

1

10 Best Practices for
Agile Software Development

How to develop high-quality software?

Prof. Fabio Kon
Department of Computer Science

University of São Paulo

MIT Senseable City Lab
January, 11th, 2019

2

What is Software Development?
– Modeling (Jacobsen)
– Engineering (Meyer)
– Discipline (Humphreys)
– Poetry (Cockburn)
– Craft (Knuth)
– Art (Gabriel)

(from Alistair Cockburn)

● Common mistake: look at software as only
one of the above items.

3

Conventional Software
Development

Waterfall model (pervasive from 1960s to early 2010)

1. Requirement elicitation

 2. Requirement analysis

 3. Design

 4. Implementation

 5. Tests

 6. Maintenance

4

Old Assumptions

● one must do the best possible job in one stage
before starting the next one

● it’s very costly to change something in a
previously completed step

5

But the world is now different

● Requirements change very rapidly

● The customer doesn’t know what he/she
wants

● It’s easy to change (well written) software
– new languages, frameworks, methods, tests

6

In the Agile mindset

● You’re always ready to:

– change everything (requirements, code, plans)

– interact with your customer
● to show what you did and get feedback
● to receive new requests

– replan the next steps

7

In the Agile mindset

● You perform all the steps of the waterfall
everyday (or every week):

 Customer negotiation

 Design

 Implementation

 Tests

 Maintenance

8

10 Agile Best Practices

● Intention-revealing
names

● Design Patterns

● Customer
Involvement

● Management &
Planning

● Automated Tests

● Code Reviews

● Version Control

● Development,
Homologation
(Acceptance), and
Production
environments

● Continuous Delivery

● When and how to
optimize

9

1. Intention-revealing
Names

10

Meaningful Names

● Code is basically names and reserved words

● Choosing good names takes time but saves

more than it takes

● Names should be expressive and should

answer questions

Names are vital!

11

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

12

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

Many doubts arise...

1. What does this method get?

2. What kinds of things are in theList?

3. What is the importance of the zeroth position?

4. What is the significance of the value 4?

13

Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

What about this
code?

14

Meaningful Names

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Problem
solved!

1. What does this method get? It gets all flagged cells!

2. What kinds of things are in theList? theList is a gameBoard filled with

cells!

3. What is the importance of the zeroth position? That's the Status Value!

4. What is the significance of the value 4? It means it is flagged!

15

Meaningful Names

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Going further...

public List<Cell> getFlaggedCells() {
List<Cell> flaggedCells = new ArrayList<Cell>();
for (Cell cell : gameBoard)

if(cell.isFlagged())
flaggedCells.add(cell);

return flaggedCells;
}

This is pretty
much what you

expected!

16

Meaningful Names

● seek intention-revealing names

● good names are neither too short nor too long (do not

promote obscurity to save a couple of keystrokes)

● if you find a bad name, change it now!

summarizing

17

2. Design Patterns

● Design Patterns: elements of reusable

object-oriented software - GoF book

● Architectural Patterns (MVC, Pub/Sub, etc.)

● Implementation Patterns (Beck and Martin)

on the shoulders of giants

18

Design Patterns

● Design Patterns: elements of reusable

object-oriented software - GoF book

● Architectural Patterns (MVC, Pub/Sub, etc.)

● Implementation Patterns (Beck and Martin)

on the shoulders of giants

19

3. Customer Involvement

● Show preliminary, icremental versions of

your software to:

● client

● user

● other stakeholders

● (in academia: colleagues, conferences)

● Get frequent feedback

don’t be shy:
talk to all stakeholders

20

4. Management and Planning

● An Agile software development team:

● 2 to 10 members

● coach (experienced developer)

● product owner (customer)

● other developers:

● testing manager, devops manager, DB

manager, planning manager, etc.

● (but everybody does everything, the

manager simply makes sure it’s being done)

21

Management and Planning

● Agile Planning happens everyday.

● Layered approach:

● Long-term planning is very vague, just a vision

● Medium-term planning is vague

● Short-term planning (monthly) is more detailed

● Very-term-planning (weekly) is very detailed

● Story Cards are written by customer to describe

requirements

● On the Back of story cards, developers list the

tasks that are required to implement that card

22

Management and Planning

● Tool Support for Agile Planning:

● Trello

● GitLab / GitHub issue tracker

● JIRA, Pivotal Tracker, etc.

● Release planning

● Periodic meeting (with the entire team) to plan

the next release

● Customer defines priorities

● Developers define development costs

23

5. Automated Tests

● Each relevant line of code should have an

automated test associated with it.

● Unit tests

● Acceptance tests
● Integration tests

● Smoke tests

● Performance tests

● Stress tests

if it’s not tested, it doesn’t exist

24

Automated Tests

● If you are a beginner, I suggest you start with

Unit tests

● Use a framework for your specific language

● pytest, JUnit, CPPUnit, etc.

● Web: Selenium

● A large project should have thousands of

automated tests and >90% of testing coverage

● The testing suite should be executed

everyday (may times per day)

if it’s not tested, it doesn’t exist

25

Automated Tests

● Communication

● (Self-checking) Documentation

● Safety net for changes/refactorings

● Helps one developer undestand the code

written by the others

MAJOR BENEFITS

26

6. Code Reviews

● Collective code ownership

● Periodic code peer-review

● Pair programming

27

 7. Software Execution environments

● Development Environment

● e.g., your notebook

● should standardize in the team

● Homologation (Acceptance) Environment

● for the customer to try/test/play with

● should be as similar as possible to production

● Production Enviroment

● for the real users with real data

28

8. Code version control

● Code must be maintained in a repository, not

in your [notebook, dropbox, server file system]

● The repository should use a modern Version

Control System (VCS)

● git is a bit tricky but it’s very powerful VCS

● github, gitlab, are good online repositories

29

9. Continuous Delivery

 Automate the entire process:

1) Write some new code

2) Run automated tests

3) if all pass -> push to Repository

4) Deploy new version in Homologation Environment

5) Run Smoke tests

6) Deploy new version in Production Environment

7) Shut down old version in Production Environment

and redirect users to new version

DevOps

30

10. When and how to optimize

 Premature optimization is the root of all evil in

programming (or at least most of it)

Donald Knuth

1) Only optimize if a functional or

 non-functional requirement is not met

2) Run a profiler and identify where’s the bottleneck

3) optimize just that bottleneck and go back to step 1)

31

The End

fabiokon@mit.edu

kon@ime.usp.br

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

