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Communication middleware simplifies the construction of component-based distributed applications.1,2

However, middleware construction’s inflexibility imposes limitations and presents major concerns.3-7 While
applications can detect changes in their execution environment, they cannot customize the underlying
middleware to better accommodate these changes. 

To solve this problem, recent research in reflective middleware8 uses techniques derived
from previous work in computational reflection to add flexibility to middleware.
Reflective middleware exploits Gregory Kiczales’ meta-object protocol, combining the
ideas of computational reflection and object orientation.9 His model distinguishes between
base-level objects (concerning the systems’ functional aspects) and metalevel objects
(concerning aspects such as policies, mechanisms, or strategies). The base level of
reflective middleware addresses the application program’s functionality, while the
metalevel designates collections of components that form the internal architecture of the
middleware platform. Reflection allows the inspection and modification of these objects,
enabling changes in the middleware’s behavior.

As computer networks become pervasive and portable, and as embedded and handheld
devices become more common, mobile users are creating a demand for a plethora of
ubiquitous services. Because ubiquitous computing is characterized by constant change
and a large degree of dynamism, users must interact with heterogeneous systems using
different devices at different locations over different networks with different
quality-of-service requirements. They must also share the systems with many other users.
In practical terms, it is difficult to devise a fixed set of policies and mechanisms for
communication, security, and resource allocation that accommodates such diversity,
change, and scale. 

Reflective middleware offers flexibility in this dynamic environment. Here, we discuss
two reflective ORBs-dynamicTAO and the Universally Interoperable Core-that provide a
solid base for supporting safe, dynamic configuration of high-performance distributed



systems. We then introduce Gaia, a component-based operating system, built on a
reflective middleware substrate, that exploits dynamicTAO and UIC.

DynamicTAO
DynamicTAO10 is a reflective CORBA ORB, built as an extension of TAO11 to take
advantage of Doug Schmidt and his colleagues’ extensive efforts to modularize and
organize middleware software. TAO is a portable, flexible, extensible, and configurable
ORB that complies with the CORBA standard and uses the Strategy design pattern12 to
encapsulate different aspects of the ORB internal engine. A configuration file specifies the
strategies the ORB uses to implement aspects such as concurrency, request
demultiplexing, scheduling, and connection management. At ORB startup time, the
configuration file is parsed and the selected strategies are loaded. TAO is primarily
targeted for static hard real-time applications such as Avionics systems. Thus, it assumes
that once the ORB is initially configured, its strategies will remain in place until it
completes its execution. There is very little support for on-the-fly reconfiguration.

DynamicTAO extends TAO to support on-the-fly reconfiguration while assuring that the
ORB engine stays consistent (For the complete source code for dynamicTAO, see
http://choices.cs.uiuc.edu/2k/dynamicTAO). This is achieved by reifying dynamicTAO’s
internal structure-that is, keeping an explicit representation of the ORB internal
components and of the dynamic interactions among them. The reification lets the ORB
change specific strategies without having to restart its execution. DynamicTAO is a
reflective ORB because it allows inspection and reconfiguration of its internal engine. It
achieves that by exporting an interface for 

transferring components across the distributed system, 
loading and unloading modules into the ORB runtime, and 
inspecting and modifying the ORB configuration state. 

The infrastructure can also be used to dynamically reconfigure servants running on top of
the ORB and even nonCORBA applications.

Architecture

DynamicTAO achieves reification through a collection of entities, or component
configurators.13 A component configurator holds the dependencies between a certain
component and other system components. Each process running the dynamicTAO ORB
contains a component configurator instance called DomainConfigurator. It is responsible
for maintaining references to ORB instances and to servants running in that process. In
addition, each ORB instance contains a customized component configurator called the
TAOConfigurator.

The TAO Configurator contains hooks to which implementations of dynamicTAO
strategies are attached. Hooks work as mounting points where specific strategy
implementations are made available to the ORB. Figure 1 illustrates the reification



mechanism in a process containing a single ORB instance. If necessary, individual
strategies can use component configurators to store their dependencies on ORB instances
and other strategies. These configurators may also store references to client requests that
depend on the strategies. With this information, it is possible to manage strategy
reconfiguration consistently. 

Figure 1. Reifying the dynamicTAO
structure.

Component implementations are shipped as dynamically loadable libraries so that they can
be linked with the ORB process at runtime. They are organized in categories representing
different aspects of the ORB internal engine or different types of servant components. 

Figure 2 depicts the dynamicTAO architectural framework. The Persistent Repository
stores category implementations in the local file system. It offers methods for
manipulating (for example, browsing, creating, or deleting) categories and the
implementations of each category. A Network Broker receives reconfiguration requests
from the network and forwards them to the Dynamic Service Configurator. The latter
contains the DomainConfigurator (shown in Figure 1) and supplies common operations for
dynamic configuration of components at runtime. It delegates some of its functions to
specific component configurators (for example, a TAOConfigurator or a certain
ServantConfigurator).



Figure 2. DynamicTAO
components.

ORB consistency

Our goal is to have a minimal ORB core running without interruption while ORB
strategies and servants are dynamically updated. Supporting ORB on-the-fly
reconfiguration introduces several important issues that do not exist when dealing with
static startup configuration. Changing an implementation at runtime implies checking
possible dependencies with loaded implementations of the same category, dependencies
with clients that are using old implementations, and conflicts with implementations of the
same category running on other ORBs.

The initial state of a new strategy might depend on the final state of the old strategy that is
going to be replaced. Also, we cannot execute some reconfiguration operations
immediately because their execution would leave the ORB’s state inconsistent. Switching
from one strategy to another and deleting a strategy are two of the more conflicting
operations. We must control several aspects so the ORB remains stable after the operation
completes.

To change from one strategy to another, we must follow at least two steps. First, we
determine whether the new strategy implementation is compatible with the remaining
implementations by checking other strategies running in the same ORB and, in some
cases, the strategies of the same category on other ORBs. When we change an
implementation in a certain ORB, we might be required to change the implementations on
remote ORBs (for example, if these implementations are part of a distributed protocol).
Second, we might need to transfer an implementation’s state to the new implementation



that is going to replace it. 

We must also consider how changes in a strategy implementation affect client requests that
are being processed. It greatly depends on the category of the implementation. In the case
of the marshalling and unmarshalling strategies, for example, changes immediately affect
any subsequent request. In the case of concurrency strategies, however, changing an
implementation might only affect new clients. 7

Bringing reflective middleware to your
hand 
Mark Weiser defines ubiquitous computing as the concept of "everything, everywhere, all
the time computing."14 Users and their surrounding environments are digitally augmented,
therefore allowing new levels of interaction and enhanced productivity. 

From the software infrastructure point of view, one of the keys to enabling this continuous
computing is guaranteeing seamless interoperability among ubiquitous computing devices.
Although this is the task of communication middleware, its current construction assumes a
set of hardware and software requirements suitable for desktop computers, not for
handheld and embedded devices.

Communication middleware implementations such as COM, Java, and CORBA are too big
to fit in devices with limited resources, and they do not provide configuration tools that
would allow adapting them to different architectures. The problem is that applications
typically require only a small subset of the middleware functionality, but they are forced to
be linked with libraries providing the entire functionality. In the case of CORBA, for
example, a client program that simply invokes a method on a remote object requires only
the client side functionality from the ORB and either the dynamic invocation interface or
the static invocation interface. Unfortunately, most ORB implementations include the
entire functionality in a single library or they provide separate libraries for client and
server sides, but without any option to choose a specific subset of this functionality.

Most existing middleware implementations have been designed to assist in the
development of server applications running on workstations and desktops. The execution
patterns and requirements of these applications are normally well known, and therefore
communication middleware platforms export functionality customized for these scenarios
(for example, banking applications and airline reservations).

However, in the case of ubiquitous computing, previous execution patterns no longer
apply. The nature of the ubiquitous computing scenarios differs from previous scenarios.
In addition, because of the heterogeneity associated with ubiquitous computing, it is not
possible to provide a single static middleware implementation that fits all scenarios.
Therefore, the flexibility reflective middleware introduces turns out to be an elegant
approach to cope with the requirements for ubiquitous computing.



Analyzing the requirements for ubiquitous computing

When considering the devices found in ubiquitous computing scenarios (for example,
PDAs, sensors, phones, and appliances), there are at least three common properties that
usually apply: 

limited resources, 
heterogeneity, and 
a high degree of dynamism. 

Limited resource availability varies from device to device. While devices such as handheld
PDAs increasingly offer powerful CPUs and larger amounts of memory, there are other
devices, such as sensors and small appliances, in which it is not possible or cost effective
to add more resources. Heterogeneity is probably one of the predominant properties in
ubiquitous computing. Different hardware platforms, operating systems, and software
platforms imply changes in some parameters such as byte ordering, byte length of standard
types, and communication protocols. Finally, the degree of dynamism present in
ubiquitous computing does not exist in traditional servers and workstations. A PDA, for
example, interacts with many devices and services in different locations, which implies
many changing parameters such as the type of communication network, RPC protocols,
and security policies. Therefore, because we can’t predict all possible combinations, the
software running on the PDA must be able to adapt to different scenarios to cope with
such dynamism.

All previous properties affect the design of the middleware infrastructure required for
ubiquitous computing. Conventional middleware platforms are not appropriate, because
they are too big and inflexible. It is true though that we can customize existing middleware
platforms manually for every particular device. However, this process is far from realistic,
because it is not flexible enough or suitable for coping with dynamic changes in the
execution environment. Only reflective middleware presents a comprehensive solution to
deal with ubiquitous computing. We can maintain the applications (base level) unaltered
and push these changes to the middleware platform (metalevel), which offers tools to
modify the platform’s behavior.

However, existing reflective middleware implementations are not yet appropriate for
mobile handheld and embedded devices.4,5 We have detected three main problems that
make them unsuitable for ubiquitous computing scenarios: size, configuration options, and
dependence on a single middleware platform. 

Existing implementations are too heavy to fit the devices found in ubiquitous computing
scenarios. The problem in most of the cases is that the middleware architecture is built
using a monolithic approach and thus imposes large memory requirements. We describe a
reflective middleware architecture based on component technology that lets you achieve
tiny implementations (for example, a client-side CORBA ORB for PalmOS of 18KB).

Regarding the configuration options, existing implementations normally allow modifying
concurrency policies, marshaling strategies, and other concerns. However, it is not only a



matter of reconfiguring policies associated with some pre-established categories. In some
cases, it is important to modify the internal architecture of the entire middleware engine.
Therefore, the meta-interface the reflective middleware exports should not only let you
choose certain predefined category implementations, but it should also let you add and
remove category types and reorganize the middleware engine’s internal architecture. This
property allows the reconfiguration of the middleware from the point of view of the
required functionality, making it possible to remove functionality when it is no longer
needed and add new functionality when required.

Finally, most existing reflective middleware implementations depend on a single
middleware platform (for example, CORBA, COM, and Java RMI). However, in practical
ubiquitous computing scenarios, applications might use different middleware platforms on
different systems. Therefore, the reflective middleware infrastructure must be able to
reconfigure its internal engine to interoperate with different middleware platforms.

Ubiquitous computing scenario 

To better understand all the properties and requirements we’ve mentioned, consider this
example. A user carrying a handheld device enters a room that contains a device to control
the lights and another device to control the background music. All devices are connected
to a wireless network. The user can use the handheld device to control the lights (turning
them on and off and setting their intensity level) as well as the music’s volume. We will
also assume that we have a reflective middleware platform that implements all the
properties mentioned before (customizable size, flexible configuration options, and
middleware-platform independence). 

The light and music controllers run a single instance of an object to export their
functionality, and they only require server-side functionality. The light controller uses
CORBA, and the music controller uses SOAP.15 At this point, we have enough
information to configure the middleware platform these devices use; however, it is
important to decide how we should configure it-statically or dynamically. 

Because of the scenario’s properties, it is unlikely the controller devices’ requirements will
change. They will always be located in the same environment with a well-defined access
pattern, not many changes will be expected, and the type of network they use will not
change. Therefore, the best solution (from the point of view of simplicity and code size) is
to statically configure the middleware platform and then install it in the device. According
to the previous requirements, the light controller’s optimal configuration would be a
CORBA server side with a minimal single-threaded object adapter, which simply allows
registration of one object at a time and does not implement any other policy. For the light
controller, we statically configure the middleware platform to export SOAP server-side
functionality. 

Unlike the controller devices, the handheld device only requires client-side functionality,
because it will not receive any request from the other two devices. However, the handheld
device needs a configuration that lets it interact both with the CORBA and SOAP objects.
Because this device is highly mobile, and it’s impossible to know a priori what its



requirements will be, it isn’t appropriate to statically configure the middleware
infrastructure. Therefore, the middleware platform running on the device must provide
tools to support dynamic reconfiguration. When the device enters the room, it does not
know about the controllers and thus requires a discovery mechanism to provide
information about these controllers, such as the exported interfaces and the properties of
their middleware platforms. The properties of the controllers’ middleware are used to
reconfigure the handheld device’s middleware, allowing interoperability. After the
reconfiguration, applications running on the handheld device use the description of the
controllers’ interfaces to dynamically create requests. 

In our scenario, we dynamically reconfigure the handheld device’s middleware to include
client-side dynamic method invocation mechanisms for CORBA and SOAP. Providing
middleware reconfiguration tools is a key requirement, but it is not enough. An additional
software infrastructure associated with the room is required to discover existing devices
and services, learn about their properties, and reconfigure them whenever changes are
detected. 

Our scenario shows how a reflective middleware platform customized for ubiquitous
computing offers the tools to effectively 

integrate heterogeneous devices, 
cope with the highly dynamic behavior of such scenarios, and 
adapt its size and architecture to the required functionality. 

Universally Interoperable Core
UIC (www.ubi-core.com) is a reflective middleware infrastructure that is customizable to
ubiquitous computing scenarios and addresses the problems found in existing middleware
platforms. UIC defines a skeleton based on abstract components, which encapsulate the
standard functionality aspects common to most object request brokers (that is, network and
transport protocols, connection establishment, marshaling and demarshaling strategies,
method invocation, method dispatching, scheduling, object reference generation and
parsing, object registration, client interface, server interface, object interface and attributes,
memory management, and concurrency strategies). Concrete dynamically loadable
components specialize these abstract components to implement the properties required for
particular middleware platforms, devices, and networks.

UIC supports handheld devices and permits customization of the skeleton (both statically
and dynamically) for heterogeneous devices and environments. The possible
configurations range from minimal functionality versions with minimal memory and
resource requirements to fully functional versions. This approach differs from existing
solutions that port existing desktop middleware platforms to handheld devices. 

Two key principles drive the design of UIC-simplicity and What You Need Is What You
Get.6 The simplicity principle requires a clear and easy to understand decomposition of the
UIC into modules. The modular design provides separation of concerns and encapsulates
the mechanisms required for each specific task in different components. This modularity



minimizes unwanted dependencies, therefore allowing easy customization.

The second principle, WYNIWYG, requires that only the required functionality is present
in an instance of the UIC. However, because of the UIC design, whenever more
functionality is required, it can be easily introduced either statically (rebuilding the UIC
with the new functionality) or dynamically (adding the new functionality at runtime). The
same rule applies when some functionality is no longer required and, therefore, can be
removed. It is important to note that this customization applies to the implementation of
the components, the exported interfaces, and the structure of the skeleton. While the UIC
defines a standard skeleton structure targeted to object-oriented request brokers (CORBA,
Java RMI, and DCOM), nothing prevents the application developer from changing the
structure to meet other requirements (for example, non object-oriented RPC platforms and
RTP streaming). 

Personalities

The UIC is an abstract entity that must be specialized to meet the particular application’s
requirements. This specialization defines the core’s behavior and determines the type of
entities with which it will be able to interact (for example, CORBA servers or Java RMI
servers). We use the term personality to refer to the particular instance of the UIC
obtained after the specialization.

Personalities can be classified as client-side, server-side, or both, depending on the
functionality they provide. A client-side personality provides functionality to send requests
and receive replies, while a server side-personality is capable of receiving requests and
sending replies. This classification can be mapped directly to devices that simply need to
access remote functionality, devices that need to export functionality, and devices that
require both. 

The UIC can be classified as single-personality and multipersonality. A single-personality
UIC is capable of interacting with a single middleware platform, while a multi-personality
UIC can interact with more than one platform at the same time. Note, however, that a
multi-personality UIC is not equivalent to having a collection of single-personality UICs.
Having several single-personality UICs implies that applications have to decide which
UIC personality to use depending on the object they want to interact with. On the other
hand, with multi-personality UICs, applications always use the same UIC instance and the
same method invocation interface regardless of the type of the remote object. In this last
case, the UIC is responsible for automatically choosing the right personality.   

Configurations

We can configure UIC personalities either statically or dynamically. In static
configurations, we build personalities at compile time by statically assembling all the
components together. The result is a single component (the personality) that we cannot
dynamically reconfigure (the only possibility is to replace the personality). The main
benefit of this configuration is the personality’s size. 



In dynamic configurations, personalities are a collection of dynamically loadable libraries
that we can fully reconfigure at runtime. The dynamic configuration’s main benefit is the
ability to modify the architecture of the personalities dynamically without affecting the
applications. The dynamic personality’s main drawback is that the core’s size increases
because tools for loading and unloading components are required, and each core’s
component becomes an independent dynamically loadable library. 

There is also a hybrid configuration that combines some of the benefits of static and
dynamic configurations: Components that are not likely to change are linked together,
while components that will be updated or modified are built as independent loadable
libraries. Depending on the number of components that can link together, the final
personality’s size can be significantly reduced from a purely dynamic configuration.

Benefits 

The UIC is targeted to allow the handheld devices’ integration with limited resource
availability in standard distributed object models. The result is a homogeneous
infrastructure for the applications’ and services’ development that hides device
heterogeneity. Most of the existing solutions that integrate handheld devices in distributed
environments are based on proxies, which transform native method invocation to a
proprietary format that can be used by handheld devices. However, in the case of the UIC,
no proxies are required since it allows interoperation with native middleware platforms.
Therefore, service developers do not need to provide a proxy for each type of device.

Another key benefit of the UIC is its design. The component-based infrastructure
facilitates the development of customized personalities by simply re-implementing a set of
components. For example, an application programmer that requires a specialized
marshaling strategy or a particular connection caching strategy simply has to re-implement
those components and reuse the rest without modifications. The standard interfaces
defined by the UIC components guarantee that the new component will seamlessly
interoperate with the existing ones. 

As an example, consider the UIC component responsible for generating the header of
request invocations and parsing the header of reply invocations. This functionality is
required for every middleware implementation, and therefore a generic abstract interface is
provided. This interface defines two methods, the sendRequest(Request *req)  method
which receives as a parameter an abstract request object, and receiveReply(Reply *rep),
which generates an object that contains information related to the reply. Specializations of
this generic component have to implement this generic interface, encapsulating the
specific properties of the middleware protocol.

Components in the UIC do not share state. They encapsulate whatever state they require as
an object, which is passed as a parameter. This technique removes dependencies and
simplifies the reconfiguration task. Components simply keep a reference to other
components, whose functionality is defined by the abstract interfaces provided by the UIC
skeleton. In this way, a component of the UIC processes certain information and generates
some results that are automatically sent to another component. When the results are passed
to another component, the component passing them does not have to keep any state about



the generated results. 

Because of the design and the WYNIWYG principle, we can produce minimal
personalities, compatible with standard middleware platforms. The personalities’ size can
range from 18KB for a client-side CORBA personality running on a Palm OS device to
48.5KB for a client-server CORBA personality running on a Windows CE device. Another
benefit is that it is possible to predict the personality’s size and trigger adaptations or
configure internal personality parameters according to these size parameters.

The 18KB CORBA ORB specializes the UIC skeleton with components for establishing
TCP connections, creating request headers, encoding and decoding basic types based on
CDR, converting string references into objects references, and parsing reply headers. It
does not include encoding rules for arbitrary complex types (for example, structs,
sequences, or unions). These rules are provided by applications according to their
requirements. As an example, an application that requires access to the CORBA naming
service, uses a helper class that contains the definition of structs and sequences required to
provide and receive information to and from the naming service. This tiny ORB relies on
the IDL compiler to generate the required parameters, which use the marshaling
mechanisms exported by the ORB to marshal and demarshal themselves. Although this
mechanism can be seen as a limitation, according to our experience, applications know the
type of parameters they will handle; therefore, it is reasonable to consider that these
applications will provide the definition of the parameters they manipulate. This strategy
provides an important space saving, and contrasts with standard ORBs, which by default
include mechanisms to marshal and demarshal any arbitrary complex type as part of the
ORB. Note, however, that if an application requires the ORB to include those encoding
rules, we can do it by attaching a component that exports such functionality to the UIC.

Upgrading personalities, either statically or dynamically, allows handheld devices to adapt
to different computing scenarios. As a result, we can access more services and
information. Finally, by pushing all reconfiguration mechanisms to the ORB, we can
implement "universal" clients and servers that can be used with different middleware
implementations without having to change the application implementation. Marshaling,
demarshaling, parsing headers, generating headers, scheduling, and dispatching requests
are tasks present in every middleware implementation. What makes each middleware
platform different is how those tasks are implemented. Reflective middleware deals with
these particular details and offers tools to inspect and manipulate them either statically or
dynamically. 

UIC Multipersonality Core

The UIC Multipersonality Core is a specialization of the UIC that provides tools for
reflection. These tools let us introspect the internal architecture of the Multipersonality
Core and also introduce changes in the Core. As in the case of dynamicTAO, reflection is
applied to the dependencies among the components that compose the Multipersonality
Core (Component Configurator pattern).13 Therefore, changes on those dependencies are
translated into changes on the Multipersonality Core’s behavior. For example, attaching
SOAP specialized components to a multipersonality core leads to a behavior change of the



ORB, allowing it to interact with SOAP objects. Due to the diversity of functional aspects,
it is important to make sure that the type of a component matches the type of the hook
where it is attached. We can achieve this by using runtime type information.

Figure 3 illustrates the Multipersonality Core’s architecture, which is divided into two
parts: the Core Configuration and the Dynamic Configurator (tools for dynamic
reconfiguration). The Core Configuration is the collection of UIC components that defines
the Multipersonality Core’s behavior. The Dynamic Configurator implements the
reflective mechanisms and stores the information about dependencies among components.
As Figure 3 shows, the Dynamic Configurator is implemented as a servant object that runs
on top of the current Multipersonality Core configuration. This approach introduces two
main benefits: 

1. it allows dynamic modification of the reflective mechanisms using different instances of the Dynamic
Configurator; and 

2. it registers the same Dynamic Configurator servant with more than one personality at the same time,
therefore allowing different types of clients (for example, CORBA and SOAP) to reconfigure the
Core. 

Figure 3. The UIC Multipersonality
Core.

Performance and size

Here we present the size of different personalities as well as the performance of one of
those personalities (the client and server CORBA personality). Existing personalities are
fully interoperable with existing middleware implementations. The CORBA personalities,
for example, allow sending requests to CORBA compliant objects, and CORBA compliant
objects can also send requests to objects implemented on top of a server-side UIC CORBA
personality. Therefore, we can register UIC CORBA objects with existing CORBA
naming services, traders, and event services. 

Table 1 contains the sizes of some UIC personalities built for different platforms. The UIC
Hybrid Multipersonality allows manipulating personalities (for example, ClientCORBA,
ServerCORBA, and ClientJavaRMI) as standalone components. Therefore, we can add
and remove personalities dynamically, though it is not possible to reconfigure individual
personalities. With this HybridMultipersonality we can register a servant object
implementation with different personalities simultaneously. The size of this personality
includes the associated DynamicConfigurator. We can implement the



CORBADynamicServer and the SimpleTCPDynamicServer (customized TCP based
protocol implementation) personalities as components that can be installed with the
HybridMultipersonality. Finally, the CORBAStaticClient, the CORBAStaticServer, and
the CORBA Static Full (client and server) are standalone implementations that we can use
without the HybridMultipersonality. All CORBA personalities described in this article
export a customized dynamic method invocation mechanism, implement a subset of data
types (all simple types, structs, and some sequences) and detect exception conditions
raised at the server, but do not parse the exception. 

UIC Personality WindowsCE (SH3)
(Kbytes)

Windows 2000
(Kbytes)

PalmOS

HybridMultipersonality 39 88 N/A

CORBA Dynamic Server 28 80 N/A

SimpleTCP Dynamic Server 30 84 N/A

CORBA Static Client 29 72 18KB

CORBA Static Server 35 84 N/A

CORBA Static Full (client + server) 48.5 100 31KB

Table 1. Sizes for some UIC configurations.

Figure 4 presents performance numbers that prove two important issues. First, the
flexibility provided by reflective middleware is not necessarily translated into slower
execution times. Second, reflective middleware makes it possible to obtain highly efficient
customized ORB implementations that meet the exact requirements of applications. 

Figure 4. Requests per second using the
UIC Client-Server Static CORBA
Personality with a customized and
dynamic invocation interface. Left to
right column order corresponds to top to
bottom key order.



Figure 4 contains performance numbers in terms of number of requests per second. The
test involves a CORBA client and a CORBA server object using the UIC CORBA Static
Full Personality. The server implements a method called cubeIt, which receives a long
integer and returns its cube. The client repeatedly invokes the operation using our
customized dynamic invocation interface implemented by the CORBA personality. The
client produces statistics based on the average total round-trip time for a remote method
invocation. The test consists of 300 requests repeated 10 times. The final result is the
average of the result of those 10 tests (their value is in turn the average of the 300
invocations). The socket connection is opened in the first request and reused afterwards.

In order to provide an upper bound for the maximum rate of CORBA requests we could
achieve, we built a simple program that does not use CORBA and has a client that sends a
52-byte packet (same size as the packet sent in the CORBA test) to the server through a
TCP/IP socket, the server reads the packet (does not process it) and replies with another
28-byte packet (same size as the packet sent in the CORBA test) which is then read by the
client. This simple program has no additional computational overhead. Neither the client
nor the server processes the packets; this gives the maximum rate of requests that can be
sent using the header sizes used by the CORBA personality. The CORBA personality
incurs a number of overheads besides the network time. It must create the request header,
marshal the client parameters, parse the header at the server side, demarshal the
parameters, find the object, call the method, marshal the result parameters, create the reply
header, parse the reply header, and demarshal the result parameters.

Figure 4 presents three scenarios, and each one divided into two subtests: the upper bound
CORBA test case. first scenario is a UIC server object running under Windows 2000 on
Pentium II 300MHz with 128MB of RAM, client CE 2.11 Jornada 680 Handheld PC SH3
32 bit processor at 133MHz, 16 MB RAM. In second scenario, same devices are used, but
the UIC CORBA client object runs on the Windows 2000 device and the server on the
Jornada 680. 

The third scenario consists of two Jornada 680 Handhelds, one of them hosting the UIC
CORBA client and the other one hosting the UIC CORBA server. The network in all the
scenarios is a RangeLAN2 wireless network with a maximum theoretical bandwidth of
1.6Mbps. Many users not involved in this experiment share the wireless network so the
results presented here are a lower bound to what the UIC performance can be. Also, the
personalities used for these tests could be further optimized. The UIC CORBA
implementation does not introduce any major overhead, and the times are clearly bounded
to the netowrk delay times. This scenario is not unrealistic since most ubiquitous
computing scenarios present several devices sharing the same network, and, therefore,
network delays will exist. 

For comparison, we ran the same test on desktop computers running Windows 2000 on an
Intel Pentium III processor 733MHz with 256MB of RAM. In this test, we ran the client in
one of the desktops and the server in the other. In this scenario the network is a 100Mb
Ethernet, which is also shared by users not involved in the experiment. The results we
obtained are depicted in Figure 5 and show an additional overhead of 4.4 percent in the
CORBA test due to RPC related functionality (non-existing functionality in the upper



bound test).

Figure 5. Requests per second using the
UIC Client-Server Static CORBA
Personality with a customized and
dynamic invocation interface. Left to
right column order corresponds to top to
bottom key order.

Active spaces
We have discussed reflective middleware implementations that allow seamless
interoperation among heterogeneous devices and make it possible to dynamically adapt to
changing requirements. However, we have not yet addressed some important questions.
Who triggers the adaptations? How can a middleware implementation discover relevant
entities and learn about their properties? Where are specific component implementations
stored and how can they be obtained? Who decides which is the optimal ORB
configuration?

Our current research focuses on the key issues that will enable arbitrary ubiquitous
computing scenarios and provide answers to these questions. We consider that handheld
and embedded devices require an external software infrastructure, running on the physical
space where those devices are located. Such software infrastructure introduces a new
computational model that we call active spaces. We define an active space as an
interactive and programmable system composed of physical devices and digital services
associated with a physical space, uniformly coordinated by a software infrastructure and
populated by a dynamic group of mobile users. The inherent complexity associated with
active spaces requires a software infrastructure capable of orchestrating all the elements
present in such environment, by allowing them to operate independently but in a
cooperative fashion.

This coordination is analogous to the functionality exported by a traditional operating
system that is responsible for managing a collection of hardware resources within a single
computer.16 Thus, what we need is an operating system for active spaces, and our group at
the University of Illinois is developing just that.



Gaia is a component-based operating system built on a reflective middleware substrate.
We can divide it into four main blocks: 

Unified Object Bus; 
Gaia Services; 
Gaia Application Model; and 
Gaia Active Space. 

The Unified Object Bus is a dynamic, platform-independent component execution
environment. It provides tools to locate, distribute, load, and unload components
dynamically and it is responsible for seamlessly integrating different middleware
infrastructures. All services and applications are built on top of this Unified Object Bus. 

Gaia is not only a toolkit to assist in the development of ubiquitous computing
applications, but is also an active system capable of orchestrating users, services, and
devices in active spaces. We achieve this through a collection of services responsible for
managing different aspects of the active space functionality-discovery, security, location,
user accounts, data and code distribution and adaptation, and state. 

Using distributed objects, Gaia abstracts physical spaces and their heterogeneous
computing infrastructure as homogenous first class entities that can be addressed and
manipulated. Thus, it is possible to develop applications that run in the context of an active
space rather than in the context of a particular device. To support this concept, Gaia
defines an application model inspired on the Model-View-Controller design pattern. 17

As an example, consider an active hospital. Each active surgery room runs an instance of
an application that uses the patient as the model of the application (the patient’s vital
signs), a monitor and the surgeon’s headphone as views of the application, and the surgeon
hands as the controller of the application (for example, special movements of his hands to
indicate certain commands). The Gaia application model automatically instantiates two
adapters: one between the model and the monitor, and another one between the model and
the headphone (both of them configured as views). As a result, the monitor displays
different charts representing the patient’s vital signs, and the headphone "tells" the doctor
the values of those vital signs.

Finally, Gaia provides a programmatic interface to manipulate the active space. The idea is to abstract the

active space as an object with well-defined attributes and operations. This abstraction allows manipulating a
space as a homogeneous execution environment instead of a collection of heterogeneous entities. The
underlying reflective middleware infrastructure provides a solid base for dynamically managing the policies
and mechanisms used in the active space. More information on the current status of Gaia can be found at
http://choices.cs.uiuc.edu/gaia. See the Related Work sidebar for additional research on reflective
middleware.
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The Distributed Multimedia Research Group at the Lancaster University has proposed
a reflective architecture for next generation middleware.4,5 They developed a prototype
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dynamicTAO and UIC because, in their Python system, it is possible to add or remove
methods from objects and classes dynamically and even change the class of an object



at runtime. Their research has emphasized dynamic configurability through a
well-defined open binding model, which allows multiple reflective levels. In contrast,
our research concentrates on a simpler reflective model, focusing on high performance
and customization to devices with limited resources. In our model, the reflective
mechanisms are not included in the normal flow of control; they are only invoked
when needed.

COMERA (COM Extensible Remote Architecture) provides a framework based on
Microsoft COM that allows users to modify several aspects of the communication
middleware at run-time.6 It relies on the Custom Marshaler interface exported by
COM, as well as the componentized architecture design that allows the use of
user-specified components. By using COMERA, system developers can customize the
middleware according to application requirements.

Reflective middleware is coming to the fore as an active research field. Dozens of
researchers around the globe are focusing in this area, which is the subject of the
Workshop on Reflective Middleware7 that is held in conjunction with the IFIP/ACM
Middleware conference. The workshop brings different points of view on issues like
mathematical models, formal verification, architectures, systems, applications, and
performance of reflective middleware.
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