
Checkpointing-based Rollback Recovery for Parallel
Applications on the InteGrade Grid Middleware∗

Raphael Y. de Camargo, Andrei Goldchleger, Fabio Kon, and Alfredo Goldman
Dept. of Computer Science

University of São Paulo
São Paulo, SP, Brazil

rcamargo,andgold,kon,gold@ime.usp.br

ABSTRACT
InteGrade is a grid middleware infrastructure that enables
the use of idle computing power from user workstations.
One of its goals is to support the execution of long-running
parallel applications that present a considerable amount of
communication among application nodes. However, in an
environment composed of shared user workstations spread
across many different LANs, machines may fail, become un-
accessible, or may switch from idle to busy very rapidly,
compromising the execution of the parallel application in
some of its nodes. Thus, to provide some mechanism for
fault-tolerance becomes a major requirement for such a sys-
tem.
In this paper, we describe the support for checkpoint-

based rollback recovery of parallel BSP applications run-
ning over the InteGrade middleware. This mechanism con-
sists of periodically saving application state to permit to
restart its execution from an intermediate execution point
in case of failure. A precompiler automatically instruments
the source-code of a C/C++ application, adding code for
saving and recovering application state. A failure detector
monitors the application execution. In case of failure, the
application is restarted from the last saved global check-
point.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Distrib-
uted Systems—distributed applications; D.1.3 [Program-
ming Techniques]: concurrent programming—parallel pro-
gramming ; D.4.5 [Operating Systems]: Reliability—check-
point/restart, fault-tolerance

General Terms
Languages, Performance, Reliability

∗This work is supported by a grant from CNPq, Brazil, pro-
cess #55.2028/02-9.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
2nd Workshop on Middleware for Grid Computing Toronto, Canada
Copyright 2004 ACM 1-58113-950-0 ...$5.00.

Keywords
Fault-tolerance, Checkpointing, BSP, Grid Computing

1. INTRODUCTION
Grid Computing [7] represents a new trend in distributed

computing. It allows leveraging and integrating computers
distributed across LANs and WANs to increase the amount
of available computing power, provide ubiquitous access to
remote resources, and act as a wide-area, distributed stor-
age. Grid computing technologies are being adopted by re-
search groups on a wide variety of scientific fields, such as
biology, physics, astronomy, and economics.
InteGrade [8, 11] is a Grid Computing system aimed at

commodity workstations such as household PCs, corporate
employee workstations, and PCs in shared university labo-
ratories. InteGrade uses the idle computing power of these
machines to perform useful computation. The goal is to
allow organizations to use their existing computing infras-
tructure to perform useful computation, without requiring
the purchase of additional hardware.
Running scientific applications over shared workstations

requires a sophisticated software infrastructure. Users who
share the idle portion of their resources should have their
quality of service preserved. If an application process was
running on an previously idle machine whose resources are
requested back by its owner, the process should stop its ex-
ecution immediately to preserve the local user’s quality of
service. In the case of a non-trivial parallel application con-
sisting of many processes, stopping a single process usually
requires the reinitialization of the whole application. Mech-
anisms such as checkpoint-based rollback recovery [5] can be
implemented in order to solve this kind of problem.
We implemented a checkpoint-based rollback recovery

mechanism for single process and Bulk Synchronous Paral-
lel (BSP) [20] applications running over the InteGrade grid
middleware. We provide a precompiler that instruments the
application source-code to save and recover its state auto-
matically. We also implemented the runtime libraries nec-
essary for the generation of checkpoints, monitoring appli-
cation execution and node failures, and coordination among
processes in BSP applications 1.
The structure of the paper is as follows. Section 2 de-

scribes the major concepts behind the BSP model and the

1Actually, only the monitoring and reinitialization parts
of the code are specific for InteGrade. Consequently, this
mechanism can be easily ported to other systems.

checkpointing of BSP applications. Section 3 presents a brief
description of the InteGrade middleware and its architec-
ture, while Section 4 focuses on the implementation of the
checkpoint-based recovery mechanism. Section 5 shows re-
sults from experiments performed with the checkpointing
library. Section 6 presents related work on checkpointing of
parallel applications. We present our conclusions and dis-
cuss future work in Section 7.

2. CHECKPOINTING OF BSP
APPLICATIONS

In this section we present a brief introduction to the BSP
computing model and our approach for checkpointing BSP
applications.

2.1 The BSP Computing Model
The Bulk Synchronous Parallel model [20] was introduced

by Les Valiant, as a bridging model, linking architecture and
software. A BSP abstract computer consists of a collection
of virtual processors, each with local memory, connected by
an interconnection network whose only properties of interest
are the time to do a barrier synchronization and the rate at
which continuous randomly addressed data can be delivered.
A BSP computation consists of a sequence of parallel super-
steps, where each superstep is composed of computation and
communication, followed by a barrier of synchronization.
An advantage of BSP over other approaches to architec-

ture-independent programming, such as the message passing
libraries PVM [19] or MPI, lies in the simplicity of its inter-
face, as there are only 20 basic functions. Another advantage
is the predictability of performance. The performance of a
BSP computer is analyzed by assuming that in one time
unit an operation can be computed by a processor on the
data available in local memory, and based on the three pa-
rameters: the number of virtual processors (P), the ratio
of communication throughput to processor throughput (G)
and the time required to barrier synchronize all processors
(L).
Several implementations of the BSP model have been de-

veloped since the initial proposal by Valiant. They provide
to the users full control over communication and synchro-
nization in their applications. The mapping of virtual BSP
processors to physical processors is hidden from the user,
no matter what the real machine architecture is. These im-
plementations include the Oxford’s BSPlib [10], and PUB
[2].

2.2 Application-Level Checkpointing
Application-level checkpointing consists in instrumenting

an application source-code in order to save its state periodi-
cally, thus allowing recovering after a fail-stop failure [3, 18,
12]. It contrasts with traditional system-level checkpoint-
ing where the data is saved directly from the process virtual
memory space by a separate process or thread [17, 15].
The main advantage of the application-level approach is

that semantic information about memory contents is avail-
able when saving and recovering checkpoint data. Using this
approach, only the data necessary to recover the application
state needs to be saved. Also, the semantic information per-
mits the generation of portable checkpoints [18, 12], which
is an important advantage for applications running in a grid

composed of heterogeneous machines. The main drawback
is that manually inserting code to save and recover an appli-
cation state is a very error prone process. This problem can
be solved by providing a precompiler which automatically
inserts the required code. Other drawbacks of this approach
are the need to have access to the application source-code
and the impossibility of generating forced checkpoints2.

2.3 Checkpoint Coordination
When checkpointing parallel and distributed applications,

we have an additional problem regarding the dependencies
between the application processes. This dependency is gen-
erated by the temporal ordering of events during process ex-
ecution. For example, process A generates a new checkpoint
c1 and then sends a messagem1 to process B. After receiving
the message, process B generates checkpoint c2. Lets denote
this message sending event as send(m1) and the receiving
of the message as receive(m1). Here there is a relation of
causal precedence between the send(m1) and receive(m1)
events, meaning that the receive(m1) event must necessar-
ily happen after the send(m1). The state formed by the set
of checkpoints {c1, c2} is inconsistent, since it violates this
causal precedence relation.
A global checkpoint is a set containing one checkpoint

from each of the application processes and it is consistent
if the global state formed by these checkpoints does not vi-
olate any causal precedence relation. If processes generate
checkpoints independently, the set containing the last gen-
erated checkpoint from each process may not constitute a
consistent global checkpoint. In the worst case scenario, it
can happen that, after a failure, no set of checkpoints form a
consistent state, requiring the application to restart its exe-
cution from its initial state. This problem is usually referred
as domino effect.
There are different approaches to prevent the domino ef-

fect [5]. The first one, called communication-induced check-
pointing, forces the processes to generate extra checkpoints
in order to prevent some types of dependencies among pro-
cesses. The main problem with this approach is that the
number of forced checkpoints is dependent on the number
of messages exchanged, what can result in a large number of
extra checkpoints in some cases. Also, it requires sophisti-
cated algorithms for global checkpointing construction and
collection of obsolete checkpoints. Another possibility is to
use non-coordinated checkpointing with message logging [5].
Coordinated checkpointing protocols guarantee the con-

sistency of global checkpoints by synchronizing the processes
before generating a new checkpoint. Since the newly gen-
erated global checkpoint is always consistent, there is no
need to implement a separate algorithm for finding this
global checkpoint. Also, garbage collection is trivial, since
all checkpoints except the last one are obsolete. This is the
natural choice for BSP applications since BSP already re-
quires a synchronization phase after each superstep.

3. INTEGRADE ARCHITECTURE
The InteGrade project is a multi-university effort to build

a novel Grid Computing middleware infrastructure to lever-

2In application-level checkpointing, the process state can
only be saved when checkpoint generation code is reached
during execution. In system-level checkpointing, since the
state is obtained directly from the main memory by a sepa-
rate thread or process, it can be saved at any moment

Dedicated Node Resource
Provider Node

LRM LRM

NCC

LUPA

Grid User Node

Cluster
Manager

LRMLUPA

ASCT

GUPA GRM

...

Figure 1: InteGrade’s Intra-Cluster Architecture

age the idle computing power of personal workstations. In-
teGrade features an object-oriented architecture and is built
using the CORBA [16] industry standard for distributed ob-
jects. InteGrade also strives to ensure that users who share
the idle portions of their resources in the Grid shall not
perceive any loss in the quality of service provided by their
applications.
The basic architectural unit of an InteGrade grid is the

cluster, a collection of 1 to 100 machines connected by a
local network. Clusters are then organized in a hierarchical
intercluster architecture, which can potentially encompass
millions of machines.
Figure 1 depicts the most important kinds of components

in an InteGrade cluster. The Cluster Manager node repre-
sents one or more nodes that are responsible for managing
that cluster and communicating with managers in other clus-
ters. A Grid User Node is one belonging to a user who sub-
mits applications to the Grid. A Resource Provider Node,
typically a PC or a workstation in a shared laboratory, is one
that exports part of its resources, making them available to
grid users. A Dedicated Node is one reserved for grid compu-
tation. This kind of node is shown to stress that, if desired,
InteGrade can also encompass dedicated resources. Note
that these categories may overlap: for example, a node can
be both a Grid User Node and a Resource Provider Node.
The Local Resource Manager (LRM) and the Global Re-

source Manager (GRM) cooperatively handle intra-cluster
resource management. The LRM is executed in each cluster
node, collecting information about the node status, such as
memory, CPU, disk, and network utilization. LRMs send
this information periodically to the GRM, which uses it for
scheduling within the cluster. This process is called the In-
formation Update Protocol.
Similarly to the LRM/GRM cooperation, the Local Us-

age Pattern Analyzer (LUPA) and the Global Usage Pat-
tern Analyzer (GUPA) handle intra-cluster usage pattern
collection and analysis. The LUPA executes in each node
that is a user workstation and collects data about its us-
age patterns. Based on long series of data, it derives usage
patterns for that node throughout the week. This informa-
tion is made available to the GRM through the GUPA, and
allows better scheduling decisions due to the possibility of
predicting a node’s idle periods based on its usage patterns.
The Node Control Center (NCC), allows the owners of

resource providing machines to set the conditions for re-
source sharing. The Application Submission and Control

Tool (ASCT) allows InteGrade users to submit grid appli-
cations for execution.

4. IMPLEMENTATION
We have implemented a checkpoint-based rollback recov-

ery system for BSP applications running over the InteGrade
middleware. In this section we present our BSP implemen-
tation, our precompiler for inserting checkpointing code into
an application source-code, and the runtime libraries.

4.1 The BSP Implementation
The InteGrade BSP implementation [9] allows C/C++

applications written for the Oxford BSPlib to be executed
on the InteGrade grid, requiring only recompilation and re-
linking with the InteGrade BSP library. Our implementa-
tion currently supports interprocess communication based
on Direct Remote Memory Access (DRMA), which allows a
task to read from and write to the remote address space of
another task. Message passing support is currently being
implemented.
The bsp begin method determines the beginning of the

parallel section of a BSP application. As previously de-
scribed in section 2.1, computation in the BSP model is com-
posed of supersteps, and each of them is finished with a syn-
chronization barrier. Operations such as bsp put (a remote
write on another process’ memory) and bsp pushregister

(registration of a memory address so that it can be remotely
read/written) only become effective at the end of the super-
step. bsp synch is the method responsible for establishing
synchronization in the end of each superstep.

4.2 The Checkpoint Precompiler
The precompiler implementation uses OpenC++ [4], an

open source tool for metacomputing which also works as a
C/C++ source-to-source compiler. It automatically gener-
ates an abstract syntactic tree (AST) that can be analyzed
and modified before generating C/C++ code again. Using
this tool saved us from implementing the lexer and parser
for C/C++.

4.2.1 Saving the Execution Stack
The execution stack contains runtime data from the active

functions in a particular moment during program execution.
It includes the local variables and parameters values, the re-
turn address, and some extra control information for each
active function. This execution stack is not directly acces-
sible from application code. Consequently, the stack state
must be saved and reconstructed indirectly.
A solution for reconstructing the stack state is to call the

functions that were active during the last checkpoint in the
same order as before, declaring the local variables for each
of these functions. The values of these variables are then
recovered from the last generated checkpoint.
To accomplish this reconstruction, the precompiler modi-

fies the functions from the source program so that the cur-
rent active functions and the values from the local variables
are saved during normal execution. This data is then used
during recovery. Only a subset of the functions need to be
modified. This subset includes the functions that can possi-
bly be in the execution stack during checkpoint generation.
Let us denote by φ the set of functions that needs to be mod-
ified. A function f ∈ φ if, and only if, f calls a checkpointing

function3 or, f calls a function g ∈ φ. To determine which
functions need to be modified, the precompiler initially adds
functions that call a checkpointing function. Then it recur-
sively inserts into φ all functions that call functions in φ,
until no more functions are added.
In order to save the local variables, we use an auxiliary

stack where we keep the addresses of all local variables cur-
rently in scope. A variable enters scope when it is declared
and leaves scope when execution exits from the block where
the variable was declared. Execution can exit a block by
reaching its end or by executing return, break, continue
or goto statements. When a checkpoint is generated, the
values contained at the addresses from this auxiliary stack
are saved to the checkpoint. To keep track of the function
activation hierarchy, the precompiler adds a new local vari-
able currentGotoLabel into all functions in φ. The value
of this variable is then modified before calling any function
from φ. Global variables are added to the stack by the main
function before any other local variable.
Saving structures is similar to local variables. It is only

necessary to stack the structure address and size. When
the structure contains pointers, these must be stacked sepa-
rately. In the case of classes, the precompiler adds methods
for saving and restoring the class fields.
For application reinitialization, it is necessary to execute

all the function calls and variable declarations until reach-
ing the checkpoint generation point. This requires that for
each function of φ, the precompiler determines all variables
that are in the scope of each call to functions of φ. The re-
maining code is skipped, otherwise the application would be
executing unnecessary code4. After reaching the checkpoint
generation point, the execution continues normally.
Below we present a C function modified by our precom-

piler. Local variable currentGotoLabel is added by the
precompiler to record the currently active functions, while
mainInt represents a local variable from the unmodified
function. Global variable ckp recovering indicates the cur-
rent execution mode, that can be normal or recovering. In
this example we see the local variables being pushed and
popped from the auxiliary stack, and the data recovering
and code skipping that occurs during recovery.

int cfunction () {

int currentGotoLabel = -1;

int mainInt = 0 ;

ckp_push_data(¤tGotoLabel, sizeof(int));

ckp_push_data(&mainInt, sizeof(int));

if (ckp_recovering==1) {

ckp_get_data(¤tGotoLabel, sizeof(int));

ckp_get_data(&mainInt, sizeof(int));

if(currentGotoLabel == 0)

goto ckp0;

if(currentGotoLabel == 1)

goto ckp1;

}

// Do computations

(...)

ckp0:

3Here, we denote checkpointing functions as the functions
responsible for saving application state into a checkpoint.
4An exception occurs in the case of BSP applications, where
some function calls to the library must be re-executed in
order to recover the library state.

currentGotoLabel = 0;

function0 () ;

// Do computations

(...)

ckp1:

currentGotoLabel = 2;

function1 () ;

// Do computations

(...)

ckp_npop_data(2);

}

4.2.2 Saving the Heap State
In addition to saving the value of local variables, it is also

necessary to save the contents of memory allocated from
the heap. To keep track of the allocated memory, we im-
plemented a heap manager. It keeps information about the
allocated memory chunks, their respective sizes, and some
control information. During checkpoint generation this in-
formation is used to detect cycles in pointer graph struc-
tures and to prevent duplication of data in the checkpoints.
The precompiler redirects memory allocation system calls
– malloc, realloc, and free – in the application source-
code to equivalent functions in our checkpointing runtime
library. These functions update our memory manager and
then make the regular allocation system call.

4.2.3 Calls to the BSP API
In the case of BSP applications, the precompiler has to do

some extra tasks. Function calls to bsp begin and bsp synch

are substituted by equivalent functions in the our runtime li-
brary. Function bsp begin ckp registers some BSP memory
addresses necessary for checkpoint coordination and initial-
izes the BSPLib and checkpointing timer. Function bsp

sync ckp is responsible for checkpoint generation coordina-
tion. When called from Process Zero, it checks whether the
minimum checkpointing interval has expired. If it did, it
signals all other processes to make their checkpoints, issues
the bsp sync call and returns true. Otherwise, it just issues
the bsp sync call and returns false.
Depending on the response from the bsp sync ckp call,

the process generates a new checkpoint. Values from the
addresses registered in the BSP library can be ignored since
the checkpoint is generated immediately after a bsp sync

step.
During reinitialization, calls to functions that modify the

state from the BSPLib, such as bsp begin and bsp

pushregister, must be executed again. This is necessary to
recover the internal state from the BSPLib. The other so-
lution would be to save the internal state from the BSPLib,
but this would save unnecessary information.

4.3 Runtime Libraries
The runtime libraries provide basic functionality for check-

pointing of single processes, and specific functionality for
checkpointing BSP applications. They provide a C API that
allows applications written in both C and C++ to use them.
The basic checkpointing functionality is provided by func-

tions to manipulate the checkpoint stack, to save the stack
data to a file, and to recover checkpointing data. They also
allow the specification of a minimum checkpointing interval.
Checkpoint data is saved directly from the addresses at

the checkpointing stack. It currently saves the data in an

archive in the file system. This can be a problem in the case
where the machine where the process was executing becomes
unavailable. But when using a network filesystem such as
NFS, this solution is enough. We are planning a system
for saving checkpoints remotely in a distributed way. An-
other current restriction is that the saved data is architec-
ture dependent. This dependency arises due to differences
in data representation and memory alignment. Making the
the checkpoint portable requires saving data in a plataform
independent format.
The BSP specific functionality is provided by the func-

tions bsp begin ckp and bsp sync ckp. They do the initial-
ization and coordination of the checkpointing process. They
also manage obsolete checkpoints, which, in the case of coor-
dinated checkpointing, is trivial. Since this protocol always
generates consistent global checkpoints, it is only necessary
to keep a global checkpoint only until a new one is generated.
The library also implements a failure detection system us-

ing a heartbeat scheme. Each process monitors the process
with the PID immediately below it, except Process Zero,
which monitors the process with the highest PID. When a
process stops sending updates for a given amount of time,
the process monitoring it interprets that as a failure and
starts the process reinitialization coordination. Here, pre-
cautions must be taken not to restart processes which ter-
minated due to problems such as segmentation fault or that
completed the execution normally.
In order to allow the processes to agree about the reini-

tialization coordinator, we used a two-phase commit proto-
col. This is necessary in the case where two processes detect
failures simultaneously and start the reinitialization process.
When all processes reach an agreement about the new coor-
dinator, all processes terminate their execution and restart
from the last global checkpoint.

5. EXPERIMENTS
The experiments were performed using a sequence similar-

ity application [1]. It compares two sequences of characters
and find the similarity among them using a given criterion.
For a pair of sequences of size m and n, the application re-
quires O((m+ n)/p) memory, O(m) communication rounds
and O(m ∗ n) computational steps.
The experiments were performed on a grid containing 10

1.4GHz machines connected by a 100 Mbps Fast Ethernet
network. We used 5 pairs of sequences of size 100k as input.
We evaluated the overhead caused by checkpoint generation
for minimum intervals between checkpoints of 10, 60, and
600 seconds. The last case generates no checkpoint, so it
is used to measure the overhead caused by the additional
checkpointing code when no checkpoints are performed. We
perform five experiments for each checkpointing interval.
The results are presented in Table 1.
The versions with and without checkpointing code runs in

roughly the same time, showing that the time consumed by
the extra code is very small. When using a minimum check-
point interval of 1 minute, the overhead is only 2%. This
is a reasonable interval to use in the dynamic environment
where grids are typically deployed and with parallel applica-
tions that may take up to several hours to run. Even in the
case of 10-second minimum intervals (which is actually too
small, generating checkpoints too frequently) the overhead
was bellow 10%.
Checkpointing of applications containing large amounts of

tmin nckp ttotal torig ovh

600s 0 339.7s 339.9s 0%
60s 5 347.1s 339.9s 2.1%
10s 23 371.9s 339.9s 9.4%

Table 1: Checkpointing overhead for the sequence
similarity application. Generated checkpoints for
each process are of size 125k bytes. tmin is the mini-
mum interval between checkpoints, nckp is the num-
ber of generated checkpoints, ttotal is the execution
time of the modified code, torig is the execution time
without checkpointing code, and ovh is the relative
overhead introduced by checkpointing.

data, such as image processing, will cause bigger overheads
than the ones measured in our example. In these cases,
longer intervals between checkpoints can be used to reduce
this overhead. For an applications that runs for hours, losing
some minutes of computation is normally not a problem.

6. RELATED WORK
The Oxford BSPLib provides a transparent checkpoint-

ing mechanism for fault-tolerance. It employs system-level
checkpointing, so it only works on homogeneous clusters.
Application-level checkpointing for MPI applications is pre-
sented in [3]. They present a coordinated protocol for appli-
cation-level checkpointing. They also provide a precompiler
that modifies the source-code of C applications.
Recently, some research in the area of fault-tolerance for

parallel applications on grids has also been published. The
MPICH-GF [21] provides user-transparent checkpointing for
MPI applications running over the Globus [6] Grid middle-
ware. The solution employs system-level checkpointing, and
a coordinated checkpointing protocol is used to synchronize
the application processes.
A checkpointing mechanism for PVM applications run-

ning over Condor [14] is presented in [13]. It also uses
system-level checkpointing and a coordinated protocol. In
this solution, checkpoint data is saved in a separate check-
pointing server. There is also a separate module to perform
the checkpointing and reinitialization coordination.
An important difference in our approach is the use of

application-level checkpointing. It will allow the generation
of portable checkpoints, which is an important requirement
for heterogeneous grid environments. Also, checkpoints gen-
erated are usually smaller than when using a system-level
checkpointing approach. Another difference is that our im-
plementation supports the BSP parallel programming model.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we described the implementation of check-

point-based rollback recovery for BSP parallel applications
running over the InteGrade middleware. Application-level
checkpointing gives us more flexibility, for example to add
support for portability in the near future. A fault-tolerance
mechanism is of great importance for the dynamic and het-
erogeneous environments where the InteGrade middleware
operates. It permits execution progression for single process
and BSP parallel applications even in the presence of partial
or complete execution failures, such as when grid machines

(e.g., user desktops) are reclaimed by their owners. Pre-
liminary experimental results indicates that checkpointing
overhead is low enough to be used on applications which
needs more then a few minutes to complete its execution.
The current implementation of the precompiler has lim-

ited C++ support. Features such as inheritance, templates,
STL containers and references still need to be implemented.
Support for these features will be implemented in a future
version.
Our next step is to support portable checkpoints. In an

heterogeneous environment, such as a Grid, portable check-
points will allow better resource utilization. Another neces-
sity is the development of a more robust storage system for
checkpoints. Data will be stored in a distributed way, with
some degree of replication to provide better fault-tolerance.
Once these features are implemented we will then be able to
provide an efficient process migration mechanism for both
fault-tolerance and dynamic adaptation in the InteGrade
grid middleware.
InteGrade is available as free software an can be obtained

from the InteGrade project main site5. Current versions
of the precompiler and checkpointing runtime libraries are
available at the checkpointing subproject page6.

Acknowledgements
Ulisses Hayashida provided the sequence similarity applica-
tion used in our experiments. José de Ribamar Braga Pin-
heiro Júnior helped us to solve several network configuration
issues in InteGrade.

8. REFERENCES
[1] Alves, C. E. R., Cáceres, E. N., Dehne, F., and

W, S. S. A Parallel Wavefront Algorithm for Efficient
Biological Sequence Comparison. In The 2003
International Conference on Computational Science
and its Applications (May 2003), Springer-Verlag,
pp. 249–258.

[2] Bonorden, O., Juulink, B., von Otto, I., and

Rieping, I. The Paderborn University BSP (PUB)
Library—Design, Implementation and Performance. In
13th International Parallel Processing Symposium &
10th Symposium on Parallel and Distributed
Processing (1999).

[3] Bronevetsky, G., Marques, D., Pingali, K., and

Stodghill, P. Automated application-level
checkpointing of mpi programs. In Proceedings of the
9th ACM SIGPLAN PPoPP (San Diego, USA, 2003),
pp. 84–89.

[4] Chiba, S. Compiler-assisted heterogeneous
checkpointing. In Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) (October 1995),
pp. 285–299.

[5] Elnozahy, M., Alvisi, L., Wang, Y.-M., and

Johnson, D. B. A survey of rollback-recovery
protocols in message-passing systems. ACM
Computing Surveys 34, 3 (May 2002), 375–408.

[6] Foster, I., and Kesselman, C. Globus: A
Metacomputing Infrastructure Toolkit. International

5http://gsd.ime.usp.br/integrade
6http://gsd.ime.usp.br/integrade/checkpointing.

Journal of Supercomputing Applications 2, 11 (1997),
115–128.

[7] Foster, I., and Kesselman, C., Eds. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, San Francisco, 1999.

[8] Goldchleger, A., Kon, F., Goldman, A., Finger,

M., and Bezerra, G. C. InteGrade: Object-Oriented
Grid Middleware Leveraging Idle Computing Power of
Desktop Machines. Concurrency and Computation:
Practice and Experience 16 (March 2004), 449–459.

[9] Goldchleger, A., Queiroz, C. A., Kon, F., and

Goldman, A. Running Highly-Coupled Parallel
Applications in a Computational Grid. In Proceedings
of the 22th Brazilian Symposium on Computer
Networks (SBRC’2004) (Gramado-RS, Brazil, May
2004).

[10] Hill, J. M. D., McColl, B., Stefanescu, D. C.,

Goudreau, M. W., Lang, K., Rao, S. B., Suel,

T., Tsantilas, T., and Bisseling, R. H. BSPlib:
The BSP programming library. Parallel Computing
24, 14 (1998), 1947–1980.

[11] Integrade. http://gsd.ime.usp.br/integrade, 2004.

[12] Karablieh, F., Bazzi, R. A., and Hicks, M.

Compiler-assisted heterogeneous checkpointing. In
Proceedings of the 20th IEEE Symposium on Reliable
Distributed Systems (New Orleans, USA, 2001),
pp. 56–65.

[13] Kovács, J., and Kacsuk, P. A Migration
Framework for Executing Parallel Programs in the
Grid. In 2nd European Accross Grids Conference
(Nicosia, Cyprus, January 2004).

[14] Litzkow, M., Livny, M., and Mutka, M. Condor -
A Hunter of Idle Workstations. In Proceedings of the
8th International Conference of Distributed
Computing Systems (June 1988), pp. 104–111.

[15] Litzkow, M., Tannenbaum, T., Basney, J., and

Livny, M. Checkpoint and migration of UNIX
processes in the Condor distributed processing system.
Tech. Rep. UW-CS-TR-1346, University of Wisconsin
- Madison Computer Sciences Department, April 1997.

[16] Object Management Group. CORBA v3.0
Specification, July 2002. OMG Document 02-06-33.

[17] Plank, J. S., amd G. Kingsley, M. B., and Li, K.

Libckpt: Transparent chieckpointing under unix. In
Proceedings of the USENIX Winter 1995 Technical
Conference (1995), pp. 213–323.

[18] Strumpen, V., and Ramkumar, B. Portable
checkpointing and recovery in heterogeneous
environments. Tech. Rep. UI-ECE TR-96.6.1,
University of Iowa, June 1996.

[19] Sunderam, V. S. PVM: a framework for parallel
distributed computing. Concurrency, Practice and
Experience 2, 4 (1990), 315–340.

[20] Valiant, L. G. A bridging model for parallel
computation. Communications of the ACM 33 (1990),
103–111.

[21] Woo, N., Choi, S., Jung, H., Moon, J., Yeom,

H. Y., Park, T., and Park, H. MPICH-GF:
Providing Fault Tolerance on Grid Environments. In
The 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid2003)
(Tokyo, Japan, May 2003).

