
XP South of the Equator:
An eXPerience Implementing XP in Brazil

Alexandre Freire da Silva1, Fábio Kon1, and Cicero Torteli2

1 Department of Computer Science of the University of São Paulo
{ale,kon}@ime.usp.br

http://www.ime.usp.br/~xp
2 Paggo Ltda.

torteli@paggo.com.br

http://www.paggo.com.br

Abstract. Many have reported successful experiences using XP, but we
have not yet seen many experiences adapting agile methodologies in de-
veloping countries such as Brazil. In a developing economy, embracing
change is extremely necessary. This paper relates our experience success-
fully introducing XP in a start-up company in Brazil. We will cover our
adaptations of XP practices and how cultural and economical aspects
of the Brazilian society affected our adoption of the methodology. We
will discuss how we managed to effectively coach a team that had little
or no previous skill of the technologies and practices adopted. We will
also cover some new practices that we introduced mid-project and some
practices we believe emerged mostly because of Brazilian culture. The
lessons we learned may be applicable in other developing countries.

1 Introduction

There are many reports of successful experiences introducing XP, both in re-
search and industrial contexts, throughout the northern hemisphere. There have
been numerous accounts of success in the USA, Finland, Sweden, England, Spain,
Italy and Japan[1–7]. Closer to our reality, there is a report of introducing only
one of XP practices in developing areas in China [8]. However, there is little
recorded evidence of successful implementations of XP in the Southern Hemi-
sphere and in developing economies such as Brazil, specially adopting all of XP
original practices[9].

Learning to adapt to change is specially important in a developing economy
such as ours. Businesses come and go rapidly, and fluctuations in the economy
have even caused our currency’s name and value to change twice in a single
decade. Good developers are hard to find, and many enterprises survive through
constant recycling of interns. Low salaries (ranging from USD 100 to USD 2000
per month) reflect an untrained work force, composed mostly of interns making
a little more than USD 200 a month, and a culture of constant people turnover.
Tools and frameworks have scarce documentation in Portuguese, which lead to
many weak developers in the market.

H. Baumeister et al. (Eds.): XP 2005, LNCS 3556, pp. 10–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



XP South of the Equator: An eXPerience Implementing XP in Brazil 11

Also, there are some cultural aspects of a tropical country that have impact
on software development industries. According to Seŕgio Buarque de Holanda’s
Cordial Man theory[17], brazilians react from their hearts, being passionate in
all aspects of life, developing a need to establish friendly contacts, create inti-
macy, and shorten distances. Brazilians reject last names, referring to everyone
by their nicknames. We reject formalities, even in the workplace. We are inca-
pable of following a hierarchy, of obeying too rigid a discipline. This has positive
impacts, brazilians tend to be open-minded, creative, friendly, and collaborative.
Teams tend to get along well and work together having fun. As a multi-cultural
and mixed society we tend to welcome change and get along very well in the
workplace. Disadvantages also exist, compared to most cultures from northern
hemispheres, we tend not to be punctual and constantly miss deadlines. Some
mention fear that XP is heavily based on north-american culture and therefore
would not work on a very different culture such as ours. Kent Beck guesses that
the biggest disadvantage for XP in Brazil is exactly the lack of commitment to
deadlines (even when they might be exceeded because the team is having fun)
[10]. Our experience shows that this is not the case.

Developing high quality software, on time and on budget is a must if one
plans to survive in this context. As such, the first author was invited to help
introduce XP in a start-up enterprise, Paggo, trying to get into the credit card
business. From the beginning, many challenges were present; we believed that
the two most difficult were going to be the heterogeneous aspect of the team,
composed of developers with different skills, from interns with little or no expe-
rience programming to seniors accustomed with their own way of programming,
and the fact that our coach could not be present full-time because of the limited
budget. We had high hopes since adopting XP was a suggestion from a team
member and everyone in the team accepted the challenge with no knowledge of
the difficult times ahead.

We have successfully trained our team in all of XP practices and consider
the project to be a success. This paper will briefly outline the 6 months in which
we trained our team in the practices and in most technologies they would need
to use, describing changes encountered along the way and how we coped with
them. We will then consider the adaptations we performed for XP practices and
lessons learned in the experience. We will list some other valuable techniques
implemented during the project and some special practices we believe are the
result of the cultural and social aspects of Brazil. We will then conclude with
some remarks that might be of value to similar attempts in developing countries.

2 Project Evolution

Paggo is a start-up venture in the credit card business. It attempted to go into
a very competitive market and its bets were in a new business model based
on new technologies and implementing an agile method so the enterprise could
have functioning software quickly, to secure more investments by reducing time-
to-market. Our main objective was to have an XP proficient team ready to be
independent from the coach within 6 months.



12 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

The software to be developed was cutting-edge, using technologies such as
J2ME and J2EE and free and open source frameworks such as VRaptor, Hi-
bernate and JBoss. The project had many aspects, from a credit transaction
handler with high performance requirements, to mobile technology to be embed-
ded in cellular phones, and a dynamic Web site where customers could sign up
for credit cards and check their monthly balance.

The development team was really heterogeneous, skills ranged from interns
with almost no programming or OO knowledge to senior developers with years
of experience, we believed this would be a real obstacle to installing XP. How
to get everyone on board and at the same time address individual difficulties?
Even though every member was willing to work hard on implementing XP, there
were clear tendencies from some developers to be CowboyCoders [11] and many
did not yet have the skills necessary to do XP. In our favor one of the founders
of the company played an excellent in-house customer. A part-time consultant
was hired to mentor the less skilled in the team in topics ranging from Java
programming, OO, and the frameworks and technologies to be used in the project
and also coach the team in XP. In the beginning of the project another part-
time consultant was hired to help with the new technologies. By the end, two
more developers were hired as well, adapting quickly to our XP environment and
writing production code within one week of beginning work, contributing with
very relevant code already in the second week. This was due to the team being
comfortable with XP by the time they were hired and the fact that one of them
took an undergraduate course in XP [14].

We decided to implement all of XP practices as proposed by Beck[9] at once,
knowing that some would take more time to reach a mature and acceptable
level. We managed to go through 12 releases, using mostly two week iterations.
We produced four applications, successfully implementing 269 stories out of an
original 340, of which 42 were later discarded or deemed unnecessary by the cus-
tomer. From a technical point of view, we delivered 90% of wanted functionality,
fully tested and free of bugs. From a business perspective, the project was such
a success that the company was sold for a good value and restructured to focus
on software development with the same XP team.

During the first two months we fully explored all of XP practices but tread
lightly into practices that demanded more knowledge such as test-first design
and refactoring. In the next 4 months we trained the team in some OO patterns
and in the open-source frameworks used. As the team became more comfortable
with patterns and advanced OO techniques so did our testing and refactoring
practice evolve. After attending a local XP conference, the coach introduced
some new practices, most importantly the retrospective technique suggested by
Linda Rising[12] and analyzed in detail in [2]. We decided to use a slightly
modified version of the KJ method [13] using colored post-its grouped in positive
and negative findings by the development team. The introduction of this new
practice also had some unexpected results as discussed in Section 4.1. At the
end of the 5th month, the company had to cut expenses because it had not yet
secured a new investment. By this time the coach was satisfied with how our



XP South of the Equator: An eXPerience Implementing XP in Brazil 13

XP practices were being followed and it was decided that he would leave the
team. He then proceeded to help ensure that the team would be able to keep on
going without him as detailed in Section 4.4. Recently, an investment has been
secured and the company now plans to double its development team, we plan to
document this new effort in a future paper.

3 Adaptations to XP Practices

Customer Always Present. We were really lucky to have an inside customer
who wrote stories and was very much in favor of XP and enthusiastic about the
agile practices. He wrote acceptance tests and executed all of them after each
release. The customer was also available for our daily stand-up meetings (actually
running some of them when the coach could not be present) and re-prioritized
stories as time went by. This was very productive, as our team was learning to
estimate development effort, some estimates were really blown but, in the end
of a iteration, only stories that were not really important for the customer were
left out. In our experience a committed customer is essential, especially if the
team is composed of less skilled interns and can still let bugs escape tests and
badly estimate some stories.

Coding Standards. Coding standards were easy to implement, due to the fact
that most of the team was learning Java at the time. Standards were discussed
in meetings, mostly suggested by senior members of the team, and put on a
poster on the wall called “Team Arrangements”. It was straight forward to teach
and impose the standards through pair-programming. We believe calling the
standards arrangements, and being flexible about their adoption made them
easier to absorb by less experienced team members.

Continuous Integration. We had problems with continuous integration due to
the fact that most were learning how to use tools for version control. There
were a couple of times were code was actually lost during complicated merges.
As the team became more comfortable with these notions they suggested we
adopt Cruise Control, which we did to many benefits. Through our retrospective
meetings, we identified problems with this practice and took concrete actions
that helped us improve, such as having quick stand-up meetings when difficult
merges were about to happen.

Metaphor. We had no trouble to implement metaphor. This is mostly due to
our customer being available to give daily business explanations to the team
and, during planning games, agreeing on common metaphors. The fact that
team members were also helping each other learn OO concepts and frameworks
helped. Eg., as the team would learn about a particular pattern, we could easily
incorporate this abstraction in our metaphor.

Test Driven Development. In the early months of the project it was difficult to
write good tests that covered our demo application completely. Most developers
did not know how to write automated tests and we were dealing with relatively



14 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

hard technology to test (eg., J2ME applications or serial device communication).
Part of the team did not have enough OO know-how for us to use techniques
such as MockObjects, so in the beginning we only had the customers manual
acceptance tests for feedback.Our coach decided to pair with developers when-
ever he could to teach testing techniques. We had difficulty with the less skilled
developers, especially the interns lacking OO knowledge, but a lot of resistance
was also encountered from the senior developer, who could not see benefits in
having automated tests for his code. After a couple of iterations and some failed
releases the team understood how important it was to have a full test suite,
covering all production code. What happened then was a truly “test-infected”
scenario, developers suddenly saw tests as an excellent tool and strived to excel
in this practice. We kept daily metrics for the number of tests created and they
started growing exponentially. It helped that the new developer, with previous
XP experience, was quick to develop intimacy with the team, and felt coura-
geous enough to rewrite all tests for a J2EE project when the customer saw the
need to code new features for it. At the end of the sixth month period, the team
was looking into technologies to automate the customer acceptance tests, this
was again an initiative of their own. We learned that teaching testing can be
difficult, especially with heterogeneous teams like ours, but having test metrics
helped everyone to be conscious about the problem.

Refactoring. Refactoring was also one of the hardest techniques to teach. In
the beginning, we did some minor refactorings to get the team to understand
their value, mostly cleaning up class and method names. During the project we
introduced agile modeling techniques[15] that were useful for us to discover areas
of our applications that could go through more extensive refactorings. We held
design meetings and used the white board to draw UML diagrams and decided,
as a team, where we should refactor. The senior developers were eager to refactor
but we found that the interns and junior developers did not want to refactor as
much, for they had not yet had time to grasp some more complex OO concepts.
It was helpful to have a tool such as Eclipse that would automate refactorings.
It made them easier to learn and gave the team more courage to execute them.

Small Releases. The project had 12 releases, most taking 2 weeks. If the customer
was not satisfied with the acceptance tests we had special 1-week “bug-fix”
releases . This was specially true in the beginning of the project when we did
not have enough tests and the developers were learning the technologies. We
developed an automated deployment system, composed of a development server,
a homologation server and a production server. After a release was tagged, it
would be automatically updated on the homologation server, which kept a recent
copy of the production server’s database. The acceptance tests were run in this
server and, if the client was satisfied, the release would be manually deployed on
the production server.

Planning Game. We had good planning games, the customer had interest in
commenting on previous releases and did not hesitate to change his mind. We



XP South of the Equator: An eXPerience Implementing XP in Brazil 15

divided a work day into 2 individual working hours and 3 pair-programming
sessions, estimating stories in terms of these sessions. If a story was estimated
in less than 1/4 of a session or more than 6 sessions it would be rewritten.
The client prioritized and grouped stories. As we were developing a couple of
applications simultaneously, we wrote stories for all of them, developers liked
being able to move from one project to another. As most of our releases had
a 2-week duration, we built a special calendar on the wall, where 10 days were
represented. After the planning game, we would place stories along the days
for the two weeks, starting with the highest customer priority, and fitting next
stories according to estimates of stories already on the board and our developer
resources. It was also used daily when we would review what stories we had
left, assign them to pairs and eventually re-manage other stories. We found this
to be a very efficient way to assign stories and keep track of progress. Latter
we used this board for our retrospective technique as described in Section 4.1.
Feedback from our retrospectives lead us to introduced some “studying stories”
where developers could take a few sessions to dedicate themselves to studying
new technologies as described in Section 4.3.

Sustainable Pace. This was a hard practice to follow, mostly due to economic
reasons. In Brazil, people are willing to work extra hours (without payment)
and this was not any different in our team, we counted with a couple of extra
hours per developers weekly. The fact that interns and trainees were not present
full-time encouraged this, as they were eager to put in extra, unpayed, hours.

Pair Programming. In a economy were developer turnover is high, our customer
did not want any production code created individually, so he instated pair pro-
graming as a rule. Pair programming was very valuable to teach developers
testing and refactoring techniques, and our coach wished he had more time to
be able to pair even more with the team. Less skilled developers also benefited
from a hidden pair, Eclipse, it helped them to learn the language with it’s rapid
feedback about syntax mistakes and compilation problems. We encountered re-
sistance from the most senior developer, accustomed to working alone, he had
a passionate reaction to being forced to pair and others avoided pairing with
him. We also found that, although it was good to pair more experienced coders
with beginners for mentoring, sometimes it was more productive to let the less
experienced pair program on tasks that seniors found repetitive and boring.The
biggest advantage we found with pair programming was when hiring new de-
velopers, when they pair-programmed we were quick to identify if they would
adapt to the company’s structure and philosophy.

Simple Design. Simple Design was not trivial, but, as we were also teaching
developers how to design, we did accomplish a satisfactory simple design. Having
modeling meetings, as proposed by the agile modeling community, made it easier
to teach and discuss simple design, proposing refactorings upon the design that
had evolved so far.



16 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

Collective Code Ownership. As we had a set of coding standards that was work-
ing, it was easy to implement collective code ownership. We found that the senior
developers were more comfortable with this practice, especially when they were
refactoring code produced by interns.

4 Other Practices

4.1 Retrospectives

We found retrospectives to be really valuable and greatly improved our commu-
nication. We used the same story board from our planning game to pin red or
blue post-its on the days we encountered nice or bad things to say about our
practices, at the begging of each week we would collect the post-its from the
previous one and have a retrospective meeting to discuss them.

Discussing our process and techniques helped developers to identify problem
areas and suggest solutions. In the beginning, we held weekly retrospectives
and came up with really good suggestions to fix problems. After some time,
however, the need for these meetings was lessened because we were good at
fixing problems, this has been pointed out by Cockburn [16].

Due to the proximity developed because of pair programming and the increase
in communication needs, the retrospective technique as it was done at Paggo
started to be used for personal differences. At some point in time the team
even took a cold shoulder approach to some of the developers. They did not
want to pair program with some specific members anymore. The rest of the
company realized that something was going on. In the meantime, a real paper
war developed on the board, with red notes flying in all directions, even posted
by people in the company outside of the development team. Our retrospective
technique had turned into an enormous gossip board, as brazilians, reacting
according to our hearts had shown it’s downside. The result was the invention
of a practice we call “dirty laundry meeting”

4.2 Dirty Laundry Meeting

After seeing that things were going astray with the team, the customer decided
to hold a meeting in which everyone was supposed to resolve their conflicts. This
meeting was called “dirty laundry meeting” because it was a chance for everyone
to say what was on their mind about others and walk away with a clean slate.

Team members, as expected by their brazilian culture, had grown closer,
making our work relationship almost a family one. This made this meeting very
emotional and intense, a couple of people even cried. It was a strange experience
we believe happens more often in countries like Brazil, derived from our social
and cultural inclinations. In this meeting we found a place to put our personal
differences in check and wash away everything that was bothering us. It resolved
most issues but was a very extreme practice and we do not advise that it should
happen frequently. Sometimes it is necessary, producing nice results, if people



XP South of the Equator: An eXPerience Implementing XP in Brazil 17

are willing to be frank and share their feelings. We believe that certain personal
differences that affect productivity can stay hidden for long periods of time in
most corporations, but will surface very fast with XP. These will have to be
resolved or will affect production, and dirty laundry meetings are an interesting
solution.

4.3 Specialists and Study Time

Given the heterogeneous nature of our team it was clear that some people had a
lot to learn that others could teach. We came up with the concept of specialists,
not in the sense that they would do all stories related to their field of expertise,
they were people that the team could count on, knowledgeable about latest
advances on their field and capable of solving hard problems encountered in
stories related to their areas. The need for specialists arose from our retrospective
meetings. Developers said that they were more motivated to work on things they
liked and they would like time to learn more and research. So we instituted some
special “research stories”. The specialists could take these stories and have a
break from pair programming in a couple of study sessions when they would
research technologies of interest and program spikes.

The specialists brought some fresh air into the team and reduced the burden
of everyone having to study all new technologies. They did not have special rights
to stories in their areas. In fact they were discouraged from taking these stories
at all. They were available to pair program when someone had trouble in their
areas of research and also conducted seminars to teach the rest of the team what
they were learning.

4.4 Coach of the Week

Approaching the end of the sixth month the company no longer needed the pres-
ence of the external mentor to play the role of coach any more. Most developers
were comfortable with the process and had mastered the technologies and tech-
niques used. As such the coach started to plan his leave, the team had to be
able to do XP on their own. The coach started a practice where the team would
elect a developer to play the role of the coach for a week. After a couple of weeks
most of the team had been in the role of coach (with the mentor’s supervision)
and were ready to walk on their own.

5 Conclusions

The chaotic economy and culture of Brazil have impacts on implementing XP. We
have successfully used all of XP practices, adopted most of them and even came
up with some unique practices of our own. XP helped us adapt quickly to the
constant changes in the economic reality of a developing country. Even though
our team was very heterogeneous and had many lesser skilled developers, we
managed to help them evolve and fit in to the team. By promoting everyone’s



18 Alexandre Freire da Silva, Fábio Kon, and Cicero Torteli

participation, XP can help all to successfully learn practices and technologies
due to an open, motivating and friendly environment. In a market were teams
have to grow quickly to be competitive, companies can suffer from hiring the
wrong people. XP helped us welcome newcomers, and find out quickly if they
were going to fit in. We believe XP is harder to implement when the team is
heterogeneous as ours, but it is possible to do with patience and brazilian passion.
When constantly refining one’s practices through retrospectives, politics and
personal conflicts can not go unnoticed for long, this allows a company to take
quick measures to maintain productivity. We believe other developing countries
could benefit from our experience.

References

1. A. Fuqua and J. Hammer, “Embracing Change: An XP Experience Report”, XP
2003, Lecture Notes in Computer Science, vol. 2675, pp. 298-306. Springer, 2003.

2. O. Salo, K. Kolehmainem, P. Kyllönem, J. Löthman, S. Salmijärvi, and P. Abra-
hamsson, “Self-Adaptability of Agile Software Processes: A Case on Post-iteration
Workshops”, XP 2004, Lecture Notes in Computer Science, vol. 3092, pp. 184-193.
Springer, 2004.

3. H. Svensson, “A Study on Introducing XP to a Software Development Company”,
XP 2003, Lecture Notes in Computer Science, vol. 2675, pp. 433-434. Springer,
2003.

4. T. Mackinnon, “XP - Call in the Social Workers”, XP 2003, Lecture Notes in
Computer Science, vol. 2675, pp. 288-297. Springer, 2003.

5. T. Bozheva, “Practical Aspects of XP Practices”, XP 2003, Lecture Notes in Com-
puter Science, vol. 2675, pp. 360-362. Springer, 2003.

6. W. Ambu and F. Gianneschi, “Extreme Programming at Work”, XP 2003, Lecture
Notes in Computer Science, vol. 2675, pp. 347-350. Springer, 2003.

7. Y. Kuranuki and K. Hiranabe, “XP “Anti-Practices” : anti-patterns for XP prac-
tices”, presented at The Agile Development Conference, Salt Lake City, Utah,
2004.

8. K. Lui and K. Chan, “Test Driven Development and Software Process Improvement
in China”, XP 2004, Lecture Notes in Computer Science, vol. 3092, pp. 219-222.
Springer, 2004.

9. K. Beck, Extreme Programming Explained, Embrace Change. Addison Wesley,
2000.

10. K. Beck in Extreme Programming Aprenda como encantar seus usuários desenvol-
vendo software com agilidade e alta qualidade by V. Teles. Novatec, 2004.

11. “Cowboy Coder” online at http://c2.com/cgi/wiki?CowboyCoder
12. L. Rising and E. Derby, “Singing the Songs of Project Retrospectives: Patterns

and Retrospectives”, Cutter IT Journal, pp. 27-33, September 2003.
13. R. Scupin, “The KJ Method: A Technique for Analyzing Data Derived from

Japanese Ethnology”, Human Organization, vol. 56, pp. 65-72, 1996.
14. F. Kon, A. Goldman, P. Silva, and J. Yoder, “Being Extreme in the Classroom:

Experiences Teaching XP”, Journal of the Brazilian Computer Society, 2004.
15. S.W. Ambler, Agile Modeling. John Wiley & Sons, 2002.
16. A. Cockburn, Agile Software Development. Addison Wesley, 2002.
17. S.B. de Holanda, Ráızes do Brasil. Companhia das Letras, 1995.


	XP South of the Equator: An eXPerience Implementing XP in Brazil
	1 Introduction
	2 Project Evolution
	3 Adaptations to XP Practices
	4 Other Practices
	4.1 Retrospectives
	4.2 Dirty Laundry Meeting
	4.3 Specialists and Study Time
	4.4 Coach of the Week

	5 Conclusions
	References


