

1

Code Beauty

Prof. Fabio Kon

Department of Computer Science
Institute of Mathematics and Statistics

University of São Paulo

SugarLoafPLoP'2010 - 24/9/2010
Salvador, Brazil

2

Agenda

● Definition of Beauty
● Is Code Beauty important for Software

Development?
● What is Code Beauty

3

Beauty - Ancient View
● pre-socratic (e.g., Pythagoras): strong

connection among Beauty and Mathematics;
objects with proportions following the golden
ratio are more attractive to the human brain

● two quantities are in the golden ratio if the ratio of the
sum of the quantities to the larger quantity is equal to
the ratio of the larger quantity to the smaller one. The
golden ratio is an irrational mathematical constant,
approximately 1.6180339887

● greek architecture is based on symmetry and
on the golden ratio

4

Beauty - Romantic View

● works do not need to be harmoniously
proportioned and constitute a well-rounded
whole to be beautiful; on the contrary,
dissonance and fragmentation is beautiful

● more precisely: dissonance and fragmentation
allude to a harmony and wholeness that is not
in the work

5

Beauty - Modernist View

● architect Mies van der Rohe: “Less is More”

~ 1940

● designer Buckminster Fuller (geodesic dome)
adopted the engineer's goal of “Doing more
with less”

● writer Antoine de Saint Exupéry (1939)
“perfection is attained not when there is
nothing more to add, but when there is nothing
more to remove”

6

Beauty: Post-modernist view

● architect Robert Venturi: “Less is a Bore”, let's
do whatever people like

7

the greek and modernist views of beauty
provide us with a good basis for approaching
Beauty in Science and Technology

8

Science

make everything as simple as possible, but
not simpler

9

Technology

Conceptual integrity
– the architect or team of architects should

develop an idea of what the system should
do and make sure this vision is understood
by the rest of the team

– to ensure a user-friendly system, a system
may deliberately provide fewer features than
it is capable of

10

Beauty dictionary definition

the quality that gives pleasure to the mind or
senses and is associated with such properties
as

– harmony of form or color,

– excellence of artistry,

– truthfulness,

– and originality.

The American Heritage Dictionary of the
English Language, 4th Edition, 2000.

11

Does it matter?

Why are we talking about Code Beauty on a
“serious” Software Conference???

● personally, I have two reasons...

12

● there has been a strong movement towards
managing software development projects as
any other production process/system

● many cases of managers that have never
written a single line of code

● is it possible to have a good Chef de Cuisine
that has never cooked in his life?

13

● scientists/engineers/practitioners sometimes
tend to overestimate the power of science and
mathematics

● can science and engineering provide all what's
needed to explain life? and software
development?

14

What is Software Development?
– Modeling (Jacobsen)
– Engineering (Meyer)
– Discipline (Humphreys)
– Poetry (Cockburn)
– Craft (Knuth)
– Art (Gabriel)

(from from Alistair Cockburn)

● Common mistake: look at software as only
one of the above items.

15

● our goal here, is to bring attention to a few
important aspects of software development
that are neglected in some software
engineering communities

● we'll look at the most important deliverable on
a software project:

The Code

16

Beauty is fundamental
vinicius de morais

Beautiful code
– brings pleasure to the reader

– makes the writer happy

– makes working in groups fun

This leads to
– fewer bugs

– maintainability

– team productivity

– in other words, Quality

17

In Software Development,

Beauty

Leads to

Quality

18

What is Beauty in
Software Development?

sources:
● Robert C. Martin. Clean Code - A Handbook of Agile

Software Craftsmanship. Prentice Hall. 2008.
● Andy Oram and Greg Wilson. Beautiful Code.

O'Reilly. 2007.

● beaute(code) art exhibit by Bob Hanmer, Karen
Hanmer, and Andrea Polli.

● exchange with experts

19

Rebecca Wirfs-Brock's code beauty
● it is a common recognition that these idioms and those
structures and those ways of doing things are of value

● it is important that a project or a team have the same
sense of aesthetics or there will be clashes of will

● keeping of every step in a method at the same level of
abstraction/intention; it reads much more like prose that
way

● characteristics that are "normally" present in beautiful
code are balance, effectiveness, expressiveness, and
profoundly doing well what it was designed to do.

20

Rebecca's example of a
beautiful code

● the Smalltalk class collection

● provide all the built in behavior by requiring subclasses to
implement three methods:

●add: anObject
●remove: anObject ifAbsent: exceptionBlock
●do: aBlock

● methods in the abstract class collection to add, remove,
check for emptiness, inclusion, occurrences, and to step
through a collection in different ways accumulating values…
are all implemented use these abstract building blocks or
invoking other defined behaviors that depend on these
implementation; elegant, beautiful reuse!

21

Joe Yoder's code beauty
● I think it is important to most of us who live there; it is like
cleaning up our living area, having clean code or beautiful
code can make life much better

● however let's face it, BBoM still thrive and exist and are
successful

● it matters, but is not necessary and sufficient for successful
software projects. If so, then Clean Code would become the
norm

● those of us who care strive for it because we believe it is
the right thing to do and it will help us in the long run...but
certain forces are in play that can make clean code or
beautiful code a goal that is very hard to achieve

22

Joe's example of a
beautiful code

● also the Smalltalk class collection
● you see a certain beauty and elegance in the
system as it was easy to understand and extend

● (it's also my favorite piece of code :-)

● design patterns can help with this as well; if a
system is clean and well designed by implementing
some of the best known principles and practices one
can see certain beauty in the system

23

What is Clean Code?

Bjarne Stroustrup
Inventor of C++

“I like my code to be elegant and

efficient. The logic should be

straighforward to make it hard
for bugs to hide, the
dependencies minimal to
ease maintenance, error
handling complete according to
an articulated strategy, and
performance close to optimal
so as not to tempt people to make
the code messy with unprincipled
optimizations. Clean code does
one thing well.”

24

What is Clean Code?

Grady Booch
Author of Object Oriented Analysis and

Design with Applications

“Clean code is simple and direct.

Clean code reads like well-
written prose. Clean code never
obscures the designer's intent but
rather is full of crisp [clearly defined]
abstractions and straighforward
lines of control.”

25

What is Clean Code?

Dave Thomas
Founder of OTI, godfather of

the Eclipse Strategy

“Clean code can be read, and
enhanced by a developer other than
its original author. It has unit and
acceptance tests. It has

meaningful names. It provides

one way rather than many ways

for doing one thing. It has minimal
dependencies, which are
explicitly defined, and provides a
clear and minimal API. Code

should be literate since depending
on the language, not all necessary
information can be expressed
clearly in code alone.”

26

What is Clean Code?

Michael Feathers
Author of Working Effectively

With Legacy Code

“I could list all of the qualities that I
notice in clean code, but there is
one overarching quality that leads to
all of them. Clean code always
looks it was written by
someone who cares. There is
nothing obvious that you can
do to make it better. All of
those things were thought about by
the code's author, and if you try to
imagine improvements, you're led
back to where you are, sitting in
appreciation of the code someone
left for you – code left by
someone who cares deeply
about the craft.”

27

What is Clean Code?

Ron Jeffries
Author of Extreme

Programming Installed

“In recent years I begin, and nearly
end, with Beck's rules of simple
code. In priority order, simple code:
• Runs all tests
• Contains no duplication
• Expresses all the design
ideas that are in the system
• Minimizes the number of
entities such as classes, methods,
functions, and the like.”

28

What is Clean Code?

Ward Cunningham
Inventor of Wiki, Fit and much more

”Godfather of all those who care about code”

You know you are working on clean
code when each routine you
read turns out to be pretty
much what you expected. You

can call it beautiful code when the

codes also makes it look like
the language was made for
the problem.”

29

What is Clean Code?

Simple

Straightforward

Efficient

Expressive

Runs all tests

Literal

Turns out to be what
you expected

Minimal

Contains no
duplications

Full of meaning

Without obvious
improvements

Written by
someone who

cares

Reads well

Beautiful: when
the language was
made for the
problem

30

language may influence

/* C Language */
#include <stdio.h>
#define NumLines 10 /* number of lines */
main(argc,argv) int argc; char **argv;
{
 int tri[NumLines][NumLines], /* triangle */
 r,c,i; /* row, column, misc index */

 /* initialize array */
 for (r=0;r<NumLines;r++) {
 tri[r][0]=1;
 for (c=1;c<NumLines;c++) {
 tri[r][c]=0;
 };
 /* generate triangle */
 tri[0][0]=1;
 for (r=1;r<NumLines;r++){
 for (c=1;c<NumLines;c++) {
 tri[r][c]=tri[r-1][c] + tri[r-1][c-1];
 }
 };
 /* print triangle */
 for (r=0;r<NumLines;r++){

for (i=0;i < ((NumLines-r-1)/2);i++) printf(" ");
if (r%2 == 0) printf(" ");

 for (c=0;c<NumLines;c++){
 if (tri[r][c] != 0) printf("%3d ",tri[r][c]);
 };
 printf("\n");
 }
}

source: http://www.andreapolli.com/beaute%28code%29/good_bad_ugly/pascal.html

31

let's get a little more technical

32

Meaningful
Names

33

Meaningful Names

● Code is basically names and reserved words

● Choosing good names takes time but saves

more than it takes

● Names should be expressive and should

answer questions

Names are vital!

34

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

35

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

Many doubts arise...

1. What does this method get?

2. What kinds of things are in theList?

3. What is the importance of the zeroth position?

4. What is the significance of the value 4?

36

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

What about this
code?

37

Meaningful Names

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Problem
solved!

1. What does this method get? It gets all flagged cells!

2. What kinds of things are in theList? theList is a gameBoard filled with

cells!

3. What is the importance of the zeroth position? That's the Status Value!

4. What is the significance of the value 4? It means it is flagged!

38

Meaningful Names

Example
public List<int[]> getFlaggedCells() {

List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Going further...

public List<Cell> getFlaggedCells() {
List<Cell> flaggedCells = new ArrayList<Cell>();
for (Cell cell : gameBoard)

if(cell.isFlagged())
flaggedCells.add(cell);

return flaggedCells;
}

This is pretty
much what

you
expected!

39

● Use Readable names
● XYZControllerHandlingOfStrings != XYZControllerStorageOfStrings

● Use Searchable names

● Use the Language Standards

● Use Solution Domain names
● Use pattern and algorithm names, math terms, …

● Use Problem Domain names

● Don't confuse the reader
● Use the ”One Word Per Concept” rule

● Don't use jokes, mind mappings, hungarian notation, ...

Changes should be
easy!

To make changes, we
need to understand the

code!

40

Meaningful Names

● it is easy to say that names should reveal intent. What

we want to impress upon you is that we are serious about

this

● short names are generally better than longer ones, so

long as they are clear (do not promote obscurity to save a

couple of keystrokes)

● if you find a bad name, change it now!

Conclusion

41

Functions

42

Functions

● functions should have few lines
● each of them should be obvious and easy to understand

● functions should not hold nested structures
● if, while, else blocks should be straightforward

(probably a function call)

● the conditional should probably be a function call that encapsulates it

Functions should be
small!

43

Functions

● functions that do one thing can't be divided into sections

● two ways to identify whether a function does One Thing
● if a function does only those steps that are one level below the stated

name of the functions, then the functions is doing one thing

● If you can't extract another function from it with a name that is not

merely a restatement of its implementation, then it's doing one thing

One Thing!

Functions should do one thing.

They should do it well.

They should do it only.

44

public void pay() {
for (Employee e : employees) {

if (e.isPayday()) {
Money pay = e.calculatePay();
e.deliverPay(pay);

}
}

}

Example

It does more than one thing...

1. it loops over all the employees

2. checks to see whether each employee ought to be

payed

3. pays the employee

45

public void pay() {
for (Employee e : employees)

payIfNecessary(e);
}

private void payIfNecessary(Employee e) {
if (e.isPayday())

calculateAndDeliverPay();
}

private void
calculateAndDeliverPay(Employee e) {

Money pay = e.calculatePay();
e.deliverPay(pay);

}

Refactored
Example

It just iterates over
the employees

Checks whether an
employee ought to be paid

Pays the
employee

is this exaggerated?

46

Functions

● statements within a function should be all in the same level

● mixing levels is confusing
● once details are mixed with essential concepts, more and more

details tend to accrete within the functions

● it's the first step towards the creation of big functions!

● the Stepdown rule
● we want code to read like a top-down narrative

One level of Abstraction

47

Functions

● functions should minimize the number of arguments
● arguments are hard from a testing point of view

● too many arguments = the function does more than one thing

● too many arguments = the function is used in many different ways

● don't use flag arguments
● it loudly proclaims that the functions is doing more than one thing

Function arguments

48

Functions

● functions should not have side effects
● they usually create temporal coupling

● it should create a effect on the object or return something

● Don't Repeat Yourself (DRY)
● duplication may be the root of all evil in software

Last but not least

functions should be short, well named and nicely organized

49

Comments

”Nothing can be quite so helpful as a well-placed comment.
Nothing can clutter up a module than frivolous dogmatic
comments. Nothing can be quite so damaging as an old crufty
comment that propagates lies and misinformation.”

50

Comments

● comments are, at best, necessary evil
● the proper use of comments is to compensate for our failure to

express ourself in code; note that I used the word failure; I meant it

● they lie!
● programmers can't realistically maintain them

● comments don't always follow the code changes

● they require a maintenance effort that takes time

● truth can only be found in one place: the code

The problem with comments

51

Comments

Code is the only truth

52

Comments

● legal comments

● informative comments
● Commenting regular expressions can be quite useful

● explanation of intent and clarifications
● some decisions aren't implementation decisions

● we have to use libraries that aren't so expressive

● Amplification
● explain how important an element is

● TODO Comments and Javadocs in Public API

Good Comments

53

54

why should we write
beautiful code?

to feel good with ourselves

55

Bibliography

● Wikipedia definition for Beauty, Golden Ratio,
Minimalism. 2010.

● Fred Brooks. The Mythical Man-Month:
Essays on Software Engineering. 1975.

● Dorthe Jørgensen. The Metamorphosis of
Beauty. 2002.

● The American Heritage Dictionary of the
English Language, 4th Edition, 2000.

56

Bibliography

● Robert C. Martin. Clean Code - A Handbook of Agile
Software Craftsmanship. Prentice Hall. 2008.

● Andy Oram and Greg Wilson. Beautiful Code.
O'Reilly. 2007.

● beaute(code) art exhibit by Bob Hanmer, Karen
Hanmer, and Andrea Polli. Some material available at
 http://karenhanmer.com/gallery/?gallery=beautecode
and http://www.andreapolli.com/beaute(code)

● Interviews with experts

● slides by João Machini de Miranda - IME/USP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

