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What is Software Development?
– Modeling (Jacobsen)
– Engineering (Meyer)
– Discipline (Humphreys)
– Poetry (Cockburn)
– Craft (Knuth)
– Art (Gabriel)

(from Alistair Cockburn)

● Common mistake: look at software as only
one of the above items.
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Conventional Software
Development

Waterfall model (pervasive from 1960s to early 2010)

1. Requirement elicitation

         2. Requirement analysis

                 3. Design

                           4. Implementation

                                     5. Tests

                                                6. Maintenance



  

4

Old Assumptions

● one must do the best possible job in one stage
before starting the next one

● it’s very costly to change something in a
previously completed step 
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But the world is now different

● Requirements change very rapidly

● The customer doesn’t know what he/she
wants

● It’s easy to change (well written) software
– new languages, frameworks, methods, tests
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In the Agile mindset

● You’re always ready to:
 

– change everything (requirements, code, plans)

– interact with your customer
● to show what you did and get feedback
● to receive new requests

– replan the next steps
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In the Agile mindset

● You perform all the steps of the waterfall
everyday (or every week):

         Customer negotiation

         Design

         Implementation

         Tests

         Maintenance
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10 Agile Best Practices

● Intention-revealing
names

● Design Patterns

● Customer
Involvement

● Management &
Planning

● Automated Tests

● Code Reviews

● Version Control

● Development,
Homologation
(Acceptance), and
Production
environments

● Continuous Delivery

● When and how to
optimize
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1. Intention-revealing 
Names
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Meaningful Names

● Code is basically names and reserved words

● Choosing good names takes time but saves

more than it takes

● Names should be expressive and should

answer questions

Names are vital!
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Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example
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Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

Many doubts arise...

1. What does this method get?

2. What kinds of things are in theList?

3. What is the importance of the zeroth position?

4. What is the significance of the value 4?
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Meaningful Names

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if(x[0] == 4)
list1.add(x);

return list1;
}

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

What about this
code?
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Meaningful Names

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Problem
solved!

1. What does this method get? It gets all flagged cells!

2. What kinds of things are in theList? theList is a gameBoard filled with

cells!

3. What is the importance of the zeroth position? That's the Status Value!

4. What is the significance of the value 4? It means it is flagged!



  

15

Meaningful Names

Example

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if(cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Going further...

public List<Cell> getFlaggedCells() {
List<Cell> flaggedCells = new ArrayList<Cell>();
for (Cell cell : gameBoard)

if(cell.isFlagged())
flaggedCells.add(cell);

return flaggedCells;
}

This is pretty
much what you

expected!
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Meaningful Names

● seek intention-revealing names 

● good names are neither too short nor too long (do not

promote obscurity to save a couple of keystrokes) 

●  if you find a bad name, change it now!

summarizing
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2. Design Patterns

● Design Patterns: elements of reusable

object-oriented software - GoF book

● Architectural Patterns (MVC, Pub/Sub, etc.)

● Implementation Patterns (Beck and Martin)

on the shoulders of giants
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Design Patterns

● Design Patterns: elements of reusable

object-oriented software - GoF book

● Architectural Patterns (MVC, Pub/Sub, etc.)

● Implementation Patterns (Beck and Martin)

on the shoulders of giants
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3. Customer Involvement

● Show preliminary, icremental versions of

your software to:

● client

● user

● other stakeholders

● (in academia: colleagues, conferences)

● Get frequent feedback

don’t be shy: 
talk to all stakeholders
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4. Management and Planning

● An Agile software development team:

● 2 to 10 members

● coach (experienced developer)

● product owner (customer)

● other developers:

● testing manager, devops manager, DB

manager, planning manager, etc. 

● (but everybody does everything, the

manager simply makes sure it’s being done)
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Management and Planning

● Agile Planning happens everyday. 

● Layered approach:

● Long-term planning is very vague, just a vision

● Medium-term planning is vague

● Short-term planning (monthly) is more detailed

● Very-term-planning (weekly) is very detailed

● Story Cards are written by customer to describe

requirements

● On the Back of story cards, developers list the

tasks that are required to implement that card
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Management and Planning

● Tool Support for Agile Planning:

● Trello

● GitLab / GitHub issue tracker

● JIRA, Pivotal Tracker, etc.

● Release planning

● Periodic meeting (with the entire team) to plan

the next release

● Customer defines priorities

● Developers define development costs
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5. Automated Tests

● Each relevant line of code should have an

automated test associated with it.

● Unit tests

● Acceptance tests
● Integration tests

● Smoke tests

● Performance tests

● Stress tests

if it’s not tested, it doesn’t exist
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Automated Tests

● If you are a beginner, I suggest you start with

Unit tests

● Use a framework for your specific language

● pytest, JUnit, CPPUnit, etc.

● Web: Selenium

● A large project should have thousands of

automated tests and >90% of testing coverage

● The testing suite should be executed

everyday (may times per day)

if it’s not tested, it doesn’t exist
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Automated Tests

● Communication

● (Self-checking) Documentation

● Safety net for changes/refactorings

● Helps one developer undestand the code

written by the others

MAJOR BENEFITS
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6. Code Reviews

● Collective code ownership

● Periodic code peer-review

● Pair programming
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 7. Software Execution environments

● Development Environment

● e.g., your notebook

● should standardize in the team

● Homologation (Acceptance) Environment

● for the customer to try/test/play with

● should be as similar as possible to production

● Production Enviroment

● for the real users with real data
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8. Code version control

● Code must be maintained in a repository, not

in your [notebook, dropbox, server file system]

● The repository should use a modern Version

Control System (VCS)

● git is a bit tricky but it’s very powerful VCS

● github, gitlab, are good online repositories
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9. Continuous Delivery

 Automate the entire process:

1) Write some new code

2) Run automated tests

3) if all pass -> push to Repository

4) Deploy new version in Homologation Environment

5) Run Smoke tests

6) Deploy new version in Production Environment

7) Shut down old version in Production Environment

and redirect users to new version

DevOps 
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10. When and how to optimize

 Premature optimization is the root of all evil in

programming (or at least most of it)

Donald Knuth

1) Only optimize if a functional or 

  non-functional requirement is not met

2) Run a profiler and identify where’s the bottleneck

3) optimize just that bottleneck and go back to step 1)
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The End

 

fabiokon@mit.edu

kon@ime.usp.br
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