
Free and Open Source Software Development and
Research: Opportunities for Software Engineering

Fabio Kon, Paulo Meirelles, Nelson Lago
FLOSS Competence Center

Department of Computer Science - IME
University of São Paulo, Brazil

{fabio.kon,paulormm,lago}@ime.usp.br

Antonio Terceiro, Christina Chavez, Manoel Mendonça
Software Engineering Lab (LES)
Department of Computer Science

Federal University of Bahia, Brazil
{terceiro,flach,manoel.mendonca}@dcc.ufba.br

Abstract—Free/Libre/Open Source Software (FLOSS) commu-
nities have produced a large amount of valuable software that
is directly or indirectly used daily by any person with access
to a computer. The field of Software Engineering studies pro-
cesses, mechanisms, tools, and frameworks for the development
of software artifacts. Historically, however, most of Software
Engineering research and education does not benefit from the
large and rich source of data and experimental testbeds offered
by FLOSS projects and their hundreds of millions of lines of
working code. In this paper, we discuss how Software Engineering
research and education can greatly benefit from the wealth of
information available in the FLOSS ecosystem. We then evaluate
how FLOSS has been used, up to now, by papers published
in the Brazilian Symposium on Software Engineering. Finally,
we present an agenda for the future, proposing concrete ways to
exploit the synergies between research and education in Software
Engineering and FLOSS projects.

I. INTRODUCTION

Software Engineering (SE) research aims at advancing our
understanding of the process of software development and its
outcomes. As in other fields of research, knowledge must
be built on top of verifiable evidence. However, it is not
uncommon to see Software Engineering research based on
non-public data and non-reproducible methodologies, or even
based on no data at all.

Moreover, the education of future software engineers (and
possibly SE researchers) should be based on the study of
existing real-world software, very much like the education
of future artists include extensive review of past artistic
achievements and styles or the education of future architects
is based on the study of classical buildings and construction
styles.

Free/Libre/Open Source Software (FLOSS)1 offers SE re-
searchers the opportunity of basing their research on abundant
and publicly available data, freely accessible data analysis,
and software development tools. These are basic building
blocks for reproducible and extensible science. Accordingly,
SE apprentices can apply the concepts that they learn in the
classroom in real-world situations made available by FLOSS
projects.

1In this work, the acronym “FLOSS” is used as a representative for “Free
Software”, “Open Source Software” (OSS) and “Free/Open Source Software”
(FOSS).

The international SE community has already recognized the
potential of FLOSS in both research and education [1], [2],
as well as opportunities for future research [3]. In this paper,
we discuss important opportunities brought by FLOSS to the
SE community, and analyze whether or not the Brazilian SE
community is taking advantage of them. We performed a study
over papers published in the Brazilian Symposium on Software
Engineering (SBES) which, from the top of its 25 years, is
the main Brazilian venue of publication for SE researchers.
We analyzed research papers published between 1999 and
2010, tools papers published between 2001 and 2010 and SE
education papers published between 2008 and 2010.

In this analysis, we classified SE research according to
the way FLOSS was used in research reported by SBES
papers and compared these categories with the discussed
opportunities. Based on that, we propose an agenda to better
take advantage of FLOSS in SE research and education.

The remainder of this paper is organized as follows. Sec-
tion II presents definitions and basic concepts about the
FLOSS ecossystem, and Section III discusses opportunities
that FLOSS brings for SE researchers and educators. In
Section IV, we describe our study and its results. In Section V,
we discuss the results in light of the identified opportunities.
We conclude the paper in Section VI by proposing an agenda
for fostering the synergies between FLOSS and SE in Brazil.

II. ABOUT FLOSS

“FLOSS” is a broad acronym that refers to software that
promotes user freedom, does not discriminate users or uses
and, at the same time, is based on a collaborative, efficient, and
open development process. FLOSS basically allows users to
use, study, modify, and redistribute the software with virtually
no restrictions except, sometimes, preventing users to impose
restrictions on other users. In order to make this possible,
access to the source code is a necessary condition.

Typically, such software exists by means of development
projects that are centered around some publicly-accessible
source code, where both developers and users interact with
each other mainly over the Internet. The code is necessarily
licensed under terms that comply with either the Free Software



definition 2 or the Open Source Definition 3.
Most software recognized as “Free Software” or “Open

Source” actually complies with both definitions, even if their
specific terms are quite different from one another; The use
of a specific terminology reflects the desire to emphasize
either the ethical or the technical aspects of the same phenom-
ena. The acronym FLOSS (Free/Libre/Open-Source Software),
which we use in this text, is gaining strong acceptance, as it
encompasses both major terminologies.

A. Why FLOSS?

FLOSS offers benefits from social, ethical, technical, and
economic points of view [4], [5]. From a social point of view,
FLOSS may be one of the many elements in easing access
to technological resources to the population at large. Also,
the use and support of FLOSS in e-government may offer
more transparency and ease access to services and data to
citizens. Finally, source code access and sharing eases learning
and promotes participation in the development of software that
might otherwise impose restrictions beyond those embodied in
the Law.

From an ethical point of view, if a resource may be easily
shared, preventing this should only be pursued under very
specific circumstances and with very good motivation. The
growth of the FLOSS model in the last decades undermines
arguments in favor of such restrictions for software, as its
sharing does not prevent other benefits to society.

From the technical and economical points of view, FLOSS
offers a development model that may result in high quality
code that gets adapted quickly to different situations with
lower direct costs. It also leverages the development effort
of different companies or individuals into common products,
reducing the duplication of effort.

B. FLOSS Development Process

From a Software Engineering point of view, the most
interesting aspect of FLOSS is its development process. A
FLOSS project starts when an individual developer, or an
organization, decides to make a software product publicly
available on the Internet so that it can be freely used, modified
and redistributed.

After an initial version is released and advertised in the
appropriate communication channels, early adopters will start
using the product. Some of these early adopters may be
software developers themselves, who will be able to review
the source code and propose changes that fix defects for their
specific environments or add features for their own use cases.
These changes may be sent back to the original developer(s)
in the form of patches4 . The project leader(s) will review
the proposed changes and apply them (or not) to the official

2http://www.gnu.org/philosophy/free-sw.html
3http://www.opensource.org/docs/definition.html
4A patch is a file that describes the changes to one or more files, normally

of textual content, by describing which lines to remove and which lines to add.
After receiving a patch the developer can reproduce the changes proposed by
the sender in his/her own copy of the source code.

version, so that when a new release is made, end users will
have access to these new functionalities or bug fixes.

In the course of time, each release of the product may have
more features and be more portable than its predecessor due
to contributions from outside developers. The most frequent
contributors may gain trust from the initial developer(s), and
receive direct write access to the official source code of the
project, becoming able to make changes directly to the official
version of the product.

This development process is often driven by means of a
version control system (VCS). While the repository is often
publicly available for read access, write access is restricted
to a limited group of developers. Other developers will need
their patches to be reviewed by a developer with the needed
privileges in order to get their contributions into the project’s
official repository.

Besides the version control system, most FLOSS projects
use a fairly standardized environment for collaboration be-
tween their developers: an issue tracker (or bug tracker) for
organizing pending, ongoing and future activities; one or more
mailing lists for coordination and communication between the
team; and usually a web-based content management system
(such as a wiki) for community-driven documentation writing.

The process of developers joining FLOSS projects and
gaining responsibility may range from very informal to very
formal, depending on the project. Small projects normally have
informal procedures for that, e.g. one existing developer just
offers an account in the version control system to the new
contributor. Larger projects, on the other hand, may have more
“bureaucratic” processes for accepting a new developer with
privileged access to the project’s resources. This “bureaucracy”
may involve filling forms with an application, signing terms
of copyright transference and other procedures. [6], [7]

The following characteristics make FLOSS projects differ-
ent enough from “conventional” software projects, making
them interesting objects of study:

• Source code availability. Source code of FLOSS projects
is always available on the Internet, since most projects
have a publicly-accessible version control repository.

• User/developer symbiosis. In most FLOSS projects the
developers are also users of the software, and they also
provide requirements. Maybe because of that, several
free software projects do not have explicit requirement
documents, and the development proceeds at a pace
adequate for the developers to satisfy their own needs.

• Non-contractual work. A large amount of work in
FLOSS projects is done in a non-contractual fashion.
This does not imply that the developers are necessarily
volunteers, but only that there is no central management
with control over all of the developers’ activities.

• Work is self-assigned. The absense of a central central
management with control over the contributors’ activi-
ties promotes work self-assignment: volunteer developers
tend to work on the parts of the project that most appeal
to them, and employed developers will work on the parts
that are of most interest to their employers.



• Geographical Distribution. In most FLOSS projects the
developers are spread among several different locations in
the world. In projects with high geographical dispersion,
communication is mostly performed through electronic
means.

The Software Engineering literature tends to portrait FLOSS
as a homogeneous phenomenon[8], but most of these charac-
teristics do not apply to all FLOSS projects, and some of them
may be manifested in different ways across projects.

III. FLOSS OPPORTUNITIES FOR
ACADEMIC SOFTWARE ENGINEERING

FLOSS brings multiple benefits for Software Engineering
in an academic scenario, providing benefits both for education
and research.

A. Using FLOSS for Software Engineering Education

Both FLOSS development and development processes
taught in traditional SE textbooks address the challenges of
multi-person construction and maintenance of multi-version
programs [9], but with development processes, work practices,
and project forms that differ significantly and in interesting
ways [3]. This raises the question of whether FLOSS devel-
opment could be useful for educational purposes in SE and
computer science undergraduate courses, by exposing students
and teachers to different aspects of professional practice.
Such exposure may encompass a wide range of issues and
activities that includes problem solving, management, ethical
and legal concerns, written and oral communication, working
as part of a team, and remaining current in a rapidly changing
discipline [10].

This issue has been exploited in different international
forums [11], [12], [13], [14], [15], [16]. The perspective of
using FLOSS for educational purposes has brought a series
of interesting opportunities and challenges into the Software
Engineering Education agenda, such as:

• Involving students and faculty in large-scale FLOSS
projects to provide them with real-world experience and
an understanding of the issues found in large, complex
software projects [16], [13];

• Reinvigorating the CS/SE curriculum and faculty mem-
bers [13]. FLOSS promotes project and problem-based
learning in which developers work on projects that in-
terest them; by working on interesting and meaningful
projects, they can learn concepts, skills, and aptitudes
[17];

• Exploiting successful open source projects, in which soft-
ware is highly modular and APIs are well documented,
for teaching principles and good practices [15];

• Providing quantitative data from real, open and freely
available source code on which to perform analysis and
base decisions [10].

Evidently, the use of FLOSS also brings difficulties, such
as:

• Because of its intrinsic characteristics, FLOSS develop-
ment is not tipically representative of many traditional

development methodologies. Therefore, its usefulness in
SE education is restricted to only part of SE topics or to
methodologies related to common FLOSS development
processes;

• Academic experience on FLOSS may be seen as less
important for the preparation of professionals in environ-
ments where proprietary software is the norm, especially
if it would result in less academic experience with other
widespread technologies;

• Involving teachers and students in FLOSS-related studies
brings specific difficulties, for example finding projects
that gave appropriate size and complexity (not big enough
to be unbearable and not small enough to be trivial), allow
exploring the required course topics and have enough
documentation for starters.

B. Using data from FLOSS projects in Software Engineering
Research

While data from private software development is often
scarce and may impose high acquisition costs, FLOSS project
data is plenty and readily available for free to anyone with an
Internet connection. Private data usually cannot be shared for
replicating research results due to issues such as confidentiality
requirements and non-disclosure agreements, whereas FLOSS
data is already public anyway [1].

FLOSS projects can serve as an abundant source of data
for Software Engineering research. Hundreds of thousands
of projects make available their source code, which can be
analyzed either manually or by automated tools. For example,
in a recent work, we studied 6773 projects using automated
tools and showed how the source code metrics affected the
attractiveness of the projects, in terms of number of down-
loads, page hits, and project members [18]. In another study,
our group analyzed the impact of changes in the licenses
of 756 FLOSS projects over 44 months to show how these
changes affect the attractiveness of these projects [19]. In yet
another study we analyzed the full history of 7 FLOSS web
server projects, containing 13553 software changes, in order
to investigate developers’ level of participation in the project
as a predictor for variations in structural complexity [20].

Most FLOSS projects have all their communication media
and development resources – version control system, bug
tracking system, mailing lists, documentation websites – pub-
licly available on the Internet, and through them researchers
can monitor, track and analyze the activity of the development
group working in a certain software artifact. Such data is
being used extensively in contemporary Software Engineering
research, and systems like bicho [21], Analizo [22] and others
can help automate the acquisition and analysis of this kind of
data from publicly accessible repositories on the Web.

Again, it should be noted that FLOSS does not cover all
possible data relevant for SE; some methodologies and topics
cannot be assessed by means of FLOSS data analysis. FLOSS-
based research, however, is not limited to the previously exist-
ing software engineering research sub-areas: studying FLOSS
in itself is also a promising research area. FLOSS development



groups have been producing large and complex products using
methodologies and processes that are sometimes substantially
different from “conventional” software development. Under-
standing how FLOSS works and its differences and similarities
with regard to “conventional” software engineering practices
can help researchers and practitioners to enhance the software
development practice in general.

Research on FLOSS development has brought a series
of interesting topics into the Software Engineering research
agenda, such as the social structure of development com-
munities [23], [24], [6], [7], communication and work flow
patterns in FLOSS projects, [25], [26], developer evolution and
participation [27], [20], and attractiveness of FLOSS projects
[19], [18].

C. FLOSS software products in research activities

This opportunity applies not only to Software Engineering
research, but also to Computer Science research in general, as
well as to any research in which there is software development.
Both researchers and society can benefit from the interplay
between FLOSS and research activity.

Releasing the source of software produced in research activ-
ities meets the basic scientific principle of reproducibility. The
scientific method demands that, when describing a scientific
achievement in a paper, researchers must provide all the details
required for an independent group of scientists to reproduce
the experiment to validate it, checking whether or not the same
results are achieved. When software plays an important role
in a scientific study, either as subject under study or as a
data analysis tool, making it publicly available under a FLOSS
license will facilitate the results to be expanded and built upon.

Another benefit of releasing research-originated software
as FLOSS is fostering technology transfer from research
institutions to society: being freely licensed allows research
prototypes to be enhanced into production-class products
without the researchers having to be (necessarily) involved
indefinitely.

There are several examples of successful FLOSS products
that were initially developed in the context of research activ-
ities: the PostgreSQL relational database management system
and the BSD family of operating systems were created at the
University of California, Berkeley; the Xen virtualization tech-
nology was initially developed at the University of Cambridge;
the Ginga platform for digital television was developed in
PUC-Rio and Federal University of Paraíba and later chosen as
the official standard for Brazilian National Digital Television
system. It’s hard to imagine the consequences for the software
technology landscape if these projects have been kept as
private research prototypes.

Technology transfer also happens the other way around:
the fact that researchers can build their work on top of a
vast amount of existing software tools, middleware, and envi-
ronments enable researchers to go deeper into their research
without having to waste time, effort, and financial resources on
reinventing the wheel. In 1676, Isaac Newton stated that he had
been able to see further by standing on the shoulders of giants.

FLOSS enables today’s researchers to do the same, by reusing
software components that are required for their research but
that are not the core objective of the scientific advancement
they seek. Researchers may use existing FLOSS systems such
as the Linux operating system, the GCC compiler, the Eclipse
framework for IDEs, or the OpenNebula Cloud Computing
middleware and test their ideas by changing just a small
portion of them. This way researchers can concentrate on the
exact point they want to explore and advance science and
technology more rapidly with more reliable results.

IV. FLOSS IN SBES
To evaluate where the Brazilian Software Engineering re-

search community stands with regard to FLOSS, we carried
out a study on the papers published in the Brazilian Sympo-
sium on Software Engineering (SBES). We have examined: (i)
main track papers between 1999 and 2010, (ii) tools session
papers between 2001 and 2010, and (iii) Software Engineering
Education Forum (Fórum de Education em Engenharia de
Software – FEES) papers from 2008, its first edition, to 2010.
This section describes this study and its findings.

A. Data acquisition

We obtained the full text of SBES main track, tools session,
and FEES papers from the following sources:

• Main track papers from SBES 1999, 2001, 2002, 2004,
2006, 2007, 2008, and 2009 were obtained from the
Brazilian Computer Science Digital Library5 (“Biblioteca
Digital Brasileira de Computação” – BDBComp), main-
tained by UFMG’s Databases Laboratory.

• Main track papers from SBES 2005 were obtained con-
tacting the program chair and from SBES 2010 were
obtained from the IEEE Xplore Digital Library6.

• Tools papers from SBES 2001 and 2002 were also
obtained from BDBComp. Because SBES tools session
papers from most years are not available on-line, we got
2004, 2005, 2006, 2007, 2008, 2009, and 2010 papers
contacting the program chair of each edition.

• FEES papers from 2008 and 2009 were obtained at the
FEES homepage hosted by PUC-Rio7, and 2010 papers
were obtained from CBSoft 2010 organizers.

TABLE I
MAIN TRACK PAPERS ANALYZED, BY YEAR

Year Analyzed Mention FLOSS Relative frequency
1999 26 0 0.00
2001 20 0 0.00
2002 18 2 0.11
2004 17 1 0.06
2005 21 2 0.10
2006 19 0 0.00
2007 23 2 0.09
2008 19 1 0.05
2009 24 6 0.25
2010 19 11 0.58

5http://www.lbd.dcc.ufmg.br/bdbcomp
6http://ieeexplore.ieee.org
7http://fees.inf.puc-rio.br/



TABLE II
TOOL PAPERS ANALYZED, BY YEAR

Year Analyzed Mention FLOSS Relative frequency
2001 18 0 0.00
2002 19 3 0.16
2004 15 2 0.13
2005 12 2 0.17
2006 25 7 0.28
2007 14 2 0.14
2008 11 3 0.27
2009 12 4 0.33
2010 16 7 0.44

The number of main track and tools papers analyzed by year
are presented in Tables I and II, respectively. FEES papers
were 14 from 2008, 8 for 2009 and 8 for 2010. Despite not
being able to obtain every single paper since 1999, the papers
we obtained gave us a reasonable approximation of what
happened during the period. We analyzed a total amount of 378
papers: 206 from the main track, 142 from the tools session,
and 30 from the Software Engineering Education Forum.

The PDF files were processed by a script that extracted
their text, and matched their contents against the following
terms: “software(s) livre(s)”, “ferramenta(s) livre(s)”, “ferra-
menta(s) aberta(s)”, “software(s) aberto(s)”, “código aberto”,
“repositório(s) de software”, “free software”, “open source”,
“open software”, “libre software”, “software repository”,
“OSS”, “FLOSS”, “FOSS”, and “OSSD”. To validate this
identification process of the papers related to FLOSS, we
checked all of them manually by reading the abstract and the
sections that include one of the terms above.

Tables I and II present the raw results for the SBES
main track and tools session, respectively. The tables presents
the number of papers analyzed in each year, how many of
them mentioned FLOSS, and the relative frequency of papers
mentioning FLOSS (i.e. the ratio between the number of
papers mentioning FLOSS and the total of papers). We can
see that the number of papers mentioning FLOSS in both the
main track and the tools session have been increasing, getting
to around 50% in their 2010 editions.

The source code for the data extraction and analysis scripts
we used is available together with the sources for this paper
itself8, and is licensed under the GNU General Public License
version 3 or any later version.

B. Analysis of research papers mentioning FLOSS

We investigated in which way the FLOSS terms were used
in these 25 papers. For that, we classified them in 6 different
categories, according to our interpretation of each paper. Each
paper was classified in exactly one category, as shown in
Table III. The first category comprised three papers that did
not mention FLOSS explicitly in their text but just referenced
bibliography whose title mentioned FLOSS [28], [29], [30].
The other categories are detailed below.

8https://gitorious.org/flosspapers/
cbsoft2011-sbes25

1) Example or Comparison: Papers that are not focused
on FLOSS but used FLOSS as an example or comparison.
Yamaguti and Price [31] presented a web-based reflective
architecture. They argued that any FLOSS CASE tool is an
example of “open object”, a concept defined in their paper.
Maciel et al. [32] explained that there are several FLOSS
and proprietary MDD/MDA tools with different features that
can use their proposed approach for model-driven process.
Araújo and von Staa [33] describe a tool, called SDiff,
that compares documents using their syntactic structure. They
compared SDiff to KDiff, which is FLOSS tools also used to
analyse documents.

2) Running FLOSS tools: Some of the analyzed papers
described the development or use of FLOSS tools to carry
out their research. Santos and Schiel [34] presented a study
about the interoperability of data between different domains
on the Internet, applying the Resource Description Framework
(RDF). They used PostgreSQL (a FLOSS database) in one
of their case studies. Mendonça et al. [35] among their
contributions presented a refactoring framework, called RefaX.
They used Jikes, which is an adaptation from IBM’s FLOSS
Java compiler to implement a Java version of Refax, caled
Refax4Java. Maciel and Yano [36] proposed a workflow lan-
guage based Web Services and a FLOSS run-time environment
to this language. Gimenes et al. [37] presented a process
for component-based product line for Workflow Management
Systems. The implementation of a proposed product line was
basead on FLOSS frameworks and tools such as JHotDraw,
JacORB, CORORB, MySQL, and ObjectBridge. Dantas et
al. [38] proposed an approach to test multi-threaded systems,
using OurGrid, a FLOSS peer-to-peer grid middleware. Also,
they developed a FLOSS testing framework called Thread-
Control. Torres et al. [39] proposed the Model Driven Java
Persistence API (MD-JPA). A FLOSS plug-in was developed
to validate and work with MD-JPA.

3) FLOSS tool as target: Several of the selected papers
used FLOSS tools as a target to test another tool, framework,
or environment. Souza and Mendonça [40] defined a reverse
engineering environment to extract and detect “implied sce-
narios” from traces. They tested the proposed environment
against MyPetStore, a customized version of PetStore, which
is a FLOSS tool developed by Sun MicroSystems to illus-
trate programming resources available in the J2EE platform.
Ferrari et al. [41] performed an empirical study to quantify,
document, and classify faults uncovered in several releases
of three Aspect-Oriented systems. One of these systems was
iBATIS, a Java-based FLOSS framework for object-relational
data mapping. Macia et al. [42] also used iBATIS as target in
a study on Aspect-Oriented programming. They presented a
set of metric-based strategies to detect recurring code smells in
existing AO systems. Dantas and Garcia [43] analyzed two
software products, among them the iBATIS tool, to perform
an analysis of the relationship between advanced programming
techniques and the trade-off of software reuse and stability.

4) Data from FLOSS: Part of the papers used data from
FLOSS projects to test their tools and theories. Colaço Jr.



TABLE III
ANALYSIS OF RESEARCH PAPERS MENTIONING FLOSS

Category 2002 2004 2005 2007 2008 2009 2010 Total
Reference 0 0 0 1 0 1 1 3
Example or Comparison 1 0 0 0 0 1 1 3
Running FLOSS tools 1 1 2 0 1 1 0 6
FLOSS tool as target 0 0 0 1 0 0 3 4
Data from FLOSS 0 0 0 0 0 2 3 5
Research about FLOSS 0 0 0 0 0 1 3 4
Total 2 1 2 2 1 6 11 25

et al. [44] analyzed 18 large Brazilian industrial projects
trying to use association rules obtained from mining their
source code repositories to predict pairs of files that would
need to be changed together in the future. They compared
their results with other results from a previous similar study
with eight FLOSS projects (Eclipse, GCC, Gimp, JBOSS,
JEdit, KOffice, Postgres, and Python). They found that, in that
industrial environment, the prediction power was even higher
than with the FLOSS projects. Ferreira et al. [45] collected
source code metrics from 40 Java FLOSS projects to perform
an empirical study and propose reference values for Object-
Oriented software metrics. Carneiro et al. [46] conducted an
experimental study to assess a multiple views approach based
on concern-driven software visualization resources, arguing
that visual views support code smell detection. To perform
their study, they analyzed five consecutive versions of a
FLOSS project called MobileMedia, an application for photo,
music, and video on mobile devices. Costa and Barros [47]
analyzed eigth FLOSS projects (Azureus, Eclipse ANT, Jena,
JMule, JUnit, JVI, Poor Man CMS, and Sweet Home 3D) to
perform an experimental study to observe if the adoption of the
Common-Closure principle improves a set of software design
metrics, based on a proposed technique to organize the classes
into packages according to this principle. Netto et al. [48]
used data from Eclipse Bugzilla to test a method based on
a genetic algorithm to find the closest optimal bug correction
task schedules, according to the relevance of information from
bug repositories. As a practical result, they suggested a better
schedule to Eclipse IDE developers.

5) Research about FLOSS: Finally, there are papers that
focus on FLOSS in itself. Costa et al. [49] described Trans-
flow, a tool aimed at analyzing data about the co-evolution of
the source code and the developers’ participation and social
interaction in FLOSS projects. Cavalcanti et al. [50] discussed
about the bug report duplication problem that can have a
negative influence on software maintenance, in particular,
because it increases time spent on report analysis and vali-
dation. They conducted a study about that using eight FLOSS
projects (Bugzilla, Eclipse Epiphany, Evolution, Firefox, GCC,
Thunderbird, and Tomcat). Terceiro et al. [20] studied how
the participation of developers in FLOSS projects can be
associated with the structural complexity of the project source
code. Meirelles et al. [18] analyzed source code attributes
as predictors for the attractiveness of FLOSS projects, i.e.,
its ability to attract and retain users and developers, which is
crucial for the success of the project.

C. Analysis of tools papers mentioning FLOSS

We analyzed 30 tools papers in which FLOSS terms
are mentioned explicitly to identify if they described actual
FLOSS tools. We separated them in four different groups
according to how these tools papers mentioned FLOSS and
whether they explicitly mentioned a distribution license and
provided the location of a source code repository. Table IV
shows the distribution of these tools papers according to our
classification.

Two tools are not FLOSS, but their respective papers cited
FLOSS in their bibliography: DDE by Garcia et.al [51] and
X-CORE by Oliveira et.al [52]. Other four tools are not
FLOSS but their authors promised that they would be FLOSS
in the future: ControlPro by Moro et.al [53], ReqODE by
Martins et.al [54], CRISTA by Porto et.al [55], and StArt by
Zamboni et.al [56]. Another group of four tools are not FLOSS
but mentioned FLOSS in their papers because they depend on
FLOSS products: Mudelgen, by Simão et.al [57], depends
on Bison and Flex, which are FLOSS compiler development
tools. GAW, by Mangan et.al [58], is a Plug-in for Eclipse
IDE. BAST, by Cavalcanti et.al [59], uses a MySQL dabase.
ModelT2, by Albuquerque et.al [60], is related to the FLOSS
UML tool BOUML.

The majority of the papers mentioning FLOSS present their
respective tool as FLOSS, but 14 of them did not specify a
license or repository. Additionally, their respective websites
were either unavailable or did not contain this information.
Although the authors had the intention to make their tools
available as FLOSS, they did not succeed in doing so. Even
in the best cases when the tool is actually available, they
cannot be considered FLOSS because they either do not made
the source code available or did not specify a license9 that
complies with either the Free Software defition or the Open
Source definition. This way C&L by Felicíssimo et.al [61],
SearchEngine by Sales et.al [62], Merlin by Mrack et.al [63],
WebAPSEE by Lima et.al [64], Codipse-Req by Brito and
Vasconcelos [65], Captor by Shimabukuro Jr. et.al [66],
BSmart by Gomes et.al [67], Batcave by Marinho et.al [68],
TeTooDS by Araujo and Delamaro et.al [69], FastInterface
by Oliveira and Lula Jr. et.al [70], RBTTool by Venân-
cio et.al [71], Fermine by Almeida et.al [72], AssistME

9Copyright law in most countries assumes that, unless the author explicitly
states otherwise, every work of creation such as software is distributed under
“All Rights Reserved” terms, so that third parties are prevented from making
derived works or even redistributing the work. That is why, whenever a
software product does not specify a distribution license, we must assume
it is not FLOSS.



TABLE IV
ANALYSIS OF TOOLS PAPERS MENTIONING FLOSS

Context 2002 2004 2005 2006 2007 2008 2009 2010 Total
Reference 1 0 0 0 1 0 0 0 2
Promise to be FLOSS 0 0 1 1 0 1 0 1 4
use FLOSS 1 1 0 0 0 0 1 1 4
FLOSS – no license and/or no repository 0 1 0 5 1 2 2 3 14
FLOSS 1 0 1 1 0 0 1 2 6
Total 3 2 2 7 2 3 4 7 30

by Queiroz et.al [73], ComSCId & DMAsp by Parreira
Jr. et.al [74], cannot be actually be considered as FLOSS tools.

Finally, only six tool papers provided all the information
needed to verify that they described actual FLOSS tools.
Reis [75] described in details the concepts and features of
Bugzilla, a well-known FLOSS issue tracking tool. Duarte
et.al [76] described GridUnit, a tool to execute software
automated tests in grid environments. It is available under
the LGPL 2.1 license and its source code is available in a
CVS repository on SourceForge. Paiva et.al [77] developed
MVCASE to support their model for design rationale capture
and implementation. It is available under the BSD license and
its source code can be accessed from an Subversion repository.
Meirelles et.al [78] presented Crab, the first version of a tool
for configuration and interpretation of source code metrics. It
was released under the BSD license in a Subversion repository.
It was later rewritten, renamed to Kalibro, relicensed under the
LGPL license, and made available from from a Git repository.
Terceiro et.al [22] described Analizo, a free, multi-language,
extensible source code analysis and visualization toolkit that
calculates a fair number of source code metrics, generates
dependency graphs, and makes software evolution analysis.
Analizo source code can be accessed from a Git repository
and was released under the GPL version 3 license. Ferreira
et.al [79] created TaRGeT to reduce the testing costs via
a systematic approach that generates test suites from use
case specifications. Its source code can be accessed from a
Subversion repository and is licensed under the MIT license.

D. Analysis of the Software Engineering Education Forum
papers

The Software Engineering Education Forum had no pub-
lished paper since 2008 and 2010 that addresses the use of
FLOSS in SEE. We had a paper accepted for the 2011 edition
[80], in which we discuss preliminar results of our experience
with the use of FLOSS in SEE.

V. DISCUSSION

The international SE community promotes important con-
ferences in which FLOSS is one of the main topics of interest.
For example, the ACM/IEEE International Conference on
Software Engineering (ICSE) has a “Software Engineering in
Practice” track that explicitly solicits quality research papers
addressing new development methods that “depart from tradi-
tional software engineering, such as free and open software”.

In addition, the International Federation for Information
Processing (IFIP) has a dedicated working group (WG 2.13) to

promote research on FLOSS. Between 2001 and 2005, IFIP
organized the Open Source Software Engineering workshop
series at ICSE. Later, IFIP supported the Emerging Trends
in FLOSS Research and Development workshop series from
2007 to 2010 at ICSE. Since 2005, IFIP WG 2.13 promotes
the International Conference on Open Source Systems (the
OSS conferences). OSS’2011 is being held for the first time
in Brazil at Salvador, just one week after SBES’2011.

Brazil, on the other hand, has still little tradition in FLOSS-
centered research. The only partial exception is the Free
Software Workshop at FISL (International Forum on Free
Software) that happens every year since 2000 in Porto Alegre,
Brazil.

In this study, we analyzed the majority of papers published
over the last 10 years in SBES to understand how the interest
on FLOSS evolved during this period. Such interest was first
noticed in 2002, when two research papers we identified
as being related to FLOSS were either mentioning FLOSS
superficially or reporting on the usage of a FLOSS tool.
Reporting on usage of FLOSS tools was already positive, since
the results obtained are easier to reproduce than when private,
unavailable tools are used.

Recently, the interest in FLOSS not only grew in the
numbers, but also changed in nature. FLOSS moved to a more
central role in the SBES community research work. We can
observe three significant trends in the last two editions of
SBES, which are described below.

First, we have seen a significant increase in the usage of
FLOSS project data for validating general Software Engineer-
ing hypotheses, techniques, and tools [44], [45], [46], [47],
[48]. This benefits Brazilian Software Engineering research by
showcasing the possibility of studying data from real, active
software development projects.

Second, we have witnessed the growing interest in the study
of the development processes used by FLOSS projects [49],
[50], [20], [18]. By understanding how FLOSS projects work,
which challenges they face and how they succeed (or not
succeed), we can improve the general body of knowledge on
software development.

Third, we also found out that an increasing number of
Brazilian researchers are taking advantage of the opportuni-
ties in releasing their tools as FLOSS. Two papers in the
main track reported that they released research that produced
FLOSS products [38], [39], as well as five papers in the tools
session [75], [77], [78], [22], [79]. Not only their research
is easier to reproduce, but those researchers can also benefit
from outside collaboration in the improvement of their tools.



Unfortunately, another 14 tool paper authors were willing to
make their tools available as FLOSS, but, as far as we could
verify, they did not succeed on that.

These evolution trends match the opportunities we presented
in Sections III-B and III-C. We believe, however, that the
Brazilian Software Engineering community could be taking
more advantage of these opportunities, and that we are very
late in comparison with the international scenario. Nonethe-
less, we also believe that this is a good start.

With regard to Software Engineering Education, there are
innovative experiences in using FLOSS explicitly as an edu-
cational tool for software development in both undergraduate
and graduate levels in universities such as USP and UFBA[80].
We expect these experiences to become more widely spread
in Brazil and their results to be presented in academic forums
such as FEES, which has not been the case up to the present
date.

VI. PROPOSED AGENDA

Brazil has been an important player in the FLOSS Interna-
tional scenario. GNU/Linux has been used as a platform for
research and education in several Brazilian universities since
the beginning of the 1990s. Brazil hosts one of the largest and
most important FLOSS events in the world: FISL. Finally,
Brazilian researchers and developers have developed FLOSS
systems such as Lua, Ginga/NCL, and Noosfero, which are
used and well known internationally.

However, the use of FLOSS as a significant subject of
Software Engineering research in Brazil is still incipient.
FLOSS offers hundreds of millions of lines of code to be
analyzed by researchers. Hundreds of thousands of FLOSS
projects with their tens of thousands of development teams
post to the web detailed information about their work and the
way they interact. Nevertheless, few researchers in Brazil look
at this rich set of information to base their work; meanwhile,
many works rely on unrealistic toy prototypes to assess their
research results.

With regard to education, university courses throughout
the country usually face difficulties such as tight schedules,
unbalanced student bodies, and lack of local expertise on the
FLOSS ecosystem. As a result, instructors often feel pressured
to choose an easier solution: either adopting a more theoretical
approach in which software is not developed or focusing
on the development of small proof-of-concept systems. The
opportunity to learn by having hands-on experience on real-
world, existing FLOSS projects is often missed.

To change this situation, we propose an agenda and invite
members of the Brazilian Software Engineering community to
collaborate on refining, improving, and implementing it. We
propose the following actions:

1) Encouraging that software research uses public data and
FLOSS tools to process and analyze data. This will
promote openness and reproducibility of experimental
studies, enabling them to be replicated or refined by other
groups, which is a fundamental principle of science.

2) Increase the number of venues welcoming results from
FLOSS research. This can be accomplished, for example,
by (i) reshaping the FISL Workshop on Free Software to
become a venue for publication of research results with
original scientific-technological contributions and/or (ii)
explicitly mentioning FLOSS as a topic of interest for
traditional SE venues such as SBES itself, ESELAW (Ex-
perimental Software Engineering Latin American Work-
shop), and SBQS (Brazilian Symposium on Software
Quality).

3) Creating a repository for publishing the FLOSS tools
presented in the tools sessions of Brazilian software engi-
neering conferences and workshops. This repository must
support long-term storage of files for public downloading
as well as documentation about how to publish them as
FLOSS properly.

4) Fostering the use of FLOSS in SE Education. This can
be achieved by (i) creating a repository of educational
material, like MIT’s open courseware, focused on FLOSS
education, development, and exploitation. This material
should be created collaboratively and shared by educators
at no cost; (ii) creating a forum where SE educators can
discuss and share experiences in the use of FLOSS for
SE education.

5) Fostering the creation of FLOSS Competence Centers
throughout the country and having them join the inter-
national network of FLOSS Competence Centers10.

The Brazilian Computer Society (SBC) could host a spe-
cial interest group about FLOSS to coordinate the pursuit
of such agenda. Despite being of particular interest to the
Software Engineering special commission, FLOSS is also a
topic transversal to all Computer Science areas. It would be
interesting to have a forum, in the context of SBC, where
the several researchers with interest in FLOSS could share
experiences and pursue this agenda.

The authors intend to push this agenda forward and invite
all interested colleagues to get in touch. To achieve that, we
created an online community in the Brazilian Free Software
social network11, where we already started working on items
3 and 4 of the proposed agenda. We can also use this space
to discuss how to accomplish the other items.

VII. FUTURE WORK

In this work, we performed a literature review on the avail-
able digital data (SBES research and tools papers). However,
this review was not complete nor systematic.

Therefore, as future work, we plan to conduct a systematic
review [81] to establish a more controlled process of con-
ducting the research review, as well as to gather and analyze
all existing research and tool papers from all SBES editions,
available on the BDBComp and other media as well.

The development of such a systematic approach may bring
improvements in precision of the data and the reliability of

10http://www.flosscc.org.
11http://softwarelivre.org/sbc



the information, and allow other researchers to reproduce the
review in different time and contexts, being able to judge the
adequacy and modify the chosen criteria and standards.

ACKNOWLEDGMENTS

This research was supported by the Brazilian Na-
tional Research Council (CNPq), grants 304804/2009-6 and
566164/2008-6, and partially supported by the National In-
stitute of Science and Technology for Software Engineering
(INES), CNPq grant 573964/2008-4. The authors are grateful
to former SBES Tools program chairs, who provided the
papers of the events they have coordinated.

REFERENCES

[1] W. Scacchi, “Free/open source software development: recent research
results and emerging opportunities,” in Proceedings of the 6th joint
meeting of the European Software Engineering Conf. and the ACM
SIGSOFT Int’l Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007, Companion Papers.
ACM, 2007, pp. 459–468.

[2] A. Aksulu and M. R. Wade, “A comprehensive review and synthesis of
open source research,” J. AIS, vol. 11, no. 11, 2010.

[3] W. Scacchi, “The future of research in free/open source software
development,” in Proc. of the FSE/SDP workshop on Future of software
engineering research, ser. FoSER ’10. New York, NY, USA: ACM,
2010, pp. 315–320.

[4] F. Kon, “O software aberto e a questão social,” Instituto de
Matemática e Estatística da Universidade de São Paulo, São
Paulo, Tech. Rep. RT-MAC-2001-07, maio 2001. [Online]. Available:
http://www.ime.usp.br/~kon/papers/RT-SoftwareAberto.pdf

[5] E. S. Raymond, The Cathedral & the Bazaar . Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 1999.

[6] C. Jensen and W. Scacchi, “Modeling recruitment and role migration
processes in ossd projects,” in In Proceedings of the 6th Int’l Workshop
on Software Process Simulation and Modeling, 2005.

[7] ——, “Role migration and advancement processes in ossd projects: A
comparative case study,” in ICSE ’07: Proceedings of the 29th Int’l Conf.
on Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 364–374.

[8] T. Østerlie and L. Jaccheri, “A critical review of software engineering
research on open source software development,” in Proceedings of
the 2nd AIS SIGSAND European Symposium on Systems Analysis and
Design. Gdansk University Press, 2007, pp. 12–20.

[9] D. L. Parnas, “Software engineering or methods for the multi-person
construction of multi-version programs,” in Programming Methodology,
ser. Lecture Notes in Computer Science, C. Hackl, Ed., vol. 23.
Springer, 1974, pp. 225–235.

[10] “Computing curricula – software engineering volume (ccse),” 2004,
http://sites.computer.org/ccse.

[11] M. J. Wolf, K. Bowyer, D. Gotterbarn, and K. Miller, “Open source
software: intellectual challenges to the status quo,” in Proc. of the
33rd SIGCSE technical symposium on Computer Science Education, ser.
SIGCSE ’02. New York, NY, USA: ACM, 2002, pp. 317–318.

[12] K. J. O’Hara and J. S. Kay, “Open source software and computer science
education,” J. Comput. Small Coll., vol. 18, pp. 1–7, February 2003.

[13] D. A. Patterson, “Computer science education in the 21st century,”
Commun. ACM, vol. 49, pp. 27–30, March 2006.

[14] R. K. Raj and F. Kazemian, “Using open source software in computer
science courses,” in Frontiers in Education Conf. , 36th Annual, IEEE.
San Diego, CA, USA: IEEE, 2006, pp. 21 – 26.

[15] J. Nandigam, V. N. Gudivada, and A. Hamou-Lhadj, “Learning software
engineering principles using open source software,” in Frontiers in
Education Conf. , 38th Annual, IEEE. Saratoga Springs, NY, USA:
IEEE, 2008, pp. 18 – 23.

[16] G. W. Hislop, H. J. Ellis, A. B. Tucker, and S. Dexter, “Using open
source software to engage students in computer science education
(panel),” SIGCSE Bull., vol. 41, pp. 134–135, March 2009.

[17] B. D. Faber, “Educational models and open source: resisting the propri-
etary university,” in Proc. of the 20th annual Int’l Conf. on Computer
documentation, ser. SIGDOC ’02. New York, NY, USA: ACM, 2002,
pp. 31–38.

[18] P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro, and
C. Chavez, “A study of the relationships between source code metrics
and attractiveness in free software projects,” Software Engineering,
Brazilian Symposium on, vol. 0, pp. 11–20, 2010.

[19] C. D. S. Jr., M. B. Cavalca, F. Kon, J. Singer, V. Ritter, D. Regina,
and T. Tsujimoto, “Intellectual property policy and attractiveness: a
longitudinal study of free and open source software projects,” in CSCW,
2011, pp. 705–708.

[20] A. Terceiro, L. R. Rios, and C. Chavez, “An empirical study on the
structural complexity introduced by core and peripheral developers in
free software projects,” Brazilian Symposium on Software Engineering,
vol. 0, pp. 21–29, sep 2010.

[21] I. Herraiz, D. I. Cortazar, and F. R. Hernández, “FLOSSMetrics:
Free/Libre/open source software metrics,” Software Maintenance and
Reengineering, European Conf. on, vol. 0, pp. 281–284, 2009.

[22] A. Terceiro, J. Costa, J. a. Miranda, P. Meirelles, L. R. Rios, L. Almeida,
C. Chavez, and F. Kon, “Analizo: an extensible multi-language source
code analysis and visualization toolkit,” in CBSOFT-Ferramentas, 2010.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 3, pp.
309–346, 2002.

[24] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery in
free/libre and open source software team communications,” Hawaii Int’l
Conf. on System Sciences, vol. 6, p. 118, 2006.

[25] H. Masmoudi, M. d. Besten, C. d. Loupy, and J.-M. Dalle, ““peeling the
onion”: The words and actions that distinguish core from periphery in
bug reports and how core and periphery interact together.” in 5th IFIP
WG 2.13 Int’l Conf. on Open Source Systems, vol. 299. Springer, 2009,
pp. 284–297.

[26] M. J. Scialdone, N. Li, R. Heckman, and K. Crowston, “Group main-
tenance behaviors of core and peripherial members of free/libre open
source software teams,” in 5th IFIP WG 2.13 Int’l Conf. on Open Source
Systems, vol. 299. Springer, 2009, pp. 298–309.

[27] J. Costa, F. Santana, and C. Souza, “Understanding open source develop-
ers’ evolution using transflow,” in Groupware: Design, Implementation,
and Use, 15th Int’l Workshop, CRIWG 2009, Peso da Régua, Douro,
Portugal, September 13-17, 2009. Proceedings, 2009, pp. 65–78.

[28] J. P. F. de Oliveira, T. Brito, S. R. Jr, and G. Elias, “Um Serviço de
Repositório Compartilhado e Distribuído para Suporte ao Desenvolvi-
mento Baseado em Componentes,” in XXI SBES, 2007.

[29] J. a. G. Prudêncio, L. Murta, and C. Werner, “On the selection of
concurrency control policies for configuration management,” in Proc. of
the 2009 XXIII Brazilian Symposium on Software Engineering. IEEE
Computer Society, 2009, pp. 155–164.

[30] L. L. Silva, K. R. Paixao, S. d. Amo, and M. d. A. Maia, “Software
evolution aided by execution trace alignment,” in Proc. of the 2010
Brazilian Symposium on Software Engineering. IEEE Computer
Society, 2010, pp. 158–167.

[31] M. H. Yamaguti and R. T. Price, “Uma Arquitetura Reflexiva Baseada
na Web para Ambiente de Suporte a Processo,” in XVI SBES, 2002.

[32] R. S. P. Maciel, B. C. d. Silva, A. P. F. Magalhães, and N. S.
Rosa, “An integrated approach for model driven process modeling and
enactment,” in Proc. of the 2009 XXIII Brazilian Symposium on Software
Engineering. IEEE Computer Society, 2009, pp. 104–114.

[33] T. de Araújo and A. von Staa, “Sdiff: A comparison tool based in syn-
tactical document structure,” in Proc. of the 2010 Brazilian Symposium
on Software Engineering, 27 2010-oct. 1 2010, pp. 30 –39.

[34] D. S. A. Santos and U. Schiel, “RDF na Interoperabilidade entre
Domínios na Web,” in XVI SBES, 2002.

[35] N. Mendonça, P. H. M. Maia, L. A. Fonseca, and R. M. C. Andrade.,
“Building Flexible Refactoring Tools with XML,” in XVII SBES, 2004.

[36] L. A. H. da S. Maciel and E. T. Yano, “Uma Linguagem de Workflow
Para Composição de Web Services - LCWS,” in XIX SBES, 2005.

[37] I. M. de Souza Gimenes, R. Nishimura, E. A. de Oliveira Junior, F. R.
Lazilha, U. Kulesza, and C. J. P. Lucena, “A Component-based Product
Development Process for a Workflow Management System Product
Line,” in XIX SBES, 2005.

[38] A. Dantas, M. Gaudencio, F. Brasileiro, and W. Cirne, “Obtaining



Trustworthy Test Results in Multi-threaded Systems,” in XXII SBES,
2008.

[39] A. Torres, R. Galante, and M. S. Pimenta, “Towards a uml profile for
model-driven object-relational mapping,” in Proc. of the 2009 XXIII
Brazilian Symposium on Software Engineering. IEEE Computer
Society, 2009, pp. 94–103.

[40] F. Souza and N. Mendonça, “Um Ambiente para Detecção de Cenários
Implícitos a partir de Rastros de Execução,” in XXI SBES, 2007.

[41] F. C. Ferrari, R. Burrows, O. A. L. Lemos, A. Garcia, and J. C. Maldon-
ado, “Characterising faults in aspect-oriented programs: Towards filling
the gap between theory and practice,” in Proc. of the 2010 Brazilian
Symposium on Software Engineering. IEEE Computer Society, 2010,
pp. 50–59.

[42] I. Macia, A. Garcia, and A. v. Staa, “Defining and applying detection
strategies for aspect-oriented code smells,” in Proc. of the 2010 Brazilian
Symposium on Software Engineering. IEEE Computer Society, 2010,
pp. 60–69.

[43] F. Dantas and A. Garcia, “Software reuse versus stability: Evaluating
advanced programming techniques,” in Proc. of the 2010 Brazilian
Symposium on Software Engineering. IEEE Computer Society, 2010,
pp. 40–49.

[44] M. C. Júnior, M. Mendonça, and F. Rodrigues, “Mining software
change history in an industrial environment,” in Proc. of the 2009
XXIII Brazilian Symposium on Software Engineering. IEEE Computer
Society, 2009, pp. 54–61.

[45] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, H. C. Almeida,
and L. F. O. Mendes, “Reference values for object-oriented software
metrics,” in Proc. of the 2009 XXIII Brazilian Symposium on Software
Engineering. IEEE Computer Society, 2009, pp. 62–72.

[46] G. d. F. Carneiro, M. Silva, L. Mara, E. Figueiredo, C. Sant’Anna,
A. Garcia, and M. Mendonca, “Identifying code smells with multiple
concern views,” in Proc. of the 2010 Brazilian Symposium on Software
Engineering. IEEE Computer Society, 2010, pp. 128–137.

[47] M. d. F. Costa and M. d. O. Barros, “Evaluating the implications of a
package design principle upon software maintainability,” in Proc. of the
2010 Brazilian Symposium on Software Engineering. IEEE Computer
Society, 2010, pp. 138–147.

[48] F. Netto, M. O. Barros, and A. C. F. Alvim, “An automated approach
for scheduling bug fix tasks,” in Proc. of the 2010 Brazilian Symposium
on Software Engineering. IEEE Computer Society, 2010, pp. 80–89.

[49] J. M. R. Costa, F. W. Santana, and C. Souza, “Using transflow to analyze
open source developers’ evolution,” in Proc. of the 2009 Brazilian
Symposium on Software Engineering. IEEE Computer Society, 2009,
pp. 165–175.

[50] Y. Cavalcanti, P. A. S. Neto, E. Almeida, D. Lucredio, C. Cunha, and
S. Meira, “One step more to understand the bug report duplication
problem,” in Proc. of the 2010 Brazilian Symposium on Software
Engineering. IEEE Computer Society, 2010, pp. 148–157.

[51] V. C. Garcia, V. Fontanette, A. B. Perez, A. A. Bossonaro, and A. F.
Prado, “DDE - draco domain editor,” in IX Sessão de Ferramentas –
XVI SBES, 2002, pp. 378–383.

[52] J. Oliveira, T. Brito, A. Oliveira, S. Rabelo, and G. Elias, “X-CORE: Um
Serviço de Repositório Compartilhado e Distribuído de Componentes de
Software,” in XIV Sessão de Ferramentas – XXI SBES, 2007.

[53] R. D. Moro, J. C. Nardi, and R. de Almeida Falbo, “ControlPro: Uma
Ferramenta de Acompanhamento de Projetos Integrada a um Ambiente
de Desenvolvimento de Software,” in XI Sessão de Ferramentas – XIX
SBES, 2005.

[54] A. F. Martins, J. C. Nardi, and R. de Almeida Falbo, “ReqODE: Uma
Ferramenta de Apoio à Engenharia de Requisitos Integrada ao Ambiente
ODE,” in XIII Sessão de Ferramentas – XX SBES, 2006.

[55] D. de Paula Porto, M. Mendonça, and S. Fabbri, “CRISTA - Code
Reading Implemented with Stepwise Abstraction,” in XV Sessão de
Ferramentas – XXII SBES, 2008.

[56] A. Zamboni, A. D. Thommazo, E. Hernandes, and S. Fabbri, “StArt –
Uma Ferramenta Computacional de Apoio à Revisão Sistemática,” in
CBSOFT-Ferramentas, 2010.

[57] A. da Silva Simão, A. M. R. Vincenzi, and J. C. Maldonado, “mudelgen:
A Tool for Processing Mutant Operator Descriptions,” in IX Sessão de
Ferramentas – XVI SBES, 2002.

[58] M. A. S. Mangan, I. A. da Silva, and C. M. L. Werner, “GAW: uma
Ferramenta de Percepção de Grupo Aplicada no Desenvolvimento de
Software,” in XI Sessão de Ferramentas – XVIII SBES, 2004.

[59] Y. a. C. Cavalcanti, C. E. A. da Cunha, E. S. de Almeida, and S. R.
de Lemos Meira, “BAST: A Bug Report Analysis and Search Tool,” in
XVI Sessão de Ferramentas – XXIII SBES, 2009.

[60] P. Albuquerque, J. L. Massollar, and G. H. Travassos, “ModelT2: Apoio
Ferramental à Geração de Casos de Testes Funcionais a partir de Casos
de Uso,” in CBSOFT-Ferramentas, 2010.

[61] C. H. Felicíssimo, J. C. S. do Prado Leite, K. K. Breitman, and L. F.
da Silva, “C&L: Um Ambiente para Edição e Visualização de Cenários
e Léxicos,” in XI Sessão de Ferramentas – XVIII SBES, 2004.

[62] E. de O. Sales, S. F. de Freitas, and R. Q. Reis, “Uma Ferramenta para
Recuperação de Modelos de Processo de Software Reutilizáveis,” in XIII
Sessão de Ferramentas – XX SBES, 2006.

[63] M. Mrack, Álvaro de Freitas Moreira, and M. Pimenta, “Merlin: Inter-
faces CRUD Em Tempo de Execução,” in XIII Sessão de Ferramentas
– XX SBES, 2006.

[64] A. Lima, A. Costa, B. França, C. A. L. Reis, and R. Q. Reis, “Gerência
Flexível de Processos de Software com o Ambiente WebAPSEE,” in
XIII Sessão de Ferramentas – XX SBES, 2006.

[65] R. A. Brito and A. M. L. de Vasconcelos, “Definiçãoo e Implemen-
tação de um Modelo de Rastreamento para Engenharia de Requisitos
Distribuída,” in XIII Sessão de Ferramentas – XX SBES, 2006.

[66] E. S. Junior, P. Masiero, and R. Braga, “Captor: Um Gerador de
Aplicações Configurável,” in XIII Sessão de Ferramentas – XX SBES,
2006.

[67] B. E. G. Gomes, A. M. Moreira, D. B. P. Déharbe, and K. K.
de O. Moraes, “A Ferramenta BSmart para o Desenvolvimento Rigoroso
de Aplicações Java Card com o Método Formal B,” in XIV Sessão de
Ferramentas – XXI SBES, 2007.

[68] E. Marinho, V. Medeiros, D. Déharbe, B. Gomes, and C. Tavares, “A
Ferramenta Batcave para a Verificaçãao de Especificações Formais na
Notaçc̃ao B,” in XIV Sessão de Ferramentas – XXI SBES, 2007.

[69] R. F. Araujo and M. E. Delamaro, “TeTooDS - Testing Tool for Dynamic
Systems,” in XV Sessão de Ferramentas – XXII SBES, 2008.

[70] K. M. A. de Oliveira and B. L. Jr., “Desenvolvimento Evolutivo de
Interfaces com o Usuário em uma Abordagem Baseada em Modelos e
Múltipla Prototipagem: FastInterface,” in XVI Sessão de Ferramentas –
XXIII SBES, 2009.

[71] J. Venâncio, C. Gusmão, E. Mendes, and E. Souza, “RBTTool – Uma
Ferramenta de Apoio à Abordagem de Teste de Software baseado em
Riscos,” in XVI Sessão de Ferramentas – XXIII SBES, 2009.

[72] G. T. de Almeida, B. A. Ramos, M. M. F. Neto, M. S. Reis, and M. R.
dos S. Barcelos Aline P. V. de Vasconcelos, “Ferramenta de Apoio à
Engenharia de Requisitos Integrada a um Ambiente Colaborativo de
C0́digo Aberto,” in CBSOFT-Ferramentas, 2010.

[73] C. Queiroz, F. Castor, and N. Cacho, “AssistME – uma Ferramenta para
Auxiliar a Refatoração para Aspectos de Tratamento de Exceccões,” in
CBSOFT-Ferramentas, 2010.

[74] P. A. P. Jr., H. A. X. Costa, V. V. de Camargo, and R. A. D. Penteado,
“ComSCId & DMAsp: Identificação de Interesses Transversais e Recu-
peração de Modelos de Classes Anotados a partir Aplicações OO Java,”
in CBSOFT-Ferramentas, 2010.

[75] C. Reis, “Uma Visão Geral do Bugzilla, uma Ferramenta de Acom-
panhamento de Alterações,” in IX Sessão de Ferramentas – XVI SBES,
2002.

[76] A. N. Duarte, W. Cirne, F. Brasileiro, and P. D. de Lima Machado,
“GridUnit: Using the Computational Grid to Speed up Software Testing,”
in XI Sessão de Ferramentas – XIX SBES, 2005.

[77] D. M. B. Paiva, D. Lucrédia, and R. P. de Mattos Fortes, “MVCASE -
Incluindo Design Rationale para Auxílio a Modelagem em Projetos de
Pesquisa,” in XIII Sessão de Ferramentas – XX SBES, 2006.

[78] P. R. M. Meirelles, R. Cóbe, S. Hanazumi, P. Nunes, G. Challco, S. Mar-
tins, E. Morais, and F. Kon, “Crab: Uma Ferramenta de Configuração e
Interpretação de Métricas de Software para Avaliação de Qualidade de
Código,” in XVI Sessão de Ferramentas – XXIII SBES, 2009.

[79] F. Ferreira, L. Neves, M. Silva, and P. Borba, “TaRGeT: a Model Based
Product Line Testing Tool,” in CBSOFT-Ferramentas, 2010.

[80] C. Chavez, A. Terceiro, P. Meirelles, F. Kon, and C. S. Jr., “Using
free/libre/open source for software engineering education,” in CBSoft
2011 - SBES - FEES, mar 2011.

[81] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” IEEE Trans. Softw. Eng.,
vol. 28, no. 8, pp. 721–734, August 2002.


