.

Replacing curves

Sometimes you do not need a new figure—you may simply want to replot a modified version of your

data. You can remove all data and formatting from the current figure by calling plt.cla(), PyPlot’s

clear axes command, and then calling plt.plot again. However, this removes all of your formatting.

To replace a curve without clearing all of your formatting, you can update the data of individual

line objects within the plot:

plt.plot(x, 3*x) # Plot two lines.
plt.plot(x, x**3)
plt.xlabel('Time [s]') # Label axes.
plt.ylabel('Position [cm]')

5 ax = plt.gca() # Assign a name to the current Axes object.
lines = ax.get_lines() # Assign a name to its list of Line objects.
lines[1].set_data(x, x**2) # Replace plot data of second line.

The shape of one curve will change, but all other properties of the plot will be preserved.

4.3.3 T2 More about figures and their axes

PyPlot uses a hierarchy of objects to create a plot. The most important of these for our purposes are

the Figure and Axes objects.

Calling plt.figure() creates and returns a Figure object. A common side effect of the function

is to open a figure window on your screen. If you have several figure windows open, the active

window—or the most recently active one—is the “current” figure and will be returned by plt.gcf()

when no argument is given.

Jump to Contents Jump to Index

60 Chapter 4 Data In, Results Out

A Figure object is not capable of plotting a function; it simply contains and manages all of the

elements of a plot. To actually make a graph, we need the second type of object: an Axes object.

An Axes object is always associated with a Figure object. We usually create one by calling

PyPlot’s convenient plt.plot function. This function adds an Axes object to the current figure,

uses it to graph the data we provide, and returns a list of the line objects that were added to the plot.

The Axes object possesses all of the data attributes and methods needed to draw a graph. Many of

these methods create and manage yet more objects. You can access these subsidiary objects—things

such as lines (associated with a Line2D object), axis labels (associated with Python strings), tick

marks (associated with a NumPy ndarray), and so on—through the parent Axes object. Many of

these manage their own subset of objects necessary to perform their function. You can assign a

variable to any of these objects and control its behavior through the variable, as demonstrated in the

ax.get_lines() example above. This is often more convenient than accessing a property through

the parent Axes object.

A full discussion of this topic lies well beyond the scope of this tutorial. Fortunately, the PyPlot

module provides convenient tools for managing this hierarchy of objects without requiring much

understanding of the details. Commands like plt.plot, plt.xlim, and plt.legend are convenience

functions that use the methods of Figure and Axes objects to carry out common operations in

making plots.

You can do a lot with PyPlot; however, to get the most control over your plots, you may need to

delve into the details of Matplotlib’s Figure and Axes objects. Exploring the objects returned by

plt.gcf() and plt.gca() is a good place to start. The official documentation is at matplotlib.org.

4.3.4 T2 Error bars

To make a graph with error bars, use

plt.errorbar(x_values, y_values, yerr=y_errors, xerr=x_errors, fmt='or')

This function doesn’t add error bars to an existing plot; rather, it creates a new plot (or a line within

an existing plot) with error bars. Its syntax is similar to plt.plot, but it accepts additional optional

arguments. Point n will be augmented by error bars that extend coordinate distance y_errors[n]

above and below the point, and coordinate distance x_errors[n] to the left and right of the point.

Both error arguments are optional. If you supply only one, there will be no error bars in the other

direction. If you do not supply either, plt.errorbar behaves like plt.plot. To specify a marker

for errorbar, you must use the keyword argument fmt. This example specifies red circles.

4.3.5 3D graphs

Sometimes a graph consists of points or a curve in a three-dimensional space. To make 3D plots, we

must import an additional tool from one of the Matplotlib modules:

line3d.py [get code]
from mpl_toolkits.mplot3d import Axes3D # Get 3D plotting tool.

We must also interact with PyPlot in a different way. The following script will generate a helix:

fig = plt.figure() # Create a new figure.
ax = Axes3D(fig) # Create 3D plotter attached to figure.
t = np.linspace(0, 5*np.pi, 501) # Define parameter for parametric plot.
ax.plot(np.cos(t), np.sin(t), t) # Draw 3D plot.

Jump to Contents Jump to Index

https://matplotlib.org/
https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#line3d

4.3 Visualizing data 61

Notice that this time we are using the plot method attached to a specific object. We created an

Axes3D object and can now use its methods to generate three-dimensional plots. The method ax.plot

accepts three arrays, whose corresponding entries are interpreted as the x, y, and z coordinates

of each point to be drawn. The object generated by Axes3D(fig) can also create surface plots,

three-dimensional contour plots, three-dimensional histograms, and much more.

Your screen is two-dimensional. If you ask for a “3D” plot, what you actually get must be a two-

dimensional projection—what a camera would see looking at your plot from some outside viewpoint.

Switching to a different viewpoint may make it easier to see what’s going on. You may be able to

click and drag within your plot to change the viewpoint. (This depends on the graphics back end you

are using. See Section A.2.) If this is not possible, you can change the viewpoint from the IPython

command prompt or in a script by issuing the command ax.view_init(elev=30,azim=30) prior

to making the plot. (This command also works after making the plot, if you follow it by plt.draw()).

You specify the viewpoint by giving the elevation and azimuth in degrees—not radians.

4.3.6 Multiple plots

Multiple plots on the same axes

You probably noticed in the previous examples that every new plt.plot command adds a new curve

to an existing figure, if one is already open.

By default, a new plot is added to the current axes of the active figure.

You can also create several curves on the same axes with a single plot command. Try

x = np.linspace(0, 1, 51)
y1 = np.exp(x)
y2 = x**2
plt.plot(x, y1, x, y2)

This example shows that you can give plot more than one set of (x, y) pairs. Python will choose

different colors for each curve, or you can specify them manually:

plt.plot(x, y1, 'r', x, y2, 'ko')

A third way to draw multiple curves on one set of axes is to give plt.plot an ordinary vector of

x values, but a two-dimensional array of y values. Each column of y will be used to draw a separate

curve using a common set of x values. This approach can be useful when you wish to look at a

function for several values of a parameter.

Try the following code:

num_curves = 3
x = np.linspace(0, 1, 51)
y = np.zeros((x.size, num_curves))
for n in range(num_curves):

5 y[:, n] = np.sin((n+1) * x * 2 * np.pi)
plt.plot(x, y)

Your
Turn
4B

Add a legend explaining which curve is which, then use the methods of

Section 4.3.2 to embellish the plot.

Jump to Contents Jump to Index

62 Chapter 4 Data In, Results Out

Multiple plot windows

If you want two or more separate plots open, use plt.figure() to create a new figure and make it

active, then use plt.plot to generate the second plot. If you don’t supply an argument, plt.figure()

chooses a figure number that is not in use yet. You can also assign a name you choose yourself. For

example, plt.figure('Joe') will create a figure named “Joe.”14 The next plt.plot command

will draw its output in the current figure, with no effect on other figures.

If you are generating several plots in a session, you will probably want to create a new figure

each time by using plt.figure(). However, these plots can use a fair amount of your computing

resources, and finding the graph you want among a dozen figure windows is not always simple. So

once you are finished with a figure, you can close it. You can use plt.close() to close the current

figure, or you can close a figure by name: plt.close('Joe').

You can close all open figures with plt.close('all').

Include this command near the top of a script to ensure that all figures come from the latest run.

4.3.7 Subplots

You may wish to place multiple plots side by side in a single figure window for comparison. In Python

jargon, you’d like multiple axes occupying the same figure. The function plt.subplot(M,N,p)

divides the current figure window into a grid of cells with M rows and N columns, then makes cell

number p the active one. Here, p must be an integer between 1 and M*N. (This is one case where

Python does not start counting from 0.) Any graphing command issued now will affect cell number

p. Try this example:

subplots.py [get code]
from numpy.random import random
t = np.linspace(0, 1, 101)
plt.figure()

5 plt.subplot(2, 2, 1); plt.hist(random(20)) # Upper left
plt.subplot(2, 2, 2); plt.plot(t, t**2, t, t**3 - t) # Upper right
plt.subplot(2, 2, 3); plt.plot(random(20), random(20), 'r*') # Lower left
plt.subplot(2, 2, 4); plt.plot(t*np.cos(10*t), t*np.sin(10*t)) # Lower right

Each plt.subplot command selects a subregion of the figure. The subsequent plt.plot command

sets up axes and draws a plot in the current subplot region. If your subplots do not fit nicely into

the figure window or overlap one another, you can resize the figure window or try the command

plt.tight_layout().

Make sure that all your plt.subplot commands for a particular figure use the same values for N

and M. If you change either, all existing subplots will be erased. For more freedom in placing subplots

and insets, see help(plt.axes).

4.3.8 Saving figures

All of your figures will disappear when you end your session in Spyder. If you used a script to create

and adjust your plots, you can recreate them later, but you may also want to use plots in other

14 Or make it the current figure if it already exists. Either way, plt.gca() returns the current Axes object of the

current figure, so you can use plt.figure('Joe') to select “Joe,” then plt.gca() to adjust a plot’s data attributes,

even if there are multiple figures open.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#subplots

4.3 Visualizing data 63

applications or print them out. Saving a plot to a graphics file for such purposes is straightforward.

The figure window has a Save icon that will open a dialog allowing you to save the current figure in

a variety of formats. The default is .png, but most Python distributions will also allow you to save

the figure in .pdf, .jpg, .eps, or .tif format. To get the complete list, consult the figure:

fig = plt.gcf() # Get current figure object.
fig.canvas.get_supported_filetypes()

All you need to do is give the figure a name with the appropriate extension; PyPlot will create a

graphics file of the type you requested.

You can also save a figure from the IPython command prompt, or from within a script, by using

the command plt.savefig. For example, to save the current figure as a .pdf file, type

plt.savefig("greatest_figure_ever.pdf")

The plot will be saved in your current working directory. (You can force Python to save in a different

directory by giving the complete path, as discussed in Section 4.1.2, page 49.)

4.3.9 T2 Using figures in other applications

If you save a figure as an .eps or .svg file, you can open and modify it in a vector-graphics application

such as Inkscape or Xfig (both freeware), or a commercial alternative.15 Text such as the title or axis

labels may be rendered as “outlines,” which can make it difficult to edit in another application. If

you encounter this problem, you can instruct Python to save text as “type” in an .svg file. Before

saving the figure, modify the parameter that controls how fonts are saved in .svg figures:

import matplotlib
matplotlib.rcParams['svg.fonttype'] = 'none'

Then, save your figure as an .svg file.

Some applications won’t read .svg files prepared in this way. An alternative that still gives “type”

is to use

import matplotlib
matplotlib.rcParams['pdf.fonttype'] = 42

Then, save your figure as a .pdf file, and edit it in another application. For more information about

matplotlib.rcParams, see “Customizing matplotlib” at matplotlib.org/users/customizing.html.

If you are going to use figures in a presentation, you may instead need to save images in a raster

format (also called bitmap), such as .gif, .png, .jpg, or .tif. For publication, however, vector art

is generally best.

15 Inkscape: www.inkscape.org ; Xfig: mcj.sourceforge.net/frm installation.html .

Jump to Contents Jump to Index

https://matplotlib.org/users/customizing.html
https://www.inkscape.org
http://mcj.sourceforge.net/frm_installation.html

C H A P T E R 5

First Computer Lab

These exercises will use many ideas from the previous chapter. Our goals are to

• Develop basic graphing skills;

• Import a data set; and

• Perform a simple fit of a model to data.

5.1 HIV EXAMPLE

Here we explore a model of the viral load—the number of virions in the blood of a patient infected

with HIV—after the administration of an antiretroviral drug. One model for the viral load predicts

that the concentration V (t) of HIV in the blood at time t after the start of treatment will be

V (t) = A exp(−αt) +B exp(−βt). (5.1)

The four parameters A, α, B, and β are constants that control the behavior of the model.1

In this lab, you will use what you have learned about Python up to this point to generate plots

based on the model, import and plot experimental data, and then fit model parameters to the data.

5.1.1 Explore the model

To get started, launch Spyder, import NumPy and PyPlot, and then create an array by typing

time = np.linspace(0, 1, 11)
time

at the IPython command prompt. Press <Return/Enter> after each line. You should see a list of 11

numbers. Now modify these commands to create an array of 101 numbers ranging from 0 to 10 and

assign it to the variable time.

Next, you will evaluate a compound expression involving this array by using the solution of the

viral load model given in Equation 5.1.

The first step is to give the constants in the mathematical equation names you can type, such

as alpha and beta instead of α and β. It is wise to give longer, more descriptive names even to

the variables whose names you can type: for example, time for t and viral_load for V (t). Now,

set B = 0, and choose some interesting values for A, α, and β. Then, evaluate V (t) by using the

following command:

viral_load = A * np.exp(-alpha*time) + B * np.exp(-beta*time)

You should now have two arrays of the same length, time and viral_load, so plot them:

1 Nelson, 2015, Chapter 1 gives details of the model and its solution.

64

5.1 HIV example 65

plt.plot(time, viral_load)

Create a few more plots using different values of the four model parameters.

5.1.2 Fit experimental data

Now let’s have a look at some experimental data.

Follow the instructions of Section 4.1 to obtain the data set 01HIVseries. Copy the files

README.txt, HIVseries.csv, HIVseries.npy, and HIVseries.npz into your working directory.

The HIVseries files contain time series data. Read the file README.txt for details.

Import the data set into Python by reading HIVseries.csv into an array or by loading either

HIVseries.npy or HIVseries.npz. (Remember: The functions np.load and np.loadtxt return

the data you requested, but you must assign that data to a variable to access it later.) You are free

to give the data whatever name you like, but we will refer to the array as hiv_data.

If you use np.loadtxt to import HIVseries.csv or np.load to import HIVseries.npy, the

data will be contained in a single array. Find the variable you created in the Variable Explorer. It

has two columns of data. The first column is the time in days since administration of a treatment to

an HIV-positive patient; the second contains the concentration of virus in that patient’s blood in

arbitrary units.

If you instead use np.load to import HIVseries.npz, the data will be contained in an object

that does not show up in the Variable Explorer. (See Section 4.2.2.) You can nevertheless inspect its

contents. Type hiv_data.keys() to find the names of the arrays stored within. There are two keys,

called 'time_in_days' and 'viral_load'. You can inspect the corresponding arrays by asking for

them by name. You can also assign the data in these arrays to a variable name of your choosing: for

example, concentration = hiv_data['viral_load'].

Next, we are going to visualize the data. In order to plot the viral load as a function of time, you

will need to separate the data into two arrays to pass to plt.plot. Do that and plot the data points

now. Don’t join the points by line segments. Instead, make each point a symbol, for example, a small

circle or plus sign. Label the axes of your plot. Give it a descriptive title, too. Such embellishments

are discussed in Section 4.3.1.

Assignment:

a. Superimpose the experimental data points on a plot of the function in Equation 5.1. Adjust the

four parameters of the model until you can see both the data and the model in your plot.

The goal is now to tune the four parameters of Equation 5.1 until the model agrees with the data. It

is hard to find the right needle in a four-dimensional haystack! We need a more systematic approach

than just guessing. Consider the following: Assuming β > α, how does the trial solution behave at

long times? If the data also behave that way, can we use the long-time behavior to determine two of

the four unknown constants, then hold them fixed while adjusting the other two?

Even two constants is a lot to adjust by hand, so let’s think some more: How does the initial value

V (0) depend on the four constant parameters? Can you choose these constants in a way that always

gives the correct long-time behavior and initial value?

b. Carry out this analysis so that you have only one remaining free parameter, which you can

adjust fairly easily. Adjust this parameter until you like what you see.

Jump to Contents Jump to Index

66 Chapter 5 First Computer Lab

c. The latency period of HIV is about ten years. Based on your results, how does the inverse of the

T-cell infection rate, 1/α, compare to the latency period?

[Remark: You probably know that there are black-box software packages that do such “curve fitting”

automatically. In this lab, you should do it manually, just to see how the curves respond to changes

in the parameters.]

5.2 BACTERIAL EXAMPLE

Now we turn our attention to genetic switching in bacteria. In 1957, A. Novick and M. Weiner studied

the production of a protein called beta galactosidase in E. coli bacteria after introducing an inducer

molecule called TMG.2

5.2.1 Explore the model

Here are two families of functions that come up in the analysis of the Novick–Weiner experiment:

V (t) = 1− e−t/τ and W (t) = A

(
e−t/τ − 1 +

t

τ

)
. (5.2)

The parameters τ and A are constants.

Assignment:

a. Choose A = 1, τ = 1, and plot W (t) for 0 < t < 2.

b. Make several arrays W1, W2, W3, and so on, using different values of τ and A, and plot them

simultaneously on the same graph.

c. Change the colors and line styles (solid, dashed, and so on) of the lines.

d. Add a legend to help a potential reader sort out the curves. Explore some of the other graph

options that are available.

5.2.2 Fit experimental data

Follow the instructions of Section 4.1 to obtain the data set 15novick. Copy g149novickA.csv,

g149novickA.npy, g149novickB.csv, g149novickB.npy, and README.txt into your working di-

rectory. The files contain time series data from a bacterial population in a culture.

Assignment:

a. Superimpose the experimental data points on a plot of V (t) with multiple curves (see Equa-

tion 5.2), similar to the one you made for W (t) before.

Plot the experimental data points. Don’t join the points by line segments; make each point a symbol

such as a small circle or plus sign. Label the axes of your plot. Select some reasonable values for the

2 See Nelson, 2015, Chapter 10 for details of the experiment and model.

Jump to Contents Jump to Index

5.2 Bacterial example 67

parameter τ in the model, and see if you can get a curve that fits the data well. Label the curves,

then add a legend to identify which curve is which.

b. Now try the same thing using the data in g149novickB.csv or g149novickB.npy. This time

throw away all the data with time value greater than ten hours, and attempt to fit the remaining

data to the family of functions W (t) in Equation 5.2.

[Hint: At large values of t, both the data and the function W (t) become straight lines. Find the slope

and the y intercept of the straight line determined by Equation 5.2 in terms of the two unknown

quantities A and τ . Next, estimate the slope and y intercept of the straight line determined by the

data. From this, figure out some pretty good guesses for the values of A and τ . Then, tweak the

values to get a nicer looking fit.]

[Remark: Again, you are asked not to use an automatic curve-fitting system. The methods suggested

in the Hint will give you a deeper understanding of the math than just accepting whatever a black

box spits out.]

Jump to Contents Jump to Index

C H A P T E R 6

More Python Constructions

At its highest level, numerical analysis is a mixture of science, art, and

bar-room brawl.

— T. W. Koerner, The Pleasures of Counting

The preceding chapters have developed a basic set of techniques for importing, creating, and modeling

data sets and visualizing the results. This chapter introduces additional techniques for exploring

mathematical models and their predictions:

• Random numbers and Monte Carlo simulations

• Solutions of nonlinear equations of a single variable

• Solutions of linear systems of equations

• Numerical integration of functions

• Numerical solution of ordinary differential equations

In addition, this chapter introduces several new methods for visualizing data, including histograms,

surface plots, contour plots, vector field plots, and streamlines.

We start with a discussion of writing your own functions, an invaluable tool for exploring physical

models.

6.1 WRITING YOUR OWN FUNCTIONS

Section 3.3.5 introduced a principle:

Don’t duplicate. Define once, and reuse often.

In the context of parameters (fixed quantities), this means you should define a parameter’s value just

once at the start of your code and refer to it by name throughout the rest of the program. But code

itself can contain duplications if we wish to do the same (or nearly the same) task many times. Just

as with parameter values, you may later realize that something needs to be changed in your code.

Changing every instance of a recurring code fragment can be tedious and prone to error. It is better

to define a function once, then invoke it whenever needed. You may even use the same fragment of

code in more than one of your scripts. If each script imports the same externally defined function,

then changes that you make once in the function file will apply to all of your scripts.

Functions in Python can do almost anything. There are entire libraries of functions that can carry

out mathematical operations, make plots, read and write files, and much more. Your own functions

can do all of these things as well. Functions are ideal for writing code once and reusing it often.

68

6.1 Writing your own functions 69

6.1.1 Defining functions in Python

A function can be defined at the command prompt or in a file. The following example is a basic

template for creating a function in Python:

excerpt from measurements.py [get code]
def taxicab(pointA, pointB):

"""
Taxicab metric for computing distance between points A and B.

5 pointA = (x1, y1)
pointB = (x2, y2)

Returns |x2-x1| + |y2-y1|. Distances are measured in city blocks.
"""
interval = abs(pointB[0] - pointA[0]) + abs(pointB[1] - pointA[1])

10 return interval

The “taxicab metric” determines the billable distance between points “as the cab drives” rather than

“as the crow flies.” (That is, we use the total distance driven rather than the shortest straight line

distance between the two points.)

The function consists of the following elements:

Declaration: The keyword def tells Python you are about to define a function. Function names

must adhere to the same rules as variable names. It is wise to give your functions descriptive

names. Remember: You will only have to define it once, but you will wish to reuse it often.

Now is not the time to save typing by giving it a forgettable name like f.

Arguments: The name of the function is followed by the names of all its arguments: the data it

requires to do its calculation.1 In this case, taxicab requires two arguments. If it is called with

only one argument or arguments of the wrong type, Python will raise a TypeError exception.

Colon: The colon after the list of arguments begins an indented block of code associated with the

function. Notice the similarity with for and while loops and if statements. Everything from

the colon to the end of the code block will be executed when the function is called.

Docstrings: The text between the pair of triple-quotes (""" ... """) is a docstring. It is a special

comment Python will use if someone asks for help on your function, and it is the standard

place to describe what the function does and what arguments are required. Python will not

complain if you do not provide a docstring, but someone who uses your code might.

Body: The body of the function is the code that does something useful with the arguments. This

example is a simple function, so its body consists of just two lines. More complicated functions

can include loops, if statements, and calls to other functions, and may extend for many lines.

Return: In Python, a function always returns something to the program that invokes it. If you

do not specify a return value, Python will supply an object called None. In this example, our

function returns a float object.

Now, let’s look at how a function call works. Enter the function definition for taxicab at the

command prompt. (You may omit the docstring, but only this one time!) Then, type

1 T2 Arguments in the definition of a function are sometimes called “formal parameters.”

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#measurement

70 Chapter 6 More Python Constructions

fare_rate = 0.40 # Fare rate in dollars per city block
start = (1, 2)
stop = (4, 5)
trip_cost = taxicab(start, stop) * fare_rate

When the fourth line is executed, taxicab behaves like np.sqrt and other predefined functions

(Section 1.4.2, page 13):

• First, Python assigns the variables in the function’s argument list to the objects passed as

arguments.2 It binds pointA to the same object as start, and pointB to the same object as stop.

(See Appendix E for details.)

• Then, Python transfers control to taxicab.

• When taxicab is finished, Python substitutes its return value into the assignment statement for

trip_cost.

• Python finishes evaluating the expression and assigns the answer to trip_cost.

Although we defined start and stop as tuples, we can call our new function with any objects that

understand what thing[0] and thing[1] mean: lists, tuples, or NumPy arrays.

Your
Turn
6A

Define a function to compute the straight-line distance between two

points in three-dimensional space. Give it a descriptive name and an

informative docstring. See what happens when you call it with the

wrong number or type of arguments, and ensure that using help on your

function will enable a user to diagnose and resolve the issue.

In some ways, a function is similar to a script. It is a fragment of code that is executed upon

request. Unlike a script, a function is a Python object. It can be called by name (once it is imported),

and it can be called by another script or function. A function communicates with the calling program

by way of its arguments and its return value. After evaluating the function, Python discards all of its

local variables, so remember:

If a function performs a calculation, return the result.

You can define functions at the IPython command prompt. However, if you plan to use a function

more than once, you should save it in a file. You can place a single function in its own file such as

taxicab.py and run this file as a script prior to using the function. (Running the file will define the

function as if it had been entered at the command prompt.) You can also define a function within

the script that uses it, as long as its definition gets executed before it is first called.

If you will be using the same functions in multiple scripts and interactive sessions, you can create

a module in which you define one or more functions in a single .py file. A module is a script that

contains a collection of definitions and assignments. It can be imported into your session from the

command prompt, or by placing an import command within a script. You can also import selectively,

as described in Section 1.3.

Place taxicab and the function you wrote in Your Turn 6A (called, for example, crow) in a single

file called measurements.py in your working directory. Then, type import measurements. You now

2 T2 Arguments passed to a function are sometimes called “actual parameters.”

Jump to Contents Jump to Index

6.1 Writing your own functions 71

have access to both functions under the names measurements.taxicab and measurements.crow.

Type help(measurements) and help(measurements.taxicab) to see how Python uses the doc-

strings you provide. Note that if you give a module the same name as a function it contains, you

still have to provide both the module and function name to Python. For example, if you save the

taxicab function in a file called taxicab.py and then import taxicab, calling taxicab(A,B) will

result in an error. To access the function, you must use taxicab.taxicab(A,B).

Modules that you write and wish to use should be located in the same folder as your main

script, which is probably the global working directory you specified during setup (as described in

Sections 4.1.1 and A.2).3

6.1.2 Updating functions

If you have modified a function in a script or in your own module, you will need to instruct Python

to use the newest versions. If the function is defined in a script, you can run the script again by using

the
�� ��Run button (if the script is open in the Editor) or the %run command.

If your function is part of a module that you have imported, you may need to restart the IPython

kernel or relaunch Spyder for the changes to take effect. Just typing import my_module again will not

update the module—even after calling %reset. Alternatively, you can use a function called reload

to update any module without restarting. This function is part of the imp module.4 For example, if

you modify the taxicab function’s code in measurements.py after importing measurements as a

module, you need to save the file and then type the following commands:5

from imp import reload
reload(measurements)

Again, calling import will only cause Python to load a module if it has not already been imported.

You must save a module and then use reload to update functions in a

module you have already imported.

Reloading a module is usually necessary only in debugging. Once your functions are working properly,

you need only import them once in a script or interactive session.

6.1.3 Arguments, keywords, and defaults

We have already seen that keyword arguments can modify the behavior of functions like plt.plot.

You can also use keywords and give arguments default values in functions you write. The following

example demonstrates both of these techniques:

measurements.py [get code]
def distance(pointA, pointB=(0, 0), metric='taxi'):

"""
Return distance in city blocks between points A and B.

5 If metric is 'taxi' (or omitted), use taxicab metric.
Otherwise, use Euclidean distance.

3 T2 If you know about “paths,” then you can create folders that Python can access from any working directory.
4 In Python 2.7, reload is a built-in function and does not need to be imported.
5 You only need to import the imp module once. If you make further changes to measurements.py, just type

reload(measurements) .

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#measurements

72 Chapter 6 More Python Constructions

pointA = (x1, y1)
pointB = (x2, y2)

If pointB is omitted, use the origin.
10 """

if metric == 'taxi':
interval = abs(pointB[0] - pointA[0]) + abs(pointB[1] - pointA[1])

else:
interval = np.sqrt((pointB[0] - pointA[0])**2 \

15 + (pointB[1] - pointA[1])**2)
return interval

The distance function decides how to calculate the distance between points based on the value of

metric. Both pointB and metric have default values. If the values for these arguments are passed

to the function, it will use them; if not, it will use the defaults. Run the code measurements.py,

then try

distance((3, 4))
distance((3, 4), (1, 2), 'euclid')
distance((3, 4), 'euclid') # This is an error.
distance(pointB=(1, 2), metric='normal', pointA=(3, 4))

The arguments to a function must either be in the correct order according to the function definition,

as in the first two lines of this example, or be paired with a keyword, as in the last line. The third

line results in an error because Python assigns the string literal 'euclid' to the variable pointB.

6.1.4 Return values

A function can take any type or number of arguments—or none at all. The return value of a function

is a single object, but that object may be a number, an array, a string, or a collection of objects in a

tuple or list. A function will return an object called None if no other return value is specified.

Suppose that you wish to write a function to rotate a two-dimensional vector. What should the

arguments be? What should the function return?

The arguments should include the vector to be rotated and an angle of rotation. The function

should return the rotated vector. Here is a function that will accomplish the task:

rotate.py [get code]
def rotate_vector(vector, angle):

"""
Rotate a two-dimensional vector through given angle.

5 vector = (x,y)
angle = rotation angle in radians (counterclockwise)

Returns the image of a vector under rotation as a NumPy array.
"""
rotation_matrix = np.array([[np.cos(angle), -np.sin(angle)],

10 [np.sin(angle), np.cos(angle)]])
return np.dot(rotation_matrix, vector)

This implementation of rotation creates a 2 × 2 matrix and then multiplies this matrix and the

vector supplied as the first argument. The function does not modify the contents of vector. Instead,

np.dot creates a new array, which is the returned value of the function.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#rotate

6.1 Writing your own functions 73

Python allows you to unpack compound return values—to assign the individual elements of an

object to separate variables. Multiple assignments on a single line, such as x,y=(1,2), are a simple

example of unpacking. Python can unpack any iterable object: a tuple, a list, a string, or an array.

There are several ways to unpack an object. The following calls to rotate_vector all work, but

the components of the rotated vector are split up in different ways:

vec = [1, 1]
theta = np.pi/2
r = rotate_vector(vec, theta)
x, y = rotate_vector(vec, theta)

5 _, z = rotate_vector(vec, theta)
first, *rest = rotate_vector(vec, theta)

After executing these commands, you should find that r is a NumPy array with two elements. The

other variables, x, y, and z, contain the individual components of the rotated vector. The underscore,

_, is a dummy variable whose value is discarded. (Underscore is a special variable, whose value is

the result of the most recent command. We are using it to temporarily store values that we do not

need.) In the final line, first contains the first element of the rotated vector and rest is a list that

contains everything else.6 In this case, rest contains only one element, but if the function returned

an array with 100 elements, first would still contain only the first value and rest would be a

list (not a NumPy array) containing the other 99 elements. You could convert it to an array with

np.array(rest).

6.1.5 Functional programming

Python offers programmers great flexibility in writing functions. We discuss some of these nuances in

Appendix E. However, we strongly endorse the following guidelines for writing your own functions:

1. Pass data to a function only through its arguments.

2. Do not modify the arguments of a function.

3. Return the result of a calculation with a return statement.

Python allows you to circumvent all of these conventions, but your code will be easier to write,

interpret, and debug if you adhere to them. Your functions will accept input (arguments) and produce

output (a return value), without side effects.

A side effect is any effect on the computer’s state other than returning a value. Avoiding side

effects is the cornerstone of functional programming. Sometimes side effects are useful, but consider

the alternatives when writing your own functions.

Unintended side effects on arrays can be particularly troublesome. Python does not automatically

create a local copy of an array inside a function. As a result, a function can modify the data in an

array passed as an argument using array methods—including assignment of individual elements. (See

Section 2.2.6, page 24.) Array methods like x.sort() and x.fill(3), as well as in-place arithmetic

like x+=1 and x*=2, can also modify array data. Such side effects have the potential to speed up

your code and reduce memory usage for operations on large arrays. You can overwrite the array and

modify its elements without making any copies. However, this increase in performance comes at the

cost of difficulty in debugging.

6 This type of unpacking is not available in Python 2.

Jump to Contents Jump to Index

74 Chapter 6 More Python Constructions

If you really do intend for a function to modify the elements of an array, you can still avoid side

effects. Create a local copy of the array within the function, operate on the copy, and return the new

array.7 Alternatively, you can create an empty array within the function, fill it with new values, and

return the new array. NumPy adheres to this principle: Functions like np.cos(x) and np.exp(x)

return new arrays, with no effect on x. If you wish, you can replace the original array with the new

array returned by the function in the main code, rather than inside the function.

The following function illustrates these principles of functional programming:

average.py [get code]
def running_average(x):

"""
Return cumulative average of an array.

5 """
y = np.zeros(len(x)) # Empty array to store result
current_sum = 0.0 # Running sum of elements of x
for i in range(len(x)):

current_sum += x[i] # Increment sum.
10 y[i] = current_sum / (i + 1.0) # Update running average.

return y

The array being processed is passed as an argument. This array is not modified; the result of the

calculation is returned in a new array.

If you need the extra performance and reduced memory usage that come from overwriting an array,

use the information in Appendix E to plan your code carefully and avoid unintended consequences.

However, try vectorizing your code using NumPy’s efficient array operations before you resort to

overwriting. Vectorized code will almost always run faster than loops you write yourself in Python.

6.2 RANDOM NUMBERS AND SIMULATION

There are many interesting problems in which we do not have complete knowledge of a system, but

we do know the probabilities of the outcomes of simple events. For example, you know the probability

of any given outcome in the roll of a single die is 1/6, but do you know how likely it is that the sum

of a roll of 5 dice is less than 13? Rather than work out the combinatorics, you could roll 5 dice many

times and determine the probability empirically.

A random number generator makes it possible for a computer to “roll dice” millions of times per

second. Thus, you can use a random number generator to simulate a system described by a stochastic

model in which the probability distributions of the parameters are known. You can determine the

likely behavior of the system, even if you cannot work out the details analytically. Such calculations

are often called “Monte Carlo simulations.”

6.2.1 Simulating coin flips

The simplest example of a stochastic system is a coin flip. Suppose that you want to simulate flipping

a coin 100 times, record the number of heads or tails, and then repeat the whole series of 100 flips N

times. This will generate a set of N numbers, each falling in the range of 0 to 100, inclusive.

7 You can copy an array using the array’s copy() method: y = x.copy(). After this statement, x and y will be

independent arrays with the same data. Note that slicing does not create a copy. See Appendix E.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#average

6.2 Random numbers and simulation 75

How do we get Python to flip the coin for us? First, try typing 1>2 at the IPython console prompt,

and then 2>1. You’ll see that Python returns a Boolean value of True or False when it evaluates

each of these expressions. You can simulate a coin flip by generating a uniformly distributed random

number between 0 and 1, then checking to see if it is less than 0.5. If the comparison returns True,

we record heads; if False, we record tails. Python can also use such values in numeric calculations:

It converts True to 1 and False to 0.

The module np.random contains random number generators for several different probability

distributions. The function np.random.random generates numbers from the continuous uniform

distribution over the interval [0, 1), and will serve our purposes for this chapter. You should explore the

other functions in the np.random module as well. To save typing, we will import np.random.random

under the nickname rng:

from numpy.random import random as rng

In the future, if you wish to switch to a different random number generator, this is the only line of

code you will need to change: Just import a different function under the same nickname rng.

To make a series of independent flips, first create an array called samples that contains 100

random numbers generated by rng. (Consult help(rng) for a clue about how to do this easily.) You

can convert the random samples to a simulation of coin flips with flips=(samples<0.5). Python

applies the comparison item by item and stores the result in flips. You can then count the number

of heads by using np.sum(flips) or the array method flips.sum(). Repeat this several times to

get a feel for how likely it is that exactly 50 heads occur in 100 flips of a fair coin.

6.2.2 Generating trajectories

We can adapt coin flipping to study random walks, Brownian motion, and a host of other interesting

physical and biological systems. Let’s create a random walk of 500 steps. Our trajectory will consist

of 500 x values and 500 y values. Following good practice (Section 3.3.5), begin with

num_steps = 500

The idea behind a random walk is that every step is a statistically independent, random event. You

know from the preceding section how to get an array containing 500 random binary digits. Make two

such arrays called x_step and y_step. For a coin flip, True and False or 1 and 0 were sufficient.

For our random walk, however, we need a random string of +1 and −1 values.

Your
Turn
6B

a. Do a simple algebraic operation on x_step that maps each 1 to +1

and each 0 to −1. Do the same for y_step.

b. Next, convert these arrays into successive positions of the random

walker. Consult help(np.cumsum) to see why that function is useful.

c. Write a script to make a picture of your random walk, and run it

several times.

Try writing a function called get_trajectory that will take the single argument num_steps and

return the two arrays that contain the coordinates of a random walker.

Jump to Contents Jump to Index

76 Chapter 6 More Python Constructions

6.3 HISTOGRAMS AND BAR GRAPHS

6.3.1 Creating histograms

A histogram is a graphical representation of a discrete probability distribution. Suppose that you

wish to check that the random number generator rng really gives a uniform distribution. To make a

simple histogram, try

histogram.py [get code]
from numpy.random import random as rng
data = rng(100)
plt.hist(data)

A histogram appears, but a number of things have happened without your supervision. The function

plt.hist has

• Inspected the list of data and determined its range;

• Divided that range into a number of equally spaced bins;

• Counted how many elements of data fall into each bin;

• Graphed the result as a set of bars; and

• Returned a tuple containing two arrays and a strange-looking item called

<a list of 10 Patch objects>.

Consulting help(plt.hist) reveals the content of the return values as well as the keywords and

defaults that you can use to control the output. For instance, bins=10 means that plt.hist will

generate 10 equally spaced bars in the histogram unless you specify another value, and align='mid'

specifies that the bars will be centered on the midpoint of each bin by default. Compare the output

when you specify 10, 100, and 1000 bins. For more control, you can provide the range over which you

wish to bin the data, or you can specify the edges of each bin yourself.

For control over presentation or for further analysis, you can get the counts and bins used to

generate the plot by unpacking the return value of plt.hist. (See Section 6.1.4 for details.)

counts, bin_edges, _ = plt.hist(data)

The function returns three objects, so three variables are required to unpack its output. If you are

interested only in the first two objects, you can assign the third to Python’s dummy variable, named

underscore, as shown here.

If you do not wish to generate a plot and only want the histogram data, you can use np.histogram

instead. It is the same function that plt.hist uses to generate data for plotting:

counts, bin_edges = np.histogram(data)

Note that this function only returns two objects.

Your
Turn
6C

Try it, and inspect the return values to make sure you understand how

these functions generate a histogram. Note, in particular, the numbers

of elements in the two arrays.

Once you’ve created the binned data, you can then plot it in another style or transform it prior

to plotting. The plt.hist (or np.histogram) function has simply done the sorting and counting

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#histogram

6.4 Contour plots and surfaces 77

for you. For example, you can make a custom bar graph by using plt.bar. The arguments of this

function are an array of bar positions, an array of bar heights, and a single width or an array of

widths, which plt.bar uses to draw rectangles. All the arrays must be the same length, so you

have to discard the last element of bin_edges returned by plt.hist or np.histogram, which is

the right-hand edge of the last bin.

There are many ways to present data. The following code uses plt.bar to generate a colorful

plot in which the width of a bar in the histogram is proportional to its height:

bin_size = bin_edges[1] - bin_edges[0]
new_widths = bin_size * counts / counts.max()
plt.bar(bin_edges[:-1], counts, width=new_widths, color=['r','g','b'])

6.3.2 Finer control

As mentioned earlier, Python offers a lot of control over how your data is displayed. Sometimes

you will wish to specify the edges of the bins or the range of values that each bin collects, not just

the number of bins. Both plt.hist and np.histogram can accommodate this: Instead of passing

an integer number of bins to either function, supply an array whose entries are the edges of the

desired bins. You need to provide one more edge than the number of bins. (Each bin begins where

the previous one ended, but you need to specify where the first one starts.) Be aware that Python

will ignore any data points that fall outside the range you provide.

For example, to divide a collection of random numbers into bins that each span an inverse power

of 2, such as 0, 1
128 ,

1
64 ,

1
32 , . . . ,

1
2 , 1, you can use np.logspace to generate the bins:

log2bins = np.logspace(-8, 0, num=9, base=2)
log2bins[0] = 0.0 # Set first bin edge to zero instead of 1/256.
plt.hist(data, bins=log2bins)

If you bin the data by using np.histogram and then do some additional analysis, you can use

plt.bar to display it as a histogram. The following code will do this:

bin_size = bin_edges[1] - bin_edges[0]
plt.bar(bin_edges[:-1], counts, width=bin_size, align='edge')

By default, the plt.bar function draws each bar centered on the corresponding value in the first

argument. This behavior is generally not appropriate for a histogram. The preceding code fragment

specifies a different behavior with the align keyword argument. (Try omitting it to see the difference.)

It is also possible to create histograms in higher dimensions, in which data are binned along two

or more different axes. NumPy provides np.histogram2d to bin a collection of xy pairs. You can

display the result as a three-dimensional bar chart by using Axes3D.bar, or as a grid of colored pixels

(a heat map) by using plt.imshow. (Section 8.1.1, page 96 gives an example.) np.histogramdd

extends binning to any number of dimensions.

6.4 CONTOUR PLOTS AND SURFACES

In earlier chapters, we saw several methods for plotting data sets with a single independent variable,

such as a time series. Such data lend themselves to two-dimensional plots. However, models with two

or more independent variables require higher dimensional plots.

Jump to Contents Jump to Index

78 Chapter 6 More Python Constructions

A function of two variables, h(x, y), can be interpreted as a surface whose height over each point

(x, y) has been specified, just as Earth’s topography is specified by the altitude at a given latitude

and longitude. Two useful graphical representations of the height are contour plots and surface plots.

A contour plot is a two-dimensional drawing in which contour lines or color are used to represent the

height, as in a topographic map. A surface plot is a 3D perspective drawing of the surface itself.

6.4.1 Generating a grid of points

In order to make a plot of h(x, y), you must specify the heights at a finite set of points. Typically

you’ll want those points to form a grid in the xy plane. Python gives a convenient way to construct

such a grid: First, set up a 1D array of x values covering the desired range and an analogous 1D

array of y values. Then, call the function np.meshgrid to create the grid. If the first array has N

entries and the second has M entries, then np.meshgrid will return two M ×N arrays. The arrays

contain the x and y coordinates of each grid point, respectively. Try

x_vals = np.linspace(-3, 3, 21)
y_vals = np.linspace(0, 10, 11)
X, Y = np.meshgrid(x_vals, y_vals)

Inspect X and Y to make sure you understand the result: np.meshgrid returned a list containing

two arrays, which we unpacked and assigned to X and Y. Each is an array with 11× 21 = 231 entries

giving the x and y coordinates of the grid points.8 You can now evaluate a function on these arrays,

perhaps by using vectorized math, to produce a third array called Z, and then create contour or

surface plots using (X,Y,Z). Sometimes it is useful to create the intermediate array of distances,

R=np.sqrt(X**2+Y**2), if the height only depends on the distance from the origin.

6.4.2 Contour plots

Suppose that we wish to visualize the function z(x, y) = cosx sin y. Creating a contour plot is simple

using the arrays X and Y generated above:

Z = np.cos(X) * np.sin(Y)
plt.contour(X, Y, Z)

The number of contour lines is 10 by default. To change this, add a fourth argument to the function

call: plt.contour(X,Y,Z,20) . Instead of an integer, you can also pass an array that contains the

“heights” (z values) for which you want to see contours. You can control the appearance of contour

lines by using keywords, and you can even label the contour lines with the following commands:

contour.py [get code]
cs = plt.contour(X, Y, Z, 10, linewidths=3, colors='k')
plt.clabel(cs, fontsize=10)

The plt.contour function returns a ContourSet object, and the plt.clabel command knows how

to add labels to the contours in this object.

The plt.contour function draws only contour lines. There is a related function called

plt.contourf that will draw filled contours. You can change the set of colors used by Py-

8 Python sets X[i,j]=x_vals[j] and Y[i,j]=y_vals[i]. You can change this convention with the keyword

argument indexing='ij', which will set X[i,j]=x_vals[i] and Y[i,j]=y_vals[j].

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#contour

6.5 Numerical solution of nonlinear equations 79

Plot via the command plt.set_cmap. If you enter the name of a nonexistent color map, Python

will return an error that lists all of the available color maps.

6.4.3 Surface plots

Creating a surface plot is similar to creating a contour plot. The arguments to the functions are the

same, but PyPlot has to access functions from a different module in order to create three-dimensional

graphics. Recall Section 4.3.5:

from mpl_toolkits.mplot3d import Axes3D # Import 3D plotting tool.

An Axes3D object can draw a variety of three-dimensional plots. For example, the following commands

will create a surface plot:

ax = Axes3D(plt.figure()) # Create 3D plotter attached to new figure.
ax.plot_surface(X, Y, Z) # Generate 3D plot.

It takes a lot of computational resources to create a three-dimensional plot, so Python tries to use a

small number of points when generating a surface. Its default is to use a maximum of 50 grid points

in each direction. If your arrays contain more points, Python will omit some of them. To use all

of your points, supply the keyword arguments rstride and cstride (“row stride” and “column

stride”) with the value 1:

ax.plot_surface(X, Y, Z, rstride=1, cstride=1)

Your
Turn
6D

Make a surface plot of the function z = x2 + y2 over a suitable grid of

values, where x and y range from −1 to 1.

The default of plot_surface is to use a single color and shading from imaginary sources of

light to render a surface. You can get a more colorful plot by supplying a color map with the cmap

keyword.9 If you will be printing an assignment in grayscale, you may get better results if you use a

colorless color map like 'gray' or 'bone'.

6.5 NUMERICAL SOLUTION OF NONLINEAR EQUATIONS

It is often necessary to solve nonlinear equations when studying physical and biological systems. For

example, determining the fixed points in a single-gene toggle system requires finding the roots of a

sixth-order polynomial. There are no general analytic solutions for polynomials of degree greater than

four, and even for cubic equations the formulas are cumbersome. Biological oscillators may involve

still more complicated functions that are not even polynomials. Numerical methods for finding the

roots of such expressions are quite useful.

9 In the blog that accompanies this book, we describe other options for coloring and shading 3D surfaces. (See

press.princeton.edu/titles/11349.html.)

Jump to Contents Jump to Index

https://press.princeton.edu/titles/11349.html

80 Chapter 6 More Python Constructions

6.5.1 General real functions

The methods developed to find the roots of equations are closely related to methods for optimizing

functions. Neither Python nor NumPy has a collection of optimization tools, but SciPy has an

extensive library called scipy.optimize.10 To gain access to the functions in this module, we need

to import them. You can import the entire module:

from scipy import optimize

The command dir(optimize) will tell you the names of all of the functions available in this module,

and help(optimize) will provide the details. However, we will not need most of the functions in

this library, so we will simply import individual functions as they are required.

A useful function for finding roots is called fsolve. It takes two arguments: a function name and

a point (or array of points) at which fsolve begins searching for roots.

You can define the function to be solved by using the approach described in Section 6.1. If you

need to solve a relation like g(x) = 7, define your function as f(x) = g(x)− 7. The fsolve function

determines the zeroes of whatever function you provide.

While fsolve is quite good at finding roots, it will do even better if you help it. You can provide

an array of points near the zeros of a function, then have fsolve refine these. A good way to generate

initial guesses is to plot the function and estimate visually where it crosses the x axis.

Example: Try the following and explain the results:

from scipy.optimize import fsolve
def f(x): return x**2 - 1
fsolve(f, 0.5)
fsolve(f, -0.5)
fsolve(f, [-0.5, 0.5])

Solution: The equation x2 − 1 = 0 has two roots, but which root fsolve returns depends on where

we tell the function to begin searching. Providing an array of starting points yields an array of roots

found from those starting points.

Example: Now try the following, and explain what you see:

def f(x): return np.sin(x)**10
fsolve(np.sin, 1)
fsolve(f, 1)

Solution: The last expression above does not return exactly 0. What you are seeing is an example of

numerical error, caused by the finite number of digits that Python uses to represent a number. The

result is a number that is close the correct solution, but not exact.

The phrase “numerical error” is standard, but unfortunate. You didn’t make any error; neither did

Python. Your computer’s hardware simply has limited precision.

A more serious type of error can occur when searching for the roots of a function with a singularity.

Inspect the output of fsolve(f,2) when f(x) = 1/(x− 1). This function has a discontinuity at

x = 1 and never crosses the x axis. However, fsolve returns a solution without raising any errors or

warnings. We can learn more by using a keyword to instruct fsolve to provide more information:

10 T2 Its functions are adapted from the highly optimized minpack library of fortran functions.

Jump to Contents Jump to Index

6.6 Solving systems of linear equations 81

def f(x): return 1/(x-1)
fsolve(f, 2, full_output=True)

This time, the value of the root is returned along with an object that contains a lot more information.

You can refer to help(fsolve) to learn what the terms mean, but the last line is a sure sign of

trouble: The function reached its maximum number of evaluations without satisfying its requirements

for a root of the equation. If your numerical result doesn’t make sense, set full_output=True and

consult help(fsolve).

6.5.2 Complex roots of polynomials

The solutions returned by fsolve are restricted to be real numbers. Consider the equation 1/x = 1+x3.

In order to use fsolve, we must manipulate this into f(x) = x(1 + x3)− 1 and solve for the roots.

Assume that we have some good reason to guess that the real roots are near 1 and −1:

def f(x): return x * (1 + x**3) - 1
fsolve(f, 1)
fsolve(f, -1)

A quartic equation has four roots; but, in the present case, fsolve can only find two of them because

the other two are complex.11

You can find all of the roots—real or complex—of any polynomial by using the NumPy function

np.roots. This function takes a vector of coefficients that define a polynomial (see help(np.roots)

for details). You can find all of the roots of the polynomial above with np.roots([1,0,0,1,-1]).

For arbitrary nonlinear equations (those that are not polynomials) with complex roots, Wolfram

Alpha and Mathematica are reliable tools. For example, the function 1
x = 1 + x2.4 has three roots,

but only one real root. It cannot be completely solved by fsolve.12

6.6 SOLVING SYSTEMS OF LINEAR EQUATIONS

Often we need to solve a set of simultaneous linear equations. For example, a least-squares fit of a

two-parameter linear model to a data set involves solving equations of the general form[
a1
a2

]
=

[
c11 c12
c21 c22

] [
x1
x2

]
.

We are given (or can find) the a’s and c’s, and wish to know the x’s.

Python and NumPy do not provide a collection of linear algebra tools, but SciPy provides a library

for matrix mathematics called scipy.linalg.13 To gain access to the functions in this module, we

need to import them. You can import the entire module.

from scipy import linalg

11 One way to see this is to use a symbolic math program like Wolfram Alpha. See Section 8.4.
12 T2 Actually, you can solve this particular equation by using np.roots. Rewrite it as x3.4 = 1 − x, raise both

sides to the fifth power to generate a 17th-order polynomial, get all 17 roots from np.roots, then use a for loop to

substitute them into the original expression and discard the spurious solutions.
13 Its functions are adapted from the highly optimized lapack library of fortran functions.

Jump to Contents Jump to Index

82 Chapter 6 More Python Constructions

To learn more about the module and the functions it provides, use dir(linalg) and help(linalg).

Because we will only use a few of these functions, we will simply import them by name as they are

needed. Some of the more commonly used are
inv matrix inverse

det determinant

sqrtm matrix square root

expm matrix exponentiation

eig eigenvalues and eigenvectors of a matrix

eigh eigenvalues and eigenvectors of a Hermitian matrix

svd singular value decomposition
To solve the linear system above, we can compute the inverse of the matrix C and multiply the

vector a by this matrix.

matrix_inversion.py [get code]
from scipy.linalg import inv
a = np.array([-1, 5])
C = np.array([[1, 3], [3, 4]])

5 x = np.dot(inv(C), a)

This code puts the solution to the problem into the array x, as you can check by computing

np.dot(C,x)-a. (Again, the result may not be exactly zero, due to numerical error. However, the

difference should be on the order of 10−15 or less.)

The order of multiplication is important: The solution of a = C · x is obtained by multiplying

both sides on the left by C−1.

6.7 NUMERICAL INTEGRATION

Integrating a function is a common task in physical modeling. For example, you may wish to integrate

a probability density function to determine the probability that its variable will fall within a certain

range of values.

As with linear algebra, Python and NumPy do not support numerical integration, but SciPy does.

The appropriate module is called scipy.integrate.

from scipy import integrate

The command dir(integrate) will tell you the names of all of the functions in this module, and

help(integrate) will provide more information. However, we will not need most of the functions

in the library, so we will simply import individual functions as they are required.

There are several integration routines available in the module, each with particular strengths.

The all-purpose workhorse is called quad, from “quadrature,” an old word for integration.14

6.7.1 Integrating a predefined function

To carry out a numerical integration, you must provide a function name for the integrand and the

limits of integration. Optional arguments allow more control over the integration. To see how this

14 This function is adapted from the highly optimized quadpack library of fortran functions.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#matrix_inversion

6.7 Numerical integration 83

works, let’s evaluate ∫ xmax

0

dx cos(x)

for various values of xmax. Try this code:

quadrature.py [get code]
from scipy.integrate import quad
x_max = np.linspace(0, 3*np.pi, 16)
integral = np.zeros(x_max.size)

5 for i in range(x_max.size):
integral[i], error = quad(np.cos, 0, x_max[i])

plt.plot(x_max, integral)

Here is how the code operates:

• The second line imports the quad function.

• The third line creates an array of values for x_max.

• The fourth line sets up an array of the same shape as x_max to store the results.

• The next two lines carry out the integrations and store the results. By default, quad returns two

values: the result of the integral and an estimate of the error. Line 6 unpacks these values. (The

value of the error is overwritten during each iteration.)

The quad function evaluates np.cos at a carefully selected series of points and uses the result to

approximate the integral over the range given by its second and third arguments.

Your
Turn
6E

Do the integral analytically, and check whether quad got it right.

6.7.2 Integrating your own function

Next, suppose that you wish to integrate a function that is not predefined. If your function is short,

you can define it at the command prompt:

def f(x): return x**2

If the function is long and complicated, or if you plan on using it more than once, you’ll want to

define it in a script or module, as described in Section 6.1. Once you have defined your function,

you can pass its name (with no arguments or parentheses) to quad and integrate it like any other

function.

Be aware that quad will only integrate real functions. To integrate a complex function, integrate

its real and imaginary parts separately. If you give quad a function that returns complex values, it

issues a warning but does not halt your program.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#quadrature

84 Chapter 6 More Python Constructions

Your
Turn
6F

a. Integrate f(x) = x2 from 0 to 2, and check that quad gets it right.

b. Try a function whose integral you don’t know: Evaluate∫ xmax

0

dx e−x
2/2

for values of xmax from 0 to 5, and plot the answers.

6.7.3 Oscillatory integrands

Sometimes we wish to evaluate an integral whose integrand oscillates rapidly. This can cause quad to

fail to converge using its default settings. However, quad is an adaptive method, and if you allow it

to subdivide the integration range sufficiently, it will generally yield satisfactory results. The keyword

limit controls how fine a grid quad is allowed to use. Try

quad(np.cos, 0, 5000) # Results in a warning and enormous error!
quad(np.cos, 0, 5000, limit=1000) # No warning; accurate result
np.sin(5000) # Exact result for comparison

6.7.4 T2 Parameter dependence

The quad function can only integrate functions of a single variable. If you have a function of several

variables and you wish to integrate one of them, holding the others fixed, there are two options:

You can define a dummy function of one variable and pass the dummy function to quad, or you can

supply a keyword and value to quad that will specify the constant arguments. For example, suppose

that you have defined a function:

def f(x, a, b, c): return a*x**2 + b*x + c

To integrate the function over x holding (a, b, c) = (1, 2, 3), the two options work as follows:

Use dummy function.
def g(x): return f(x, 1, 2, 3)
integral1, err = quad(g, -1, 1)
Use keyword.

5 integral2, err = quad(f, -1, 1, args=(1, 2, 3))

If the variable you wish to integrate is not the first argument of the function, you cannot use the

second method. You must define a dummy function.

6.8 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

In the physical and life sciences, it is often possible to write down a system of differential equations

that govern a system or describe the behavior of a model. However, it may be impossible to solve

this system in terms of known functions. A classic example is the three-body problem in classical

mechanics: F = ma and Newton’s law of gravitation are all that is required to write down the

differential equations, but no one in the last four centuries has been able to find a general solution!

Jump to Contents Jump to Index

6.8 Numerical solution of differential equations 85

Numerical solution is a powerful tool in studying such systems.15 Starting from some initial

configuration of a system, you can calculate the next configuration from the given differential equations.

From that configuration, you can calculate the next configuration by again using the equations, and

so on. Computers are ideal for executing this repetitive operation, and efficient libraries have been

developed for the task.

To solve differential equations, we turn once again to SciPy. The module we need is called

scipy.integrate, the same module that contains quad. There are several functions available in the

module, but we will restrict our attention to the one called odeint:16

from scipy.integrate import odeint

6.8.1 Reformulating the problem

An ordinary differential equation (ODE) is one that describes a function of a single independent

variable, which we’ll call y(t). A textbook example is the driven harmonic oscillator:

d2y

dt2
= −y + g(t).

The odeint function can “only” solve ODEs of the form

dy

dt
= F (y, t), (6.1)

where y is a vector whose components yi are functions of t, and F is a vector whose components

are functions of yi and t. Fortunately, any explicit ODE can be put into this form. For example, to

describe the second-order ODE for the driven harmonic oscillator to odeint, we must reformulate

it as a system of coupled first-order equations. First, define two new variables that will be the

components of the vector y:

y1 = y y2 =
dy1
dt

.

Next, write the derivatives of y1 and y2 in terms of y1, y2, and t:

dy1
dt

=
dy

dt
= y2

dy2
dt

=
d2y1
dt2

=
d2y

dt2
= −y + g = −y1 + g.

This allows us to cast our problem, a second-order differential equation, in the form required by

odeint (Equation 6.1): y is an array with two entries, and F (y, t) is a function that returns an array

with two entries:

y =

[
y1
y2

]
dy

dt
= F (y, t) =

[
y2

−y1 + g

]
. (6.2)

Most common ODEs can be recast in a similar manner.

15 Many authors use the phrase “numerical integration of an ODE” to denote the procedure we call “numerical solution

of an ODE.” We will reserve the word “integration” for actually performing integrals, a procedure that sometimes, but

not always, can be used to solve ODEs.
16 T2 This function is adapted from the highly optimized odepack library of fortran functions. Calling odeint invokes

a routine called lsoda, an adaptive solver that chooses a predictor-corrector method or a backward differentiation

formula depending on its progress with the problem.

Jump to Contents Jump to Index

86 Chapter 6 More Python Constructions

6.8.2 Solving an ODE

You must supply three arguments to odeint: the name of the function F (y, t), an array y(t0) that

defines the initial conditions, and an array of t values at which you’d like odeint to evaluate the

solution y(t). The general function call is

y = odeint(F, y0, t)

The variables in the expression are:

F – A function F (y, t) that accepts a 1D array and a scalar and returns an array.

y0 – A one-dimensional array with the initial values of y.

t – An array of t values at which y is to be computed. The first entry of this array is the time at

which the initial values y0 apply.

y – An array of the values of y(t) at the points specified in t.

To determine the motion of an undriven harmonic oscillator (the example above with g(t) = 0),

we first need to define the function F (y, t). The first argument, y, is an array that contains the

values of y1 and y2 at time t. The function we need is

simple_oscillator.py [get code]
def F(y, t):

"""
Return derivatives for second-order ODE y'' = -y.

5 """
dy = [0, 0] # Create a list to store derivatives.
dy[0] = y[1] # Store first derivative of y(t).
dy[1] = -y[0] # Store second derivative of y(t).
return dy

Note that odeint requires F(y,t) to accept time as an argument, even though the value of t is not

used in this example. You will get an error if you omit this argument in the definition of F(y,t).

We can now study the motion of the harmonic oscillator for different initial conditions:

solve_ode.py [get code]
""" ODE solver for harmonic oscillator. """

import numpy as np, matplotlib.pyplot as plt
5 from scipy.integrate import odeint

Import ODE to integrate:
from simple_oscillator import F

10 # Create array of time values to study:
t_min = 0; t_max = 10; dt = 0.1
t = np.arange(t_min, t_max+dt, dt)

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#simple_oscillator
https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#solve_ode

6.8 Numerical solution of differential equations 87

Provide two sets of initial conditions:
15 initial_conditions = [(1.0, 0.0), (0.0, 1.0)]

plt.figure() # Create figure; add plots later.
for y0 in initial_conditions:

y = odeint(F, y0, t)
20 plt.plot(t, y[:, 0], linewidth=2)

skip = 5
t_test = t[::skip] # Compare at a subset of points.
plt.plot(t_test, np.cos(t_test), 'bo') # Exact solution for y0 = (1,0)

25 plt.plot(t_test, np.sin(t_test), 'go') # Exact solution for y0 = (0,1)

This code illustrates the following:

• Like quad, odeint expects its first argument to be a function name (with no parentheses).

• The second argument is a vector with two entries, specifying the initial conditions.

• The return value of odeint is an array. The first column is y(t) evaluated at the values in t; the

second is dy/dt. If you solve a higher order ODE, the third column will contain d2y/dt2, and so on.

Your
Turn
6G

Modify simple_oscillator.py to incorporate the driving force

g(t) = sin(0.8t), and comment on how the solution changes.

6.8.3 T2 Parameter dependence

If we wanted to explore several different harmonic oscillators, we might consider modifying the

function F(y,t) as follows:

parametric_oscillator.py [get code]
def F(y, t, spring_constant=1.0, mass=1.0):

"""
Return derivatives for harmonic oscillator:

5 y'' = -(k/m) * y
y = displacement in [m]
k = spring_constant in [N/m]
m = mass in [kg]
"""

10 dy = [0, 0] # Array to store derivatives
dy[0] = y[1]
dy[1] = -(spring_constant / mass) * y[0]
return dy

To specify fixed parameters when using odeint, there are two options, just as for quad in Section 6.7.4.

First, we can define a dummy function that sets the parameters and pass this function to odeint.

Alternatively, we can supply an optional argument to odeint by using the keyword args. Suppose

that the system has a spring constant of 2.0 N/m and a mass of 0.5 kg.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#parametric_oscillator

88 Chapter 6 More Python Constructions

y0 = (1.0, 0.0)
t = np.linspace(0, 10, 101)

Use dummy function.
5 def G(y, t): return F(y, t, 2.0, 0.5)

yA = odeint(G, y0, t)

Use keywords.
yB = odeint(F, y0, t, args=(2.0, 0.5))

To use the second method, the parameters you wish to set must come after y and t in the list of

arguments to F. Otherwise, you must define a dummy function.

6.9 VECTOR FIELDS AND STREAMLINES

A vector field is a function whose value at any point in space is a vector. Common examples from

physics include the electric field, the gravitational field, and the velocity field of a fluid. PyPlot

provides two useful functions for visualizing vector fields and their streamlines: plt.quiver and

plt.streamplot.

6.9.1 Vector fields

You can plot a two-dimensional vector field with plt.quiver. This function requires four arguments,

all of which are arrays of the same size. The first two arguments define a grid of (x, y) values. (See

Section 6.4.3.) Instead of specifying an ordinary function like height or temperature at these points,

the next two arguments specify the components of a two-dimensional vector v at the corresponding

(x, y) coordinates. Python will draw an arrow starting at each grid point to represent the vector field

v(x, y).

Your
Turn
6H

Try the following:

vortex.py [get code]
coords = np.linspace(-1, 1, 11)
X, Y = np.meshgrid(coords, coords)
Vx, Vy = Y, -X

5 plt.quiver(X, Y, Vx, Vy)

Explain the “vortex” pattern you get.

Python’s default arrows may not be what you need. help(plt.quiver) reveals several options

for controlling the appearance of the arrows. For example, if you want your arrows to be the length

that you specified in your arrays, the keyword arguments units='xy' and scale=1 will produce

this behavior. If the components of the vector are (1,0) at some point, the corresponding arrow will

have a length of 1.0 relative to the scale used to draw the axes. (This means the arrows will get

larger as you zoom in and smaller as you zoom out.)

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#quiver

6.9 Vector fields and streamlines 89

Vector fields often arise as the gradient of a scalar function. For example, Fick’s law states that

the flux of particles at a point is proportional to the gradient of the concentration:

J = −D∇c.

NumPy can estimate the gradient of a function evaluated on a grid via np.gradient.17 The

following code displays the gradient of a bell curve on its contour plot. Consult help(np.gradient)

to explore its arguments and return value.

gradient.py [get code]
import numpy as np, matplotlib.pyplot as plt

coords = np.linspace(-2, 2, 101)
5 X, Y = np.meshgrid(coords[::5], coords[::5]) # Coarse grid for vector field

R = np.sqrt(X**2 + Y**2)
Z = np.exp(-R**2)
x, y = np.meshgrid(coords, coords) # Fine grid for contour plot
r = np.sqrt(x**2 + y**2)

10 z = np.exp(-r**2)

ds = coords[5] - coords[0] # Coarse grid spacing
dX, dY = np.gradient(Z, ds) # Calculate gradient.

15 plt.contourf(x, y, z, 25)
plt.set_cmap('coolwarm')
plt.quiver(X, Y, dX.transpose(), dY.transpose(), scale=25, color='k')

Because of the way NumPy calculates the gradient and our convention for x and y axes, we must

take the transpose of the arrays that np.gradient returns—that is, we must interchange rows and

columns.

6.9.2 Streamlines

A system of first-order ordinary differential equations defines a vector field. One way to find solutions

is to follow the arrows, generating “streamlines.” The word comes from an analogy to water flow:

The velocity of the water defines a vector field; the trajectory of any droplet of water is a streamline.

Electric and magnetic “field lines” are also streamlines.

Python’s plt.streamplot function will generate several trajectories from a vector field. The

syntax is

plt.streamplot(x, y, Vx, Vy)

You can adjust the length and density of lines by using optional arguments. See help(plt.streamplot)

for details. The four arguments are the same as those used in plt.quiver. They specify the coordinate

grid and the vector field to follow.18

To illustrate the use of this function, begin with the vector field you drew in Section 6.9.1:

17 An analytic formula for the gradient of a function is usually more accurate than np.gradient, but such formulas

are not available for experimental measurements.
18 The documentation for plt.streamplot specifies 1D arrays for x and y; however, passing 2D arrays generated by

meshgrid works just as well.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#gradient

90 Chapter 6 More Python Constructions

streamlines.py [get code]
lower, upper, step = -2, 2, 0.1
coords = np.arange(lower, upper + step, step)
X, Y = np.meshgrid(coords, coords)

5 Vx, Vy = Y, -X
plt.streamplot(X, Y, Vx, Vy, linewidth=2)

Notice that we chose a finer grid of points than before. Such a fine grid would have made a cluttered

picture of the vector field with too many arrows. For generating streamlines, a fine grid yields more

accurate results. (Python doesn’t need to interpolate as much as it would with a coarse grid.)

Your
Turn

6I

a. Perhaps the picture drawn in the preceding example was a bit too

predictable. Replace line 5 with

Vx = Y - 0.1 * X
Vy = -X - 0.1 * Y

and explain the streamlines that you find.

b. Next, replace line 5 with

Vx, Vy = X, -Y

and explain what happens.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#streamlines

C H A P T E R 7

Second Computer Lab

In this lab, you’ll use Python to generate two-dimensional random walks, plot their trajectories, and

look at the distribution of end points for a large number of random walkers. Our goals are to

• Generate random walk trajectories that begin at the origin and take random diagonal steps:

xn+1 = xn ± 1 yn+1 = yn ± 1. (7.1)

• Plot trajectories of four such walks in separate subplots of a single figure.

• Plot the end points of many trajectories in a single figure to see how they are distributed.

• Compute the average final distance of the walkers from the origin.

First, review Section 6.2.

7.1 GENERATING AND PLOTTING TRAJECTORIES

Our first task is to create a random walk of 1000 steps, each given by Equation 7.1. Each trajectory

will be a list of 1000 x values and 1000 y values. It’s good programming practice to define the size of

the simulation at the beginning of a script:

num_steps = 1000

Now you can set the size of all arrays by using num_steps.

Assignment:

a. Use the ideas in Section 6.2 to make a random walk trajectory, and then plot it. To remove any

distortion, use the command plt.axis('equal') after making the plot.

b. Now make four such trajectories, and look at all four side by side. Use plt.figure() to

create a new figure window. You can access the individual subplots by using commands like

plt.subplot(2,2,1) before the first plt.plot command, plt.subplot(2,2,2) before the

second plt.plot command, and so on. Python may give each plot a different magnification.

Consult help(plt.xlim) and help(plt.axis) to find out how to give each of your plots the

same x and y limits.

7.2 PLOTTING THE DISPLACEMENT DISTRIBUTION

Run your script several times, and compare the resulting trajectories. Your four plots always look

different! Sometimes the walker wanders off the screen; sometimes it remains near the origin. And

91

92 Chapter 7 Second Computer Lab

yet, there is some family resemblance between them. Let us begin to understand in what sense they

resemble each other.

How far does the random walker get after 1000 steps? More precisely, what is the distance from

the starting point (0, 0) to the ending point (x1000, y1000), for each of many random walks? Instead

of four walks, we now want many, say, 100. You could manually examine all 100 plots, but it would

be hard to see the common features. Instead, we’ll ask Python to generate all of these random walks,

but show us only a summary.

One straightforward way to make 100 walks is to take the code you already wrote and embed it

inside of a for loop. You could create three arrays, x_final, y_final, and displacement, to store

the ending x and y positions and distance to the origin. Then, just before the end of the loop, you

could add something like

x_final[i] = x[-1]
y_final[i] = y[-1]
displacement[i] = np.sqrt(x[-1]**2 + y[-1]**2)

(You can also solve the problem by using vectorized operations instead of a for loop. Try to figure

out how. The vectorized approach is faster than a loop if the arrays are not too large—that is, if

num_walks*num_steps is smaller than 107.)

We can summarize the results in at least three ways. You have a lot of end points (x_final,

y_final pairs), so you can make a scatter plot by using plt.plot or plt.scatter. Alternatively,

you can examine the lengths of the final displacement vectors, or their squares.

Assignment:

a. Once you have a code that works, increase the number of random walks from 100 to 1000. (See

Section 3.3.5.) Make a scatter plot of the end points.

b. Use plt.hist to make a histogram of the displacement values.

c. Make a histogram of the quantity displacement**2.

d. Your result from (c) may inspire a guess as to the mathematical form of the histogram. Try

semilog and log-log axes to inspire and test your guess.

e. Use np.mean to find the average value of displacement**2 (the mean-square displacement)

for a random walk of 1000 steps.

f. Find the mean-square displacement of a 4000-step walk. If you wish to carry the analysis further,

see if you can determine how the mean-square displacement depends on the number of steps in

a random walk.

It turns out that random walks are partially predictable after all. Out of all the randomness

comes systematic statistical behavior, partly visible in your answers to (b–f).

Experimental data also agree with these predictions. The random walk, although stripped of much

of the complexity of real Brownian motion, nevertheless captures nontrivial aspects of Nature that

are not self-evident from its formulation. See if your output qualitatively resembles the experimental

data shown in Figure 7.1 for the diffusion of a micrometer-size particle in water.

Jump to Contents Jump to Index

7.3 Rare events 93

Figure 7.1: Experimental data for Brownian motion. Each dot is the final position after a fixed amount of time for

a particle that started at the center of the figure.

7.3 RARE EVENTS

7.3.1 The Poisson distribution

Imagine an extremely unfair coin that lands heads with probability ξ equal to 0.08 (not 0.5). Each

trial consists of flipping the coin 100 times. You might expect that we’d then get “about 8” heads in

each trial, although we could, in principle, get as few as 0, or as many as 100.

The Poisson distribution is a discrete probability distribution that applies to rare events.1 For

our extremely unfair coin, the Poisson distribution predicts that the probability of the coin coming

up heads ` times in 100 flips is

P(`) =
e−8 · 8`

`!
, (7.2)

where ` is an integer greater than or equal to 0.

1 Nelson, 2015, Chapter 4 discusses this distribution.

Jump to Contents Jump to Index

94 Chapter 7 Second Computer Lab

Assignment:

a. Before you start flipping coins, plot this function for some interesting range of ` values. You

may find the following helpful:

• The factorial function can be imported from scipy.special.

• You need not take values of ` all the way out to infinity. You’ll see that P(`) quickly gets

negligibly small.

• In Python, the elements of a vector are always numbered 0, 1, 2, 3,. . . , and ` is also an integer

starting from zero, so ` is a good array index.

• The value of 8` can get very large—larger than the largest integer NumPy can store.2 To avoid

numerical overflow—and erroneous results—use an array of floats instead of integers. Consult

help(np.arange), and read about the dtype keyword argument.

b. Perform N coin flip trials, each consisting of 100 flips of a coin that lands heads only 8% of

the time. [Good practice: Eventually you may want to take N to be a huge number. While

developing your code, make it not so huge, say, N = 1000, so that your code will run fast.]

c. Get Python to count the number of heads, M , for each trial. Then, use plt.hist to create

a histogram of the frequency of getting M heads in N trials. If you don’t like what you see,

consult help(plt.hist). (For example, plt.hist may make a poor choice about how to bin

the data.)

d. Make a graph of the Poisson distribution (Equation 7.2 above) multiplied by N . What’s the

most probable outcome? Graph this plot on the same axes as the histogram in (c).

e. Repeat (b–d) for N = 1 000 000, and comment. (This may take a while.)

Click the
�� ��Run button over and over for N = 1000, and observe that the distribution is a bit

different every time, and yet each plot has a general similarity to the others.

7.3.2 Waiting times

If we flip our imagined coin once every second, then our string of heads and tails becomes a time

series called a Poisson process, or shot noise. Flipping heads is a rare event, because ξ = 0.08. We

expect long strings of tails, punctuated by occasional heads. This raises an interesting question:

After we get a heads, how many flips go by before we get the next heads? More precisely, what’s the

distribution of the waiting times from one heads to the next?

Here’s one way to get Python to answer that question. We can make a long list of ones and zeros,

then search it for each occurrence of a 1 by using NumPy’s np.nonzero function. This function takes

an array of numbers and returns an array of the indices of its nonzero entries. Experiment with small

arrays like np.nonzero([1,0,0,-1]) to understand its behavior. Consult help(np.nonzero) for

more information.

Each waiting time is the length of a run of zeros, plus one. You can subtract successive entries in

the array returned by np.nonzero to find the waiting time between successive heads, then make a

graph showing the frequencies of those intervals. NumPy’s np.diff function will take the difference of

successive entries in an array. Flatten the array returned by np.diff before plotting. See Section 2.2.8

for details on flattening arrays. Consult help(np.diff) for more information about that function.

2 NumPy uses 64-bit integers, so the largest number it can store is 263 − 1.

Jump to Contents Jump to Index

7.3 Rare events 95

Try to guess what this distribution will look like before you compute the answer. Someone might

reason as follows: “Because heads is a rare outcome, once we get a tails we’re likely to get a lot of

them in a row, so short strings of zeros will be less probable than medium-long strings. But eventually

we’re bound to get a heads, so very long strings of zeros are also less common than medium-long

strings.” Think about it. Is this sound reasoning? Now, compute your answer. If your output is not

what you expected, try to figure out why.

Assignment:

a. Construct a random string of 1’s and 0’s representing 1000 flips of the unfair coin. Then, plot

the frequencies of waiting times of length 0, 1, 2, . . . , as outlined above. Also make a semilog

plot of these frequencies. Is this a familiar-looking function?

b. What is the average waiting time between heads?

c. Repeat (a) and (b) for 1 000 000 flips of the coin.

Jump to Contents Jump to Index

C H A P T E R 8

Still More Techniques

It’s nice to know that the computer understands the problem.

But I would like to understand it, too.

— Eugene Wigner

This short chapter attempts to round out your Python toolkit. We introduce some tools for image

processing and animation, and then discuss symbolic calculations.

8.1 IMAGE PROCESSING

A digital image is a collection of pixels. The image can be stored in a variety of formats. In the

case of a black-and-white photograph, each pixel is represented by a number corresponding to the

intensity (mean photon rate) sensed at a point in the xy plane of the detector.1 A digital camera

takes the light intensity in each pixel and reports it as an integer between 0 and 2m − 1, where m is

called the bit depth. A common choice is m = 8 (256 distinct light levels). A color image consists of

three such arrays, reporting the intensities of red, blue, and green light.

A computer uses the pixel data in an image file to reproduce the image on your monitor. As far

as Python is concerned, then, every image is an array of numbers. Conversely, any array with the

appropriate shape and data content can be displayed as an image. This mapping between arrays and

images allows us to use Python to import, analyze, transform, and save images.

8.1.1 Images as NumPy arrays

Let’s use Python to import and display an image file. We first need to give Python access to some

image data. Follow the instructions of Section 4.1 (page 48) to obtain the data set 16catphoto. Copy

the file bwCat.tif into your working directory.

Neither basic Python nor NumPy contains modules for working with images, but PyPlot contains

functions for reading, displaying, and saving image files: plt.imread, plt.imshow, and plt.imsave.

Import the photograph to an array with the following command:

photo = plt.imread('bwCat.tif')

(If you have trouble loading image files, you may need to install the pillow library. See Section A.1.2

for details.) Verify that the photograph is indeed represented as an array of numbers by looking at

some elements of photo. You should see the array in the Variable Explorer. You can also inspect the

data attributes of the array or examine a slice:

1 We are discussing raster images, also called bitmaps, which are saved in formats like .tif or .jpg. Another category,

called vector graphics, represents figures mathematically and is saved in formats like .svg or .eps; see Section 4.3.8.

96

8.1 Image processing 97

photo.shape
photo.dtype
photo[:10, :10]

This photograph is represented as a 648× 864 array of integers. The data type of the array is uint8,

which means that each value is an unsigned integer represented by 8 bits, matching the bit depth of

the original image.

8.1.2 Saving and displaying images

We can now use PyPlot to display the array as an image:

plt.imshow(photo)

The resulting figure is probably not what you expected. PyPlot’s defaults are convenient for plotting

mathematical functions, but not black and white photographs. The following commands will set the

color map, remove the axes, and change the background color for more convenient viewing.

plt.set_cmap('gray') # Use grayscale for black and white image.
plt.axis('off') # Get rid of axes and tick marks.
fig = plt.gcf() # Get current figure object.
fig.set_facecolor('white') # Set background color to white.

Now we see a recognizable image of a cat. You may find it convenient to define a single function to

perform all these steps and display a black and white image from an array.

You can export any figure in a photographic format by using the
�� ��Save button in the figure

window. You can also create an image file from the command prompt or within a script:

plt.imsave('cat.jpg', photo, cmap='gray')

The function plt.imsave treats the array in the same way as plt.imshow, and it will use the current

color map. Thus, we need to specify an appropriate color map for a black and white image.

8.1.3 Manipulating images

Because Python converts an image into a numerical array, you can perform mathematical operations

on the array, potentially enhancing the image.

Your
Turn
8A

Try this:

new_cat = (photo < photo.mean())

Display the new array, and explain what you see. Compare new_cat and

photo in the Variable Explorer.

In Chapter 9, you’ll learn about some common techniques for manipulating and enhancing images.

However, you should be aware of the limits imposed by scientific ethics on modifying images to be

used as evidence. (See Cromey, 2010.)

Jump to Contents Jump to Index

98 Chapter 8 Still More Techniques

8.2 DISPLAYING DATA AS AN IMAGE

If you generate a two-dimensional data set—a function of (x, y) coordinates, for instance—you may

wish to display it as an image. You can do this using plt.imshow, but you have to provide extra

instructions so that your data is displayed appropriately.

There is a significant difference between the conventions we normally use in mathematics to label

coordinates and the way Python displays images. This can be very confusing if you are not aware of

it. In mathematics, we usually place the origin, (0,0), at the lower left corner of a plot. Increasing the

x-coordinate moves a point to the right, and increasing the y-coordinate moves a point up. Python’s

conventions for displaying an image are almost the exact opposite!

The element in photo[0,0] is displayed at the upper-left corner of the picture. Increasing the

first index moves down the image, and increasing the second index moves right across the image.

This seems strange until you recall that Python is not graphing a function; it is displaying an array.

photo[0,0] is the first element of the array. The first index refers to a row in the array, and the

second index refers to a column. So Python’s convention is exactly what we would use if we were

writing out the elements of a matrix.

Thus, if we wish to display data whose indices correspond to x, y values, we must first transpose

the rows and columns of our data array. (Since the first index of an array controls the vertical

position of an entry and the second controls the horizontal location, we need to switch the roles

of x and y prior to using plt.imshow.) Second, we need to tell Python to put the origin of our

coordinate system in the lower-left corner of the image. The keyword argument origin='lower'

instructs Python to do this. After that, our conventions for labeling points will match up perfectly

with Python’s conventions for creating an image from array data.

The following example illustrates these ideas.

heatmap.py [get code]
import numpy as np, matplotlib.pyplot as plt
plt.figure()
x = np.random.randn(5000) - 1 # Generate random coordinates.

5 y = 2 * np.random.randn(5000)
Create 2D histogram with same number of bins and same range for x and y.
counts, x_bins, y_bins = np.histogram2d(x, y, \

bins=[100,100], range=[(-5,5), (-5,5)])

10 # Display data as a heatmap. Provide legend for colors.
plt.imshow(counts.transpose(), origin='lower', cmap='hot')
plt.colorbar()

This code generates two sets of random coordinates drawn from the standard normal distribution

using np.random.randn. (Subtracting 1 from the first array shifts the mean value of the x distribution

to the left. Multiplying the second array by 2 makes the standard deviation of the y coordinates

twice as large as that of the x coordinates. Thus, if the image is displayed properly, it should be

shifted to the left and taller than it is wide.) Next, the code instructs Python to bin these data in a

2D histogram. Finally, the code calls plt.imshow to display the data as an image.

Explore different ways of displaying images and data sets to better understand Python’s conven-

tions. Try displaying the cat image as (x, y) data, or the raw (x, y) data as an image and interpret

what you see.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#heatmap

8.3 Animation 99

8.3 ANIMATION

A picture may be worth a thousand words, but a motion picture can be even better. Matplotlib

contains a module called animation for creating movies from plots. We can also view a collection of

still plots (frames) in sequence to create a simple animation.

We provide two scripts to create animations below. They illustrate two different approaches, but

they have a common design principle: Create an empty plot, take control of the line or point objects

you wish to animate, then update them in each frame. Once you understand how to do this, you can

create a variety of animations.

8.3.1 Creating animations

The following script will create a movie of one of the random walks you studied in Chapter 7 by using

the function FuncAnimation from the animation module. Use Python’s help function to explore

the many options available.

walker.py [get code]
Jesse M. Kinder -- 2019
""" Make a movie out of the steps of a two-dimensional random walk. """
import numpy as np, matplotlib.pyplot as plt

5 from matplotlib import animation
from numpy.random import random as rand

Set number of steps for each random walk.
num_steps = 100

10

Create an empty figure of the desired size.
plt.close('all') # Clear anything left over from prior runs.
bound = 20
fig = plt.figure() # Must have figure object for movie.

15 ax = plt.axes(xlim=(-bound, bound), ylim=(-bound, bound))

Create empty line and point objects with no data.
They will be updated during each frame of the animation.
(my_line,) = ax.plot([], [], lw=2) # Line to show path

20 (my_point,) = ax.plot([], [], 'ro', ms=9) # Dot to show current position

Generate the random walk data.
x_steps = 2*(rand(num_steps) < 0.5) - 1 # Generate random steps +/- 1.
y_steps = 2*(rand(num_steps) < 0.5) - 1

25 x_coordinate = x_steps.cumsum() # Sum steps to get position.
y_coordinate = y_steps.cumsum()

This function will generate each frame of the animation.
It adds all of the data through frame n to a line

30 # and moves a point to the nth position of the walk.
def get_step(n, x, y, this_line, this_point):

this_line.set_data(x[:n+1], y[:n+1])
this_point.set_data(x[n], y[n])

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#walker

100 Chapter 8 Still More Techniques

35 # Call the animator and create the movie.
my_movie = animation.FuncAnimation(fig, get_step, frames=num_steps, \

fargs=(x_coordinate, y_coordinate, my_line, my_point))

Save the movie in the current directory.
40 # *** NEXT LINE WILL CAUSE AN ERROR UNLESS FFMPEG OR MENCODER IS INSTALLED. ***

my_movie.save('random_walk.mp4', fps=30)

This script uses a different approach to plotting to make sure that the fixed elements of the

plot—axes, tick marks, legends, labels, and so on—are not changed from one frame to the next.

Instead of drawing each frame “from scratch,” the script creates a figure and axes just once (lines

14–15). Then, it creates two variables and assigns them to line and point objects that initially contain

no data (lines 19–20).2 The function get_step modifies the data of the line and point objects—an

intentional side effect—but has no effect on the rest of the figure. The first argument of get_step is

the frame number.

The name of the figure and the function for updating the plot are passed as arguments to

animation.FuncAnimation, which calls get_step repeatedly to update the graph and generate

the frames of the movie. We also provided additional arguments to specify the data, line, and point

objects to use in the function with the keyword fargs. (The current frame number is automatically

passed as the first argument. If the function requires additional arguments, as in this example, they

should be passed by using fargs.)

8.3.2 Saving animations

To create and view an animation you don’t need any software other than Matplotlib. You can share

your code with others, but they will need Python to view your beautiful work. Sometimes it is more

useful to save your animation in a format that anyone can view, such as a web page or a movie file.

We will describe two options. The first can be implemented entirely in Python. The second requires

an additional piece of software called an encoder.

HTML movies

A simple approach to making an animation is to create a flip book—a series of images that create

the illusion of motion when viewed in rapid succession. You may have animated stick figures in this

way when you were young, or bored.

You already know how to create a series of still images using Python. You just need a way to

tie them all together and display them. Via press.princeton.edu/titles/11349.html, you can

download a file called html_movie.py. This module contains a function called movie that creates a

“web page” that will display a series of images in a continuous loop. You do not need to be online to

view the animation—you just need a web browser such as Firefox, Safari, or Chrome.

The following script will create an HTML movie of two traveling waves that pass by each other.

waves.py [get code]
Jesse M. Kinder --- 2019
""" Generate frames for an animation of moving Gaussian waves. """

2 We encountered a similar technique in Section 4.3.2 (page 59). The keywords lw and ms are abbreviations for

linewidth and markersize, respectively.

Jump to Contents Jump to Index

https://press.princeton.edu/titles/11349.html
https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#waves

8.3 Animation 101

import numpy as np
5 import matplotlib.pyplot as plt

First obtain html_movie.py via http://press.princeton.edu/titles/11349.html
or http://physicalmodelingwithpython.blogspot.com/ .
from html_movie import movie

10 # Generate waves for each frame.
Return a Gaussian with specified center and spread using array s.
def gaussian(s, center=0.0, spread=1.0):

return np.exp(-2 * (s - center)**2 / spread**2)

15 # All lengths are in [m], all times are in [s], and all speeds are in [m/s].
Define the range of values to display.
x_min, x_max = -4.0, 4.0
y_min, y_max = -3.0, 3.0
Define array of positions.

20 dx = 0.01
x = np.arange(x_min, x_max + dx, dx)

Define the duration and number of frames for the simulation.
tmin, tmax = 0.0, 4.0

25 num_frames = 100
t = np.linspace(tmin, tmax, num_frames)

Define the initial position and speed of Gaussian waves.
r_speed = 2.0 # Speed of right-moving wave

30 r_0 = -4.0 # Initial position of right-moving wave
l_speed = -2.0 # Speed of left-moving wave
l_0 = 4.0 # Initial position of left-moving wave

Generate a figure and get access to its Axes object.
35 plt.close('all')

fig = plt.figure(figsize=(10, 10))
ax = plt.axes(xlim=(x_min, x_max), ylim=(y_min, y_max))

Create three empty line objects and grab control.
40 # The loop below will update the lines in each frame.

ax.plot([], [], 'b--', lw=1) # Line for right-moving wave
ax.plot([], [], 'r--', lw=1) # Line for left-moving wave
ax.plot([], [], 'g-', lw=3) # Line for sum of waves
lines = ax.get_lines() # Get list of 3 line objects in plot.

45

It is essential that the frames be named in alphabetical order.
{:03d} formats integers with three digits, including leading zeros if needed:
'000_movie.jpg', '001_movie.jpg', and so on.
file_name = "{:03d}_movie.jpg"

50

Generate frames and save each figure as a separate .jpg file.
for i in range(num_frames):

Jump to Contents Jump to Index

102 Chapter 8 Still More Techniques

r_now = r_0 + r_speed * t[i] # Update centers of waves.
l_now = l_0 + l_speed * t[i]

55 yR = gaussian(x, r_now) # Get current data for waves.
yL = -gaussian(x, l_now)
lines[0].set_data(x, yR) # Update right-moving wave.
lines[1].set_data(x, yL) # Update left-moving wave.
lines[2].set_data(x, yR + yL) # Update sum of waves.

60 plt.savefig(file_name.format(i)) # Save current plot.

Use HTML movie encoder adapted from scitools to create an HTML document that
will display the frames as a movie. Open movie.html in web browser to view.
movie(input_files='*.jpg', output_file='movie.html')

To view the animation, open movie.html in a web browser. (To open a file from your computer in

your web browser, choose the menu option File>Open file ..., and direct your browser to the file

you have created.) This file must be located in the same folder as the image files to run properly. (It

is not a stand-alone movie. It just tells your browser which image files to display and when to display

them.) To share the animation, send the entire folder to a friend, or upload it to a web server.

In the last line, the keyword and value input_files='*.jpg' uses the asterisk as a wildcard to

instruct the function to use all files in the current folder that have the .jpg extension. It will insert

the files into the movie in alphabetical order. Line 49 formats the file names so that alphabetical

and chronological order are the same. (If we had used the {:d} format specifier, there would be no

leading zeros, and 10_movie.jpg would come before 2_movie.jpg in alphabetical order.)

The html_movie module was adapted from the scitools library developed by Hans Petter

Langtangen.3

T2 Using an encoder

The approach in the preceding section generates an animation that you can share, but it doesn’t

create a standalone file in a standard video format suitable for embedding in another web page,

uploading to YouTube, or editing with video software. (Perhaps you could add a soundtrack . . .) To

save the animation in a standard video format, you must extend Python’s capabilities with a video

encoder. FFmpeg, which can be downloaded at www.ffmpeg.org, is one Python-friendly option.

The last line of walker.py above, when uncommented, calls movie.save, which in turn invokes

FFmpeg.

To use an encoder, you need to download and install it on your system, then make certain

that Python can locate it. Using a package manager is the most straightforward way to do this. A

package manager will determine all the libraries that are necessary to run the program you request,

then download, install, and link everything together so your program runs properly. Section A.4 in

Appendix A describes how to install FFmpeg.

Once you have successfully installed FFmpeg, you can uncomment the last line of walker.py

above. Now when you run the script, Python will create a movie file called random_walk.mp4 that

you can edit, upload, and view in a movie player or web browser.

If you have difficulty linking Python to FFmpeg, you can run FFmpeg directly from your operating

system’s command line (not the IPython console). Make a series of frames with sequential names as

in waves.py above. Then, use the following command to create the movie:

3 scitools is a useful library, but as of this writing it is not compatible with Python 3. The entire library can be

downloaded at github.com/hplgit/scitools. See also Langtangen, 2016.

Jump to Contents Jump to Index

https://www.ffmpeg.org/
https://github.com/hplgit/scitools

8.4 Analytic calculations 103

$ ffmpeg -r 24 -i %03d_movie.jpg movie.mp4

The option -r 24 specifies the frame rate in frames per second, and the -i option identifies the file

names of the frames created by your code.

ImageMagick is another free software package that can be used to create animations at the

command line. The software can be downloaded at imagemagick.org, or installed by using the

conda package manager as described in Section A.4 (page 118). If you have installed ImageMagick,

you can create a gif animation from the output of waves.py by using the following command:

$ convert -delay 1x24 *.jpg movie.gif

The -delay 1x24 option instructs ImageMagick to wait 1/24th of a second between each frame, and

*.jpg tells ImageMagick to use all file names—in alphabetical order—that have a .jpg extension.

You can view movie.gif in any web browser, or you can embed it in a web page.

8.4 ANALYTIC CALCULATIONS

Computers were originally created for numerical calculations, but they can also do symbolic mathe-

matics. In Python, we must import special libraries to do symbolic calculations. We can also take

advantage of online resources. In this section, we describe both approaches.

8.4.1 The SymPy library

The SymPy library allows Python to do symbolic math.4 To get some idea of what is possible with

SymPy, try the following commands in the IPython console:

sympy_examples.py [get code]
from sympy import *
init_session()
expand((x + y)**5)

5 factor(x**6 - 1)
pi.n(100)
plot(besselj(0, x), besselj(1, x), (x, 0, 10))
diff(x*sin(y), x, y)
integrate(cos(x)**2, x)

10 integrate(exp(-x**2), (x, -oo, oo))
Sum(k**3, (k, 0, m)).doit().factor()
dsolve(f(x).diff(x) + f(x) - x, f(x)).simplify()
limit(sin(x)/x, x, 0)

SymPy is a library where import * is so incredibly convenient that we make an exception to our

general advice and bring all its functions into our working environment. When Python executes

init_session(), it defines several variables and functions. The examples will not work if you omit

this command. For more details, see docs.sympy.org/latest/.

SymPy is useful for quick symbolic calculations and plots of analytic functions. It is simple to

use, and it is native to Python. Its functions can be imported and used in any script, and its output

is available without copying and pasting from another program. However, SymPy is not as powerful

4 SymPy is part of the Anaconda distribution and can be installed with conda. See Appendix A for details.

Jump to Contents Jump to Index

https://imagemagick.org
https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#sympy_examples
https://docs.sympy.org/latest/

104 Chapter 8 Still More Techniques

as commercial packages like Mathematica or Maple, or the free alternative Sage, which uses Python

to bring together over 100 open-source mathematics libraries (www.sagemath.org).

8.4.2 Wolfram Alpha

For some purposes, it is easier to turn to a free online resource like wolframalpha.com. Go there,

and try the examples below. Wolfram Alpha doesn’t use the same syntax as Python, but it’s not too

hard to adapt. All of the examples below can also be executed in Mathematica as written.

Integrals

Here is an integral that arises in probability theory:∫ ∞
−∞

dx
1/π

x2 + 1

1/π

(a− x)2 + 1
.

Since the value of this integral depends on the value of a, it defines a function of a.

The integral looks daunting, but try entering it into Wolfram Alpha as

Integrate[1/(Piˆ2*((a-x)ˆ2+1)*(xˆ2+1)), {x, -Infinity, Infinity}]

Notice the syntax used here: The Integrate function accepts two arguments, enclosed in square

brackets. The first is a symbolic representation of the integrand. The second is itself a list (created

by the curly brackets) with three entries: The first is the variable to be integrated. The next two

specify the limits of integration. Note that predefined functions (Integrate) and constants (Pi and

Infinity) are capitalized.

This integral is the convolution of two probability density functions. In this case, they are each

called Cauchy distributions. Perhaps surprisingly, the result is also of the same general form, though

broader than the distributions we started with.5

Here is another example. The integral
∫ b
a

dxxn(1−x)M−n arises in the study of credible intervals

for the parameter that defines a Bernoulli trial, given that M trials yielded n successes.6 We can

make progress evaluating it by entering

Integrate[xˆn * (1-x)ˆ(M-n), {x}]

This time, the second argument of Integrate is a list with only one entry, the integration variable;

because we don’t specify any specific integration range, Wolfram Alpha responds with the indefinite

integral, a function of x, M , and n. It may not seem helpful to be told that this function is the

“incomplete beta function,” but now we can see if Python knows about that function (even if we

don’t). It does: It is the function betainc(a,b,x) in the scipy.special module. We can now write

code that evaluates this function instead of computing an integral numerically.

If all you need is the normalization integral, that’s the case where we integrate from 0 to 1.

Wolfram Alpha can evaluate this via

Beta[1, 1+n, 1+M-n] - Beta[0, 1+n, 1+M-n]

We learn that this integral simplifies to

Γ(n+ 1)Γ(M − n+ 1)

Γ(M + 2)
=
n!(M − n)!

(M + 1)!
.

5 Nelson, 2015, Chapter 5 discusses Cauchy distributions.
6 Nelson, 2015, Chapter 6 discusses credible intervals, and this example in particular.

Jump to Contents Jump to Index

https://www.sagemath.org/
https://www.wolframalpha.com

8.4 Analytic calculations 105

That last expression is easy to include into any code we write that requires the normalization factor

of this distribution.

In general, evaluating a special function is faster and more accurate than numerical integration.

However, this option is not always available. If you cannot locate a predefined function corresponding

to the expression returned by Wolfram Alpha, you may be able to use quad to get the numerical

result you need. (See Section 6.7.)

Sums

You may have forgotten the result of the infinite discrete sum
∑M
j=0 j

3, but typing

Sum[jˆ3, {j, 0, M}]

into Wolfram Alpha tells you it’s M2(M + 1)2/4, a result you may want someday for computing the

third moment of a uniform discrete probability distribution.

Ordinary differential equations

The differential equation dv/dt = −Av + Be−ct, where A, B, and c are constants, arises in the

context of virus dynamics. (See Section 5.1.1.) We can ask Wolfram Alpha to solve it:

solve dv/dt = -A*v + B*exp(-c*t), v(0) = vzero

To get a definite solution, we need to specify an initial value. In the expression above, we required

that v(t) should equal the constant vzero at time zero.

Another first-order ordinary differential equation arising in bacterial dynamics7 can be solved

similarly:

solve dx/dt = t - x, x(0) = 0

7 See Section 5.2.1 (page 66). Nelson, 2015, Chapter 9 discusses this system and its physical model.

Jump to Contents Jump to Index

C H A P T E R 9

Third Computer Lab

In this lab, you will import images into Python and display them. You will also explore an important

operation in image analysis: convolution. If you’ve ever played with photographic software such as

GIMP1 (or a commercial alternative), you may have used convolutions to smooth or sharpen images

but perhaps you didn’t know it. Your eyes and brain are also doing convolutions whenever you look

at anything.

Not all visual data comes from photographs. Many kinds of experimental measurements generate

arrays of numbers associated with points in space. Such data can be communicated to our brains

as images, as in atomic force microscopy, computed tomography, and magnetic resonance imaging.

Image processing is useful for making these images more meaningful to humans.

Our goals in this lab are to
• Explore the effects of various kinds of local averaging on an image;

• See how to use such averaging to decrease noise in an image; and

• Use specialized filters to emphasize specific features in an image.

9.1 CONVOLUTION

Python gives us access to tools for manipulating images, including convolutions. However, many of

the details are hidden. Before getting into Python specifics, let’s take a look at the mathematical

definition and properties of convolution. A convolution is an operation we perform on probability

distributions,2 but it has other uses as well. A common definition of the two-dimensional discrete

convolution C of an image array I with a filter array F is

Ci,j =
∑
k,`

Fk,` Ii−k,j−`. (9.1)

The sum ranges over all values of k and ` that refer to valid entries of both F and I. For example, we

cannot have i = 1 and k = 10 because the first index of I would be −9. (Python may accept this, but

the result would not be what you intended.)

Your
Turn
9A

a. Consider the trivial transformation, for which F is a 1× 1 matrix with

a single entry equal to 1. Explain why C is the same as I in this case.

b. Suppose that the size of F is m× n, and that of I is M ×N . Explain

why the size of C is (M +m− 1)× (N + n− 1).

1 GIMP is freeware: www.gimp.org .
2 For applications to probability distributions see Nelson, 2015, Chapter 4. For applications to image processing see

Nelson, 2017, Chapter 11.

106

https://www.gimp.org

9.1 Convolution 107

When we convolve an image with a filter, we get another image. The expression in Equation 9.1

is a set of instructions for constructing this new image: To create each pixel in C, we take the pixels

from a subset of the original image, multiply them by their respective weights in the filter, and add

up the result. It’s a simple recipe that can have very different results depending on the filter.

9.1.1 Python tools for image processing

Chapter 8 explained how to load, display, and save images with PyPlot. We also performed a

mathematical operation on an array to modify the image. Now we will expand our capabilities by

importing a module with several image processing functions:

import scipy.ndimage as sim

We chose the nickname sim as a mnemonic for “SciPy image library.”

One useful function in this module is sim.convolve. Use help to learn about this function and

its options. All of the filters we will use in this lab accept similar arguments.

In this lab, you will explore several filters and convolutions. As you proceed through the exercises,

you will see a photograph transformed by each operation. To get an idea of what is happening on a

pixel-by-pixel level, you can apply the same convolution to a single dot. (This is the impulse response

of the filter.) This will allow you to see the shape of the filter and better understand what you are

doing to the photograph.

Try the following now:

impulse = np.zeros((51, 51))
impulse[25, 25] = 1.0
my_filter = np.ones((3, 3)) / 9
response = sim.convolve(impulse, my_filter)

5 plt.figure()
plt.imshow(response)

We will explain this filtering operation in the next section. For now, compare the size of two arrays,

impulse and response. They are the same! You found in Your Turn 9A that the convolution of an

image with a filter is at least as large as the original image, and usually larger. Where do the extra

points go in Python? Where did they come from in the mathematical derivation?

Refer back to Equation 9.1 and look at C[0,0]. The allowed values of k and ` for this point give

only one contribution. Likewise, C[M+m-2,N+n-2] has only one contribution:

C[0, 0] is F[0, 0] * I[0, 0]

C[M+m-2, N+n-2] is F[m-1, n-1] * I[M-1, N-1].

The points at the edges of the convolved image receive contributions from fewer points in the original

image than do the points in the interior. This may lead to distortions at the edges of the convolved

image. Python crops the edges and returns only the central portion of the convolved image. This has

two advantages. First, every point in the convolved image uses at least a quarter of the filter. Second,

convolution does not change the size or shape of the original image.

Even with this cropping, however, points near the edge must be treated differently from those

in the center. The function sim.convolve and its relatives offer several options. The simplest is to

imagine that the image is surrounded by an infinite black border. That means we effectively enlarge

our image array to whatever size it needs to be to provide the same number of points for every

Jump to Contents Jump to Index

108 Chapter 9 Third Computer Lab

pixel in the convolution and set the values of all the new points to 0. To select this behavior, use

the keyword and value mode='constant' when calling sim.convolve. This overrides the default

behavior, which is to pretend that the image is surrounded by reflections of itself.

9.1.2 Averaging

A very simple filter assigns the same weight to each pixel in a fixed region, as in the impulse response

example above. Each pixel in the convolved image is an average of its neighbors in the original image.

Assignment:

Follow the instructions of Section 4.1 to obtain the data set 16catphoto. Copy the files bwCat.tif,

gauss filter.csv, and README.txt into your working directory.

a. Make a 3× 3 array my_filter in which each element equals 1/9. Why does it make sense to

choose the value 1/9? We’ll call this array the “small square filter.”

b. Use sim.convolve to convolve your new filter with the image you downloaded, and display the re-

sult. How does the image change? Try to achieve the same result by using sim.uniform_filter.3

[Hints: You can retain the previous picture for comparison by using plt.figure() to create a

new figure before displaying the second. Another option is to display the plots side by side with

plt.subplot. (Consult help(plt.subplot) and Section 4.3.7.) You need to set the color map

separately for each figure window that you create. (Consult help(plt.colormaps).)]

c. Repeat part (a) using a 15× 15 array (the “large square filter”). Be sure to use a constant value

appropriate to this larger array. How does the image change? How does it compare with the

result of the smaller filter?

d. Use the definition in Equation 9.1 to show that these convolutions produce images in which each

pixel is the average of some of the neighboring pixels in the original.

9.1.3 Smoothing with a Gaussian

Now we will look at a slightly more complex filter, called a Gaussian filter. Load the file

gauss filter.csv into a NumPy array called gauss. Then, review Section 6.4.3 to refresh

your memory on the function plot_surface.

Assignment:

a. Display the convolution of gauss with the original image. (Also try sim.gaussian_filter

with the keyword option sigma=5.)

b. Use plt.imshow to compare the convolutions of a single dot with a Gaussian filter and the

square filter you used in question 9.1.2b.

c. Use plot_surface to view the convolved images from part (b) in three dimensions. This is

actually a plot of the filters themselves. Use the definition of convolution to explain why. Then,

explain how convolution with a Gaussian filter differs from a square filter, and under what

circumstances one might prefer a Gaussian filter.

3 The functions sim.uniform_filter and sim.gaussian_filter can be significantly faster than sim.convolve
for large filters, but the output is not identical.

Jump to Contents Jump to Index

9.3 Emphasizing features 109

9.2 DENOISING AN IMAGE

Measuring instruments, including your eyes, inevitably introduce some randomness, or “noise.” You

can simulate this effect by making a noisy version of the original image you imported. To do this,

multiply each pixel in the original image by a random number.

If you take the default result of np.random.random, which is a random variable with mean 0.5,

the image will get darker. The image will also no longer be an array of integers between 0 and 255.

This can be addressed in three steps:

1. Shift the minimum of the new, noisy image array to zero. That is, find the smallest value of the

new array, and subtract that value from every element.

2. Rescale the array so that the maximum value is 255.

3. Change the data type to uint8. The astype method of an array can perform this conversion:

a = a.astype('uint8')

Assignment:

a. Multiply each pixel of the original image by a random number between 0 and 1, then transform

the resulting array following the steps above. Compare this noisy image with the original.

b. Apply each of the three filters from Sections 9.1.2–9.1.3 (small square, big square, Gaussian) to

the noisy image from part (a). Do they improve the image? If so, which one works the best?

Why? Zoom in on a small region of the resulting images. How do they compare at this scale?

9.3 EMPHASIZING FEATURES

You have probably heard news people say “Geeks at NASA’s Jet Propulsion Laboratory have

enhanced these images. . . .” Let’s join the fun.

In between “features” (real things of interest to us) and “noise” (random things), experimental

images may contain things that are real, but not of interest to us. We may wish to deemphasize

such things, or we may wish to quantify some visual feature. A. Zemel and coauthors encountered

such a situation when making fluorescence images of mesenchymal stem cells.4 When subjected to

mechanical stress (stretching), the cells polarize: The internal network of “stress fibers” begins to

align in the direction of the stretch. Zemel and coauthors sought to quantify the extent to which the

cell was polarized, at every point in the cell.

Follow the instructions of Section 4.1 (page 48) to obtain the data set 17stressFibers. Copy

README.txt and stressFibers.csv into your working directory.

The data in stressFibers.csv differs from that in the image files we used earlier. Look at

the maximum and minimum numerical values of the numbers in the array A. They lie outside the

range 0 to 255. PyPlot will still display the image, and you can perform operations on the array. For

consistency, you can rescale the array as described in the preceding section.

The image shows the stress fibers. We will now construct and apply a filter that emphasizes long,

slender objects that are oriented vertically.

4 A fluorescent label for nonmuscle myosin IIa was used to tag the stress fibers. See Zemel et al., 2010.

Jump to Contents Jump to Index

110 Chapter 9 Third Computer Lab

Assignment:

a. Execute the following code, then make a surface plot of the filter. Describe its significant features.

convolution.py [get code]
v = np.arange(-25, 26)
X, Y = np.meshgrid(v, v)
gauss_filter = np.exp(-0.5*(X**2/2 + Y**2/45))

b. Use the following “black box” code to modify your filter from part (a), then make a surface plot

of the resulting filter. Compare and contrast combined_filter and gauss_filter.

laplace_filter = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])
combined_filter = sim.convolve(gauss_filter, laplace_filter)

The matrix gauss_filter that you created emphasizes features that are long, slender, and oriented

vertically. Other features are averaged out. The array combined_filter accentuates the edges of

such objects.5

c. Now use sim.convolve to apply the filter to the fiber image, display your results, and comment.

You may notice that the filtered image has poor contrast. After convolution, the values assigned

to some pixels are extremely large or extremely negative, but most points fall in a narrow range

between the extremes. Python uses its shades of gray to interpolate between these extremes, giving

most points a gray level somewhere in the middle of the range. You can highlight the features you

wish to emphasize with another modification:6

plt.imshow(image, vmin=0, vmax=0.5*image.max())

d. In order to emphasize horizontal objects, repeat the above steps with a different choice for

gauss_filter. Optional: Make two more filters that emphasize objects oriented at ±45◦ with

respect to vertical.

5 T2 A Laplace filter emphasizes edges, but is sensitive to noise. A Gaussian filter smooths out noise and edges.

Combining the two creates a Laplace of Gaussian (LoG) filter that emphasizes edges while suppressing noise. The

“elongated” Gaussian used here creates an eLoG filter that emphasizes the edges of objects with a particular alignment.
6 T2 The keyword arguments implement a “window/level transformation.” Pixels whose luminance is less than vmin

are displayed black, those whose luminance is greater than vmax are displayed white, and pixels whose luminance

lies between these extremes are displayed in shades of gray. This transformation emphasizes contrast in the range of

interest while ignoring features outside that range.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#convolution

Get Going

Programming . . . can be a good job, but you could make about the same money

and be happier running a fast food joint. You’re much better off using code as

your secret weapon in another profession People who can code in biology,

medicine, government, sociology, physics, history, and mathematics are

respected and can do amazing things to advance those disciplines.

— Zed Shaw (2017)

We hope you have enjoyed getting to know Python. You have learned a lot—enough, we hope, for

you to continue learning on your own.

You do not have to study Python to learn more about it. Just apply what you have learned as you

study subjects that interest you. When you encounter an unfamiliar mathematical concept (perhaps

a “wave packet”), create a plot to gain some intuition. When you find an interesting model, explore

its behavior as you vary its parameters. When you come across a new statistical concept (perhaps

“skewness,” “kurtosis,” or the “interquartile range”), try applying it to some real or simulated data to

learn what it tells you about a collection of numbers. If you do this, then not only will you better

understand what you are studying; you will also improve your proficiency with Python. You may

need it when it’s time for your own research!

For fun and inspiration, we leave you with a script you can run. Give it a minute—literally. This

is an example of what you can do on your own now.

111

112 Get Going

surprise.py [get code]
import numpy as np, matplotlib.pyplot as plt
max_iterations = 32
x_min, x_max = -2.5, 1.5

5 y_min, y_max = -1.5, 1.5
ds = 0.002
X = np.arange(x_min, x_max + ds, ds)
Y = np.arange(y_min, y_max + ds, ds)
data = np.zeros((X.size, Y.size), dtype='uint')

10 for i in range(X.size):
for j in range(Y.size):

x0, y0 = X[i], Y[j]
x, y = x0, y0
count = 0

15 while count < max_iterations:
x, y = (x0 + x*x - y*y, y0 + 2*x*y)
if (x*x + y*y) > 4.0: break
count += 1

data[i, j] = max_iterations - count
20 plt.imshow(data.transpose(), interpolation='nearest', cmap='jet')

plt.axis('off')

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#surprise

A P P E N D I X A

Installing Python

This appendix explains how to install the Python environment described in the main text. The

Anaconda distribution is provided and maintained by Anaconda, Inc. It includes the Python language,

many libraries, the Spyder integrated development environment (IDE), and the Jupyter Notebooks

system in a single package. (A software package is a collection of programs and data files related to a

particular application or library. The data files include information about any other packages that

may be required for the new software to function properly.) Anaconda also provides a simple protocol

for updating packages and installing additional packages. There are many alternatives available. You

may find one better suited to your own needs or preferences. One place to look is www.python.org .

Our intention is not to promote a particular distribution of Python, but to promote Python itself

as a tool for scientific computing.

A.1 INSTALL PYTHON AND SPYDER

You can download Anaconda at anaconda.com/download .

You must first choose your installer. The site automatically detects your operating system, but

do not download anything just yet. First, make sure the installer offered to you matches your

operating system: macOS, Windows, or Linux. Second, make sure your operating system meets

the requirements for the current version of Anaconda. You can find the current requirements at

docs.anaconda.com/anaconda/install . Third, make sure you choose the proper version of Python.

The instructions below describe how to install the current version of Python 3 at the time of this

writing. (Newer versions of Anaconda and Python will presumably follow a similar installation process,

but consult the online documentation at docs.anaconda.com if you have trouble.) Finally, you

must decide which type of installation program you want: graphical or command line. The graphical

installation (point and click) is easiest, unless you already enjoy working with your operating system’s

command line.

If your computer meets the system requirements and you wish to carry out a graphical installation,

proceed to Section A.1.1.

If your operating system does not meet these requirements, the standard installation may not

succeed on your computer, or the installation may succeed, but some packages may not work properly.

You might wish to try Section A.1.1 anyway. If the installation doesn’t work, it is easy to undo the

process by uninstalling Anaconda. Another option is to try installing from the command line as

described in Section A.1.2. If that also fails, you can download an older version of the Anaconda or

Miniconda installer:
Anaconda repo.continuum.io/archive

Miniconda repo.continuum.io/miniconda

Try matching the approximate date of your operating system with the release date of the installer

for best results.

113

https://www.python.org
https://anaconda.com/download
https://docs.anaconda.com/anaconda/install
https://docs.anaconda.com
https://repo.continuum.io/archive/
https://repo.continuum.io/miniconda/

114 Appendix A Installing Python

The Anaconda website offers extensive documentation, so even if the instructions given here are

insufficient, you should still be able to get Anaconda up and running on your computer. For the most

detailed and up to date installation instructions, go to docs.anaconda.com/anaconda/install .

A.1.1 Graphical installation

macOS

To get the latest stable version of Python, on anaconda.com/download/ find the “Download” button

directly beneath “Python 3.7 version.” Click on the link to download the package. This is a large

download that will install many packages not used in this tutorial; however, the installation is

very easy. Unless you are comfortable working from the command line, this is the installation we

recommend.

Once the download finishes, find the package and open it. It is probably in your Downloads

folder. Double-click on the file to initiate an installation dialog. Unless you want to customize the

installation, just click “Continue” until you reach “Installation type.” Click “Change Install Location,”

then click “Install for Me Only.” This will create a folder called anaconda3 or Anaconda3 in your

home directory and store all the associated files there. Click “Continue.” Finally, click “Install” to

initiate a standard installation. You may be prompted for a password.

Once the installation is complete, you may find a new icon on your Desktop called Anaconda

Navigator.app. Open this application. Click on the
�� ��Launch button below “spyder” to start Spyder.

You can also start Spyder without Anaconda Navigator.app by double-clicking on spyder in the

folder where Anaconda installed it. By default, this is anaconda3/bin or Anaconda3/bin. A third

option is to start Spyder from your operating system’s command line by typing

$ spyder

and hitting <Return/Enter>. (Don’t type the $.)

Once you have successfully installed Anaconda and launched Spyder, proceed to Section A.2.

Windows

To get the latest stable version of Python, on anaconda.com/download/ find the “Download” button

directly beneath “Python 3.7 version.” Click on the link to download the package. This is a large

download that will install many packages not used in this tutorial; however, the installation is

very easy. Unless you are comfortable working from the command line, this is the installation we

recommend.

Once the download finishes, find the package and open it. It is probably in your Downloads

folder. Double-click on the file to initiate an installation dialog. Unless you want to customize the

installation, just click “Continue” until you reach “Destination Select.” Select “Install for Me Only”

unless you have a good reason for doing otherwise. This will create a folder called Anaconda3 in your

home directory and store all the associated files there. Click “Continue” to bring up the “Installation

Type” dialog. Click “Install” to initiate a standard installation. You may be prompted for a password.

Once the installation is complete, you may find a new icon on your Desktop called Anaconda

Navigator.app. Open this application. Click on the
�� ��Launch button below “spyder” to start Spyder.

You can also start Spyder without the Desktop application. After the install, you will find a new

folder called Anaconda or Anaconda (64-bit) under Start>All Programs. This folder contains a

shortcut to launch Spyder. The script that launches Spyder may also be found in the User directory

under Anaconda3\Scripts\spyder-script.py ; alternatively, Anaconda3\Scripts\spyder.exe

Jump to Contents Jump to Index

https://docs.anaconda.com/anaconda/install
https://anaconda.com/download/
https://anaconda.com/download/

A.1 Install Python and Spyder 115

will also work.

Once you have successfully installed Anaconda and launched Spyder, proceed to Section A.2.

A.1.2 Command line installation

To install Python on a Linux machine, or to install a leaner environment that includes only the

packages you want under macOS or Windows, you can use the conda package manager. You can

directly access this tool from the command line.

In this appendix, “command line” refers to a command line interface for your operating system—

not the IPython command prompt. For macOS users, this is Terminal.app. For Windows users, it

is cmd.exe. For Linux users, it is a bash shell. We have indicated the command prompt as $, but it

may look different on your system. Do not type the command prompt symbol when entering the

following commands.

To install Anaconda from the command line, first, download Miniconda. Go to

docs.conda.io/en/latest/miniconda.html and select the current version of Python 3 for your

operating system.

Once the download is complete, macOS and Linux users will need to run a script. At the command

line, type

$ bash ˜/Downloads/Miniconda3-latest-MacOSX-x86_64.sh

for macOS, or the equivalent command for your operating system, file name, and file location. This

will run the script. Windows users should double click the .exe file and follow the instructions on

the screen. After you agree to the license terms and select a directory for the installation (or agree to

the default location), the script will install Python 3 and the conda package manager. (Note that

you need to specify the complete path: /Users/username/anaconda3 or /anaconda3 for macOS

or Linux, or C:Anaconda3 for Windows. If you only provide the name “anaconda,” then files will be

installed in a new directory named anaconda in your current directory, wherever that may be.)

If this was successful, you can now run Python, but you will not yet be able to use modules like

NumPy, PyPlot, or SciPy, and you will not have access to the Spyder IDE. You can now install

them, and the entire Anaconda Python distribution, by typing

$ conda update conda
$ conda install anaconda

If you prefer to install individual packages to minimize disk space, this is simple using conda:

Instead of the second line above, use commands like

$ conda install numpy matplotlib scipy ipython

If you watch the screen after you execute these commands, you will see what conda does. It determines

which packages are necessary to install the specific ones you asked for, downloads all of the required

packages, and then installs and links everything.

Python comes with the IDLE integrated development environment. However, if you want to use

the Spyder IDE described in this tutorial, you will need to install it.

$ conda install spyder

In principle, this should install all the packages you need to run Spyder. Launch Spyder by typing

$ spyder

Jump to Contents Jump to Index

https://docs.conda.io/en/latest/miniconda.html

116 Appendix A Installing Python

In practice, you may find that some modules are missing and Spyder will not run. Spyder is actually

a colossal Python program. When something is amiss, it displays Python error messages. Perhaps

Spyder crashes when you try to run it. At the end of the terminal output you see

ImportError: No module named 'docutils'

Just issue the command

$ conda install docutils

and this problem is fixed. To get Spyder up and running, install any other missing modules using the

conda install command.

Even after Spyder is running, you may not have access to all of the debugging tools described in

this tutorial. If you are writing your own code later and find another missing module, you may be

able to install it with conda.

To run all of the code samples in this tutorial, you will need to use conda to install the following

packages:
conda install ipython IPython interpreter

conda install numpy NumPy

conda install matplotlib Matplotlib and PyPlot

conda install scipy SciPy

conda install pillow Image processing library

conda install sympy Symbolic computation library

To use the Spyder IDE or Jupyter notebooks, you will need to install them separately:
conda install spyder Spyder IDE (discussed above)

conda install jupyter Jupyter Notebooks

After installing Anaconda, you can run anaconda-navigator and spyder from the command

line. If you use Miniconda instead, you can install anaconda-navigator and spyder separately, and

then run these programs from the command line.

This set of packages should suffice to complete the exercises in this tutorial. However, there is a

lot more you can do with conda. For example, you can set up environments that allow you to switch

between Python 2 and Python 3, or use different versions of NumPy and SciPy. You can learn more

about conda at docs.conda.io/en/latest/.

A.2 SETTING UP SPYDER

Now that you have installed Spyder, there are a few settings to fine tune before you start writing

and executing scripts. All of these finishing touches will be made using the Preferences. To access

the Preferences, click the wrench icon, or select it from a drop-down menu: Tools>Preferences on

Windows, or python>Preferences on macOS. After making the changes below, you may need to

restart Spyder before they take effect.

A.2.1 Working directory

You will need to keep track of your files. The easiest way to do this from within Spyder is to tell it to

save all of your work in a folder that you specify. Choose “Current working directory” from the list

of options on the left of the Preferences panel. On the right, choose the button next to “the following

Jump to Contents Jump to Index

https://docs.conda.io/en/latest/index.html

A.2 Setting up Spyder 117

directory,” and then click on the folder icon to select a directory, or enter the path of the directory

you wish to use. You may wish to create a new folder named scratch or current to work in. After

you have selected a folder, click the appropriate buttons so that “Open file” and “New file” use this

directory.

You can still access files anywhere on your computer, but setting these options is the easiest way

to locate the files you create with Spyder.

A.2.2 Interactive graphics

Spyder’s default option is to display graphics in the IPython console, similar to programs like Maple

and Mathematica. However, these plots are static images. You cannot zoom, move, or rotate them.

To make interactive plots the default, click the menu item python>Preferences and select the

“IPython console” tab on the left of the Preferences window. Click on the
�� ��Graphics button at the

top of the menu on the right. In the panel called Graphics backend, set Backend to Tkinter or

something other than Inline. Finish by clicking
�� ��Apply at lower right.

You may have to restart Spyder before this change takes effect.

A.2.3 Script template

It is good practice to include the author, creation date, and a brief description in any scripts you

write. You will also import the NumPy and PyPlot modules in nearly every script you write for this

tutorial. You can give all of your scripts a standard header by using the Preferences.

Choose the menu item python>Preferences and select the “Editor” tab on the left of the

Preferences window. Next, click on the
�� ��Advanced settings button at the top of the menu on the

right. Click on the button marked
�� ��Edit template for new modules . This will open a file in the

Editor. Make changes to this file so that it contains text you want to include in every script you

write. Here is a sample:

-*- coding: utf-8 -*-
file_name.py
Python 3.7
"""

5 Author: Your Name
Created: %(date)s
Modified: %(date)s

Description
10 -----------

"""
import numpy as np
import matplotlib.pyplot as plt

The expressions with percent signs will insert the date when a file is created. The first line in this

sample template is optional. You should include it if your code makes use of any characters not in

the “standard ASCII set,” such as non-English characters and accents.

After you have finished editing this file, save your changes and close it.

Jump to Contents Jump to Index

118 Appendix A Installing Python

A.2.4 Restart

After you make these changes and adjust the other preferences to your liking, quit Spyder and

relaunch. You should now be ready to carry out any of the exercises in this tutorial.

A.3 KEEPING UP TO DATE

In the future, there will be new releases of Python and its modules, and the people in charge of the

Anaconda distribution will work to eliminate bugs. You can get the latest and greatest Anaconda

distribution by using the conda package manager. This can be done from your operating system’s

command line.

At the command line, type

$ conda update conda
$ conda update anaconda

The package manager will determine which files need to be downloaded, installed, and updated.

You can choose to accept or reject the proposed changes, and conda will do the rest.

You can update or install individual packages with conda. For example, conda update numpy

will download and install the latest version of NumPy.

The Anaconda Navigator also allows you to update or install individual packages. It provides a

graphical interface to the conda package manager. Click on the Environments tab on the left side

of the navigator window. There are drop-down menus and buttons that allow you to manage the

packages in your installation. To update a package you have already installed, select Installed from

the first drop-down menu; to install a new package, select Not installed from the first drop-down

menu. Locate the package you wish to update or install and click the Update index ... button.

Then conda will take care of the rest.

For more information on conda, see docs.conda.io/en/latest/

A.4 INSTALLING FFMPEG

FFmpeg is an open-source encoder for creating audio and video files. It can be used to create

animations within Python, as described in Section 8.3. However, FFmpeg is not part of Python, nor

is it available as part of the Anaconda distribution. The easiest way to install it on your computer is

to use a package manager. This is a program that will determine all the libraries that are necessary to

run the program you request, then download, install, and link everything together so your program

runs properly. conda is a package manager. MacPorts (macports.org) and Homebrew (brew.sh) are

popular options in macOS. In Linux, yum (yum.baseurl.org) and apt-get (wiki.debian.org/Apt)

are widely available. The procedure for installing FFmpeg is similar for all of these, but for simplicity,

we will describe the procedure for conda.

Many individuals and organizations that are not associated with Anaconda, Inc. have made large

repositories of code available through the conda package manager. A repository like this is called a

“channel” and we need to direct conda to the appropriate channel to install FFmpeg. (This appendix

illustrates how to access the conda-forge channel: conda-forge.org .) Using a channel requires a

slight modification to the installation command:

Jump to Contents Jump to Index

https://docs.conda.io/en/latest/index.html
https://macports.org
https://brew.sh
http://yum.baseurl.org
https://wiki.debian.org/Apt
https://conda-forge.org/

A.5 Installing ImageMagick 119

$ conda install --channel conda-forge ffmpeg

The installation should proceed as with other Python packages, even though FFmpeg is not a Python

package. Once conda has finished, you can test the installation by asking your operating system to

locate the program ffmpeg. Type

$ which ffmpeg

at the command line. You should see something like “/Users/username/anaconda3/bin/ffmpeg.”

This indicates that Python will now be able to find and run FFmpeg.

A.5 INSTALLING IMAGEMAGICK

ImageMagick is a collection of open-source command line tools for creating and manipulating images.

It can also be used to create animations within Python, as described in Section 8.3. Like FFmpeg,

ImageMagick is available through the conda package manager through the conda-forge channel.

$ conda install --channel conda-forge imagemagick

The installation should proceed as with other Python packages, even though ImageMagick is not a

Python package. Once conda has finished, you can test the installation by asking your operating

system to locate the program magick. Type

$ which magick

at the command line. You should see something like “/Users/username/anaconda3/bin/magick”

This indicates that Python will now be able to find and run ImageMagick.

You can also download and install ImageMagick by following the instructions at imagemagick.org.

However, just to show that using another package manager need not be intimidating, we close by

illustrating the use of the Homebrew package manager for macOS to install FFmpeg and ImageMagick.

1. Install Homebrew by following the instructions here: brew.sh (It only requires copying and

pasting a single line of code into the command line of Terminal.app.)

2. Open Terminal.app. At the command line, type

$ brew install ffmpeg imagemagick

3. Wait a couple of minutes while Homebrew installs the programs.

4. Verify the installation. Type the following at the command line:

$ which ffmpeg
$ which magick

If your operating system was able to locate these programs, you should be able to run all of the

animation codes in Section 8.3.

Jump to Contents Jump to Index

https://imagemagick.org
https://brew.sh/

A P P E N D I X B

Jupyter Notebooks

There are many ways to write and run Python code. You could simply to write scripts with a text

editor and run them from your operating system’s command line. Many “front end” systems have

been developed to make coding easier. One of these is the Spyder integrated development environment

(IDE) described throughout the main text. This appendix describes another popular choice: the

Jupyter Notebooks system.1

Like a physical notebook, a Jupyter notebook is a record of your work. It is an interactive

document that is displayed in a web browser. However, all files are stored on your own computer, not

on a web server. Each notebook consists of a series of cells. Cells may contain either executable code

or formatted text. This means you can include presentation-quality documentation alongside your

source code. Jupyter notebooks are also easy to share. Another person can open your notebook and

run or modify the code while consulting your commentary.

Let’s look at a Jupyter notebook now.

B.1 GETTING STARTED

Although a Jupyter notebooks opens in your web browser, the software must be installed on your

computer. Jupyter Notebooks is included with the Anaconda distribution. It can also be separately

installed with the conda package manager. (See Appendix A.)

B.1.1 Launch Jupyter Notebooks

Once you have installed the software, you can launch a Jupyter Notebooks session from your operating

system’s command line with the command

$ jupyter notebook

You can also use the Anaconda Navigator application to launch the Jupyter Notebooks application.

(You may get a message like

Copy/paste this URL into your browser when you connect for the first time,

to login with a token: http://localhost:8888/?token=XXXX

Do as you are instructed to get started.)

A window will open in your default web browser with “Jupyter” at the top left corner (Figure B.1).2

The first of three panes is selected by default. This is a file browser that you can use to find and

1 “Jupyter Notebooks” is an extension of “IPython Notebooks” that will eventually be subsumed into “JupyterLab.”

The interface is similar to the notebook environment of Mathematica, Maple, and Sage.
2 T2 Starting Jupyter launches several “background processes” that you do not see. These processes communicate with

your web browser, which communicates with you. Both Jupyter and your notebooks are “local” since they are located

on your computer. The web browser simply provides a convenient and familiar interface for human users.

120

B.1 Getting Started 121

Figure B.1: The Jupyter Notebook file browser.

open an existing notebook or create new notebooks. If you open a Jupyter notebook from your

operating system’s command line, the file browser will start in the directory from which you issued

the command. If you launch from Anaconda Navigator, the file browser will start in your home

directory.

B.1.2 Open a notebook

If you don’t have any notebooks yet, use the file browser and navigate to a folder where you’d like to

create one. (You can create a new folder with the
�� ��New button at the top right of the file browser.

Check the box next to the new folder and then click
�� ��Rename to rename it.) Next, click on the�� ��New button and select “Python 3” from the dropdown menu. A new tab will open with a Jupyter

notebook that contains a single empty code cell called In[] (Figure B.2). Enter 1+1 and then click

the
�� ��button or hit <Shift-Enter> on your keyboard. You have just run your first code in a Jupyter

notebook!

You can save your notebook with the
�� ��button, the menu item File>Save, or the shortcut

<Cmd-S>. (Use the menu inside the Jupyter window — not your browser’s File>Save menu item.)

You can now find it in your computer’s file system (probably named Untitled.ipynb). If you would

like to rename a file, you can simply click on the name of the notebook at the top of the page, or you

can use the menu option File>Rename....

You can also open existing notebooks saved on your computer. For example, you can view a

sample notebook at the blog that accompanies this book.3 It illustrates many features of Jupyter

notebooks. You can download the notebook, open it, modify it, and play with your own copy. Many

other notebooks are also available for download from the web.

B.1.3 Multiple notebooks

You can run multiple notebooks at the same time. Return to the file browser tab, create a second new

notebook, and perform some other calculations. You now have two independent notebook sessions.

Each one has its own state, including the values of all variables. No information is shared between

notebooks. You can keep track of all open notebooks in the file browser tab: just select the
�� ��Running

pane. From this pane, you can selectively terminate any of your running notebooks.

3 physicalmodelingwithpython.blogspot.com/2016/01/jupyter-notebooks.html .

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/2016/01/jupyter-notebooks.html

122 Appendix B Jupyter Notebooks

Figure B.2: A new Jupyter notebook. The green border on the selected cell indicates that Jupyter is in input

mode.

B.1.4 Quitting Jupyter

When you are finished computing and editing, you will need to be sure you terminate all of the

processes Jupyter is running on your computer. Simply closing the tabs in your web browser will not

do the trick.

First, shut down each notebook. You can do this from within a notebook with the menu option

File>Close and Halt. This will close the notebook and shut down the Python process that was

running in the background. Alternatively, you can use the file browser. Select the “Running” pane to

see a list of all active notebooks. There will be a
�� ��Shutdown button next to each. Use it to shut

down all active notebooks.

Next, you need to terminate the Jupyter Notebooks application itself. The simplest way is to

use the
�� ��Quit button (Figure B.1). Alternatively, locate the “terminal window” associated with the

application. If you launched the Jupyter Notebooks application from the Anaconda Navigator, you

will need to find an application window that displays a series of messages from NotebookApp:

[I 03:14:04.679 NotebookApp] ...
[W 03:17:26.088 NotebookApp] ...
...

If you started Jupyter Notebooks from your operating system’s command line, this will be the

terminal window where you entered the startup command. Click on this application. Close the

Jupyter Notebooks application once and for all by typing <Ctrl-C>. The program will ask for

confirmation. Press <y> then <Enter> to confirm. The program is now closed.

The remainder of this appendix provides a brief overview of some useful features of Jupyter

notebooks. However, the best way to learn how to use Jupyter notebooks is to create your own and

explore those created by others.

B.1.5 T2 Setting the default directory

It is good practice to keep all of your work in one location. You can set the default starting folder for

Jupyter notebook sessions. (This is analogous to choosing the “current working directory” in Spyder.)

Jump to Contents Jump to Index

B.2 Cells 123

However, this is not currently possible from within Jupyter. You must use your operating system’s

command line. At the command line, type

$ jupyter notebook --generate-config

This will generate a configuration file called jupyter notebook config.py. This is simply a Python
file that sets a lot of options every time Jupyter starts up. It will be located in a hidden folder called
.jupyter in your home directory. Open this file in a text editor. Search for the lines

The directory to use for notebooks and kernels.
#c.NotebookApp.notebook_dir = ’’

Uncomment the second line and replace the empty string with the name of the folder where

you want Jupyter to run, such as "/Users/username/scratch/jupyter". Save and close. The next

time you start Jupyter, it will open in this folder.

B.2 CELLS

When you created a new, empty notebook, it consisted of a single cell. Every Jupyter notebook is

composed of one or more cells. Each cell may be one of the following three types:

• Executable Python code (or code in more than 40 other programming languages), possibly

accompanied by output from that code

• Text formatted with the Markdown system

• Plain text

You can select any cell and then insert a new one before or after it by using the Insert menu.

B.2.1 Code cells

Code cells are those in which you enter commands for Python. A single code cell may contain multiple

Python statements. If the code generates text output, it will appear below the input after an Out[N]:

prompt.

A series of code cells resembles a Python script, but Python will not necessarily carry out

commands in the order you enter them. When you create a new notebook or open an existing one,

Jupyter launches an IPython kernel in the background. This is the program that executes all of the

Python code during your session.4 You enter your code in code cells, and you can run these in any

order you choose. You can also select a group of cells and run them all in sequence by using the Cell

menu.

The notebook informs you of the order in which cells were evaluated. When you created an empty

notebook the cell was labeled In[]. When you asked Jupyter to evaluate 1+1, the name of the code

cell changed to In[1] to indicate that this was the first cell you evaluated in that session. When

you have many cells, they can be run in any order you wish. The cell name indicates the sequence

number of the most recent evaluation of that cell.5

4 Jupyter Notebooks and the Spyder IDE are built on top of the same IPython interpreter. All the Python code and

IPython magic commands in this book can be run in code cells.
5 When a cell takes a long time to run, its name temporarily changes to In[*] to indicate that it is still being

processed.

Jump to Contents Jump to Index

124 Appendix B Jupyter Notebooks

Each notebook remembers its state as you execute various cells. Even if you delete a cell from the

notebook, that cell’s effect on the kernel’s state persists. To start fresh, you can restart the kernel.

Use one of the restart options available from the Kernel menu at the top of the page. There is also a�� ��button for this purpose.

After you terminate or restart a kernel, all of your output remains visible in the code cells, even

though the state of the kernel has been lost. That’s good if you want to save the notebook or share it

with another reader. However, this behavior can be confusing if you want to rerun your notebook from

scratch. You can easily get confused about which output came from the latest run and which came

from the previous one. For this situation, there is a convenient menu item called Kernel>Restart &

Clear Output.

B.2.2 Graphics

If the code in a cell generates a figure, that will appear in the output region of the cell by default.

(You may need to add a plt.show() command to render graphics.)

If you prefer an interactive graphic instead of the default “inline” behavior, include the following

“magic” command immediately after importing PyPlot:

%matplotlib notebook # Create interactive graphics.

(This should eliminate the need for any plt.show() commands.) New figures have a “power button”

on the upper-right corner of the interactive plot window. Do all of your adjustments and explorations

before you click on it. Once you click on it, the figure will be frozen in its current state until you run

the cell to generate it again.

If you want to switch back to inline graphics, use the magic command

%matplotlib inline # Display static output in the cell.

B.2.3 Markdown cells

New cells are code cells by default, but you may wish to add some explanation, commentary, or

reflection. You could use Python comments within code cells, but Jupyter notebooks offer a more

flexible method for entering text. Select one or more cells and use the Cell>Cell Type menu to

change them to Markdown mode. Now, you can type text in the cell and it will not be executed.

Your typing shows up as plain text as you type. When you are finished, evaluate the cell with the
�� ��

button, as you would a code cell. The plain text input is replaced by more aesthetically pleasing

output. If you want to change what you have typed, double-click on the cell. You will see the plain

text that you entered, and you can begin editing.

You can format text using the Markdown language. Cells can even contain mathematical expres-

sions rendered with MathJax.6 A description of these features is beyond the scope of this appendix, but

the sample notebook demonstrates some of the possibilities. A web search for “jupyter notebook

gallery” provides many more examples.

6 MathJax allows you to use most TEX and some LATEX commands to produce beautiful mathematical output in

HTML. See docs.mathjax.org .

Jump to Contents Jump to Index

https://docs.mathjax.org/

B.5 Pros and Cons 125

B.2.4 Edit mode and command mode

A Jupyter notebook has two primary modes of operation. In command mode, the keys you type

carry out operations within the notebook: saving text, evaluating code cells, inserting or deleting

cells, and so on. In edit mode, the keys you type produce text within a cell.

You can enter edit mode by double-clicking on any cell. If a cell is highlighted, you can also enter

edit mode simply by pressing <Return/Enter>. (Keep in mind, however, that editing a cell has

no effect on the kernel’s state until you actually run the cell.) You can leave edit mode and enter

command mode at any time by clicking outside of a cell, or by pressing the <Esc> key. Now many

common operations can be carried out with a single keystroke. For example, <X> will delete the

current cell. If you accidently press <X> while in command mode, you can undo the operation with

<Z>. Another useful shortcut is <S>, which saves your notebook. See Help>Keyboard Shortcuts

for the complete list. Learning a few keyboard shortcuts can make using Jupyter notebooks a lot

easier and more efficient.

B.3 SHARING

You can share a notebook file with anyone who also runs Jupyter just by sending them the .ipynb

file. You can also export a static version in several other formats. An HTML version of your notebook

requires nothing but a web browser to view it. If you have the free LATEX software installed on your

system, you can also convert the notebook to a PDF file. Finally, you can share your notebooks over

the web.

If you save a notebook to Dropbox, you can share a link to the notebook with others. They

can go to the Jupyter notebook viewer (nbviewer.jupyter.org), enter the link, and view your

notebook—even if they do not have Python or Jupyter Notebooks installed on their computer. The

code repository github.com even has a notebook viewer built into the website. If you upload your

notebook there, anyone can view it, download it, or use a link to the file to view it in a notebook

viewer.

B.4 MORE DETAILS

The information in this appendix should be enough to get you started with Jupyter Note-

books. The notebook Introduction.ipynb available on this blog that accompanies this book

demonstrates more techniques. For more information, have a look at the official documentation:

jupyter-notebook.readthedocs.io . That site contains information on Markdown, MathJax,

other programming languages, and many other topics. Much of this information is even available in

Jupyter notebooks.

B.5 PROS AND CONS

Jupyter notebooks allow you to do your work, document your work, and see the results in a single file.

This makes them very useful for exploring new ideas, solving problems, and collaborating. Jupyter

notebooks are also useful in presenting your work. The notebook also eliminates the often painful

Jump to Contents Jump to Index

https://nbviewer.jupyter.org/
https://www.github.com/
https://jupyter-notebook.readthedocs.io/en/latest/

126 Appendix B Jupyter Notebooks

step of including code and graphics in a formatted document. (Try creating a similar document with

a word processor, and you will see the advantages of Jupyter notebooks!) Jupyter notebooks are also

useful in teaching. A teacher can use notebooks for demonstrations, in-class collaborative work, and

assignments. A partially completed notebook can be a useful exercise for students.

Jupyter notebooks do many things very well. However, no tool is perfect for every job. The

browser interface places another layer of software between the programmer and the machine, and

performance can suffer. Complex graphics can overwhelm a browser at times. Many scientists and

programmers prefer an IDE such as Spyder for writing and debugging large programs—especially

those involving multiple files. It can be difficult to transform a notebook into a polished piece of

software.

Give Jupyter notebooks a try. You may find them to be the perfect tool for some of your work.

Jump to Contents Jump to Index

A P P E N D I X C

Errors and Error Messages

Now would be a good time to start making errors. Whenever you learn a

new feature, you should try to make as many errors as possible, as soon as

possible. When you make deliberate errors, you get to see what the error

messages look like. Later, when you make accidental errors, you will know

what the messages mean.

— Allen B. Downey

Everyone makes mistakes. When Python detects something wrong, it will halt a program and

display an error message. This process is called “raising an exception.”

Of course, Python doesn’t really know what you are trying to accomplish. (At least not yet . . .)

If you enter something syntactically correct, but not what you need to solve your problem, Python

can’t point that out to you. Hence the importance of testing your code and debugging it. Even when

Python does detect something wrong, it may not be able to tell you what you need to fix.

This appendix makes no attempt to catalog all of Python’s error messages. Instead, we show a

few common errors and decode them. As you learn about how Python interprets your code, you’ll

gain insight into these messages.

C.1 PYTHON ERRORS IN GENERAL

Before getting down to specifics, let’s take a look at Python’s general method for handling errors.

Follow the advice at the beginning of this chapter and make a few errors. First, type %reset to erase

all variables and modules. Then, type the following commands at the command prompt as written.

(Feel free to make your own errors as well.)

1/0
import nump as np
abs('-3')
a = [1,2,3]; a[3]

5 b = [1,2,3)
b[0]

You should get a different error message from each command. Notice that each error has a name—

ZeroDivisionError, TypeError, SyntaxError, and so on—followed by a message. When Python

detects an error, it raises an exception. You can raise an exception manually, and even provide your

own message. Try these commands:

raise TypeError
raise ZeroDivisionError("You should not divide by zero!")

127

128 Appendix C Errors and Error Messages

Python has classified many common errors. Thus, when it recognizes an error, it is able to

describe what went wrong and provide additional messages supplied by programmers. These messages

may not seem very informative at first, but compared with the “segmentation fault” of lower-level

programming languages, they are quite helpful.

Python not only allows programs to raise exceptions; it also allows you to catch them before they

terminate your program. To see the difference in behavior, try the following two methods of dividing

by zero:

import numpy as np
np.divide(1, 0)
1/0

The programmers who created NumPy decided that sometimes it is OK to divide by zero be-

cause some mathematical functions do have singularities. So they downgraded the exception from

ZeroDivisionError to RuntimeWarning, thus allowing some singular functions to return a value.1

This behavior allows NumPy to process an entire array and return a result, even if some of the

entries involve operations that are not well defined mathematically. In contrast, basic Python stops

execution and alerts the user.

You can override the default behavior by using Python’s protocol for handling exceptions. A

function call may raise an exception, but you can catch it before it halts the entire program and do

something else. Try typing

try:
1/0

except ZeroDivisionError:
print("1/0 -> infinity")

You do not need to master exceptions and exception handling at this point. The takeaway message

from this section is that Python will try to alert you to the nature of the error by raising an exception,

but not every program will handle the same errors in the same way.

Now let’s take a look at some common errors.

C.2 SOME COMMON ERRORS

• SyntaxError – This is the most common error for beginning programmers. It usually means you

typed a command incorrectly. To generate a syntax error, try the following:

abs -3

It may be obvious to a human reader what you mean here, but Python is not a human reader.

It knows of a function called abs, but this function should be called with a single argument in

parentheses. You did not call this function using the proper syntax, so Python raises a SyntaxError.

Sometimes Python is able to pinpoint exactly where the error occurred. Suppose that you used a

single equals sign when you wanted to test for equality:

if q = 3: print('yes')
else: print('no')

1 Some IDEs will suppress the RuntimeWarning and simply return the value np.inf without complaining.

Jump to Contents Jump to Index

C.2 Some common errors 129

Python replies with

File "<ipython-input-87-19c154aec9ce>", line 1
if q = 3:

ˆ
SyntaxError: invalid syntax

Here the caret (“ˆ”) pinpoints where Python’s scanner had arrived when it detected something

wrong. A syntax error may actually be located in a line preceding the one that is flagged. Python

waits until it is “sure” there is an error before issuing the exception. If you find that a flagged line

looks correct, work backward to see if there is an error on an earlier line.

Unmatched parentheses are a common source of syntax errors. For example, try the following:

x = -3
print(abs(x)))

Python will also raise a SyntaxError if it reaches the end of a file while still looking for arguments

to a function, closing parentheses, or something similar.

x = -3
print(abs(x)

If you type this in a script and then attempt to run the script, you will get a SyntaxError. However,

if you type these commands at the command prompt, IPython won’t allow you to commit the error.

Every time you hit <Return/Enter>, the cursor moves down a line and nothing else happens. Just

close the parentheses, hit <Return/Enter>, and Python will execute the command.

• ImportError – Python raises this exception when it cannot find a module you are attempting

to import or when it cannot find the function or submodule you are attempting to import from a

valid module. Most often, this occurs when you type the name of the module or function incorrectly.

(Remember, Python names are case sensitive.) Each of these lines raises an exception:

import NumPy
import nump as np
from numpy import stddev

If you are certain a module exists and you are spelling its name correctly, then you may need to

install the module on your computer, perhaps by using the conda tool. (See Appendix A.) If you have

installed the module, you may need to move it to a different directory or modify your computer’s

PYTHONPATH environment variable in order for Python to find it.

• AttributeError – Python raises this exception when you ask for a data attribute or method

from an object that does not possess it:

np.atan(3)
np.cosine(3)

This is usually due to spelling the name of a data attribute or method incorrectly, or misremembering

its abbreviation.

• NameError – Python raises this exception when you ask for a variable, function, or module that

does not exist. This can result from misspelling the name of an existing variable, function, or module.

It can also happen when you forget to import a module before using it.

Jump to Contents Jump to Index

130 Appendix C Errors and Error Messages

%reset
zlist
np.cos(3)

• IndexError – Python raises this exception when you provide an index that lies outside the range

of a list or array:

x = [1, 2, 3]
x[3]

You may make this error a few times before you get used to Python’s system of numbering elements

starting at 0 rather than 1.

• TypeError – Python raises this exception when you call a function with the wrong type of

argument. This can occur if you asked for user input and forgot to convert the string to a number

before performing a mathematical operation. It can also occur if you try to combine two objects in a

way Python cannot interpret:

abs('-3')
x = [1, 2, 3]; x[1.5]
2 + x

• AssertionError – Python raises this exception when an assertion statement is violated. It may

be the most helpful error message of all, because you ask Python to alert you to the problem.

x = [1, 2, 3, 4]
y = [1, 4, 9, 16, 25]
assert len(x) == len(y), "Lists must be same length!"

Python has more than 40 built-in exceptions, each for a unique type of error. See how many you

can generate!

Jump to Contents Jump to Index

A P P E N D I X D

Python 2 versus Python 3

There are two major versions of Python in wide use. In 2008, version 3.0 of Python was released.

This version was the first to break backwards compatibility, meaning that code written in earlier

versions of Python was not guaranteed to run in version 3.0 and later.

In this tutorial, we have chosen Python 3 when a choice was required. If you are already familiar

with Python 2 and do not want to change, have no fear. All the modules we describe are available

in both Python 2 and Python 3, and we have taken care to write code that will work in either

version whenever possible. There are only three instances where accommodating both versions was

not practical: division, the print command, and user input.

Fortunately, there is a special module called __future__ that makes many features of Python 3

available within Python 2. This includes both division and the print() function. To run all of the

code samples in this tutorial in Python 2.7, you only need to add the following two lines at the top

of each script and execute them at the beginning of each interactive session:

from __future__ import division, print_function
input = raw_input

To understand why, read on. To try out code samples, you can return to the main text now.

D.1 DIVISION

In Python 2, division of two integers returns the quotient and ignores the remainder. Thus, the result

is always an integer, even if the integers are not evenly divisible. In Python 3, division of two integers

instead returns a floating-point number if they are not divisible.

1/2 == 0 # True in Python 2; False in Python 3
1/2 == 0.5 # False in Python 2; True in Python 3

The second option is usually what we want in numerical computation. Users of Python 2 can get this

behavior from the __future__ module:

from __future__ import division

Integer division is still available in both versions of Python:

3//2 == 1 # True in Python 2; True in Python 3

D.2 PRINT COMMAND

The print command behaves differently in Python 2 and Python 3, though this will not have a

significant effect on the code samples in this tutorial.

In Python 2, print is a statement, like assert, for, while, and others. The command

131

132 Appendix D Python 2 versus Python 3

print "Hello, world!"

will do what you expect in Python 2, but in Python 3 it will raise a SyntaxError. That’s because

print is a function in Python 3. It requires arguments enclosed in parentheses, like every other

function.

In this tutorial, all print commands have the form required by Python 3:

print("Hello, world!")

This particular statement will also work in Python 2. However, if you use Python 2, be aware that it

will interpret a series of arguments in parentheses as a tuple. Thus,

print('x', 'y', 'z')

will produce different output in Python 2 and 3.

You can bring the Python 3 print function into Python 2 by importing it from the __future__

module:

from __future__ import print_function

There are two caveats. First, you cannot have both variants of the print command at the same time.

print "Hello, world!"

will now result in a SyntaxError. Second, importing from the __future__ module is irreversible.

You must restart Python to revert to standard Python 2 behavior.

D.3 USER INPUT

Python 2 has two statements for obtaining input from the user: input() and raw_input(). In

contrast, Python 3 has only one: input(). However, Python 3’s input() function behaves like

Python 2’s raw_input() function. That means code samples in this tutorial that use input() may

not work properly in Python 2.

What is the difference between the two? In Python 2, raw_input() returns a string, whereas

input() attempts to evaluate whatever the user types as a Python statement. Suppose a script has

the following statements:

input("Type 33/3 and hit <Enter>: ")
raw_input("Type 33/3 and hit <Enter>: ") # Raises NameError in Python 3

In Python 2, if the user follows instructions the first statement will return the integer 11.1 The

second statement will return the string '33/3'. In Python 3, the first statement will return the

string '33/3', while the second statement will result in an error because there is no function named

raw_input().

The exercises in this tutorial assume that input() returns a string. They may run without

modification, but to run the code samples as intended in Python 2, you will need to either replace

every instance of input() with raw_input(), or redefine the input function:

input = raw_input

The input function is not available in the __future__ module at this time.

1 Users who do not follow instructions are the primary reason this function was eliminated in Python 3.

Jump to Contents Jump to Index

D.4 More assistance 133

D.4 MORE ASSISTANCE

A script named 2to3 automatically generates Python 3 code from programs written using Python

2. Though it is not necessary for this tutorial, 2to3 may be useful in making your other projects

compatible with Python 3. See docs.python.org/2/library/2to3.html.

It is also possible to install and run multiple versions of Python—2 or 3—on the same machine

using “environments” with the conda tool described in Section A.1.2.

Jump to Contents Jump to Index

https://docs.python.org/2/library/2to3.html

A P P E N D I X E

Under the Hood

This appendix describes how Python handles variables and objects internally. It is not essential

to understand this material to complete the exercises in this tutorial, but it may be useful when

analyzing errors and writing (or reading) more advanced code in the future.

E.1 ASSIGNMENT STATEMENTS

Section 2.1 claimed that in Python, everything is an object, endowed with data attributes and

methods. When executing an assignment like x=np.arange(10), Python binds a variable name to

an object.

In some programming languages, a statement corresponding to x=np.arange(10) would allocate

a block of memory, assign it the name x, then place an array of integers inside that block. The

block of memory is permanently linked to the name x, so the name and the object it represents are

essentially the same thing. This is not true in Python. Python creates an ndarray object, then stores

its memory address in x. Thus, the variable x points to the ndarray object. The name x can be used

to access all of the methods and data attributes of the ndarray object, but the ndarray object and

the variable x are separate entities.

One consequence of this arrangement is that two variables can point to the same object (the

same memory address). Try this:

x = np.zeros(10)
y = x
x[1] = 1
y[0] = 1

5 print("x={}\ny={}".format(x, y))

You’ll we see that x and y both point to the same array. Assignment statements can also bind an

existing variable to a different object. Try the following lines of code:

x = np.zeros(10)
y = x
y = y + 1

After the first two lines, x and y point to the same array. The assignment in the third line creates a

new array to hold the result of y+1, and then binds the variable y to the new array. It has no effect

on x or the original array. (You can verify this in the Variable Explorer.)

An assignment statement like y=x does not permanently link x and y.

They only point to the same object until one of them is reassigned.

A consequence of this rule is that an assignment statement like y=x+1 does not link x and y at all: y

points to a new object created after evaluating the expression x+1.

134

E.3 Functions 135

If y=x binds both objects to the same memory address, how can you make an independent copy

of an object? The answer depends on the type of object. You can copy a Python list by using the

slicing operation:

x = [1, 1, 1]
y = x[:]
x == y

The variables x and y now contain the same elements, but are they the same list? Find out:

x[1] = 0
print("x={}\ny={}".format(x, y))

You cannot copy a NumPy array by using the slicing operation, however. Slicing creates a new

view of the existing array data, not a copy.1 Thus, modifying an element of the array also modifies

any slice containing that element. Likewise, modifying a slice will change the original array. To create

an independent copy of an array, you must use a method called copy. To understand the difference

between a slice and a copy, try this:

w = np.zeros(10)
x = w
y = x[:]
z = y.copy()

5 y[0] = 1 # Modify a slice.
z[1] = 1 # Modify a copy.
print("w={}\nx={}\ny={}\nz={}".format(w, x, y, z))

The relation between variables and objects and the effects of assignment statements are illustrated

in Figure E.1.

E.2 MEMORY MANAGEMENT

The objects created by Python do not persist forever. Python has a garbage collection routine that

periodically checks whether any variables point to each object for which it has allocated memory. If

no variables are bound to an object, then that object is deleted and its memory is reclaimed.

You can forcibly remove a variable by using the del statement: del x. However, Python will not

destroy the object x was pointing to unless no variables point to that object. Memory management

is under Python’s control, not yours. In general, this is a good thing.

E.3 FUNCTIONS

When a variable is passed to a function, what exactly is passed?

In computer science, there are two common paradigms: pass by value and pass by reference. Pass

by value means a function receives a copy of an object passed as an argument. Because the function

acts on a copy, nothing it does to its argument affects the original object. In contrast, pass by

reference means a function receives the memory address of an object passed as an argument. Since

1 The array methods ravel and reshape mentioned in Section 2.2.9 also return a new view of an existing array.

Jump to Contents Jump to Index

136 Appendix E Under the Hood

x = np.zeros(3)

x

array object

[0,0,0]

y = x

x

array object

y

y[0] = y[0] + 1

x

array object

[1,0,0]

y

y = y + 1

x

array object

[0,0,0]

y

array object

[1,1,1]

X

[0,0,0]

a b

c d

Figure E.1: Relationship between variables and objects in Python. The effects of the assignment statements

are shown in red. (a) Assigning a variable to a new object. The call to np.zeros(3) creates an array object.

Python then creates a variable named x that points to the array. (b) Assigning a variable to an existing object.

The assignment statement y=x does not create a copy of x. Instead, Python binds the variable y to the same

array as x. (c) Reassignment of a variable. After (b), both variables point to the same array. In the assignment

y=y+1, Python creates a new array when it evaluates y+1. It then binds y to this new array, with no effect on x.

(d) Changing an element of an array. The statement y[0]=y[0]+1 changes the value stored at position 0 of the

array that y points to. Because x and y still point to the same object, x[0] also changes.

the function acts on the original object, everything it does to its argument affects the original object.

If f is pass by value, then f(x) has no effect on x. If f is pass by reference, then f(x) can affect x.

Consider the following example:

def object_plus_one(y):
y = y + 1

def elements_plus_one(y):
5 for i in range(len(y)):

y[i] = y[i] + 1

x = np.ones(10)
object_plus_one(x); print(x)

10 elements_plus_one(x); print(x)

One function changes x; the other does not. It appears that Python uses both paradigms, even

Jump to Contents Jump to Index

E.4 Scope 137

though we did not specify either when writing the functions! How can you predict what will happen

when you write a function? The key is to remember that a variable points to an object, but it is not

the object. Technically, arguments to functions are always passed by value in Python. However, the

“value” being passed is a reference to an object, an address in memory. Thus, a function receives a copy

of the memory address where an argument’s object is stored. It creates a new local variable for each

argument and binds it to the same object as the corresponding argument. A function f(x) cannot

modify this address and make x point to a different object, but it can use this address to access

methods of the object stored there, and thereby modify the object that x points to. To distinguish

this behavior from the ordinary usage of pass by value and pass by reference, the paradigm used in

Python is often referred to as reference passed by value, or pass by address.

To better understand the behavior of functions, we next need to explore how Python finds an

object when it encounters a variable name.

E.4 SCOPE

The way in which Python looks up the value of a variable is subtle but important. Python keeps

track of variables using namespaces. A namespace is like a directory of names and objects that tells

Python where to find the object associated with a variable name. The subtle point is that Python

maintains multiple namespaces, each with its own scope. A scope is a portion of a program, like a

function body or a module, in which a namespace is accessible. For example, there is a namespace

that keeps track of all the variables you define at the command prompt. Its scope is global : Any

script you run or commands you type at the command prompt can find and use these variables.

Each time Python executes a function, it creates a local namespace containing all variables created

within the function. They are concealed from everything outside because the scope of the local

namespace is limited to the function itself. Recall the taxicab function of the measurements.py

module in Section 6.1:

excerpt from measurements.py [get code]
def taxicab(pointA, pointB):

"""
Taxicab metric for computing distance between points A and B.

5 pointA = (x1, y1)
pointB = (x2, y2)

Returns |x2-x1| + |y2-y1|. Distances are measured in city blocks.
"""
interval = abs(pointB[0] - pointA[0]) + abs(pointB[1] - pointA[1])

10 return interval

There is no variable called interval in the Variable Explorer before or after you execute the taxicab

function. It only exists in the local namespace of the function.

When you refer to a variable from within a function, Python will look for an object with that

name in an expanding search. Suppose that you accidentally typed x1 instead of pointA[0] in the

body of taxicab. When you call the function, Python will search for the name x1 in the following

namespaces, in order:

Local: First, Python determines whether x1 is defined in the function body or in its argument list.

If so, it ends the search and uses the object bound to that variable. There is no variable called

x1 in this example, so Python expands the search.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#measurement

138 Appendix E Under the Hood

Enclosing: Next, Python will determine whether the current function is defined as part of another

function. If so, it will determine whether x1 was defined within or passed as an argument to

this or any other enclosing functions. There may be multiple nested functions, each with its

own namespace for Python to search.

Global: If it still has not found x1, Python will check to see whether the module in which the

function is defined contains a variable called x1. (For example, if you had added the line

x1=10 outside of any function definitions in the measurements.py module, Python would stop

searching and use this value. If you defined taxicab at the command prompt or by running a

script instead of importing the module, then Python would search among all the variables in

your current session.)

Built-in: As a last resort, Python will check its built-in functions and parameters—those listed in

dir(__builtins__) . If it cannot find x1 here, it gives up and raises a NameError exception.

Knowing this hierarchy of L→ E → G→ B can be useful in debugging. Python may be finding a

value for a variable somewhere you never intended.

The following function demonstrates Python’s rules of scope.

scope.py [get code]
def illustrate_scope():

s_enclosing = 'E'
def display():

5 s_local = 'L'
print("Local --> {}".format(s_local))
print("Enclosing --> {}".format(s_enclosing))
print("Global --> {}".format(s_global))
print("Built-in --> {}".format(abs))

10 display()

s_global = 'G'
illustrate_scope()

This script defines three variables whose names indicate their namespaces with respect to the

display() function. When illustrate_scope() is called in the final line, Python executes the

function body. It defines a variable in the current namespace, defines the display() function,

and then calls this newly defined function. When Python executes display(), it must search for

four different names. It finds s_local within the local namespace, but none of the other variables

are defined there. Python finds s_enclosing in the enclosing namespace, s_global in the global

namespace, and abs within Python’s collection of built-in functions.

E.4.1 Name collisions

Scope is important in determining the effect of a function call. In the preceding example, all of the

variables had unique names. But what happens when variables in different namespaces have the same

name? Try the following example to see how Python resolves name collisions.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#scope

E.4 Scope 139

name_collision.py [get code]
def name_collisions():

x, y = 'E', 'E'
def display():

5 x = 'L'
print("Inside display() ...")
print("x= {}\ny= {}\nz= {}".format(x, y, z))

display()
print("Inside name_collision() ...")

10 print("x= {}\ny= {}\nz= {}".format(x, y, z))

x, y, z = 'G', 'G', 'G'
name_collisions()
print("Outside function ...")

15 print("x= {}\ny= {}\nz= {}".format(x, y, z))

Each assignment statement creates a variable in the current namespace, but it has no effect on

the variables in other namespaces. Thus, in this example there are three variables with the name

x, two with the name y, and one with the name z. When Python executes name_collision()

and display(), it must determine a value for each variable. It starts searching in the innermost

namespace, works its way through the L→ E → G→ B hierarchy, and uses the value from the first

namespace in which it locates each variable name.

Python uses namespaces, each with its own scope, to protect programs from unintended name

collisions. This means that you do not have to worry about giving each variable a globally unique

name when writing your own functions. However, Python cannot help you if you use the same variable

name for two different purposes in the same namespace, as discussed in Section 1.4.3. Reassigning

a name destroys any previous connection to another object. (Python’s namespaces do not include

the mind of the programmer!) Modular programming—breaking complex programs into a series of

simple functions that each accomplish one thing—and descriptive variable names are the best ways

to prevent this type of “name collision.”

E.4.2 Variables passed as arguments

When a variable is passed to a function as an argument, Python creates a new variable in the

function’s local namespace and binds it to the same object as the argument. Despite referring to the

same object, these two variables are independent—even if they have the same name. They exist in

different namespaces.

If an assignment statement within a function binds an argument to a new value, there is no effect

on the global variable passed as that argument. Python simply assigns the local variable to a different

object. In this way, Python allows functions to access external variables, not modify them. Such

modularity enforces good coding practice; however, there is an important exception to this principle.

A function can modify an object using the methods of that object. The more precise rule is, “A

function cannot reassign an external variable.” If a function modifies an argument using a method of

that argument, it is modifying an object that is bound to variables in multiple namespaces. This will

result in side effects—whether by design or mistake.

We can now explain the behavior of object_plus_one(x) and elements_plus_one(x) in

Section E.3. When x is passed as an argument to the function, a new local variable y is created in

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#name_collision

140 Appendix E Under the Hood

the function’s local namespace and bound to the same array as x, as in Figure E.1b. The assignment

y=y+1 binds the local y to a new object with no effect on the global x, as in Figure E.1c. Because no

value is returned by the function, and Python deletes local variables after evaluating the function,

object_plus_one(x) has no external effects—it accomplishes nothing.

In contrast, elements_plus_one(x) does not reassign its local variable y to a new object.

It uses an array method to modify the data of y. (See Section 2.2.6, page 24.) The statement

y[0]=y[0]+1 changes the value of the first element of the array, as shown in Figure E.1d. Because

the variable y in the function’s local namespace and the variable x in the global namespace point to

the same array, x[0] is also changed. This continues as the function iterates over the loop. Unlike

object_plus_one(x), elements_plus_one(x) produces a side effect: It changes the value of x.

E.5 SUMMARY

When we think about an assignment statement like x=2, it’s natural to imagine that some memory

is set aside for x, then the value 2 is stored there. Python does not use this approach. Instead, it

creates an integer object with the value 2, then binds the variable x to that object.

In Python, objects and variables exist independently of one another. After

an assignment statement, a variable points to the address in memory where

an object is stored.

Variables have a scope: They can only be accessed by certain portions of a program, and Python

uses namespaces to prevent conflicts between variables with the same name. There is no such

protection for the objects they are bound to. Multiple variables can point to the same object, and

this can lead to unexpected results when you are trying to carry out different operations on what

you thought were copies of the same data. Functions create temporary variables that are initially

bound to the same objects as their arguments. This, too, can lead to unexpected behavior.

Errors due to improper use of Python’s system of variables bound to objects can be difficult to

diagnose. The best way to avoid them is to plan carefully when writing code. When you make an

assignment or write a function, consider: Do I want two variables that point to the same data? Or

do I want to make a copy of the data?

Jump to Contents Jump to Index

A P P E N D I X F

Answers to “Your Turn” Questions

Your Turn 2B:

The np.array function is called on a list of lists—a two-element list whose elements are themselves

three-element lists of integers—so it creates a 2× 3 array to store the data. Python starts filling in

the (0,0) cell of the array. Each comma moves to the next column in the same row of the array. At

the end of the first list, that is, after “]”, Python moves to the first column of the next row of the

array. The resulting array is equivalent to a matrix with two rows and three columns containing the

original data.

Your Turn 2C:

The np.linspace function ends exactly at 10 and uses whatever spacing it needs to accomplish

that. In contrast, np.arange uses the exact spacing of 1.5 and ends just before it reaches 10.

Your Turn 2D:

To get the odd-index elements, use a[1::2]. This instructs Python to start at offset 1, then step

by 2 until it reaches the end of the array.

Your Turn 2E:

Python concatenates three strings to produce the output: s, a single space, and t.

Your Turn 3A:

a.

x = np.linspace(-3, 3, 101)
y = np.exp(-x**2)

b.

from scipy.special import factorial
mu, N = 2, 10
n_list = np.arange(N + 1)
poisson = np.exp(-mu) * (mu**n_list) / factorial(n_list)

Your Turn 4A:

fancy_plot.py [get code]
x_min, x_max = 0, 4
num_points = 51
x_list = np.linspace(x_min, x_max, num_points)

5 y_list = x_list**2
plt.plot(x_list, y_list, 'r', linewidth=3)

141

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#fancy_plot

142 Appendix F Answers to “Your Turn” Questions

ax = plt.gca()
ax.set_title("My Little Plot", fontsize=16)

10 ax.set_xlabel("x", fontsize=24)
ax.set_ylabel("$y = xˆ2$", fontsize=24)

Note that we have to set the font size for each element of the figure separately.

Your Turn 4B:

legend.py [get code]
ax = plt.gca()
ax.legend(("sin(2$\\pi$x)",\

"sin(4$\\pi$x)",\
5 "sin(6$\\pi$x)"))

Your Turn 6A:

The function should be similar to taxicab with a modified distance function. The docstring

should specify that each point contain three elements.

measurements.py [get code]
def crow(pointA, pointB):

"""
Distance between points A and B "as the crow flies."

5 pointA = (x1, y1, z1)
pointB = (x2, y2, z2)

Returns sqrt((x2-x1)**2 + (y2-y1)**2 + (z2-z1)**2)
"""
distance = np.sqrt((pointA[0] - pointB[0])**2 + \

10 (pointA[1] - pointB[1])**2 + \
(pointA[2] - pointB[2])**2)

return distance

Your Turn 6B:

a. x_step = 2*x_step - 1

b. x_position = np.cumsum(x_step) or x_position = x_step.cumsum()

c.

random_walk.py [get code]
from numpy.random import random as rng
num_steps = 500
x_step = rng(num_steps) > 0.5

5 y_step = rng(num_steps) > 0.5
x_step = 2*x_step - 1
y_step = 2*y_step - 1
x_position = np.cumsum(x_step)
y_position = np.cumsum(y_step)

10 plt.plot(x_position, y_position)
plt.axis('equal')

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#legend
https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#measurements
https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#random_walk

Appendix F Answers to “Your Turn” Questions 143

Your Turn 6C:

By default, plt.hist and np.histogram set up ten equally spaced bins. The variable bin_edges

is an array with eleven elements—the edges of the bins. The first element is the smallest entry

in the data list; the last element is the largest entry in the data list. Thus, each bin’s width

is (data.max()-data.min())/10. Meanwhile, counts[i] contains all the elements of data that

fall between bin_edges[i] and bin_edges[i+1]. Thus, bin_edges will always contain one more

element than counts.

Your Turn 6D:

surface.py [get code]
from mpl_toolkits.mplot3d import Axes3D
points = np.linspace(-1, 1, 101)
X, Y = np.meshgrid(points, points)

5 Z = X**2 + Y**2
ax = Axes3D(plt.figure())
ax.plot_surface(X, Y, Z)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1)

The commented line uses all points in the mesh. Use it for a coarse grid with fewer points.

Your Turn 6F:

a.

from scipy.integrate import quad
def f(x): return x**2
integral, error = quad(f, 0, 2)
print(integral - 2**3 / 3)

b.

quadrature.py [get code]
from scipy.integrate import quad
xmax = np.linspace(0, 5, 51)
integral = np.zeros(xmax.size)

5 def integrand(x): return np.exp(-x**2/2)
for i in range(xmax.size):

integral[i], error = quad(integrand, 0, xmax[i])
plt.plot(xmax, integral)

Your Turn 6G:

Driving the system near its resonant frequency (ω0 = 1) yields a strong response. The driven

mode of frequency ω = 0.8 is superposed with the natural modes required to satisfy the initial

conditions. Interference between modes of different frequencies produces a pattern of beats.

Your Turn 6H:

The vector at the point (x, y) has components (y,−x). This arrow is always perpendicular to the

vector from the origin to its base point, just like the velocity vector field of a rigid, spinning disk.

Jump to Contents Jump to Index

https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#surface
https://physicalmodelingwithpython.blogspot.com/p/code-samples.html#quadrature

144 Appendix F Answers to “Your Turn” Questions

Your Turn 6I:

a. This example gives trajectories that all spiral into the origin, because we added a small component

to V that points radially inward.

b. This example gives a fixed point at the origin of “saddle” type. One of the initial conditions runs

smack into the fixed point at the origin, but the others veer away and run off to infinity.

Your Turn 8A:

The resulting image is a negative of the original with no shades of gray, just black and white.

Everything darker than the mean lightness became fully white, and everything lighter than the mean

became fully black. In performing the array operation, NumPy has modified the data type of the

array from uint8 to bool. PyPlot has no trouble generating images and saving files with arrays of

different data types, but the array is no longer a collection of 8-bit luminance values.

Your Turn 9A:

a. In the Python indexing scheme, the only allowed index for F is (k, `) = (0, 0). Thus, Ci,j =

F0,0 · Ii,j = Ii,j .

b. Again using the Python indexing scheme, the allowed indices in Equation 9.1 run from (i, j) = (0, 0)

with (k, `) = (0, 0) to (i, j) = (M +m− 2, N + n− 2) = ([M − 1] + [m− 1], [N − 1] + [n− 1]) with

(k, `) = (m− 1, n− 1). Thus, C contains (M +m− 1)× (N + n− 1) entries.

Jump to Contents Jump to Index

Acknowledgments

Many students and colleagues taught us tricks that ended up in this tutorial, especially Tom Dodson.

Alexander Alemi, Steve Baylor, Gary Bernstein, Kevin Chen, R. Michael Jarvis, Michael Lerner,

Dave Pine, and Jim Sethna gave expert advice and caught many errors. Kerry Watson at Anaconda,

Inc. offered clarifications on the material in Appendix A. Three anonymous reviewers not only gave

us expert suggestions, but also questioned sharply the goals of the book in ways that helped us to

clarify those goals. Nily Dan reminded us to strive for utility, not erudition. Kim Kinder provided

encouragement and diversion in equal measure, at just the right times, throughout the writing of

this book.

This tutorial was set in LATEX using the listings package. Jobst Hoffman and Heiko Oberdiek

kindly supplied personal help. (The package settings that generated our code listings are available at

the book’s blog.)

We’re grateful to Ingrid Gnerlich and Mark Bellis at Princeton University Press for their meticulous

care with this unusual project, and to Teresa Wilson and Terry Kornak for their exacting, and

insightful, copyediting.

This tutorial is partially based on work supported by the United States National Science Founda-

tion under Grants EF–0928048, DMR–0832802, and (updated edition) PHY–1601894. The Aspen

Center for Physics, which is supported by NSF grant PHYS–1066293, also helped to bring it to

completion. Any opinions, findings, conclusions, jokes, or recommendations expressed in this book

are those of the authors and do not necessarily reflect the views of the National Science Foundation.

145

References

If you can know everything about anything, it is not worth knowing.

— Robertson Davies

Starting from the foundation in this tutorial, you may be able to get the advanced material you need

for a particular problem just from web searches. Some other references that we found helpful appear

below.

As your skills develop, you may start writing longer and more complex codes. Then it will pay off

to make an additional investment in learning about basic software engineering practices (for example,

in Scopatz & Huff, 2015) and specifically about user-defined classes (for example, in Downey, 2012;

Guttag, 2016; Scopatz & Huff, 2015). The PEP 8 Style guide for Python also provides guidelines for

writing Python code in a standard, readable way: www.python.org/dev/peps/pep-0008/ .

This book has alluded to the free LATEX typesetting system, in the context of graph labels and

Jupyter notebooks. You can obtain it, and its documentation, from www.latex-project.org/get/ .

A blog accompanies this book. It can be accessed via press.princeton.edu/titles/11349.html,

or directly at physicalmodelingwithpython.blogspot.com/. Here you will find data sets, code

samples, errata, additional resources, and extended discussions of the topics introduced in this book.
A counterpart to this tutorial covers similar techniques, but with the matlab programming

language (Nelson & Dodson, 2015).

Berendsen, H J C. 2011. A student’s guide to data and error analysis. Cambridge UK: Cambridge Univ.

Press.

Cromey, D W. 2010. Avoiding twisted pixels: Ethical guidelines for the appropriate use and manipulation

of scientific digital images. Sci. Eng. Ethics, 16(4), 639–667.

Downey, A. 2012. Think Python. Sebastopol CA: O’Reilly Media Inc.

www.greenteapress.com/thinkpython/thinkpython.pdf.

Guttag, J V. 2016. Introduction to computation and programming using Python. 2d ed. Cambridge MA:

MIT Press.

Hill, C. 2015. Learning scientific programming with Python. Cambridge UK: Cambridge Univ. Press.

Ivezic, Ž, Connolly, A J, VanderPlas, J T, & Gray, A. 2014. Statistics, data mining, and machine

learning in astronomy: A practical Python guide for the analysis of survey data. Princeton NJ: Princeton

Univ. Press.

147

https://www.python.org/dev/peps/pep-0008/
https://www.latex-project.org/get/
https://press.princeton.edu/titles/11349.html
https://physicalmodelingwithpython.blogspot.com/
http://www.greenteapress.com/thinkpython/thinkpython.pdf

148 References

Landau, R, & Páez, M J. 2018. Computational problems for physics with guided solutions using Python.

Boca Raton FL: CRC Press.

Langtangen, H P. 2016. A primer on scientific programming with Python. 5th ed. Berlin: Springer.

Libeskind-Hadas, R, & Bush, E. 2014. Computing for biologists: Python programming and principles.

Cambridge UK: Cambridge Univ. Press.

Lutz, M. 2014. Python pocket reference. 5th ed. Sebastopol CA: O’Reilly Media Inc.

Nelson, P. 2015. Physical models of living systems. New York: W. H. Freeman and Co.

Nelson, P. 2017. From photon to neuron: Light, imaging, vision. Princeton NJ: Princeton Univ. Press.

Nelson, P, & Dodson, T. 2015. Student’s guide to matlab for physical modeling.

https://github.com/NelsonUpenn/PMLS-MATLAB-Guide .

Newman, M. 2013. Computational physics. Rev. and expanded ed. CreateSpace Publishing.

Pérez, F, & Granger, B E. 2007. IPython: A system for interactive scientific computing. Computing in

Science and Engineering, 9(3), 21–29.

Pine, D J. 2019. Introduction to Python for science and engineering. Boca Raton FL: CRC Press.

Rougier, N P, Droettboom, M, & Bourne, P E. 2014. Ten simple rules for better figures. PLoS Comput.

Biol., 10(9), e1003833.

journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833.

Scopatz, A, & Huff, K D. 2015. Effective computation in physics. Sebastopol CA: O’Reilly Media.

Shaw, Z. 2017. Learn Python 3 the hard way: A very simple introduction to the terrifyingly beautiful world

of computers and code. Upper Saddle River NJ: Addison-Wesley.

Wang, J. 2016. Computational modeling and visualization of physical systems with Python. Hoboken NJ:

Wiley.

Zemel, A, Rehfeldt, F, Brown, A E X, Discher, D E, & Safran, S A. 2010. Optimal matrix rigidity

for stress-fibre polarization in stem cells. Nature Physics, 6(6), 468–473.

Jump to Contents Jump to Index

https://github.com/NelsonUpenn/PMLS-MATLAB-Guide
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833

Index

Bold references indicate the main or defining instance of a key term.

ˆ (not used for exponentiation),
13

', see quote
\, see backslash
\\(enter backslash in a string),

see backslash
:, see colon
=, see equals sign
==, see equals sign
>=, 46
<=, 46

** (exponentiation), 13
#, see commenting
#%%, see commenting
-, see hyphen
!= (not equal), 45
(), see parentheses
{}, see brackets, curly
[], see brackets, square
%, see percent sign
+, see plus sign
+=, 41
""", see commenting
;, see semicolon
// (integer division), see

arithmetic operators

*=, 41
, see underscore

+Close , 6
Options , 6, 34
Run , 6, 7, 37–39, 42, 71, 94
Stop , 6, 33, 34

abs, 27, 69, 72, 127–130, 137, 138
algorithm, 2
align, 76, 77
Anaconda, 5, 103, 113–115, 118

Navigator, 114
and, 46
and (Boolean operator), 46
angles, 14
animation, 99–103

frame, 99, 100
animation, 99, 100
arange, 21, 22, 25–27, 29, 31, 32,

34–36, 39, 47, 55, 86, 90,
94, 101, 110, 112, 134, 141

args, 84, 87, 88
argument, of a function, 14, 15,

16, 69, 72, see also
keyword argument

arithmetic operators, 13
integer division (//), 131
remainder (%), 30, 33

array, 21, 23, 26, 36, 51, 72, 73,
82, 110

array, NumPy, 5, 7, 12, 18–26, 31,
32, 34–36, 43, 46–48,
50–53, 55, 56, 61, 64, 65,
70, 72, 73, 75–78, 80, 82,
83, 85–89, 92, 94, 96, 135,
136, 143

concatenation, 22
creation from list, 21
data attributes and methods, 20
flattening, 26
indexing, 23, see index
multidimensional, 19, 20, 25, 35
reduction, 34
reshaping, 26
shape, 19
slicing, see slicing
view, 26, 135

as, 12, 13, 15, 37, 41, 44, 54, 55,
75, 76, 86, 89, 98, 99, 101,
107, 112, 117, 127–129, 142

assert, 40, 56, 130, 131
AssertionError, 40, 130
astype, 109
attribute

data, 18, 18–20, 55, 57, 58, 60,
62, 96, 129, 134

method, see method
AttributeError, 129
attributes, 57
Axes

current, see current axes
object, see object

axes, 56, 62, 99, 101
Axes3D, 60, 61, 77, 79, 143

axis, 56, 57, 91, 97, 112, 142
azim, 61

back end, graphics, 55, 58, 61, 117
Qt, see Qt

backslash, 27
double (to enter backslash in a

string), 27, 28, 58
escape character in strings, 27,

54
in raw strings, 50
line continuation, 9

bar, 77
base, 77
Bernoulli trial, 104
beta function, 104
betainc, 104
bin, 76

edges, 143
width, 143

binding, 17
bins, 76, 77, 98
bit depth, 96
bitmap (image file format), 63, 96
bool data type, 46, 144
Boolean

expression, 45
operator, 46
value, 27, 46, 75

brackets
curly, 29, 32

Mathematica, 104
round, see parentheses
square

indexing, see index
list specification, 19
Mathematica, 104

branching, 44
break, 45, 112
broadcasting, 35
bug, 1

theory, 39
builtins , 10, 14, 138

camel humps, 15

149

150 Index

canvas, 63
Cauchy distribution, 104
cell

Jupyter, 120
Spyder Editor, 42
subplot, 62

circle, see graphs
cla, 59
clabel, 78
close, 51, 54, 55, 62, 99, 101
cmap, 79, 97, 98, 112
coin flips, 74–75
colon, 32, 69
for loop, 31
function definition, 69
if statement, 45
in string formatting

specification, 29
plot line specifier, 56
slicing, 24, 25
while loop, 33

color, 56, 61
color, 58, 77, 89
colorbar, 98
colors, 78
comma

as delimiter, 51, 53
in list or tuple specification, 17,

19
to separate arguments, 15

command, 6
command line interpreter, see

IPython console
command prompt, see IPython

console
commenting, 40–43
comments, 50
complex number, see number
concatenation, see string and plus
console, see IPython console
contour, 78
contourf, 89
control structures, 31
convolution, 104, 106–107
convolve, 107, 108, 110
copy, 74, 135
copying lists and arrays, 135
cos, 14, 34, 61, 62, 72, 74, 78, 83,

87, 130
credible interval, 104
crunching sound, 2
cstride, 79
.csv files, 48
cumsum, 75, 99, 142
current axes, 55, 57
current figure, 55
curve fitting, 66

dashed line, see graphs
.dat files, 48
debugging, 38–40
def, 69, 71, 72, 74, 80, 81, 83, 84,

86–88, 99, 101, 136–139,
142, 143

Define once, and reuse often, 43,
50, 56, 68

del, 15, 135
delimiter, 7, 50, 51, 53
det, 82
dictionary, 53
diff, 94
differential equation, ordinary, see

equations, solving
dir, 10, 11, 14, 17, 18, 80, 82, 138
directory, 38, 49, 71, 102, 114,

115, 129
working, 49, 50, 52, 53, 63, 65,

66, 70, 96, 108, 109, 116
global, 71

distribution, 5
divide, 128
division, 131
division, Python 2 vs Python 3,

131
docstring, 42, 69, 71
Don’t duplicate, 43, 68
dot, see graphs
dot, 36, 72, 82
dot product, 36
dotted line, see graphs
draw, 61
dtype, 97, 112

e, 14, 15
%edit, 38, 50
Editor, 5, 6, 32, 37–38, 44, 49, 50,

71, 117
eig, 82
eigh, 82
elev, 61
elif, 31, 45, 46
else, 31, 45, 46, 72, 128
encoder, video, 100, 102
.eps files, 63, 96
equals sign

command, 3
double (relation), 3, 46

equations, solving
linear, 81–82
nonlinear, 79–81
ordinary differential (ODE),

84–87, 89–90
analytic, 105

polynomial, 81
analytic, 81

error, see also exceptions
messages, 9, 127–130
runtime, 39
syntax, 38

error bars, see graphs
errorbar, 60
escape character, 27
except, 128
exceptions, 7, 39, 69, 127–130, 138
exp, 12, 34, 61, 64, 74, 89, 101,

110, 141, 143
expm, 82
exponentiation, 4
eye, 20

factorial, 35
factorial, 7, 35, 94, 141
False, 3, 18, 27, 33, 40, 45, 46,

75
family, 58
fargs, 100
FFmpeg, 102, 118
figsize, 101
figure, 60, 62, 79, 87, 91, 98, 99,

101, 107, 108, 143
figure window, 55, 62, 91, 97

current, 59
saving, 63

File Explorer, 5
file output, 52–53

text, 53
filter, 106

Gaussian, 108, 110
Laplace, 110
square, 108

flatten, 26
flattening, see array, NumPy
float data type, see number
float, 17, 28, 45, 51
fmt, 60
folder, see directory
font, 58
fontsize, 58, 78, 142
for, 15, 31–35, 39, 44, 45, 47, 51,

54, 61, 69, 74, 81, 83, 87,
92, 101, 112, 131, 136, 143

for loop, see loop
format, 29, 31–33, 40, 41, 45, 54,

56, 102, 134, 135, 138, 139
formatting strings, 30
frame, video, see animation
frames, 100
from, 7, 12, 15, 60, 62, 71, 75, 76,

79–83, 85, 86, 99, 101, 103,
129, 131, 132, 141–143

fsolve, 80, 81
full_output, 81

Jump to Contents Jump to Index

Index 151

FuncAnimation, 99, 100
function

argument passing, 137
nickname, 12
scope, see scope
updating, 71
user defined, 68–74

functional programming, 73–74
fussy hygiene, 44
future , 131, 132

garbage collection, 135
gaussian_filter, 108
gca, 57, 59, 62, 142
gcf, 63, 97
geeks, 109
get_lines, 58–60, 101
get_supported_filetypes,

63
get_xticks, 57, 58
get_yticks, 58
.gif files, 63
GIMP, 106
gradient, 89
graphs, 76

2D, 55
3D, 60–61

viewpoint, 61
axis labels, 58
contour, 78–79
error bars, 60
font choice, see font
histogram, see histogram
legend, 28
line color, see color
line styles, 56, 58
log axes, 57
options, 56–59
scatter plot, 92
surface, 79
symbol choices, 56
title, 28, 58
updating, 100
vector field, 88–89

hard coding, 43
hash sign, see commenting
heat map, 77, 98
Heisenbug, 17
help, 10, 13, 21, 29, 36, 42, 46,

57, 62, 69–71, 75, 76,
80–82, 88, 89, 91, 94, 99,
107, 108

Help tab, 5, 10
hist, 62, 76, 77, 92, 94, 143
histogram, 76

higher-dimensional, 77

with specified bin edges, 77
histogram, 76, 143
histogram2d, 98
hstack, 22
html movie.py, 100
hyphen

in file name, 54
plot line specifier, 56

i (imaginary number), see j
IDE, see integrated development

environment
if, 15, 31, 33, 45–47, 69, 72, 112,

128
if statement, 45
image

color, 96
display, subtlety with

coordinates, 98
export, 97
import, 96

ImageMagick, 103
immutable object, see objects
imp, 71
import, 7, 11–13, 15, 37, 41, 42,

44, 51, 54, 55, 60, 62, 63,
70, 71, 75, 76, 79–83, 85,
86, 89, 98–101, 103, 107,
112, 117, 127–129, 131, 132,
141–143

ImportError, 116, 129
importing

code, 11
data, 48–51

impulse response, 107
imread, 96
imsave, 96, 97
imshow, 96–98, 107, 108, 110, 112
in, 31–33, 39, 45, 47, 51, 54, 61,

74, 83, 87, 101, 112, 136,
143

indentation, 31–32, 43
index, array, 23, 26–27

negative, 23, 25
IndexError, 130
indexing, 78
inf, 39, 128
infinite loop, 33
Inkscape, 63
input statement, Python 2 vs

Python 3, 132
input, 44, 45, 131, 132
int data type, see number
int, 13, 17, 28
integrate, 82, 83, 85, 86, 143
integrated development

environment, 5, 38, 113,

115, 128
integration, 82–84

analytic, 104–105
interpolation, 112
interpreter, 4, 5
inv, 82
io, 48
ion, 55
IPython, 5, 7, 10, 32, 37, 38, 50,

52, 55, 64, 71, 103, 115,
116, 123, 129

console, 2, 5–11, 13, 14, 16, 21,
23, 31–34, 37, 39, 42, 45,
51, 52, 55, 57, 61, 63, 69,
70, 75, 83, 117

is_integer, 18
item-by-item evaluation, 34–36, 75

j (imaginary number), 14
j (special syntax for complex

literals), 13
.jpg or .jpeg files, 63, 96
Jupyter Notebooks, 5, 113, 116,

120–126

kernel, 123
KeyboardInterrupt, 33
keys, 53, 65
keyword arguments, 7, 16, 50,

56–58, 71–72, 76, 78–80,
84, 87, 108

default values, 71

label, 58
lambda, 15
LATEX, 28, 124, 125, 147
legend, 58
legend, 58, 59, 142
len, 55, 56, 74, 130, 136
limit, 84
linalg, 81, 82
line numbers, 6
line object, see object
linestyle, 57, 58
linewidth, 58, 87, 90, 100, 141
linewidths, 78
linspace, 21, 22, 53, 55, 61, 62,

64, 78, 83, 88, 89, 101, 141,
143

list, 17, 19, 23, 35, 36, 47, 73
indexing, 23
slicing, see slicing

list data type, see list
list, 53
literal, 17, 18

float, 17
list, 17, 19

Jump to Contents Jump to Index

152 Index

numeric, 13, 17
string, 17, 27, 28
tuple, 19

load, 53
loadtxt, 7, 50, 51, 53
log, 39
logical indexing, 27
loglog, 57
logspace, 57, 77
lookfor, 11
loop
for, 31–32
nested, 47
while, 31, 33

ls, 57
lw, 99–101

magic commands, 7, 49, 50, 124
Maple, 104
Markdown, 120–126
marker, see graphs, symbol

choices
markerfacecolor, 56
markersize, 100
math, 12, 34, 39
Mathematica, 81, 104
matlab, 32, 48, 147
Matplotlib, 12, 54, 60, 99, 100,

116
matplotlib, 12, 13, 37, 41, 44,

54, 55, 63, 86, 89, 98, 99,
101, 112, 117, 124

matrix, 20, 23
operations, 20, 36, 82

max, 36, 77, 110, 143
mean, 20, 36, 92, 97
mean-square displacement, 92
meshgrid, 78, 88–90, 110, 143
methods, 18, 17–19, 57, 134
min, 36, 143
Miniconda, 113
mode, 108
modularity, 139
module, 10, 11, 70

nickname, 12, 39, 107
user defined, 70

modulo operator, see arithmetic
operators, remainder

movie, 100–102
movies, see animation
mpl_toolkits, 60, 79, 143
mplot3d, 60, 79, 143
ms, 99, 100
mutable object, see objects

\n (new line), 54
name, 17

collision, 15, 138, 139
NameError, 9, 39, 129, 138
namespace, 137, 139, 140

built-in, 138
enclosing, 138
global, 138
local, 137

nan, 39
ndimage, 107
nesting, 47
nickname, see module and

function
None, 46, 69, 72
nonzero, 94
not, 45, 46
not (Boolean operator), 46
np (nickname), see NumPy
np, 7, 12, 14–16, 19–27, 29–37, 39,

41, 45–47, 50, 51, 53, 55,
57, 61, 62, 64, 70, 72–78,
80–84, 86–90, 92, 94, 98,
101, 107, 109, 110, 112, 117,
127–130, 134–136, 141–143

.npy file, 52, 53

.npz file, 52, 53
num, 77
number

complex, 13
floating-point (float), 17

conversion from, to string, 28
conversion to, from string, 28

integer (int), 17
conversion from, to string, 28
conversion to, from string, 28

unsigned integer, 97, 109, 144
numerical error, 80, 82
NumPy, 5, 7, 11–14, 19, 20, 22,

26, 34, 35, 39, 42, 47, 48,
52, 53, 64, 74, 80–82, 89,
94, 96, 108, 115, 116, 144

array, see array
numpy, 11–13, 15, 37, 41, 44, 55,

62, 75, 76, 86, 89, 98, 99,
101, 112, 117, 128, 129, 142

object, 17–19, 57
Axes, 57, 59
figure, 59
immutable, 18, 19
line, 58, 59
list, see list
mutable, 18, 137
tuple, 19

ODE, see equations
odeint, 85–88
ones, 20, 22, 25, 107, 136
open, 51, 54

optimize, 80
or, 46
or (Boolean operator), 46
overflow, 94
overwriting an array, 73

package, 113
package manager, 5, 102, 103
parameter, 42

actual, 70
formal, 69

parentheses (round brackets)
function argument, see

argument of function
to override operator precedence,

14
tuple specification, see tuple

pass by address, 137
pass by reference, 135
pass by value, 135
path, 50, 63, 71
.pdf files, 63
percent sign

in header template, 117
in string formatting

specification, 30
magic commands, 7
remainder operator, 30, 33

pi, 14, 15, 29, 30, 61, 73
pixel, 96
plot, see graphs

window, see figure window
plot, 6, 7, 55–62, 65, 71, 83, 87,

91, 92, 99, 101, 141–143
plot_surface, 79, 108, 143
plt (nickname), see PyPlot
plt, 6, 7, 12, 13, 16, 37, 41, 44,

54–63, 65, 71, 76–79, 83,
86–92, 94, 96–99, 101, 102,
107, 108, 110, 112, 117,
124, 141–143

plus sign (for concatenation), 28,
36

.png files, 63
Poisson distribution, 93, 94
Poisson process, 94
pop, 18
positional argument scheme, 16
pow, 10, 54
Preferences, 116
Preferences menu, 49, 52, 117
print statement, Python 2 vs

Python 3, 131
print, 7, 8, 16, 18, 23, 31–33,

39–41, 45, 46, 51, 54, 128,
129, 131, 132, 134–136, 138,
139, 143

Jump to Contents Jump to Index

Index 153

probability density function, 82,
104

prod, 36
prompt, see IPython console
%pwd, 50
pyflakes, 38
pylint, 38
PyPlot, 5, 7, 12, 13, 28, 42, 48,

54–60, 63, 64, 79, 88, 96,
97, 107, 109, 115, 116, 144

pyplot, 12, 13, 37, 41, 44, 54, 55,
86, 89, 98, 99, 101, 112, 117

Qt, 55
quad, 82–85, 87, 105, 143
quiver, 88, 89
quote

double, 27
left, single (grave accent), 27
right, single (apostrophe), 27
triple, see commenting

raise, 127
rand, 99
randn, 98
random, 12, 62, 75, 76, 98, 99,

109, 142
random walk, 75, 91, 92, 99
range, 22, 32, 33, 45, 47, 54, 61,

74, 83, 98, 101, 112, 136,
143

raster (image file format), 63, 96
ravel, 26, 135
reducing an array, see array
reload, 71
request, 51
reserved words, 7, 15
%reset, 7, 8, 10, 13, 15, 37
reshape, 26, 135
return, 69, 70, 72–74, 80, 81, 83,

84, 86–88, 101, 137, 142,
143

reverse, 18
roots, 81
roots of equation, see solving

equations
round, 10, 15
rstride, 79
Rubber Duck Debugging, 40
%run, 37, 38, 49, 71
RuntimeWarning, 39, 128

Sage, 104
save, 53, 102
savefig, 16, 63, 102
savetxt, 53
savez, 53

saving
data and code, 52–54
figures, 63

scalar quantity, 20
scale, 88, 89
scatter, 92
scatter plot, see graphs
SciPy, 5, 35, 48, 80–82, 85, 115,

116
.ndimage, 107

scipy, 7, 35, 48, 80–83, 85, 86,
94, 104, 107, 141, 143

scope of variables, 137–140
scripts, 5, 8, 37–43
semicolon, 9
semilogx, 57
semilogy, 57
set_cmap, 79, 89, 97
set_data, 59, 99, 102
set_facecolor, 97
set_label, 58, 59
set_title, 58, 142
set_xlabel, 57, 58, 142
set_xticklabels, 58
set_ylabel, 58, 142
set_yticklabels, 58
setp, 58
shape, 20, 35, 55, 97
show, 124
side effect, 16, 73, 100, 139
sigma, 108
sim (nickname), see

scipy.ndimage
sim, 107, 108, 110
sin, 14, 34, 36, 53, 61, 62, 72, 78,

80, 84, 87
size, 20, 25, 58, 83, 112, 143
skiprows, 50
slash, double (integer division),

see arithmetic operators
slicing, 24–26, 135
solid line, see graphs
special, 7, 35, 94, 104, 141
split, 51
Spyder, 5, 6, 8, 10, 18, 32–34,

37–39, 42, 43, 49, 50, 52,
63, 113–118

sqrt, 7, 10–12, 14, 16, 31–35, 41,
45, 70, 72, 78, 89, 92, 142

sqrtm, 82
std, 20, 36
str data type, see string
str, 28–30, 38
streamlines, 89–90
streamplot, 89, 90
stress fibers, 109
stride, 24, 25

surface plot, 79
string, 17, 23, 27–30, 73, 130

accessing individual characters,
23

conversion from, to numeric, 28
conversion to, from numeric, 28
join (concatenate), 28
literal, 27
raw, 50
variable, 27

subplot, 62, 91, 108
sum, 20, 36, 75
sums, evaluated analytically, 105
surface plots, see graphs
svd, 82
.svg files, 63, 96
swapcase, 18
symbolic mathematics, 103
SymPy, 4, 103
syntax, 13
SyntaxError, 7, 127–129, 132

\t (tab), 54
tan, 14
tick marks, 57, 58, 60, 97, 100
.tif or .tiff image files, 63,

96, 108
tight_layout, 62
title, 58
transpose, 89, 98, 112
True, 3, 18, 27, 33, 35, 40, 45, 46,

75, 81
try, 128
.tsv files, 48
tuple, 16, 19, 20, 23, 46, 70, 73, 76

slicing, see slicing
.txt files, 48
TypeError, 28, 69, 127, 130

uint8 (data type), see number
underscore, 15, 54

as temporary variable, 73
uniform_filter, 108
units, 44
units, 88
unpacking, 73
urllib, 51
urlopen, 51

value
default (keyword), 71
of an object, 3, 4, 7–9, 14–16,

18, 136–140
in a graph title, 28

returned by a function, 15, 70,
72–73

Jump to Contents Jump to Index

154 Index

variable, 3, 17
names, 15

Variable Explorer, 5–7, 18, 20, 27,
39, 51, 65, 96, 97, 137

vector, 23
column, 20
field, see graphs
graphics, 63, 96
row, 20

vectorizing math, 34–36
view of an array, see array
view_init, 61
viewpoint, 61
viral load, 64
vmax, 110
vmin, 110
vstack, 22, 36

waiting times, 94–95
weight, 58
while, 31, 33, 41, 43–47, 69, 112,

131
while loop, see loop
whitespace, 41, 43, 48
width, 77
wildcard, 12, 102
window

figure (or plot), see figure
window

Spyder, 5
Wolfram Alpha, 104
write, 54

xerr, 60
Xfig, 63

xlabel, 58, 59
xlim, 56, 91, 99, 101
xmax, 56, 143
xmin, 56

yerr, 60
ylabel, 58, 59
ylim, 56, 99, 101

ZeroDivisionError, 127, 128
zeros, 19, 20, 22, 24, 25, 47, 61,

74, 83, 107, 112, 134–136,
143

zeros of equation, see solving
equations

Jump to Contents Jump to Index

	Cover
	Let's Go
	Why teach yourself Python, and why do it this way
	How to use this tutorial

	1 Getting Started with Python
	1.1 Algorithms and algorithmic thinking
	1.1.1 Algorithmic thinking
	1.1.2 States
	1.1.3 What does a = a + 1 mean?
	1.1.4 Symbolic versus numerical

	1.2 Launch Python
	1.2.1 IPython console
	1.2.2 Error messages
	1.2.3 Sources of help
	1.2.4 Good practice: Keep a log

	1.3 Python modules
	1.3.1 import
	1.3.2 from ... import
	1.3.3 NumPy and PyPlot

	1.4 Python expressions
	1.4.1 Numbers
	1.4.2 Arithmetic operations and predefined functions
	1.4.3 Good practice: Variable names
	1.4.4 More about functions

	2 Organizing Data
	2.1 Objects and their methods
	2.2 Lists, tuples, and arrays
	2.2.1 Creating a list or tuple
	2.2.2 NumPy arrays
	2.2.3 Filling an array with values
	2.2.4 Concatenation of arrays
	2.2.5 Accessing array elements
	2.2.6 Arrays and assignments
	2.2.7 Slicing
	2.2.8 Flattening an array
	2.2.9 Reshaping an array
	2.2.10 T2 Lists and arrays as indices

	2.3 Strings
	2.3.1 Formatting strings with the format() method
	2.3.2 T2 Formatting strings with %

	3 Structure and Control
	3.1 Loops
	3.1.1 for loops
	3.1.2 while loops
	3.1.3 Very long loops
	3.1.4 Infinite loops

	3.2 Array operations
	3.2.1 Vectorizing math
	3.2.2 Matrix math
	3.2.3 Reducing an array

	3.3 Scripts
	3.3.1 The Editor
	3.3.2 T2 Other editors
	3.3.3 First steps to debugging
	3.3.4 Good practice: Commenting
	3.3.5 Good practice: Using named parameters
	3.3.6 Good practice: Units

	3.4 Contingent behavior: Branching
	3.4.1 The if statement
	3.4.2 Testing equality of floats
	T2 On truth

	3.5 Nesting

	4 Data In, Results Out
	4.1 Importing data
	4.1.1 Obtaining data
	4.1.2 Bringing data into Python
	Arrays
	T2 Other kinds of text
	T2 Direct import from the web

	4.2 Exporting data
	4.2.1 Scripts
	4.2.2 Data files
	Data to be read by Python
	Data to be read by humans

	4.3 Visualizing data
	4.3.1 The plot command and its relatives
	Plotting options
	Log axes

	4.3.2 Manipulate and embellish
	Replacing curves

	4.3.3 T2 More about figures and their axes
	4.3.4 T2 Error bars
	4.3.5 3D graphs
	4.3.6 Multiple plots
	Multiple plots on the same axes
	Multiple plot windows

	4.3.7 Subplots
	4.3.8 Saving figures
	4.3.9 T2 Using figures in other applications

	5 First Computer Lab
	5.1 HIV example
	5.1.1 Explore the model
	5.1.2 Fit experimental data

	5.2 Bacterial example
	5.2.1 Explore the model
	5.2.2 Fit experimental data

	6 More Python Constructions
	6.1 Writing your own functions
	6.1.1 Defining functions in Python
	6.1.2 Updating functions
	6.1.3 Arguments, keywords, and defaults
	6.1.4 Return values
	6.1.5 Functional programming

	6.2 Random numbers and simulation
	6.2.1 Simulating coin flips
	6.2.2 Generating trajectories

	6.3 Histograms and bar graphs
	6.3.1 Creating histograms
	6.3.2 Finer control

	6.4 Contour plots and surfaces
	6.4.1 Generating a grid of points
	6.4.2 Contour plots
	6.4.3 Surface plots

	6.5 Numerical solution of nonlinear equations
	6.5.1 General real functions
	6.5.2 Complex roots of polynomials

	6.6 Solving systems of linear equations
	6.7 Numerical integration
	6.7.1 Integrating a predefined function
	6.7.2 Integrating your own function
	6.7.3 Oscillatory integrands
	6.7.4 T2 Parameter dependence

	6.8 Numerical solution of differential equations
	6.8.1 Reformulating the problem
	6.8.2 Solving an ODE
	6.8.3 T2 Parameter dependence

	6.9 Vector fields and streamlines
	6.9.1 Vector fields
	6.9.2 Streamlines

	7 Second Computer Lab
	7.1 Generating and plotting trajectories
	7.2 Plotting the displacement distribution
	7.3 Rare events
	7.3.1 The Poisson distribution
	7.3.2 Waiting times

	8 Still More Techniques
	8.1 Image processing
	8.1.1 Images as NumPy arrays
	8.1.2 Saving and displaying images
	8.1.3 Manipulating images

	8.2 Displaying Data as an Image
	8.3 Animation
	8.3.1 Creating animations
	8.3.2 Saving animations
	HTML movies
	T2 Using an encoder

	8.4 Analytic calculations
	8.4.1 The SymPy library
	8.4.2 Wolfram Alpha
	Integrals
	Sums
	Ordinary differential equations

	9 Third Computer Lab
	9.1 Convolution
	9.1.1 Python tools for image processing
	9.1.2 Averaging
	9.1.3 Smoothing with a Gaussian

	9.2 Denoising an image
	9.3 Emphasizing features

	Get Going
	A Installing Python
	A.1 Install Python and Spyder
	A.1.1 Graphical installation
	macOS
	Windows

	A.1.2 Command line installation

	A.2 Setting up Spyder
	A.2.1 Working directory
	A.2.2 Interactive graphics
	A.2.3 Script template
	A.2.4 Restart

	A.3 Keeping up to date
	A.4 Installing FFmpeg
	A.5 Installing ImageMagick

	B Jupyter Notebooks
	B.1 Getting Started
	B.1.1 Launch Jupyter Notebooks
	B.1.2 Open a notebook
	B.1.3 Multiple notebooks
	B.1.4 Quitting Jupyter
	B.1.5 T2Setting the default directory

	B.2 Cells
	B.2.1 Code cells
	B.2.2 Graphics
	B.2.3 Markdown cells
	B.2.4 Edit mode and command mode

	B.3 Sharing
	B.4 More details
	B.5 Pros and Cons

	C Errors and Error Messages
	C.1 Python errors in general
	C.2 Some common errors

	D Python 2 versus Python 3
	D.1 Division
	D.2 Print command
	D.3 User input
	D.4 More assistance

	E Under the Hood
	E.1 Assignment statements
	E.2 Memory management
	E.3 Functions
	E.4 Scope
	E.4.1 Name collisions
	E.4.2 Variables passed as arguments

	E.5 Summary

	F Answers to ``Your Turn'' Questions
	Acknowledgments
	References
	Index

		2019-05-06T06:09:22+0000
	Preflight Ticket Signature

