
A Group Membership Service for Large-Scale Grids ∗

Fernando Castor Filho
Augusta Marques

Polytechnic School of Pernambuco
University of Pernambuco

{fernando.castor, armf}@dsc.upe.br

Raphael Y. de Camargo
Fabio Kon

University of São Paulo

{kon,rcamargo}@ime.usp.br

ABSTRACT
In this paper, we propose a decentralized group membership
service that can be incorporated into existing grid middle-
ware to make it more reliable. This service includes a flex-
ible failure detector that adapts dynamically to changing
network conditions and can be configured with a number of
failure recovery strategies. Moreover, it disseminates infor-
mation about membership changes (new processes, failures,
etc.) in a scalable and efficient manner. We conducted a pre-
liminary evaluation of the proposed service by simulating a
grid with up to 140 nodes distributed across three domains
separated by a wide-area network. This evaluation showed
that the proposed service performs well both in the absence
and in the presence of process failures.

Categories and Subject Descriptors: C.2.4 [Computer
Systems Organization] – Distributed Systems.

General Terms: Reliability, Design.

Keywords: grid computing, failure detection, group mem-
bership.

1. INTRODUCTION
In spite of all its benefits, both accomplished and poten-

tial, grid computing [9] is still an active research area and
there are several open problems that need to be addressed
for it to attain more widespread use. One such open problem
is fault tolerance. The computations performed by a grid of-
ten last for several days. Furthermore, after grid resources
are reserved, it might take several hours or days before they
are available. Failure of a grid node can thus render several
days of work useless and require that the grid resources be
reserved again, wasting resources that could be leveraged to
perform useful computation. Making a grid fault-tolerant
can save time and allow for more efficient use of the grid.

∗This research is supported by CNPq/Brazil, grants
#481147/2007-1 and #550895/2007-8.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC’08 December 1-5, 2008, Leuven, Belgium.
Copyright 2008 ACM 978-1-60558-365-5/08/12 ...$5.00.

To recover from failures of some of its nodes or commu-
nication channels, a grid must first detect the failures and
guarantee that its participants are aware of them and can
take appropriate measures. Moreover, the grid should be
capable of dealing with dynamically joining processes, both
new ones and previously failed ones. In the distributed sys-
tems literature, the middleware service responsible for these
tasks is often called the Group Membership Service [1], or
Failure Detection Service [23]. Group membership services
usually comprise at least three parts: (i) a membership man-
agement component, responsible for keeping track of correct
and faulty processes; (ii) a failure detector, responsible for
monitoring a subset of the processes in the group and de-
tecting process failures as quickly and accurately as possible;
and (iii) an information dissemination component, respon-
sible for notifying processes about membership changes of
which they might not be aware. Group membership man-
agement is very important for large grids. It can speed up
failure recovery and avoid inconsistencies in the results of
long-term computations.

Due to the intrinsic characteristics of large scale grids, in-
cluding the opportunistic ones [10], whose workstations can
be shared with local users and only take part in the grid
when idle, a group membership service should satisfy sev-
eral requirements: (i) scalability, as a grid might comprise
thousands of nodes; (ii) autonomy, because grids, besides be-
ing geographically distributed across potentially thousands
of machines, might span multiple administrative domains
and these factors make manual failure detection and recov-
ery infeasible; (iii) capacity of handling dynamism; and (iv)
efficiency in terms of consumption of network and machine
resources; (v) distribution, in the sense that nothing short
of a complete network outage should stop the operation of
the group membership service.

In this paper we present the design and initial evaluation
of a group membership service that aims to be practical
and addresses the aforementioned requirements. This basic
service was designed and implemented in a modular fash-
ion and can be incorporated into existing grid middleware
infrastructures and reused across several applications. Addi-
tionally, it is very lightweight (its implementation comprises
less than 80 Kbytes of source code), runs on several hardware
and software platforms, and is based on a well-established
middleware technology. Furthermore, it is highly config-
urable and can be deployed in environments with different
operational characteristics. The proposed group member-
ship service leverages recent advances in epidemic (or gossip-
style [23]) information dissemination protocols [5, 7] and ac-

crual failure detectors [12, 19].

2. BASIC ASSUMPTIONS
For simplicity, we consider that a grid comprises a set of

processes that communicate by exchanging messages. We
do not make an explicit distinction between processes and
nodes/machines in the grid and use these terms interchange-
ably. Also, we assume that any process can communicate
directly with any other process via the underlying transport
layer. We do not make any assumptions about the applica-
tions that will run on the grid nor about the programming
models to which they adhere. We consider, however, that
applications might require large amounts of bandwidth.

We assume a crash-recover model where processes fail
silently but can recover from failures and rejoin the grid. We
believe that, for opportunistic grids, this fault model is more
appropriate than the crash model adopted by most works on
gossip-style failure detection and group membership [13, 17,
23]. Given the large number of processes in a grid, we con-
sider that failures are commonplace events and that some
processes are failing and rejoining the grid at all times. It
is even possible that a large percentage (50% or more) of
the process in the grid fail simultaneously, due to events
such as power shortages, network partitions, and Internet
Worms [12]. Process failures can occur due to a number of
reasons: hardware malfunctioning, application crashes, op-
erating system crashes, a local user abruptly reclaiming the
resources of a grid node, etc. For failure detection purposes,
all these situations are identical.

Since we use TCP for communication, we consider that
the underlying communication channels do not lose mes-
sages. Also, channels are partially synchronous [6], i.e.,
eventually, there will be a limit to the time it takes for a mes-
sage to reach its destination. These assumptions attempt to
mimic the way the Internet works and are in conformance
with other works on failure detection [4, 13, 23].

3. BACKGROUND
This section provides a brief explanation about epidemic

information dissemination and accrual failure detectors.

Epidemic Information Dissemination. Epidemic- or
gossip-style information dissemination protocols were pro-
posed in the late 1980’s to improve the reliability and scal-
ability of updates to replicated databases and have received
considerable attention in the distributed systems commu-
nity in the last 10 years. They mimic the way in which
infectious diseases (or gossip) spread. In a gossip proto-
col, when a process P must disseminate some information
to other processes, it chooses some of them randomly and
sends the information. Each process Q that receives the in-
formation merges it with any up-to-date information that
it has and repeats this procedure, randomly selecting some
processes and sending the merged information. Van Renesse
et al. [23] have shown, in a theoretical study, that the infor-
mation will get to all the processes in the group with a very
high probability (almost 1) if each process gossips to c∗log N

processes, where c is a constant and N is the number of pro-
cesses in the group. Several works have demonstrated both
in theory and in practice that gossip protocols are both ro-
bust and scalable [4, 7, 13, 17, 23]. Examples of applications
of gossip protocols include failure detection [23, 13], group
membership [4, 17], and replicated database updates [5].

A gossip protocol can be reactive or periodic [17], de-
pending on whether speed of information dissemination or
low bandwidth consumption is more important. In the for-
mer case, upon receipt of a new gossip message, a process
P chooses some targets and gossips to them. In the latter,
each process gossips some relevant information to a num-
ber of randomly chosen processes at regular time intervals.
Also, gossiped information might be sent on its own mes-
sages or piggybacked on other messages [4], again depending
on whether speed or bandwidth consumption is more impor-
tant. Additionally, gossip protocols can use TCP or UDP
as transport protocol [13]. On the one hand, TCP requires
more bandwidth and includes mechanisms, such as flow con-
trol, that are undesirable for some applications. Neverthe-
less, it provides delivery guarantees and is firewall-friendly.
On the other hand, UDP is more lightweight but provides
no guarantees and is often blocked by firewalls. Finally, the
reliability and speed of dissemination of a protocol depend
on its fanout value [7], the number of processes to which
each process gossips information. Gossip protocols, due to
their inherent redundancy, can often achieve high levels of
reliability and speed of dissemination using small fanout val-
ues.

Accrual Failure Detectors. Accrual failure detectors [12]
are a solution to the inherent lack of flexibility of traditional
heartbeat-based failure detectors. In a traditional failure de-
tector, if a process P monitors a process Q, the latter peri-
odically sends heartbeat messages to the former. If a certain
amount of time Tto elapses without P receiving a heartbeat
from Q, Q is considered to have failed. Some schemes adjust
the value of Tto dynamically to adapt to changing network
conditions [3].

Accrual failure detectors use heartbeat inter-arrival times
as samples to define a probability distribution and, consider-
ing the time since the last heartbeat was received, compute
the probability that the monitored process has failed. As
a result, they naturally adapt to changing network condi-
tions while completely hiding the notion of time from their
clients. Since accrual failure detectors output a suspicion
value on a continuous scale (instead of simply declaring a
process as failed or not), it becomes possible to define sev-
eral distinct failure recovery strategies based on the level of
suspicion that a process has failed. This feature results in
greater flexibility for system administrators.

4. GROUP MEMBERSHIP SERVICE
The proposed group membership service has three main

components: (i) a Failure Detector component , that detects
failures of group members; (ii) an Information Dissemination
component, that disseminates information about joining or
failing members; and (iii) a Membership Management com-
ponent, that maintains membership information. Figure 1
depicts the high-level architecture of the group membership
service module running within each node in the group. In
the rest of this section we explain each of these components
in more detail.

4.1 Membership Management
The Membership Management component keeps track of

the processes that each process knows about, the ones it be-
lieves to have failed, the ones that monitor it, and the ones
that it monitors. Moreover, this component coordinates the

Figure 1: Main components of the group member-

ship service. The dashed arrows indicate the direc-

tion of the interactions between components.

interaction between the Failure Detector and Information
Dissemination components. When a new process Q wants
to join the group, it must issue a monitor req request to a
process P that is already a member of the group. P , upon re-
ceipt of the monitoring request, will always answer positively
with a monitor ack response. P will also gossip to Q the
IDs of some processes it knows. Processes in the group mem-
bership service are uniquely identified by an <IP>:<PORT>

pair. The number of processes about which P gossips to Q

is dictated by parameter L. In most of our experiments, we
have set L to 12. Furthermore, with a probability inversely
proportional to the number of processes that P knows, it
will also request Q to monitor it.

Each process in a group can be monitored by at most K

other processes, i.e., larger values of K mean that the mon-
itoring network is more resilient to failures. Setting K to a
small integer value, such as 5 or 6, is enough for most prac-
tical purposes [13, 17]. A process R which is monitored by
a process S has an open TCP connection with it through
which it sends heartbeat messages (Section 4.2) and other
kinds of information. If R perceives that it is being moni-
tored by more than K processes, it issues a monitor cancel

message to a randomly chosen process and cancels the mon-
itoring relation, so as to keep the number of monitoring
connections as close as possible to K.

When a process either detects (Section 4.2) or gets to
know about (Section 4.3) the failure of a process f , it re-
moves f from its set of known processes. However, in prac-
tical scenarios, specially in opportunistic grids, a failed pro-
cess will eventually reappear and attempt to rejoin the grid.
Hence, upon declaring a process as failed, each process ini-
tiates a timer whose length is user-defined. The timer must
be long enough for the failure information to spread to all
the group processes. If f attempts to rejoin before the timer
expires, its monitoring request is refused. After timer expi-
ration, each process removes f from its set of failed pro-
cesses and informs neighboring processes about this. From
this moment on, the previously-failed process can attempt
to rejoin the grid.

4.2 Failure Detector
The Failure Detector component comprises the Monitor

and the Accrual Failure Detector (AFD) components (Fig-
ure 1). The Monitor component collects information about
the health of the monitored process. This information con-

sists of heartbeat messages that monitored processes period-
ically send to the monitoring processes. Parameter Thb de-
termines the time between two consecutive heartbeats sent
by a monitored process. As mentioned in Section 4.1, mon-
itoring relationships are established in a random fashion.
This is very important to ensure the robustness and re-
liable message delivery properties of gossip protocols [23,
4]. In the proposed group membership service, monitored
processes choose monitoring processes randomly, but always
send heartbeat messages to the same processes, as long as
the monitoring relationship lasts. This approach ensures
that the accrual failure detectors collect information about
the monitored processes in a timely fashion. Previous work
has shown that maintaining persistent monitoring relation-
ships does not compromise the properties of gossip proto-
cols, as long as the monitoring relationships are randomly
established [13, 17].

Upon receipt of a heartbeat, the Monitor component ob-
tains the elapsed time since the previous heartbeat was re-
ceived and provides this information to the AFD component.
The AFD keeps a record of the last NUM SAMPLES sam-
ples it received, where NUM SAMPLES is a user-defined
parameter. Similarly to other works on accrual failure detec-
tors [12, 19], we normally set NUM SAMPLES to 1000.
At each clock tick (typically every 0.1 second), the Moni-
tor asks the AFD to check for failed processes. The AFD
calculates a suspicion value based on the formula below [19]:

Pfail,S(t∆) =
|St∆∗α|

|S|
(1)

where S is the set of all received samples, |S| is the num-
ber of elements in S (|S| ≤ NUM SAMPLES), t∆ is the
time elapsed since the last heartbeat was received, α is a
scaling factor (0 < α ≤ 1) that trades off failure detection
time and false positive rate [2], and |St∆∗α| is the number
of samples that are smaller than or equal to t∆ ∗ α. The
rationale is that the larger the number of samples smaller
than t∆ ∗ α, the lower the probability that a new sample
will arrive. We use an optimized implementation based
on an extended AVL tree to calculate the failure probabil-
ity using at most O(log |S|) comparisons. Hence, even if
NUM SAMPLES is very large (e.g., 1,000,000) and suspi-
cion values are requested every 0.1 second, their calculation
is kept computationally inexpensive.

The AFD component of each process begins its execu-
tion without any information about the monitored processes.
In this initial state, we want it to behave as a traditional
timeout-based failure detector until is has acquired enough
information, otherwise it might produce too many false pos-
itives. At the same time, we do not want to modify its
design or implementation to achieve this behavior. We sat-
isfy these two requirements by providing a set of dummy
samples to the AFD component at startup. Each dummy
sample has a value dictated by parameter Tto, provided by
the system administrator, and chosen so as to be enough
to avoid too many false positives while achieving reasonable
failure detection time. To the best of our knowledge, we
are the first to propose this modification to existing accrual
failure detection schemes [12, 19]

The AFD component can be configured to execute sev-
eral different failure handlers. Handlers are associated with
thresholds that define probabilities that a process has failed.
When the suspicion that a process P has failed reaches one

of the established thresholds, the corresponding failure han-
dler is triggered by the AFD. Notice that the AFD goes
on monitoring P . Hence, if the suspicion that P has failed
reaches a higher threshold, the AFD will trigger the asso-
ciated handler and this continues until one of the handlers
removes P from the monitoring list of the AFD component.
With this approach, preventive failure recovery actions can
be defined for lower threshold values, whereas more ener-
getic procedures can be enacted for higher ones. The Group
Membership Service includes a default failure handler that
removes the failed process from the list of monitored pro-
cesses of the AFD and uses the dissemination component
(Section 4.3) to notify other processes about the failure.

Previous experiments [12, 19] have shown that accrual
failure detectors perform similarly to timeout-based adap-
tive failure detectors [3] when heartbeat inter-arrival times
follow a normal distribution. In our experiments, though, we
have noticed that they do not perform so well when network
latencies are regular during long periods of time punctuated
by transient and short high-latency outbursts. This tends to
produce false positives unnecessarily. To mitigate this prob-
lem, we use a very simple suspicion mechanism where the
monitoring process attempts to send a heartbeat to the mon-
itored process. If the heartbeat is successfully sent, the for-
mer stops suspecting the latter. Otherwise, the monitored
process is considered failed. Moreover, if the heartbeat suc-
cessfully reaches the monitored process but the accrual fail-
ure detector starts suspecting the monitored process again
before receiving a heartbeat, the process is considered failed.
The rationale for this approach is that, sometimes, an appli-
cation might fail while its infrastructure (operating system,
middleware platform, etc.) goes on working. In this sce-
nario, it is not possible to detect the problem by simply
sending a heartbeat in the opposite direction.

4.3 Information Dissemination
The Information Dissemination component notifies other

processes about membership changes and, more generally,
the current members of the group. The main choices to
make, when designing a gossip-based information dissemi-
nation component are (i) whether it will use a periodic [17]
or reactive approach [13], (ii) what information will be gos-
siped, and (iii) what will be the speed of dissemination. In
this work, we have let the main needs of computational grids
guide our decisions. First of all, in a grid, information about
failed processes should be disseminated as fast as possible,
in order not to hinder progress, avoid general application
failures, or, in cases where a general failure is inevitable,
allow the grid job to be restarted (or rescheduled) as soon
as possible. Second, information about new members is not
so urgent, albeit useful. The rationale, in this case, is that
not knowing the complete group membership or newly join-
ing processes does not hinder progress, whereas not knowing
about a failed process might.

To disseminate failure information, the group membership
service uses a reactive and explicit approach. This means
that once a process learns about a new failure it automati-
cally sends this information to J processes that it monitors
or that monitor it. The administrator-defined parameter J

dictates the speed of dissemination. As mentioned in Sec-
tion 3, for some information gossiped by a single process to
reach all the group members with high probability, J should
be ≃ c ∗ log N . On the other hand, no explicit action is

taken to disseminate information about new processes. In-
stead, processes get to know about new processes by simply
receiving heartbeat messages. Each heartbeat that a pro-
cess p sends to a process q includes some randomly chosen
ids of K (Section 4.1) processes that p knows about. Piggy-
backing process ids in heartbeat messages has the following
consequences: (i) network load is reduced, since no new mes-
sages are generated and the information spreads throughout
the group at a slower pace; (ii) the size of a heartbeat is
bounded to K, a constant that does not change at runtime
and whose value is usually ≃ log N ; and (iii) dissemination
time becomes less predictable because, due to the random
selection of process ids, it might take a long time before the
id of a new process is gossiped.

4.4 Implementation
Our group membership service is implemented in Lua [15],

an extensible and lightweight programming language. Lua
makes it easy to use the proposed service from programs
written in other programming languages, such as Java, C,
and C++. Moreover, it executes in several platforms. Cur-
rently, we have successfully run the failure detector in Win-
dows XP, Mac OS X, and several flavors of Linux. The en-
tire implementation of the group membership service com-
prises approximately 80Kb of Lua source code, including
comments. Moreover, for interprocess communication, we
use a CORBA ORB named OiL [18] which is also written in
Lua. OiL is multi-platform, very lightweight, and performs
well when compared to existing production ORBs [18].

The implementation of the group membership service is
modular. The entire service is encapsulated within a Lua
module, which means that it is easily accessible to applica-
tions. To use the proposed service from a Lua program, only
two lines are necessary:

gfd = require ("gfd"); -- imports the service.
gfd.start(id, known_hosts); -- starts the service.

In the code above, id is the identifier of the newly started
process and known hosts is a list consisting of identifiers of
grid processes that it knows a priori.

5. EVALUATION
This section presents a preliminary evaluation of the pro-

posed group membership service. The evaluation consisted
of executing several instances of the service (from 20 to 140)
within three 2.53 GHz machines with 1GB RAM each and
communicating through a 100Mbps Fast Ethernet local area
network. Moreover, we have simulated a wide-area network
using the WANEem [22] emulator. WANem is a parametric
emulator that supports the configuration of several param-
eters of wide-area networks, such as latency, jitter, % of
duplicates, message loss, etc. We have set two of these pa-
rameters, latency and jitter, to 500ms and 250ms. During
the experiments, the network experienced light traffic and
an average packet loss rate of 3% (as measured by the ping
Unix command). We ran experiments involving 20, 40, 60,
80, 100, 120, and 140 instances of the group membership
service (processes). In the first five cases, we employed two
machines, each running half the overall number of processes.
In the latter two experiments, we employed three machines,
two running 50 processes each and the third running 20 and
40 processes, respectively. All the traffic between different
machines in all the experiments passed through WANem,

thus simulating a grid comprising three medium-sized clus-
ters separated by the Internet. For each process, we have
set parameters Thb to 2s, K to 4, and J to 6 (Section 4.2).

The main goal of the experiments was to assess the scala-
bility of the group membership service in terms of the num-
ber of messages sent per process. We have measured the
average number of messages sent per process in two distinct
situations: (i) when no failures occur; and (ii) when a per-
centage of the grid processes fail. In the first case, the num-
ber of processes ranged from 20 to 140, as described above.
In the second one we fixed it at 140. In the latter case, we
are specially interested in measuring the overhead that a re-
active approach to disseminate failure information imposes.
Also, we want to observe the resilience of the group member-
ship service to failures of a large number of processes. Each
experiment was conducted by initializing the processes at
regular intervals (with a 2 second interval between two con-
secutive processes). Most instances of the group member-
ship service received information about only one preexisting
process. Moreover, up to 20% of the members of each clus-
ter also received information about a single node located at
a different cluster. We have recorded the number of sent
messages per process after 7800 message exchange rounds.

Figure 2(a) presents the results of the experiments where
no failures were injected in the simulation. The graph shows
that the average number of messages sent per process varied
only slightly with the growth of the number of processes.
The highest average number of sent messages per process
(in the experiment involving 100 processes) was only 2,97%
higher than the lowest average number of sent messages per
process (20 processes). Throughout the experiments, the
number of sent messages did not exhibit a definite tendency
to grow with the number of processes. This evidence sug-
gests that the proposed group membership service might in
fact be scalable and supports previous analytical results [4].

Figure 2(b) shows the effect that process failures have on
the average number of messages sent per process. We have
injected the failures all at once. This adverse approach is
useful for evaluating the group membership service because
it does not give it time to re-organize between failures, thus
assessing its resilience. For a large number of failures (10%
of all the processes in the grid), the average number of mes-
sages per process grew 4,02% when compared to the scenario
where no failures occur. When an unreasonably large num-
ber of failures occurs (40% of the process), the number of
messages grew 13,37%. Thus, we can say that the proposed
service also scales well in the presence of process failures,
specially if we consider that all the failures were injected
simultaneously and during a short experiment. Moreover,
in spite of the large number of failures, no process became
isolated and no process was left unmonitored. More specif-
ically, 77,4% of them were monitored by K other processes
and 94,05% were still monitored by at least K−1 processes.

Finally, Figure 2(c) exhibits the average number of mes-
sages sent by the non-failed processes running within one of
the clusters in the scenario where 40% of the processes fail.
The failures were all injected between the 6000th and 6100th
message exchange rounds. Reactive dissemination of failure
information clearly injects a large number of extra messages
in the network in a short amount of time. In this case, we
have traded this off with faster information dissemination.

6. RELATED WORK

There are several proposals of approaches to make grids
fault-tolerant. Amongst them, a large part describes mech-
anisms for monitoring and failure detection of grid nodes.
Globus HBM [21] targets the Globus toolkit [8], leverages
unreliable failure detectors [2], and allows users to estab-
lish a compromise between failure detection time and rate
of false positives. Globus HBM disseminates information
about failures by flooding and does not use adaptive failure
detection. Therefore, its scalability and adequacy to oppor-
tunistic grids are limited. In a more recent work, Hwang
and Kesselman [14] have devised a generic and flexible fail-
ure detection infrastructure for grids. The main advantage
of this service, when compared to Globus HBM, is that it
supports the definition of several distinct failure recovery
policies. Nevertheless, it suffers from the same limitations
as Globus HBM, in terms of scalability and adaptiveness.

Legion [11] employs a hierarchy of “phoenix” servers to
monitor grid nodes and restart them when necessary. Mon-
itoring adheres to a push model where monitored nodes pe-
riodically send heartbeat messages to the monitoring infras-
tructure. This work is based on the often unrealistic premise
that monitoring nodes do not fail. In this scenario, informa-
tion dissemination is a minor problem. Also, this approach
does not adapt well to changing network conditions.

Shi and colleagues have introduced the ALTER architec-
ture [20] for failure detection in grids. Its main highlight
is the use of a timeout-based adaptive failure detector. Its
main limitations are lack of flexibility, since it uses timeouts
and its lack of integration with a group membership service.
Group membership is managed by a separate index service
that functions as a single point of failure for the system.
Moreover, it is not clear how scalable ALTER is.

The work of Jain and Shyamasundar [16] is directly re-
lated to our own. The authors describe a failure detec-
tion and membership management service for grids centered
around the concept of heartbeat groups. Heartbeat groups
prescribe a hierarchical organization for failure detectors
that improves scalability at the cost of losing some reliabil-
ity, since each group is coordinated by a centralized leader
(assisted by a single backup process). This approach does
not leverage epidemic dissemination nor uses adaptive fail-
ure detection to handle changing network conditions. More-
over, it does not support the flexible association of failure
recovery strategies to failure thresholds.

7. CONCLUDING REMARKS
We have presented a proposal for a group membership

service for large-scale grids where nodes fail by crashing and
subsequently recovering. This proposal combines recent ad-
vances in gossip-style information dissemination and accrual
failure detectors to produce a service that is, at the same
time, scalable and flexible. Preliminary results suggest that
the proposed group membership service is in fact scalable,
both when no failures occur and when a large number of
processes fail simultaneously.

Even though accrual failure detectors are often adver-
tised as flexible approach to failure detection, to the best
of our knowledge, we are the first to design and implement
an accrual failure detection service where users can asso-
ciate several different failure handlers with different failure
thresholds. Moreover, we have introduced a small improve-
ment to help the failure detector to behave properly when it
still has not collected enough information. Finally, existing

(a) (b) (c)

Figure 2: Results of the experimental evaluation.

works [12, 19] do not consider how AFDs obtain informa-
tion about monitored processes, even though an AFD needs
a considerable number of heartbeats to work properly. We
have shown that gossip-based dissemination can be used to
support scalable AFDs, as long as processes always gossip
within the same set of randomly chosen processes.

In the future, we intend to further evaluate the proposed
service. Besides conducting simulations with a larger num-
ber of nodes (300+), we would like to assess its performance
when running within a real grid computing setting. Fur-
thermore, we intend to compare it with other approaches
for group membership, in terms of performance, reliability,
and ease of configuration.

8. REFERENCES
[1] K. Birman. The process group approach to reliable

distributed computing. Communications of the ACM,
36(12):37–53, 1993.

[2] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, March 1996.

[3] W. Chen, M. K. S. Toueg, and M. K. Aguilera. On the
quality of service of failure detectors. IEEE
Transactions on Computers, 51(5):561–580, May 2002.

[4] A. Das, I. Gupta, and A. Motivala. Swim: Scalable
weakly-consistent infection-style process group
membership protocol. In Proc. of the 32nd
International Conf. on Dependable Systems and
Networks, pages 303–312, 2002.

[5] A. Demers et al. Epidemic algorithms for replicated
database maintenance. In Proceedings of the 6th ACM
Symposium on Principles of Distributed Computing,
pages 1–12, 1987.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, 1988.

[7] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and
L. Massoulie. Epidemic information dissemination in
distributed systems. Computer, 37(5):60–67, 2004.

[8] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of
Supercomputing Applications, 2(11):115–128, 1997.

[9] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, San Francisco, 1999.

[10] A. Goldchleger et al. Integrade: Object-oriented
middleware leveraging idle computing power of
desktop machines. Concurrency and Computation:

Practice and Experience, 16(8):449–459, March 2004.

[11] A. Grimshaw, A. Ferrari, F. Knabe, and
M. Humphrey. Legion: an operating systems for
wide-area computing. Technical Report CS-99-12,
University of Virginia, March 1999.

[12] N. Hayashibara, X. Defago, R. Yared, and
T. Katayama. The phi accrual failure detector. In
Proc. of the 23rd International Symposium on Reliable
Distributed Systems, pages 66–78, 2004.

[13] Y. Horita, K. Taura, and T. Chikayama. A scalable
and efficient self-organizing failure detector for grid
applications. In Proceedings of the 6th ACM/IEEE
International Workshop on Grid Computing, 2005.

[14] S. Hwang and C. Kesselman. A flexible framework for
fault tolerance in the grid. Journal of Grid
Computing, 1(3):251–272, September 2003.

[15] R. Ierusalimschy, L. H. de Figueiredo, and W. C.
Filho. Lua - an extensible extension language.
Software: Practice Experience, 26(6):635–652, 1996.

[16] A. Jain and R. Shyamasundar. Failure detection and
membership management in grid environments. In 5th
International Workshop on Grid Computing, 2004.

[17] J. Leitao, J. Pereira, and L. Rodrigues. Hyparview: A
membership protocol for reliable gossip-based
broadcast. In Proc. of the 37th International Conf. on
Dependable Systems and Networks, June 2007.

[18] R. Maia, R. Cerqueira, and R. Cosme. OiL: An object
request broker in the Lua language. In Proc. 24th
Brazilian Symposium on Computer Networks, 2006.

[19] B. Satzger, A. Pietzowski, W. Trumler, and
T. Ungerer. A new adaptive accrual failure detector
for dependable distributed systems. In Proc. of the
22nd ACM Symposium on Applied Computing, 2007.

[20] X. Shi et al. Alter: Adaptive failure detection services
for grids. In Proceedings of the 2005 IEEE
International Conference on Services Computing,
pages 355–358, June 2005.

[21] P. Stelling, I. T. Foster, C. Kesselman, C. A. Lee, and
G. von Laszewski. A fault detection service for wide
area distributed computations. In Proc. of the 7th
International Symposium on High Performance
Distributed Computing, pages 268–279, 1998.

[22] Tata Consulting Services. Wanem - the wide area
network simulator. Last visit: August 2008 –
http://wanem.sourceforge.net/.

[23] R. van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. In Proceedings of
Middleware’1998, September 1998.

