
9/27/2011

1

Big Balls of Mud
“Can we Avoid Them?”

Copyright 2011 Joseph W. Yoder & The Refactory, Inc.

Joseph W. Yoder -- www.refactory.com

Escape From The Spaghetti Code Jungle

Evolved from UIUC SAG
 In the early 90‟s we were studying

objects, frameworks, components,
reusability, patterns, “good” architecture

 However, in our SAG group we often
noticed that although we talk a good
game, many successful systems do not
have a good internal structure at all!

9/27/2011

2

Escape From The Spaghetti Code Jungle

Selfish Class
 Brian and I had just published a paper

called Selfish Class which takes a code’s-

eye view of software reuse and evolution.

 In contrast, our BBoM paper noted that in

reality, a lot of code was hard to (re)-use.

Escape From The Spaghetti Code Jungle

Big Ball of Mud
Alias: Shantytown, Spaghetti Code

A BIG BALL OF MUD is haphazardly

structured, sprawling, sloppy, duct-tape and bailing

wire, spaghetti code jungle.

The de-facto standard software

architecture. Why is the gap

between what we preach and

what we practice so large?

We preach we want to build high quality

systems but why are BBoMs so prevalent?

http://www.amazon.com/gp/reader/0192860925/ref=sib_dp_pt
http://www.stg.brown.edu/projects/hypertext/landow/victorian/darwin/darwin5.html

9/27/2011

3

Escape From The Spaghetti Code Jungle

Why BBoM?

 Why was this phenomenon so prevalent in
our industry? We sure talk a good game.

 We had seen where Lisp had failed,
Smalltalk was starting to fail, Windows was
winning. Why was this?

 What is there about some systems that
failed compared to systems that succeed,
even when they seemed better?

Escape From The Spaghetti Code Jungle

Worse is Better

Ideas resembles Gabriel‟s 1991
 “Worse is Better”

Worse is Better is an argument to
release early and then have the
market help you design the final
product. It is taken as the first
published argument for open
source, among other things.

Do BBoM systems have a Quality?

9/27/2011

4

Escape From The Spaghetti Code Jungle

What exactly do we

mean by "Big"?

Well, for teams I consider > 10^2 big

 and for code I consider > 10^5 big

Teams can write good code. Smalltalk

is an example. I‟ve seen teems of things

written by 10^1 or 10^2 be pretty good

and definitely would not be considered

to be a BBoM.

Escape From The Spaghetti Code Jungle

Mud == Anti-Pattern???
In one sense Mud could be seen as an anti-pattern.

Reasons Mud Happens:

 Throwaway Code, Piecemeal Growth, Keep it Working.

Similar Forces that lead to BBoM and anti-patterns.

Difference is that with BBoMs many reasons why they

happened and are even successful (and maybe even

necessary given our current state of the art).

Anti-Patterns were almost the opposite when you looked at

the book. These are counterproductive practices.

9/27/2011

5

Escape From The Spaghetti Code Jungle

Legacy == Mud?

Escape From The Spaghetti Code Jungle

Legacy != Mud???
 Does Legacy happen within months or a year

after the first release?

 Or is legacy after the second release?

 What about Muddy code that is released on the

first version? Is this a counterexample?

 Is all Legacy Mud? Smalltalk???

9/27/2011

6

Escape From The Spaghetti Code Jungle

Is Mud Normal?
 Well, just read our paper....there are

"normal" reasons why it happens. Maybe

it is the best we can do right now.

 If mud is such a bad thing, why do

people keep making it?

 Maybe if we accept it and teach it more

then we can deal with it better and help

prevent it from getting too bad.

Escape From The Spaghetti Code Jungle

Where Mud Comes From?

 People Write Code  People make Mud

http://www.zippah.com/~dtweed/dilbert/w0726866.htm

9/27/2011

7

Escape From The Spaghetti Code Jungle

Where Mud Comes From!

Throwaway Code

Legacy Mush

Urban Sprawl

Slash and Burn Tactics

Merciless Deadlines

Sheer Neglect

Software Tectonics

Reconstruction
• Major Upheaval

• Throw it away

Incremental Change

• Evolution

• Piecemeal Growth

Escape From The Spaghetti Code Jungle

Keep it Working, Piecemeal

Growth, Throwaway Code

http://liftoff.msfc.nasa.gov/RealTime/JTrack/Spacecraft.html

9/27/2011

8

Escape From The Spaghetti Code Jungle

Copy „n‟ Paste

Escape From The Spaghetti Code Jungle

The Age of Sampling

9/27/2011

9

Escape From The Spaghetti Code Jungle

Big Bucket of Glue

Escape From The Spaghetti Code Jungle

The Mystery of Dark Matter

Accidental Complexity??? Maybe our

current state of the art leads to Mud!

http://upload.wikimedia.org/wikipedia/commons/4/4b/DarkMatterPie.jpg

9/27/2011

10

Escape From The Spaghetti Code Jungle

They Have a Name

 Millionaires / Billionaires

Escape From The Spaghetti Code Jungle

Agile to the Rescue???

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

 …From the Agile Manifesto

9/27/2011

11

Escape From The Spaghetti Code Jungle

Can Agile Help?

Scrum, TDD, Refactoring, Regular

Feedback, Testing, More Eyes, ….

Good People!!!

Continuous attention to technical excellence!

Retrospectives!

Face-To-Face conversation.

Motivated individuals with the environment

and support they need.

Escape From The Spaghetti Code Jungle

Do Some Agile Principles

Encourage mud?
Lack of Upfront Design?

Late changes to the requirements

of the system?

Continuously Evolving the Architecture?

Piecemeal Growth?

Focus on Process rather than Architecture?

Working code is the measure of success!

I‟m sure there are more!!!

9/27/2011

12

Escape From The Spaghetti Code Jungle

The Quality Goes In

Escape From The Spaghetti Code Jungle

Quality
Quality Definition: a peculiar and essential

character or nature, an inherent feature or

property, a degree of excellence or grade, a

distinguishing attribute or characteristic

http://blog.modernmechanix.com/mags/Time/4-1965/zenith_hand_made.jpg
http://images.apple.com/iphone/gallery/images/gallery1_hires20070621.jpg

9/27/2011

13

Escape From The Spaghetti Code Jungle

Quality (Who‟s perspective)

Scientist Artist

Engineer Designer

important/boring true/false

cool/uncool good/bad

Rich Gold "The Plenitude: Creativity, Innovation & Making Stuff

(Simplicity: Design, Technology, Business, Life)“

Triggers and Practices – Richard Gabriel http://www.dreamsongs.com

An architect has

different perspectives

than an artist, or a

design, or an

engineer…

“The Four Winds of

Making”…Gabriel

Escape From The Spaghetti Code Jungle

Quality by Attributes
 Quality in everyday life and business,

engineering and manufacturing can be

seen as the usefulness of something.

Usually describes certain attributes.

• For example you could describe quality in

terms of performance, reliability (fault

tolerance), safety, maintainability,

reusability, etc…

Does quality on the inside

mean quality on the outside?

9/27/2011

14

Escape From The Spaghetti Code Jungle

Non-functional Requirements

Accessibility

Compatibility

Efficiency

Effectiveness

Extensibility

Maintainability

Performance

Reliability

Safety

Scalability

Security

Stability

Supportability

Usability

 Other terms for non-functional requirements are "constraints",

"quality attributes“, and "quality of service requirements"

Qualities are usually described by “ilities” as seen in non-functional

requirements…but quality can also focus on how well the

functional requirements are met (how to measure this?)

Escape From The Spaghetti Code Jungle

Brooklyn Bridge

The Brooklyn Bridge, 1883,

one of the oldest suspension

bridges in the United States, stretches

over a mile from Brooklyn to Manhattan.

On completion, it was the largest

suspension bridge in the world and the

first steel-wire suspension bridge.

9/27/2011

15

Escape From The Spaghetti Code Jungle

 Over engineered. Had 6 times what it

needed which proved useful over time

 What happens if we tried overdesign of our systems

(a language for printing hello world) or the same line

of code 6 times (is this 6 times more reliable?)

if (x != a) x = a; if (x != a) x = a; if (x != a) x = a;

if (x != a) x = a; if (x != a) x = a; if (x != a) x = a;

 Redundant components can

make our systems more reliable

Brooklyn Bridge

Escape From The Spaghetti Code Jungle

Being Good Enough
 Quality of being good enough.

 Does it meet the minimum requirements

 Quality has many competing forces…are

we designing a system for online orders or

for controlling the space shuttle, they have

different qualities, thus different patterns

and solutions apply.

 Perfection is the enemy of Good Enough!

 Maybe Quality without a Number.

http://en.wikipedia.org/wiki/Image:Panorma_BB.jpg

9/27/2011

16

Escape From The Spaghetti Code Jungle

Problems with Quality
 Too many people try to Quantify it. Quality is hard to

quantify, or we'd call it Quantity. What makes a book

good, a movie, a painting, ... should we measure the

length of the Godfather II, and make all our movies that

long, and achieve the same quality?

 Hemmingway was one of Literary Engineering's leading

figure, so we should study his sentence and paragraph

lengths, and ensure our sentences and paragraphs

conform to these Hemmingway metrics?

 Metrics can help a little when it comes to quality but miss

the point. QWAN can‟t really be quantify.

 How about: “Quality Without A Number...(QWANum)”

Escape From The Spaghetti Code Jungle

Patterns and Quality

 In a sense, patterns are all about quality

 Design Patterns were about giving
software the “quality” of being
more reusable and maintainable…
Quality of a good OO Design

 Fault Tolerance Patterns are about
proven practices that help ensure
build systems with the “quality”
of being able to handle faults

http://www.amazon.com/gp/reader/0201633612/ref=sib_dp_pt/002-1553903-4879203
http://www.amazon.com/gp/product/images/0470319798/ref=dp_image_0/104-3002740-9012712?ie=UTF8&n=283155&s=books

9/27/2011

17

Escape From The Spaghetti Code Jungle

Many Quality Patterns Written
 Design Patterns

 Patterns for Fault Tolerant Software

 Performance Patterns

 Small Memory Software Patterns

 Analysis Patterns

 Security Patterns

 Stability Patterns

 Usability Patterns

Imitate or use proven quality techniques

Escape From The Spaghetti Code Jungle

What is the Payoff?

 The question that keeps getting asked is what

value does the customer get from paying back this

technical debt? What value does the customer get

from simplifying this design? What value does the

customer get from cleaning this code?

 …

 The answer is almost universally – none!!!

 …Daniel Hinz comment on Brian Marick‟s Blog

9/27/2011

18

Escape From The Spaghetti Code Jungle

Does Quality Code Matter?

Patterns about creating quality code that

communicates well, is easy to understand,

and is a pleasure to read. Book is about

patterns of “Quality” code.

But…Kent states, “…this book is built on a fragile

premise: that good code matters. I’ve seen too

much ugly code make too much money to believe

that quality of code is either necessary or sufficient

for commercial success or widespread use.

However I still believe quality of code matters.”

Patterns assist with making code more bug free and

easier to maintain and extend.

Escape From The Spaghetti Code Jungle

Some Answers to Mud!?!

Can we gentrify, rehabilitate, or make-over

code helping clean up the mud?

Can refactoring, patterns, frameworks,

components, agile, and objects help

with mud?

9/27/2011

19

Escape From The Spaghetti Code Jungle

Total Code Makeover

Can we just Refactor out of Mud?

Sweep the Mess Under the Rug?

Escape From The Spaghetti Code Jungle

Total Code Makeover

9/27/2011

20

Escape From The Spaghetti Code Jungle

Code Make Over
Refactoring can help reverse some mud. The

tradeoff is cost and time....maybe with technology

Refactoring to Better Design (Patterns)…

Escape From The Spaghetti Code Jungle

Refactorings
Behavior Preserving Program

Transformations

• Rename Instance Variable

• Promote Method to Superclass

• Move Method to Component

Always done for a reason!!!

Refactoring is key and integral

to most Agile processes!!!

TDD

9/27/2011

21

Escape From The Spaghetti Code Jungle

A Simple Refactoring

Object

Concrete1 Concrete2

Object

Concrete1 Concrete2

NewAbstract

Create Empty Class

Adapted from Don Roberts, The Refactory, Inc.

Escape From The Spaghetti Code Jungle

A Complex Refactoring

 Refactoring can be hard but there are a lot of

small steps that lead to big gains in mud busting
Adapted from Don Roberts, The Refactory, Inc.

Array

Matrix

Matrix

MatrixRep

ArrayRep

rep

SparseRep IdentityRep

9/27/2011

22

Escape From The Spaghetti Code Jungle

Catalogue of Refactorings

 Simpler Method Calls

 Composing Method

 Moving Features

 Organize Data

 Simplifying Conditionals

 Generalization

From Fowler‟s Book

Escape From The Spaghetti Code Jungle

Refactoring

 is performed in

small steps to remove bad

smells and reach the desired design

At every step, the tests
should be executed to

verify if everything
is still working!

9/27/2011

23

Escape From The Spaghetti Code Jungle

Testing

Escape From The Spaghetti Code Jungle

You Must Test

 When you find smelly code,
you often apply refactorings
to clean your code.

 Testing is a key principle
for safe refactoring!

9/27/2011

24

Escape From The Spaghetti Code Jungle

If we have a BBoM

How can we even start?

How can we cordon off the mess?

Escape From The Spaghetti Code Jungle

Stuart Brand‟s Shearing Layers

 Buildings are a set of components that

evolve in different timescales.

 Layers: site, structure, skin, services,

space plan, stuff. Each layer has its own

value, and speed of change (pace).

 Buildings adapt because

faster layers (services) are

not obstructed by slower

ones (structure).
—Stuart Brand, How Buildings Learn

http://www.laputan.org/images/figures/shearing-layers.gif

9/27/2011

25

Escape From The Spaghetti Code Jungle

Yoder and Foote‟s

Software Shearing Layers
 “Factor your system so that artifacts that change at

similar rates are together.”—Foote & Yoder, Ball of

Mud, PLoPD4.

• The platform

• Infrastructure

• Data schema

• Standard frameworks and components

• Abstract classes and interfaces

• Classes

• Code

• Data

Layers Slower

Faster

Escape From The Spaghetti Code Jungle

Sweep It Under the Rug

Cover it up to keep other areas clean

(Façade and other Wrapper Patterns)

9/27/2011

26

Escape From The Spaghetti Code Jungle

Put a rug at the Front Door
Protect Important Components!

Keep other parts of the system clean.

Sometimes Glue code (Mediators) helps

keep others parts of the system cleaner.

(Anti-Corruption Layer -- Eric Evans)

Escape From The Spaghetti Code Jungle

Code Smells
A code smell is a hint that something has gone

wrong somewhere in your code. Use the smell

to track down the problem… Kent Beck

Bad Smells in Code was an essay

by KentBeck and MartinFowler,

published as Chapter 3 of:

Refactoring Improving The

Design Of Existing Code.

 ----Ward‟s Wiki

Have you ever

looked at a piece of

code that doesn't

smell very nice?

9/27/2011

27

Escape From The Spaghetti Code Jungle

Ten Most Putrid List
1) Sloppy Layout,

2) Dead Code,

3) Lame Names,

4) Commented Code,

5) Duplicated Code,

6) Feature Envy,

7) Inappropriate Intimacy,

8) Long Methods & Large Class,

9) Primitive Obsession & Long Parameter List,

10) Switch Statement & Conditional Complexity …

Escape From The Spaghetti Code Jungle

Bad Formatting
void foo(int x[], int y, int z){

if (z > y + 1)

{

int a = x[y], b = y + 1, c = z;

while (b < c)

{

if (x[b] <= a) b++; else {

 int d = x[b]; x[b] = x[--c];

 x[c] = d;

}

 }

int e = x[--b]; x[b] = x[y];

x[y] = e; foo(x, y, b); bar(x, c, z);

}}

void bar(int i[], int j, int k)

{ return i[j] = int [k]}

9/27/2011

28

Escape From The Spaghetti Code Jungle

Dead Code
void foo(int x[], int y, int z) {

 if (z > y + 1) {

 int a = x[y], b = y + 1, c = z;

 while (b < c) {

 if (x[b] <= a) b++; else {

 int d = x[b]; x[b] = x[--c];

 return;

 x[c] = d;

 }

 x[b] = a;

 }

 y = 5; // set y equal to 5

 int e = x[--b]; x[b] = x[y];

 x[y] = e; foo(x, y, b);

 /* used to use bar,

 might need it again

 bar(x, c, z); */

}

void bar(int i[], int j, int k) {

 /* bar method returning nothing */

 if (j > k) {

 return k

 i[k] = i[j];

 }

 if (j == k) {

 return i[j] = int [k]

 }

}

Escape From The Spaghetti Code Jungle

 Fix the Layout and

Remove Useless Items
Format the Code Consistently

Agree on a standard format

Set the tools for consistent formatting

Run the tools over the code base

Remove Unreachable Code

Delete useless comments

Delete commented out code

Remove code that can‟t be reached,

9/27/2011

29

Escape From The Spaghetti Code Jungle

Lame Names
void foo(int x[], int y, int z)

{

if (z > y + 1)

{

int a = x[y], b = y + 1, c = z;

while (b < c)

{

if (x[b] <= a) b++; else {

int d = x[b]; x[b] = x[--c];

x[c] = d;

}

}

int e = x[--b]; x[b] = x[y];

x[y] = e; foo(x, y, b);

foo(x, c, z);

}

void quicksort(int array[], int begin, int end) {

 if (end > begin + 1) {

 int pivot = array[begin],

 l = begin + 1, r = end;

 while (l < r) {

 if (array[l] <= pivot)

 l++;

 else

 swap(&array[l], &array[--r]);

 }

 swap(&array[--l], &array[beg]);

 sort(array, begin, l);

 sort(array, r, end);

 }

}

http://dreamsongs.com/Files/BetterScienceThroughArt.pdf

Escape From The Spaghetti Code Jungle

Fixing Names
Names should mean something.

Standards improve communication

- know and follow them.

Standard protocols

object ToString(), Equals()

ArrayList Contains(), Add(), AddRange()

Remove(), Count, RemoveAt(),

HashTable Keys, ContainsKey(),

ContainsValue()

Standard naming conventions

9/27/2011

30

Escape From The Spaghetti Code Jungle

Comments

We are not against comments but…

If you see large methods that have places

where the code is commented, use Extract

Method to pull the commented code into a

helper method that is called
void printOwing (double amount) {

 printBanner();

 //print details

 System.out.println (name: “ + _name);

 System.out.println (amount: “ + amount);

 …}

Escape From The Spaghetti Code Jungle

Comments Example
void printOwing (double amount) {

 printBanner();

 //print details

 System.out.println (name: “ + _name);

 System.out.println (amount: “ + amount);

 …}

Comments indicate

"identifiable task”

void printOwing (double amount) {

 printBanner();

 printDetails();

 …}

void printDetails (double amount) {

 System.out.println (name: “ + _name);

 System.out.println (amount: “ + amount);}

If you need to comment a block of

code, it probably should be a

separate method

Turn method comment

into method name

9/27/2011

31

Escape From The Spaghetti Code Jungle

Primitive Obsession

Using Primitive Types everywhere

Person

name: String

address: String

…

Escape From The Spaghetti Code Jungle

Replace Data Value

with Object
Person

name

address: String

Address

street

city

state

zip

1

Person

name

getAddress

9/27/2011

32

Escape From The Spaghetti Code Jungle

Replace Array with Object
String[] row = new String[3];

row[0] = “Liverpool”;

row[1] = “15”‟;

Performance row = new Performance();

row.setName(“Liverpool”);  row.Name =“Liverpool”;

row.setWins(“15”);  row.Wins =“15”;

Escape From The Spaghetti Code Jungle

Long Method
Large Class

Classes and methods which accumulate
soo much functionality

Hard to reuse and test

A hint that it has
more responsability

than it should

9/27/2011

33

Escape From The Spaghetti Code Jungle

Duplicate Code

 Do everything exactly once

 Duplicate code makes the system

harder to understand and maintain

 Any change must be duplicated

 The maintainer has to change every copy

Escape From The Spaghetti Code Jungle

Fixing Duplicate Code

 Do everything exactly once!!!

 Fixing Code Duplication

 Move identical methods up to superclass

 Move methods into common components

 Break up Large Methods

REUSE
Do not
duplicate!

DRY Principle

9/27/2011

34

Escape From The Spaghetti Code Jungle

Feature Envy
When a class uses a lot the functionality
or features of another class

Indicates that some functionality is in
the wrong class … “Move Method”

It creates a tight
coupling between
these two classes

Escape From The Spaghetti Code Jungle

Inappropriate Intimacy
When classes depend on other’s
implementation details …

Tightly coupled classes -
you can’t change one with-
out changing the other.

Boundaries between
classes are not
well defined.

9/27/2011

35

Escape From The Spaghetti Code Jungle

Switch Statements
Many switch statements or nested

conditionals throughout methods

Rather than switching use method names

to do the cases (double dispatch)

Use polymorphism or overriding of hook

methods (new cases do not change

existing code)

Escape From The Spaghetti Code Jungle

Refactoring Addresses Some

Key Leverage Points
Refactoring is a technique that works with Brooks‟

“promising attacks” (from “No Silver Bullet”):

 buy rather than build: restructuring interfaces to

support commercial SW

 grow don‟t build software: software growth

involves restructuring

 requirements refinements and rapid prototyping:

refactoring supports such design exploration,

and adapting to changing customer needs

 support great designers: a tool in a designer‟s tool chest

9/27/2011

36

Escape From The Spaghetti Code Jungle

Can tools Help?
What is the role of tools in

draining these swamps?

What kinds of tools and practices

might forestall software entropy;

is mud preventable?

Tools can help, but too often too much is put

on tools as the solution to all our problems.

Refactoring Tools, Testing Tools, XUnit, Lint

Tools, Code Critics, …

Escape From The Spaghetti Code Jungle

Draining the Swamp
You can escape from the

“Spaghetti Code Jungle”

Indeed you can transform the landscape.

The key is not some magic bullet, but a

long-term commitment to architecture,

and to cultivating and refining “quality”

artifacts for your domain (Refactoring)!

Patterns of the best practices can help!!!

9/27/2011

37

Escape From The Spaghetti Code Jungle

Silver Buckshot
There are no silver bullets

 …Fred Brooks

But maybe some silver buckshot

 …promising attacks

Good Design

Frameworks

Patterns

Architecture

Process/Organization

Tools and Support

Refactoring

Good People ***

Escape From The Spaghetti Code Jungle

Mud is Here…

It isn’t always bad!

It can be contained!

It can be cleaned up!

Our code can be more habitable!

9/27/2011

38

Escape From The Spaghetti Code Jungle

So There is Some Hope!!!
Testing (TDD), Refactoring, Regular

Feedback, Patterns, More Eyes, …

Good People!!!

Continuous attention to technical excellence!

Retrospectives!

Face-To-Face conversation.

Motivated individuals with the environment

and support they need.

But, Maybe Mud is why we have Agile…

Escape From The Spaghetti Code Jungle

It Takes a Village

http://www.dreamsongs.org/
http://images.google.com/imgres?imgurl=http://www.oopsla.org/2004/images/people/Neil_Harrison.jpg&imgrefurl=http://www.oopsla.org/2004/ShowEvent.do?id=demos&h=177&w=126&sz=39&hl=en&start=3&sig2=OWrR0DVw1brpdkMb7niqAw&um=1&tbnid=75MMw-dpC4IMuM:&tbnh=101&tbnw=72&ei=dgTSRqzdOovIgAOroMGpCA&prev=/images?q=neil+b.+harrison&svnum=10&um=1&hl=en&rls=IBMA,IBMA:2006-30,IBMA:en&sa=N
http://www.google.com/imgres?imgurl=http://users.rcn.com/jcoplien/copeinhat.gif&imgrefurl=http://users.rcn.com/jcoplien/&usg=__R-M1j0zBxAetGB4TDnD119cIJq4=&h=192&w=200&sz=26&hl=en&start=2&um=1&itbs=1&tbnid=gtshrq_YBbEIHM:&tbnh=100&tbnw=104&prev=/images?q=Jim+Coplien&um=1&hl=en&sa=N&tbs=isch:1

9/27/2011

39

Escape From The Spaghetti Code Jungle

Obrigado!!!

joe@refactory.com

Twitter: @metayoda

