
IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 1

Rulebook: An Architectural Pattern for
Self-Amending Mechanics in Digital Games

Wilson Kazuo Mizutani, Fabio Kon

Abstract—Mechanics are one of the pillars of gameplay,
enabled by the underlying implementation of the game and
subject to constant changes during development. In particular,
self-amending mechanics adjust themselves dynamically and
are a common source of coupled code. The Rulebook is an
architectural pattern that generalizes how developers prevent
coupled code in self-amending mechanics, based on a careful
research process including a systematic literature review, semi-
structured interviews with professional developers, and quasi-
experiments. The pattern codifies changes to the game state
as “effect” objects, which it matches against a dynamic pool
of rules. Each rule may amend, resolve, or chain effects. By
preventing the control flow of the game from becoming coupled
to the specific interactions of mechanics while also promoting an
extensible and flexible structure for self-amendment, our solution
reduces the time developers need to iterate on the design of
mechanics. This paper details the Rulebook pattern and presents
a case study demonstrating its design process in three different
implementations of open-source jam games. Together with the
typification of self-amending mechanics, this article formalizes a
novel, state-of-the-art toolset for architecting games.

Index Terms—software architecture, object-oriented design
patterns, architectural patterns, digital games, self-amending
mechanics.

I. INTRODUCTION

NOMIC is a pen-and-paper game where “changing the
rules is a move” as described by Suber in his work on

self-amendment [1]. Based on this concept, we proposed the
term self-amending mechanics in our previous research to
typify mechanics that, when used or enabled, change how
other mechanics work [2]. That definition views games as
interactive simulations [3] — a medium where users intervene
and interpret the state of a virtual world — and game mechan-
ics as the set of all intentionally valid state changes inside that
simulation [4]–[6], to provide a direct association between
mechanics and game subsystems. As such, implementation-
wise, self-amending mechanics are simulation operations that
reshape the computation of subsequent operations.

A. Motivation

By enabling diverse and thought-provoking gameplay expe-
riences, self-amending mechanics provide surprising dynam-
ics through unexpected interactions, offer strategic actions
to choose from, incite problem-solving curiosity, and even
improve immersion. They are found in most games, from
the invincibility star in Super Mario Bros. (Nintendo, 1985)
changing collisions with otherwise hazardous objects, to the
“is” block of Baba is You (Hempuli Oy, 2019), which controls
what rules apply to any type of game object.

W. K. Mizutani and F. Kon are with the Department of Computer Science
of the Institute of Mathematics and Statistics, University of São Paulo, São
Paulo, Brazil. E-mail: {kazuo,kon}@ime.usp.br

As part of the creative process, self-amending mechanics
can exert great influence on the software architecture of
games [7], [8]. On the one hand, they are prone to specification
changes like all mechanics in the iterative cycle of game
design [4]. On the other hand, their intervention in other me-
chanics encourages tightly coupled code, which is expensive to
maintain because changes in it propagate to the parts coupled
to it, multiplying the costs of new features and bug fixes. The
dozens of lines of code that check for petrification mechanics
in NetHack (DevTeam, 1987) exemplify this:1 a new interac-
tion (e.g., a weapon that grows stronger when petrified) has
to consider changing each of these lines on a case-by-case
basis — a cost that might stifle the creative process. How
an architecture organizes self-amending mechanics determines
how coupled the system is to that interwoven interaction. The
goal of our research is to design an architectural solution
that unifies the implementation of self-amending mechanics
while accounting for their transient specifications and tendency
toward coupling. That way, developers spend less time main-
taining coupled code and more time iterating on the game
design to produce better games.

B. Proposal

Based on the state of the art and state of the practice of
software architecture in game mechanics [2], [9]–[11], we
gathered recurrent design solutions that reduce the coupling of
self-amending mechanics. In this article, we propose and docu-
ment an architectural pattern that generalizes these solutions,
supporting any game and its specification changes over time.
We named it the Rulebook pattern due to its central role in
the reference architecture of our prior research, the Unlimited
Rulebook [2]. Architectural patterns are the “fundamental
structural organization schemas” where “every development
activity that follows is governed by this structure” [12].

C. Methodology

The Rulebook pattern derives from the same systematic
process, ProSA-RA [13], that led to the Unlimited Rulebook
reference architecture. This process included a systematic
literature review [11], semi-structured interviews with profes-
sional game developers, a survey of both academic and gray
literature, two proofs-of-concept, and a quasi-experiment [2],
[9], [10]. This extensive analysis yielded a reference model
with 33 architectural requirements that served as the formal
foundation for both the Unlimited Rulebook and the Rulebook
pattern, which we will cite where appropriate using their

1https://github.com/NetHack/NetHack

Accepted for publication in IEEE Transactions on Games. DOI: 10.1109/TG.2024.3359439

https://github.com/NetHack/NetHack

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 2

code identifiers.2 A reference implementation and proof-of-
concept validation of both results is available online under
the GPL v3 license.3 It serves as an example throughout this
paper, which complements our previous research with a case
study evaluating the Rulebook in more practical contexts.

D. Text Organization

Section II places our proposal in the context of other ap-
proaches to the same or similar problems. Section III describes
the Rulebook pattern itself. Section IV presents the case study
where we portray the proposed pattern in actual games. Last,
we discuss our conclusions in Section V.

II. RELATED WORK

Self-amending mechanics are a subset of economy mechan-
ics [6], [14] — the subset that offers the least opportunities for
general-purpose software reuse [2]. The comprehensive rules
of Magic: the Gathering (Wizards of the Coast, 1993–2023)
are an iconic reference to self-amending mechanics [15]. A
game design concept related to self-amending mechanics is
multiplicative gameplay [16].

The study of design and architectural patterns is an old
theme for game developers [17]. Of particular note are the ar-
chitectural patterns Entity-Component-System (ECS) [3], [18]
and Layers [12], [3]. ECS organizes the game state into “en-
tities” that combine “components” from the different domains
of the system (graphics, physics, etc.), while all computation
is organized into stateless functions called “systems”. It is
known for promoting reuse and extensibility in game systems
in general, mechanics included. The Layers pattern divides
the game system according to the dependencies between
parts so that the “lower” the layer where a part is, the
more parts depend on it. It helps keep the vast complexity
of game engines under control. However, neither of these
patterns offers any directed guidance regarding self-amending
mechanics. Academic publications on architectural solutions
to self-amending mechanics, or even economy mechanics in
general, are scarce [11], [19], [20].

Some works take a similar approach to us in the sense that
they investigate the architectural impact of applying a given
architectural pattern to the development of games. Olsson et al.
evaluate the use of the Model-View-Controller by measuring
the cost of adding changes to the codebase [21]. Wiebusch and
Latoschik, on the other hand, propose a semantic validation
tool to compensate for how the lack of strict typing in the ECS
pattern leads to subsystems being coupled to which component
combinations are compatible [22].

The underlying design structure of the Rulebook pattern
resembles two other programming techniques. The first are
rule-based systems (or expert systems), where condition-action
rules are used to infer subsequent states of a knowledge
database [23], [24]. The main difference to our approach is
that we do not require a dedicated knowledge database, and
we add the notion of “effect” objects to the process, which
enables self-amendment. The other technique is predicate-
dispatching [25]. If the Rulebook pattern were a first-class

2See Chapter 4 of our thesis for the complete list and descriptions [2]
3https://gitlab.com/uspgamedev/grimoire-ars-bellica/grimoire-ars-bellica

feature in a programming language, it would support a subset
of predicate-dispatching.

III. THE Rulebook PATTERN

This section follows a mixture of the formats for presenting
design patterns from Gamma et al. [26] and Buschmann et
al. [12]. The Rulebook is an architectural pattern that (1)
explicitly codifies state changes in the simulation as effect
objects, (2) tracks the set of active mechanics in the simulation,
and (3) matches those mechanics against effects to execute
them on a case-by-case manner through dynamic dispatching.
This decouples most of the game from the complexity and
specification instability of self-amending mechanics, making
their implementation a scalable, flexible, and incremental
process. It also enables dynamically adding and removing
custom mechanics to the simulation in the form of rule objects.

A. Example

Consider a game about managing a caravan as it travels
across a grid-structured world, tile by tile. The players’ ulti-
mate goal is to reach a certain destination, but to do so they
must ensure their crew survives, their transportation means
do not fall apart, and that their supplies never run out. The
game follows a turn-based execution, such that simulation
time only advances when the user provides input for in-game
actions. Assume there are several possible such actions, giving
the player enough possibilities to strategize around. Similarly,
assume there are multiple variations of caravan members and
land features. The outcome of the user’s actions depends on
the member composition of the caravan and the features of
the stretch of land they are currently in. A few examples for
each of these game elements could be:

• User actions – travel onwards, gather supplies, hunt food,
repair vehicles, make a camp, trade goods;

• Caravan members – navigators, hunters, engineers, bards,
cooks, historians;

• Land features – forests, bridges, rivers, roads, mountains,
settlements; and

• Self-amending mechanics:
– Cooks double all food produced;
– Engineers have a 50% chance of preventing caravan

vehicles from breaking;
– Fog randomly changes the destination of every action

that involves movement.
As a last part of this example, imagine there is a land

feature called “abandoned ruins” and that the developers of
this hypothetical caravan game want to give it the following
self-amending mechanics: the duration of movement-related
actions inside that tile doubles, while supplies do not get
soaked when a “rain” land feature is present and the caravan
stays put during its action. We will use this scenario to discuss
the architectural challenges of self-amending mechanics in
general and how the Rulebook approaches that problem.

B. Problem

The self-amending mechanics introduced by the “abandoned
ruins” in our example both involve multiple types of user
actions (RBM-3, RIC-1 [2]). The increased movement duration

https://gitlab.com/uspgamedev/grimoire-ars-bellica/grimoire-ars-bellica

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 3

affects the “travel onwards” action but also affects other move-
related actions like “gather supplies”. The protection from the
elements, in turn, affects non-movement actions, i.e., all other
types of actions. That means the new mechanics change all
actions in the game – maybe dozens of them [2].

The amount of work required depends on how user actions
tie into simulation state changes. For instance, if every action
is implemented in its own function, then the “abandoned
ruins” mechanics likely require adding a clause in all action
functions to account for either the doubled movement duration
or the prevention of weather-based consequences. We could,
at first, refactor the actions so they rely on two new, reusable
functions – one for handling duration changes and one for
checking if weather consequences apply. However, that would
still require changing all action functions and would not solve
the more general problem posed by self-amending mechanics
(RCE-3 [2]). If the next set of mechanics introduced also
involves several actions but does not fall under these two cases
we added, then the architecture will require another solution,
probably involving another expensive code restructuring.

This recurring phenomenon happens when the control flow
of the simulation is coupled to the implementation of the
mechanics. No matter how much we rearrange conditional
branches and functions, if they rely on the behavior of the
mechanics then any self-amending mechanics that amend mul-
tiple mechanics might involve multiple points in the control
flow of the simulation. In other words, the key challenge
of implementing self-amending mechanics is to be able to
introduce new behavior in multiple execution paths while
changing a minimum amount of code (RBM-4, RCE-2, RCE-
3 [2]). In some cases, even non-simulation control flow might
be coupled to specific mechanics, e.g., if the user interface
needs to know the consequences of an action to inform the
user before they choose that action (RIC-1 [2])

For most games, the scarcity of self-amending mechanics
ensures these restructuring steps remain within a manage-
able scope. The genres we noted where the costs involved
are non-trivial include role-playing, strategy, simulation,
and management games [2], [9], [10]. Some games outside
these genres fall under similar circumstances if they involve a
continuous release cycle (RCP-1 [2]) with constant innovation
in game mechanics, e.g., to support competitive gameplay.

C. Solution

To avoid coupling the control flow to the game mechanics,
the Rulebook pattern represents the intended outcome of user
actions as objects independent from the actual state change
caused by all self-amending mechanics at play. We call the first
part simulation effects (or just “effects”) – pieces of data that
describe what we want to happen – and the second part, effect
resolution (or just “resolution”) – the actual code that executes
the change to the simulation state (RBM-2 [2]). What bridges
these two elements to make sure that effects bring about the
appropriate resolutions are simulation rules (or just “rules”)
– they help the game system adjudicate what is the correct
resolution for a given effect. Rules associate a condition (or
predicate) over the upcoming effect and the current simulation
state with a resolution or a modification to the effect itself

Travel Forage Camp

Spend time

Spend 2x time

Start turn

End turn

if on
“abandoned ruins”

Travel

Forage

Camp

Spend time

Travel

Forage

Spend 2x time
if on

“abandoned ruins”

default
behavior

Control flow coupled to mechanics

Rulebook pattern

Fig. 1. A didactic representation of the difference between introducing self-
amending mechanics in games where the simulation control flow is coupled
to mechanics and games using the Rulebook pattern. Dashed lines and nodes
represent code added to enable the new mechanics. In the upper part, because
some but not all actions have a specific behavior variation, we need to branch
into the new “Spend 2x time” mechanics from all involved parts of the
codebase (the “Travel” and “Forage” steps). In the lower part, we only need to
add one rule that applies to all the scenarios that matter, regardless of where
and when they happen in the simulation.

(RBM-4 [2]). Together, these pieces allows us to introduce
individual rules that operate on any number of effect types,
grouping multiple changes into a single extension to the game.
Figure 1 offers some insight into how that works.

D. Participants and collaborations

The Rulebook assumes the game stores the simulation state
behind an abstraction layer (RIC-1, RIC-3, RIC-4 [2]). We will
call it the World of the game (see Figure 2). The Rulebook
pattern has two other key abstractions: Effect and Rule.
Effect objects describe a desired change to the simulation

state, with usually no special behavior by itself. Rule ob-
jects are responsible for testing whether an Effect instance
given the current state of the World matches its predicate,
and for modifying that Effect or applying its resolution
to the World. The most straightforward way the Rule
class does this is by providing a single abstract method,
handleEffect(world, effect). Implementations of
this method start by testing their predicate against the provided
arguments, executing the assigned behavior if successful.4

A central Rulebook object is responsible for, given an
Effect instance, finding all the Rule objects that participate
in its resolution process, then applying them.5 This process
modifies the Effect instance partway, forming a pipeline of
rules that collectively shape simulation effects to achieve any
particular, special-case resolution desired. A single rule can
negate, extend, or completely replace any effect (RBM-4 [2]).

To make the most of the Rulebook pattern, state changes
should always be done by creating an Effect instance

4Example: https://tinyurl.com/grimoire-example-rule
5Example: https://tinyurl.com/grimoire-rulebook

https://tinyurl.com/grimoire-example-rule
https://tinyurl.com/grimoire-rulebook

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 4

«component»
Rulebook

internal structure

:EffectStream :Rule

«component»
Simulation State

internal structure

:World

Read/Write API

Create/Remove/Edit rules

:Effect
Handle
effects

Amend,
Resolve, or

Chain effects

Create/Read effects

Read-only
API

Resolve/Preview effects

Fig. 2. Key participants in the Rulebook pattern. The unconnected interfaces
define the available operations over the simulation: read the state, create new
effects, resolve effects, preview effects to read them, and add or remove rules.

and passing it to the Rulebook instead of accessing the
World directly. Since this subjects all simulation behavior
to the effect resolution process, it is always possible to
change any mechanics using Rule objects. This added level
of indirection decouples the simulation control flow from
the mechanics, minimizing the cost of changing them (RCE-
1 [2]). The Rulebook encapsulates any complexity involved
in finding, navigating, and invoking methods in the Rule
objects currently active in the simulation.

Sometimes the resolution of an Effect may create other
Effect instances. In these scenarios, it is common for the
Rulebook to have an associated EffectStream to keep
track of all pending Effect instances. Once the Rulebook
starts processing an Effect, it stores and retrieves any further
Effect instances in and from the EffectStream until no
more Effect instances arise or after an established limit is
reached. Figure 2 shows the complete process sustained by the
Rulebook pattern and its participants.

E. Implementation considerations

As an architectural pattern, using the Rulebook to make a
game is a key decision in the early phases of development [12].
Just like a team would not switch over to an ECS pattern with-
out a cautious consideration, adopting the Rulebook pattern is
not without its costs either. This is particularly evidenced by
the need to centralize all state changes to the World in the
Rulebook object and its Rule instances. Having only part
of the state changes follow the pattern could make the overall
maintenance cost higher than simply carrying on without it.

For similar reasons, even if a team adopts the Rulebook
from start, the eventual need to change specific implementation
decisions in the pattern itself also impose a risk to the project
scope, though to a relatively lesser extent. The architects of
a game with self-amending mechanics ought to consider the
possible variations of the pattern and the consequences of
each. This section discusses such design decisions and the
considerations our research arrived at.

1) Storage of Rule instances: One of the central benefits
of the Rulebook pattern is that rules can be dynamically added
to and removed from the simulation since they are instantiated
as objects. However, there are two types of rules regarding
when the game adds them to the simulation. The first type

is added during the start-up process and is never removed.
The second is added and removed always associated with a
simulation element, such as characters and items or even whole
maps and environmental features (ROM-2 [2]).

On the one hand, the recurrent associations between Rule
objects and simulation elements suggest that Rule should
belong to those elements as instance variables or something
similar (e.g., a component in an ECS architecture).6 On the
other hand, keeping a centralized storage of all Rule instances
supports the use of specialized data structures to optimize
queries for rules that match a given Effect, as discussed
in Section III-E2. Either way, the Rulebook pattern mitigates
eventual changes to that decision since it encapsulates inside
the Rulebook object how Rule objects are accessed.

2) Rule-matching optimizations: Based on examples like
Magic: the Gathering and the very complex Path of Exile
(Grinding Gear Games, 2013), games with self-amending me-
chanics could require thousands of rules. The straightforward
approach described in Section III-D for implementing the
Rule class, however, scales poorly with the number of rules
present in the simulation. That is because the Rulebook
always needs to call handleEffect on all rule instances.
Next are a few alternatives to keep in mind.

One option is to filter rules based on the spatial relationship
of the simulation objects involved. Every rule might specify an
“area of effect” so that the Rulebook can rely on collision
detection systems — with support for optimizations such
as spatial partition algorithms [17] — to only invoke the
handleEffect method in the Rule objects that have their
spatial preconditions satisfied and the rule then further tests
the situation (RIC-3 [2]). In the grid-structured game of the
example, one could limit resolution to only Rule objects tied
to the current tile (which is enough to solve the example).

Another approach is to filter rules based on the effects they
operate on instead of the simulation elements involved. For
instance, rules could be indexed by the specific subtypes of
Effect they target. Using this method, supporting rules that
affect multiple types of effects might be less trivial.

A third alternative is to query rules based on their predicate
broken into logic clauses. Ernst et al.’s predicate-dispatch
approach, for instance, suggests a complex but powerful
matching algorithm for that [25]. Since there are similarities
between the Rulebook pattern and rule-based systems, some
classic solutions in that field – such as the Rete algorithm [24]
– might be useful as well.

3) Solving Rule conflicts: Two Rule objects conflict
whenever both handle the same incoming Effect with non-
commutative operations. In such cases, whichever gets to run
first might prevent the other from doing so because either the
Effect or the simulation state changed. A conflict resolution
mechanism (usually part of the Rulebook object) determines
a priority between rules and can improve the determinism of
the simulation.

A straightforward but still considerably flexible approach is
to always match against all rules but in a consistent order. This
way, those that go first act as “higher priority”, shaping the

6Example: https://tinyurl.com/grimoire-component-with-rules

https://tinyurl.com/grimoire-component-with-rules

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 5

Input
Processing

Rulebook

Amendment
Rule

Chaining
Rule

Effect
Stream

Rule

Resolution
Rule

Simulation
State

Effect

Effect Effect

Amended
Effect

Effect New
effect

Next
effect

State
change

1

2 5

4

3

Fig. 3. Flow of effects using the Amend-Resolve-Chain (ARC) variation of
the Rulebook pattern, which prioritizes rules according to what they do to
effects. Following the numbered markers: (1) the game feeds an effect to the
Rulebook (user input is just an example); (2) that effect passes through
all applicable amendment rules, which change its data; (3) after there are no
amendments left, the effect never changes again and goes to the resolution
rules, which apply it to the simulation state; (4) once all simulation state
changes end, chaining rules then take the effect and the simulation state into
account to schedule new effects; and (5) at some point in the future, the
Rulebook polls those queued effects to repeat the cycle with them.

Effect and the simulation state before other rules have a
chance to. When changes to an Effect during its resolution
should give previously considered Rule objects a new chance
at matching, the Rulebook can detect this change and reset
the iteration from the start — always keeping the matching
order consistent — to give earlier rules a new chance at
matching. In this case, one can prevent soft locks by never
letting a Rule handle the same Effect more than once.7

The drawback of this approach is its scalability. As Plotkin
claims, keeping track of the order of thousands of rules might
be unsustainable [27]. He argues that any specific heuristic
would always miss any number of corner cases, motivating
him to propose using the rule system itself to determine
which rules win a conflict. We explored this approach in an
early proof-of-concept of our previous research [2].8 Though
it worked, it made the code considerably more complex.

Our investigation showed we can prioritize some rules
over others consistently. By ordering rules by whether they
amend, resolve, or chain effects [2], developers maximize
the information each type of rule has about the effect being
processed. Though there is no guarantee that all games are
compatible with this, it is a practical rule of thumb to follow.

For example, the “travel onwards” action in the caravan
game, when executed inside a tile with the “abandoned ruins”
and “rain” land features, may prioritize rules as follows. First,
amendment rules from the ruins double the duration property
of the travel effect. Second, resolution rules move the caravan
and advance time twice as usual in the simulation — because
the slow-down rule ran beforehand. Third, chaining rules from
the rain chain a new effect for soaking some of the caravan’s
supplies, which only happens if the caravan did move. If any

7Example: https://tinyurl.com/grimoire-prevent-soft-lock
8Example: https://tinyurl.com/prototype-reentrant-rulebook

rule amended or resolved the travel effect differently, then the
chaining would be appropriately avoided.

We call this three-step division of rules the Amend-Resolve-
Chain (ARC) variation of the Rulebook pattern (Figure 3).
It has the added benefit of allowing us to “preview” the
resolution of an effect by only applying the amendment rules
and looking into the resulting Effect object. Since it will not
change further, it is significantly easier to deduce its resolution,
especially if the simulation is deterministic. Even when a game
does not use this variation, it is still useful to talk about rules
in terms of what their role would be in the “ARC pipeline”.

F. Example Resolved

Assuming the hypothetical caravan game adopted the Rule-
book pattern, we will illustrate how that could be implemented
and how one could add the “abandoned ruins” mechanics.
For this game, the straightforward approach of using a single
method for the Rule class (handleEffect) is enough.
Keeping all Rule objects in a central list is also enough, as
is implementing the Rulebook by iterating over that list and
letting every Rule try to handle every Effect.

Every user action is initially translated into an Effect
instance. For didactic purposes and simplicity, Effect ob-
jects can be dynamically-typed, JSON-like associative ta-
bles. That way, the “travel onwards” action might translate,
for instance, into an Effect as simple as {"travel":
"east", "duration": 10}. Then, a series of amend-
ment rules might look at the rain in the current tile and
chain a {"soak_supples": true} effect afterwards. Al-
gorithm 1 illustrates a very simplified implementation of this.

As for the “abandoned ruins” land feature, at first glance, we
can see that there are likely two amendment rules needed. The
first would test for effects it considers to involve movement
and the second would test for all other effects. However, if
other rules in the future need to test for the same conditions,
then we would have to duplicate that piece of code. Instead,
we will use a third, higher-priority amendment rule to tag the
effect as being movement-related. Following this approach,
Algorithm 2 shows the simplified pseudo-code implementation
required to enable the “abandoned ruins” mechanics. Because
the Rulebook pattern allows us to amend simulation effects,
we only needed to add three rules to cover mechanics that
potentially involved all effects in the game.

G. Known uses and related patterns

The Rulebook pattern is a generalization of several specific
solutions found in the game developer community. Among
these, two were central to the design we arrived at: Plotkin’s
rule-based programming for interactive fiction [27] — based
on the actual implementation of the Inform7 engine9 — and
Bucklew’s “components and events” design [28] for the games
Caves of Qud (Freehold Games, 2015) and Sproggiwood
(Freehold Games, 2014). At the same time, there are patterns
that either resemble the Rulebook in some aspect or fulfill part
of its features but do not solve the particular problem of self-
amending mechanics. Using the example caravan game where
applicable, we elaborate on some of these relationships.

9https://ganelson.github.io/inform-website/

https://tinyurl.com/grimoire-prevent-soft-lock
https://tinyurl.com/prototype-reentrant-rulebook
https://ganelson.github.io/inform-website/

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 6

Algorithm 1 Methods for rules initialization, user input
translation into travel effects, rule adjudication algorithm,
resolution rule for default travel behavior, and chain rule for
rain soaking caravan supplies. The field “travel” inside the
effect contains the traveling direction or null for any other
effect, while the “duration” field contains the number of in-
game time units the effect takes to execute. When chaining
effects, let us assume that it keeps a reference to the previous
effect so other rules can further evaluate the circumstances.

function GAME::INIT() ▷ Partial implementation
rlbk ← self.GETRULEBOOK()
rlbk.ADD(TRAVELRULE.NEW())
rlbk.ADD(RAINRULE.NEW())

function GAME::UPDATE() ▷ Partial implementation
i← self.GETUSERINPUT()
if i.ISMOVEMENT() then

w ← self.GETWORLD()
d← i.GETDIRECTION()
e← {“travel′′ : d, “duration′′ : 10}
self.GETRULEBOOK().RESOLVE(w, e)

function RULEBOOK::RESOLVE(w, e)
for rule ∈ self.GETRULES() do ▷ Insertion order

rule.HANDLEEFFECT(w, e)
if e.ISCANCELLED() then return

function TRAVELRULE::HANDLEEFFECT(w, e)
if e[“travel”] ̸= null then

w.MOVECARAVAN(e[“travel′′])
w.PASSTIME(e[“duration′′])

function RAINRULE::HANDLEEFFECT(w, e)
L← w.GETCARAVAN().GETLANDFEATURES()
if “rain′′ ∈ L then

self.CHAINEFFECT(e, {“soak supplies” : true})

1) Component or ECS: Both these patterns use composition
over inheritance to often reuse mechanics across different
game simulation elements, reducing the cost of defining new
types [3], [17], [18]. In the caravan game, these components
might be land features such as the “abandoned ruins”. How-
ever, that does not change the work required when different,
separate user actions (e.g., “travel” and “gather”) need to
detect the presence of that component because those patterns
do not specify where those actions are implemented in the
codebase.

2) Command: Representing actions as objects, as the Rule-
book does with effects, is similar to how the Command allows
programmers to turn functions into objects [17], [26]. The
“travel” action could be one such object. That said, the pattern
says nothing about how the action is actually implemented –
in fact, its goal is to abstract that away. There are no guidelines
for changing the behavior of multiple Command objects.

3) Chain of Responsibility or Decorator: Chain of Re-
sponsibility involves passing a request object along a series
of handlers that might do something with it or prevent it
from going forward, while Decorator stores objects inside
nested decorators composed to dynamically shape the be-
havior of those objects [26]. Both patterns could provide a

Algorithm 2 Amendment rules that together implement the
mechanics for the “abandoned ruins” land feature, assumed to
be registered in an order that makes sense. The first tags all
effect related to movement, the second doubles the duration
of any effect tagged as movement, and the third negates rain
complications on effects chained from non-movement effects.
The parameters w and e, the fields “travel” and “duration”,
and effect chaining work as in Algorithm 1. The “gather” field
contains the type of resource the caravan is looking for or
null for any other effect. If more effects should fit the first
rule, that is the only place we ever need to change for the
purposes of detecting movement-related effects.

function MOVEMENTRULE::HANDLEEFFECT(w, e)
if e[“travel”] ̸= null or e[“gather”] ̸= null then

e[“movement”]← true

function LOSTINRUINSRULE::HANDLEEFFECT(w, e)
L← w.GETCARAVAN().GETLANDFEATURES()
if e[“movement”] = true and “ruins” ∈ L then

e[“duration”]← e[“duration”] ∗ 2
function SHELTERINRUINSRULE::HANDLEEFFECT(w, e)

L← w.GETCARAVAN().GETLANDFEATURES()
if e[“soak supplies”] = true and “ruins” ∈ L then

e0 ← e.PREVIOUSEFFECT()
if e0[“movement”] ̸= true then

e.CANCEL()

pipeline where mechanics (e.g., doubling turn durations inside
“abandoned ruins”) are processed sequentially as handlers and
decorators. As such, the Rulebook could use them as part
of its implementation, but the patterns by themselves give no
insight into how those rules fit into the larger context of game
simulation to promote self-amending mechanics.

4) Observer: A mechanism for raising “events” without
knowing which functions will “catch” them [17], [26], similar
to the interaction between effects and rules in the Rulebook
(e.g., the double turn duration rule is an “observer” of the
“travel” event). In fact, Bucklew calls effects “events” [28]
but we use the term “effect” to set it apart from typical event
systems and because it more or less matches the concept of
“effect” in the rules of Magic: the Gathering (Wizards of the
Coast, 1993) [15]. Regardless, Observer can be used as part of
the Rulebook pattern but also lacks the wider guiding structure
for supporting self-amending mechanics by itself.

5) Blackboard: The way the Rulebook treats effects as pure
data containers that rules collectively read from and write to
resembles the Blackboard architectural pattern [12]. In this
pattern, all subsystems of an application operate on a shared
data repository. However, that repository usually contains the
entirety of the working state of the system, not just the
representation of individual operations like with effects.

IV. CASE STUDY

To evaluate the Rulebook pattern, we carried out a case
study based on real-world games with self-amending mechan-
ics. We followed Runeson and Höst’s guidelines for conduct-
ing case studies in software engineering [29]. Following their
criteria, this is a descriptive, interpretive, qualitative study.

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 7

TABLE I
JAM GAMES INVESTIGATED IN CASE STUDY

Legend of Dungeon Honey

Slime 10 Architect 11 BZZZness 12

Jam Crossover Jam Ludum Dare Ludum Dare

Edition 2021 13 50 14 53 15

Team size 4 4 7

Duration 48h 72h 72h

Engine Godot 3.3 Godot 3.4 Godot 4.0

Genre Puzzle Base-building Clicker

The goal was to evaluate the architectural consequences
of using the Rulebook pattern, analyzing its design process.
We needed games that (1) use the Rulebook pattern, (2) are
finished in some capacity, (3) provide access to their source
code, and preferably (4) disclose the implementation design
process behind using the pattern. To that end, we chose games
among jam submissions the authors participated in that not
only adopted the Rulebook pattern but were complete enough
to provide a clearer picture of the pattern in action. The
jams took place over the last two years and our participation,
while unrelated to the current research, was still influenced
by the experiences we had with the Rulebook pattern. We
chose three games to offer multiple perspectives on the pattern.
They are all available online under the GPL v3 license and
the design process was accessible to this study due to our
direct participation. Table I has a brief overview of each game.
The analysis follows the reference model of the Unlimited
Rulebook reference architecture [2], which sees games as in-
teractive simulations processed by applying effects that change
its state. We sought to answer the following research questions:

RQ1 What motivated the adoption of the Rulebook?
RQ2 How were the design decisions made in each case?
RQ3 What were the architectural consequences in each case?

For RQ1, we relied on the technical and gameplay require-
ments of each game — including design specifications, team
composition, and available development time — to understand
implementation decisions. To answer RQ2, we inspected the
source code of each game and briefly described the key
classes that enable the Rulebook pattern. We took note of
any peculiarity and made a short list of notable rules where
self-amendment was achieved. Last, we answered RQ3 by
highlighting the development opportunities and challenges
faced during each jam due to the Rulebook pattern.

A. Results

This section divides the results by game, providing brief
descriptions to contextualize the collected information. We
present the games in chronological order of development.

10https://github.com/uspgamedev/crossover-slime
11https://gitlab.com/uspgamedev/ld50
12https://gitlab.com/uspgamedev/jams/ld53-clicker
13https://itch.io/jam/crossover-jam-2021
14https://ldjam.com/events/ludum-dare/50/dungeon-architect
15https://ldjam.com/events/ludum-dare/53/honey-bzzzness

1) Legend of Slime: A 2D game where a slime merges
with other slimes to absorb and combine powers, using them
to solve puzzles (Figure 4). The slimes’ powers are based on
typical elemental forces (fire, water, wind, etc.) and provide
unique abilities (e.g., a lightning zap).

The large number of combinations between elements and
their interactions with the environment motivated using the
Rulebook pattern. However, there were concerns that learning
the pattern would take time (being in a 48-hour jam). Thus, the
developers favored an approach that relied on the more familiar
Component pattern [17], widely known for its use in the pop-
ular Unity engine.16 Thus, we based the design on Bucklew’s
variant [28], which dismisses the central Rulebook object,
cutting on the boilerplate.

The team implemented Effects as JSON-like objects. Each
effect had a single type, emulating a tagged union.17 Rules
were the main type of components used to compose simulation
objects, which worked as “individual rulebooks” the game
could apply effects to. Rule components could implement
multiple rules with its single effect-handling method. Conflict-
solving followed the order of the components, with earlier
rules being able to shut down an effect before it reached other
rules. Only two effects required special treatment outside of
rules because they involved map tiles inaccessible to individual
simulation objects.18

There were two main self-amendment cases in Legend of
Slime. The first is that, by default, simulation objects that
collided with an obstacle stopped moving, but a few rules
allowed players to enter a blocked space, such as when they
absorbed another slime. The other is when players gained
the power from another slime, because if they already had
a previous power they might combine instead. To do this, the
rule of each power amended the effect to gain other powers.

The game achieved over a dozen different puzzle mechanics
and still managed to feature a complete sequence of stages
using all of them. We tribute that in great part to the “rules
as components” design. In particular, grouping multiple rules
in a single component made it easier to add and remove
them at runtime. However, since most effects only interacted
with a single entity, conventional abstract methods for each
effect type might have achieved similar results. Though the
Rulebook enabled the self-amending mechanics of combining
slime powers, it still incurred code duplication because each
power had a rule to combine with each other compatible
power. For instance, both the fire19 and water20 powers had
a rule to mix into the wind power. Future development in
Legend of Slime would have to consider refactoring rules into
more reusable parts to reduce long-term maintenance costs.

2) Dungeon Architect: A 2D game where the player builds
a series of grid-based dungeon layouts to delay a delving
party of heroes as much as possible (Figure 5). The party
traverses the grid from block to block more or less randomly,
and each block has self-amending mechanics that determine

16https://unity.com/
17Example: https://tinyurl.com/slime-tagged-effect
18https://tinyurl.com/slime-workarounds
19https://tinyurl.com/slime-fire-with-water
20https://tinyurl.com/slime-water-with-fire

https://github.com/uspgamedev/crossover-slime
https://gitlab.com/uspgamedev/ld50
https://gitlab.com/uspgamedev/jams/ld53-clicker
https://itch.io/jam/crossover-jam-2021
https://ldjam.com/events/ludum-dare/50/dungeon-architect
https://ldjam.com/events/ludum-dare/53/honey-bzzzness
https://unity.com/
https://tinyurl.com/slime-tagged-effect
https://tinyurl.com/slime-workarounds
https://tinyurl.com/slime-fire-with-water
https://tinyurl.com/slime-water-with-fire

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 8

Fig. 4. Screen capture of Legend of Slime, one of the games investigated
in the case study. In this game, the player controls a slime that combines
with other slimes to wield different elemental powers to solve puzzles. For
instance, water slimes fill gaps with water to cross them safely.

how much time the party takes in each room based on the
party composition and other nearby blocks.

Dungeon Architect has simple mechanics and most of the
effort went into the graphics. That said, developers needed
a flexible way to implement dungeon block mechanics as the
designers came up with ideas over the course of the jam. There
would only be two effects so there was no need for the ARC
variant or effect streaming, and the previous approach of type-
tagged JSON-like effects and rules as components sufficed.
This time there was an overseeing Rulebook object because
rules had to reach any effect in the simulation.

Since all active block rules were elegible to process any
effects, the Rulebook object used a simple mechanism to
filter rules that expected a specific type of effect. As men-
tioned, there were only two types of effect in the game: one
for computing how much time the party spent in a block and
one for determining the connection between adjacent blocks.
As such, almost all self-amending mechanics involved rules
that affected the party’s traversal of each block depending
on the dungeon layout. An illustrative example would be the
“treasure room” block, which increased the time spent in it if
any adjacent blocks had a dangerous challenge, to represent
the party taking their time to celebrate their achievement.21

Most dungeon blocks ended up with unique self-amending
mechanics, enabling less reuse of rule components than in
Legend of Slime. Despite that, the flexibility of the Rulebook
pattern let us spend less time handling the interactions between
self-amending mechanics and more time polishing the game
as a whole. The centralized Rulebook allowed rules to be
applied to effects beyond the simulation object they were at-
tached to, supporting interesting interactions between different
block types. Dungeon Architect also achieved an acceptable
gameplay length given the time constraints and team size.

3) Honey BZZZness: A 2D mobile game where the player
manages the honey production of a bee hive (Figure 6). They
tap the screen to collect pollen, which they can convert into
honey. Honey, in turn, is used to hire bees that perform a
variety of tasks, produce wax to extend the hive, and unlock

21https://tinyurl.com/dungeon-treasure-room

Fig. 5. Screen capture of Dungeon Architect, one of the games investigated in
the case study. In this game, players place blocks to build a dungeon with the
goal of making the incoming party of heroes take as much time as possible
— the more they stay inside, the more currency the players receive.

skills in a skill tree. All these elements affect the production
of the hive differently through self-amending mechanics.

The ARC variant of the Rulebook was partly adopted
because the cost of many in-game actions would change
based on self-amending mechanics. By separating amendment
rules from resolution rules, the game could preview effects
to determine its real cost taking all rules into consideration.22

Otherwise, it would have to compute the cost for the user
interface then again when actually resolving the effect. Some
rules had no particular simulation object to attach to (e.g., the
rule that by default locks production of all bees until unlocked
via skill tree) and there were different types of rule-bearing
objects this time (bees, hive expansions, and skills). Because
of that, rule storage was more flexible: rules could be attached
to any node in the scene tree.

That resulted in the most different approach among the
studied games. Effects had a proper class encapsulating a
JSON value, but did not rely on a type tagging mechanism.
Instead, the stored value was a shallow dictionary where each
field was called a trait, emulating the Component pattern.
Rules were divided into MofidyRule (amendment) and
ApplyRule (resolution). The central Rulebook object this
time offered the option of just previewing the result of an
effect. Processed effects were dispatched to all rule nodes in
the Godot scene tree, no matter where they were. A set of
“core” rules was kept in a single place while the rest came
attached to whatever simulation element introduced it (bees,
hive expansions, or skills).

The two main forms of self-amendment in Honey BZZZness
were mechanics that changed the values of resource transac-
tions (e.g., how much honey was produced when processing
pollen) and mechanics that enabled other mechanics (e.g.,
unlocking new bees in the skill tree). Transaction effects
shared traits in their calculations that allowed us to reuse code
across multiple rules. Mechanics that enabled other mechanics
had some effects be cancelled by default, then introduced rules
via unlocked skills that overwrote that behavior.23

Being the most complex implementation of the Rulebook
studied, there was a steeper learning curve for the team,

22https://tinyurl.com/bzzzness-preview-cost
23https://tinyurl.com/bzzzness-unlock-bee-skill

https://tinyurl.com/dungeon-treasure-room
https://tinyurl.com/bzzzness-preview-cost
https://tinyurl.com/bzzzness-unlock-bee-skill

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 9

which led to some misunderstandings on how to use the
pattern and cost some extra time to implement. Together
with the feature-packed user interface, the complexity of the
mechanics contributed to the team barely finishing the game
in time for release, with many mechanics left out. Because
the rules were spread out in the scene tree, it was harder to
provide them access to the simulation state, requiring some
time-consuming workarounds. Despite those issues, the ARC
approach prevented complications from rule conflicts entirely
while the effect preview feature proved to be a valuable tool
throughout development, suggesting the resulting game might
have been even less complete without the pattern.

B. Discussion and implications

Understanding what type of self-amending mechanics the
game had beforehand played a key role in the design process.
In the particular case of jam games, because of the tight
schedule, the design specification is written alongside the
programming progress, so even a slightly increased variety of
self-amending mechanics (slime powers, dungeon blocks, bee
types) meant a certain expectation of unpredictable changes.
That motivated the developers to invest in a decoupled struc-
ture for mechanics using the Rulebook (RQ1).

Design decisions depended on the constraints of the effects
and rules in each game, as well as the composition of the
team (RQ2). The variety of effects dictated how they would be
stored, with all three games relying on JSON-like values since
stronger typed alternatives involved extra boilerplate code that
was not compatible with the scope of a jam. The lifetime cycle
of rules was the key factor for determining how to store them
— whether they existed alongside simulation elements and
whether they could be added and removed at any time. The
need for previewing effects decided if rules would follow the
ARC variation. Finally, the experience and size of the team
influenced whether the developers chose to fully adopt the
Rulebook pattern or only partially apply its principles. It is
worth noting the developers also never relied on streaming or
chaining mechanisms, though they often had to resolve effects
during the resolution of other effects synchronously.

The main architectural consequence (RQ3) across all games
was that developers could implement the unplanned, mid-
jam design specifications of self-amending mechanics without
changing multiple parts of the codebase. The implementation
of the core elements of the Rulebook pattern required 15
lines of code24 at worst, and 425 at best, making the adopted
variations of the pattern fast and practical to include and
start working with. Furthermore, using rules as Godot nodes
promoted reusability in the workflow. The only situation where
self-amending mechanics required multiple changes was when
rules needed unforeseen access to specific parts of the simu-
lation state - because that state was not stored in a cohesive
module, a divergence from the assumptions of Section III-D.

C. Threats to Validity

We note that part of these benefits found in this study could
stem from the expertise of the teams instead of the pattern

24https://tinyurl.com/bzzzness-rulebook
25https://tinyurl.com/dungeon-rulebook

Fig. 6. Screen capture of Honey BZZZness, one of the games investigated in
the case study. In this game, you manage a bee hive to produce honey for the
queen. You collect pollen by tapping the screen and can use skills, bees, and
hive expansions to produce honey, wax, and other things. By balancing your
resources you can expand the hive and defend against predators.

used. That said, the same observable benefits (unforeseen
mechanics requiring few code changes) were present despite
the differences in each team composition and game genre. That
suggests tangible advantages of the Rulebook pattern — the
key architectural aspect in common among the studied games.

The conclusions taken might not hold for games outside the
scope of game jams. In places where we were content with
workarounds, a longer project might have required a revision
of previous design decisions mid-development, a scenario the
study did not cover. We also used the same engine and covered
only three genres, so there might be other aspects of the
Rulebook pattern that did not play a role in our investigation.
As an initial study, however, it fulfills its goal of illustrating
the essentials of the proposed pattern. Besides, games known
to use the pattern to great effect, such as Caves of Qud, do
feature different engines and genres, and a larger scope [28].

Last, since we were part of the teams that developed the
studied games, the analysis is likely to carry biases. The
greatest bias is that, as researchers of software architecture
and self-amending mechanics, some design decisions might
sound logical to us but not to someone not familiar with
these subjects. That means that others might have come to
different conclusions, especially regarding RQ3. At the same
time, these different conclusions would, in turn, carry the bias
of not being familiar with the pattern. We need both these
perspectives and more to fully picture the Rulebook, and this
case study provides the first pieces of the puzzle.

V. CONCLUSIONS

Games are a creative medium and self-amending mechanics
empower developers with a wide design space to express
themselves and build engaging dynamic worlds to explore.
However, they are a critical part of the architecture prone
to becoming a bottleneck for new changes. To allow these
mechanics to interact with each other in intricate manners,
games should decouple themselves from them while also
providing a flexible structure for their self-amendment.

The Rulebook is a general solution that fulfills these
requirements based on extensive research following a system-
atic process. The benefits it provides are subject to the id-
iosyncrasies of the self-amending mechanics and development
process, with some genres and environments bearing clearer
advantages. As an architectural pattern, it provides developers

https://tinyurl.com/bzzzness-rulebook
https://tinyurl.com/dungeon-rulebook

IEEE TRANSACTIONS ON GAMES, VOL. 1, NO. 1, JANUARY 2024 10

with clear guidelines for devising their implementations, with
each variant offering different advantages and disadvantages.
The case study performed further supports the pattern through
real-world implementations of three open-source jam games
and the design process behind them. The Rulebook pattern
formalizes what was only scattered knowledge into a tool now
available to developers and researchers alike.

A. Future Work

Though self-amending mechanics have always existed, their
typification for the purposes of architectural design is still a
novel concept. As such, there are several opportunities for
innovative research. As more games consciously adopt the
Rulebook pattern — instead of incidentally intersecting its
ideas — more characteristics, limitations, and variations will
become evident. In particular, performing more studies —
especially empirical studies or investigations into larger, com-
mercially successful games — compose the kind of research
we hope to work with in the future.

We have plans for a new case study where we critically
analyze larger open-source games we have not participated in
to determine how the Rulebook pattern could improve their
architecture. Given how games often strive for performance,
there are also many optimization opportunities in the rule-
processing aspect of the Rulebook pattern. We touch upon
only a few in Section III-E2. One particular approach that we
believe to have great potential is the parallelization of rules
— a challenging problem because rules share memory access
to both effects and the simulation state.

ACKNOWLEDGMENTS

Grant 2017/18359-6, São Paulo Research Foundation (FAPESP).

REFERENCES

[1] Peter Suber. (1982) Nomic: A Game of Self-Amendment. Available
online at http://legacy.earlham.edu/ peters/nomic.htm (last accessed July
23th, 2022).

[2] W. K. Mizutani, “The unlimited rulebook: Architecting the economy
mechanics of games,” Ph.D. dissertation, Department of Computer
Science, University of São Paulo, 2021, available: https://www.teses.usp.
br/teses/disponiveis/45/45134/tde-22122021-205515/publico/texto.pdf.

[3] J. Gregory, Game engine architecture, third edition. CRC Press, 2019.
[4] J. Schell, The Art of Game Design, Third Edition. CRC Press, 2020.
[5] R. Hunicke, M. Leblanc, and R. Zubek, “MDA: A formal approach to

game design and game research,” in In Proceedings of the Challenges
in Games AI Workshop, Nineteenth National Conference of Artificial
Intelligence. Press, 2004, pp. 1–5.

[6] E. Adams and J. Dormans, Game Mechanics: Advanced Game Design.
New Riders, 2012.

[7] N. Nordmark, “Software Architecture and the Creative Process in Game
Development,” Master’s thesis, Norwegian University of Science and
Technology, 2012.

[8] A. I. Wang and N. Nordmark, “Software Architectures and the Cre-
ative Processes in Game Development,” in International Conference on
Entertainment Computing, 2015.

[9] W. K. Mizutani and F. Kon, “Toward a reference architecture for
economy mechanics in digital games,” in Proceedings of the Brazilian
Symposium on Games and Digital Entertainment (SBGames), Oct. 2019,
pp. 623–626.

[10] ——, “Unlimited rulebook: a reference architecture for economy me-
chanics in digital games,” in Proceedings of the IEEE International
Conference on Software Architecture (ICSA), Nov. 2020, pp. 58–68.

[11] W. K. Mizutani, V. K. Daros, and F. Kon, “Software architecture for
digital game mechanics: A systematic literature review,” Entertainment
Computing, vol. 38, p. 100421, Mar. 2021.

[12] F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture. Chichester, UK: John Wiley
& Sons, 1996, vol. 1.

[13] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a process for the design, representation,
and evaluation of reference architectures,” in Proceedings - Working
IEEE/IFIP Conference on Software Architecture 2014, WICSA 2014,
2014, pp. 143–152.

[14] J. Dormans, “Engineering Emergence - Applied Theory for Game
Design,” Ph.D. dissertation, University of Amsterdam, 2012.

[15] Wizards of the Coast. (2023) Magic: the Gathering’s Comprehensive
Rules. Online reference (last accessed March 15th, 2023).
[Online]. Available: https://magic.wizards.com/en/game-info/gameplay/
rules-and-formats/rules

[16] H. Fujibayashi, S. Takizawa, and T. Dohta. (2017) Breaking Conventions
with The Legend of Zelda: Breath of the Wild. Conference talk avail-
able online at https://www.youtube.com/watch?v=QyMsF31NdNc (last
accessed Match 13th, 2022).

[17] R. Nystrom, Game Programming Patterns. Genever Benning, 2014.
[18] C. West. (2018) Using Rust For Game Development. [Online].

Available: https://kyren.github.io/2018/09/14/rustconf-talk.html
[19] A. Ampatzoglou and I. Stamelos, “Software engineering research for

computer games: A systematic review,” Information and Software Tech-
nology, vol. 52, no. 9, pp. 888–901, 2010.

[20] L. B. Morelli and E. Y. Nakagawa, “A Panorama of Software Architec-
tures in Game Development,” in International Conference on Software
Engineering and Knowledge Engineering, 2011, pp. 752–757.

[21] T. Olsson, D. Toll, A. Wingkvist, and M. Ericsson, “Evolution and
Evaluation of the Model-View-Controller Architecture in Games,” in
International Workshop on Games and Software Engineering, 2015.

[22] D. Wiebusch and M. Latoschik, “Decoupling the entity-component-
system pattern using semantic traits for reusable realtime interactive
systems,” in 2015 IEEE 8th Workshop on Software Engineering and
Architectures for Realtime Interactive Systems, SEARIS 2015 (2017),
2015, pp. 25–32.

[23] C. Grosan and A. Abraham, Intelligent systems. Springer, 2011, vol. 17.
[24] I. Millington and J. Funge, Artificial intelligence for games. CRC Press,

2009.
[25] M. Ernst, C. Kaplan, and C. Chambers, “Predicate dispatching: A

unified theory of dispatch,” in European Conference on Object- Oriented
Programming, 1998, pp. 186–211.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley, 1995.

[27] A. Plotkin. (2009, May) Rule-Based Programming in Interactive Fiction.
Online article availble at https://eblong.com/zarf/essays/rule-based-if/
(last accessed March 15th, 2023).

[28] B. Bucklew. (2015) Data-Driven Engines of Qud and
Sproggiwood. Video from conference talk available online at
https://www.youtube.com/watch?v=U03XXzcThGU (last accessed
March 13th, 2022).

[29] P. Runeson and H. Martin, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software Engi-
neering, vol. 14, pp. 131–164, 2009.

Wilson Kazuo Mizutani received his PhD degree
from the University of São Paulo in 2021 with
a doctoral thesis on software architecture applied
to game development, awarded best thesis in the
21st Brazilian Symposium on Computer Games and
Digital Entertainment. His research fields include
game development, software architecture, computer
graphics, and agile development.

Fabio Kon is a Full Professor of Computer Science
at the University of São Paulo. He has 30 years
of experience in research on software development,
with contributions to Software Architecture, Soft-
ware Engineering, Agile Methods, Object-Oriented
Patterns, Distributed Systems, and Empirical meth-
ods. He is an ACM Distinguished Scientist.

https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22122021-205515/publico/texto.pdf
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-22122021-205515/publico/texto.pdf
https://magic.wizards.com/en/game-info/gameplay/rules-and-formats/rules
https://magic.wizards.com/en/game-info/gameplay/rules-and-formats/rules
https://kyren.github.io/2018/09/14/rustconf-talk.html

	Introduction
	Motivation
	Proposal
	Methodology
	Text Organization

	Related Work
	The Rulebook Pattern
	Example
	Problem
	Solution
	Participants and collaborations
	Implementation considerations
	Storage of Rule instances
	Rule-matching optimizations
	Solving Rule conflicts

	Example Resolved
	Known uses and related patterns
	Component or ECS
	Command
	Chain of Responsibility or Decorator
	Observer
	Blackboard

	Case Study
	Results
	Legend of Slime
	Dungeon Architect
	Honey BZZZness

	Discussion and implications
	Threats to Validity

	Conclusions
	Future Work

	References
	Biographies
	Wilson Kazuo Mizutani
	Fabio Kon

