
January–March 2000 1092-3063/00/$10.00 © 2000 IEEE 1

Dependence Management
in Component-Based
Distributed Systems

Recent component-architecture de-
velopments—such as Enterprise Java-
Beans, ActiveX Controls, and the
CORBA Component Model—support
the construction of sophisticated systems
by assembling a collection of off-the-
shelf software components with the help
of visual tools or programmatic inter-
faces. However, very little support exists
for managing the dependencies between
components. Different programmers
create components, often working in dif-
ferent groups with different methodolo-
gies. It is hard to create robust and effi-
cient systems if they do not understand
the dynamic dependencies between com-
ponents. Thus, it is very common to find
cases, in both legacy and component-
based systems, in which a module fails to
accomplish its goal because the system
does not properly resolve an unspecified
dependency. Sometimes, other modules
do not properly detect the graceful fail-
ure of one module, which leads to a total
system failure.

Dependence problems
To further illustrate the importance of

understanding and managing component
dependencies, consider a similar problem
in a different context. Because administra-
tors must continuously update and modify
current systems, dependency conflicts may
arise. For example, UNIX and Windows
NT system administrators must monitor
security announcements daily and be pre-
pared to update their operating system ker-
nels with the appropriate security patches.
In addition, users demand new versions of
applications such as Web browsers, text
editors, software development tools, and so
forth. Often, building and installing a new
software package requires updates to a
series of other tools as well.

Like system administrators, workstation
and personal computer users are also bur-
dened with system or account mainte-
nance. In environments such as Microsoft
Windows, wizard interfaces partially auto-
mate some application installations by
directing users through the installation

The authors present

a generic model for

reifying dependencies

in distributed

component systems.

They discuss how a

representation model

makes it possible to

develop efficient,

reliable, and

dynamically

configurable

component-based

systems.

Object-Oriented Technology

R
esearch on object-oriented technology and its intensive use in

the industry has led to the development of component-ori-

ented programming. Rather than being an alternative to

object orientation, component technology extends the initial

object concepts. It stresses the desire for independent pieces of soft-

ware that can be reused and combined in different ways to implement

complex software systems.

Fabio Kon and Roy H. Campbell
University of Illinois at Urbana-Champaign

2 IEEE Concurrency

process. However, it is common for users
to encounter situations in which the
installation cannot complete or it com-
pletes but the software package does not
run properly because some unspecified
requirements are not met. Or, after a
new installation or update, other appli-
cations stop working. Even after users
execute special uninstall procedures to
remove the problem application, junk
libraries and files might remain in the
system because Windows applications
typically cannot uninstall cleanly.

The problem behind these difficulties
is the lack of a representation model for
the dependencies between system and
application components and mecha-
nisms for managing these dependencies.

We argue that operating system and
middleware environments must explic-
itly represent the dependencies between
software components. Then, we can
manipulate this representation to imple-
ment software components that can con-
figure themselves and adapt to ever-
changing dynamic environments.

Reification of the interactions be-
tween system and application compo-
nents lets system software recognize
the need for reconfiguration to better
support fault tolerance, security, qual-
ity of service (QoS), and optimization.
In addition, reification lets system
software reconfigure without com-
promising system stability and relia-
bility and with minimal impact on sys-
tem performance.

Our research builds on previous and
ongoing work in software architecture,
dynamic configuration of distributed
systems, and QoS specification. (See the
sidebar “Related work” for more infor-
mation.) Rather than simply look at the
architectural connections between a sin-
gle application’s components, we look at
all the different kinds of dependencies
that tie each component to other appli-
cation, middleware, and system compo-
nents. Our long-term goal is to develop
an integrated model for automatic con-
figuration that we can apply to modern
component architectures.

Intercomponent
dependence

To address the problems of compo-
nent dependencies, a configuration sys-
tem must explore two distinct kinds of
dependencies:

1. Requirements for loading an inert
component into the runtime system
(called prerequisites).

2. Dynamic dependencies between loaded
components in a running system.

As long as the system knows the
requirements for installing and running
each software component, it can auto-
mate the installation and configuration
of new components. It can improve com-
ponent performance by analyzing the
dynamic state of system resources, ana-
lyzing the characteristics of each com-
ponent, and configuring each compo-
nent in the most efficient way. Also, if a
system knows the dynamic dependencies
between running components, it can

Related work

Researchers at INRIA in France introduced the idea of
using prerequisites to represent the dependencies
between operating system objects in the SOS operating
system.1 In the SOS model, objects contain a list of pre-
requisites that must be satisfied before activation. Even
though the idea was promising, it was not fully explored.
The researchers used prerequisites only to express that an
object depends on the code implementing it. SOS does not
include a model for dynamic management of intercom-
ponent dependence.

Previous research in microkernels and customizable oper-
ating systems—such as SPIN, Exokernel, and µChoices2—
developed low-level techniques for dynamically loading new
modules to the operating system, both in kernel and user
space. Nevertheless, a high-level model for operating system
reconfiguration is still nonexistent. These previous works
have not addressed a number of problems related to fault-
tolerance and dynamic reconfiguration. Using the Compo-
nentConfigurator framework, our research addresses the
following questions.

• What are the consequences of reconfiguring the operat-
ing system?

• When a system module is replaced, which other modules
are affected?

• How must other modules react?
• When (re)configuring the system, which components

must be loaded to meet the service demand and the
required quality of service?

• If a system component fails, how can the system detect it
and recover gracefully?

We are currently investigating formats for prerequisite
specification. They must be able to represent hardware and
quality of service requirements as well as dependencies on
other software components. Thus, we believe that an ideal
language for prerequisite specification will build on previ-
ous work that was done both on architecture description lan-
guages3,4 and QoS specifications.5

Systems based on architectural connectors, such as Uni-
Con3 and ArchStudio,6 and systems based on software buses,
such as Polylith,7 separate issues concerning component func-
tional behavior from component interaction. Our model goes
one step further by separating intercomponent communi-
cation from intercomponent dependence. Connectors and
software buses require that applications be programmed to
a particular communication paradigm. Our framework is
independent of the paradigm for intercomponent commu-
nication; it can be used in conjunction with connectors, buses,
local method invocations, CORBA, Java RMI, and so forth.

Communication and dependence are often intimately
related. But, in many cases, the distinction between inter-
component dependence and intercomponent communica-
tion is beneficial. For example, the QoS provided by a multi-
media application is greatly influenced by the mechanisms
used by underlying services such as virtual memory, sched-
uling, and memory allocation. The interaction between the
application and these services is often implicit, in other words,
no direct communication (such as library or system calls) takes
place. Yet, if the system infrastructure lets developers estab-
lish and manipulate dependence relationships between the
application and these services, the application can be
informed of substantial changes in the state and configura-
tion of the services that might affect its performance.

January–March 2000 3

better handle exceptional behavior that
could potentially trouble component
operation and support dynamic recon-
figuration of large systems by replacing
individual components on-the-fly.

Prerequisites and runtime dependen-
cies are two distinct forms of the same
entity. Prerequisites usually are ex-
pressed as dependencies on persistent
hardware and software components, and
runtime dependencies refer to dynamic,
possibly volatile, components. In partic-
ular, if we freeze a component’s state
(including its runtime dependencies), we
can later resume the component’s exe-
cution by using the frozen runtime
dependencies as the prerequisites for
reloading the component. However, to
make the model as clear as possible, we
are going to treat prerequisites and run-
time dependencies as separate entities.
Prerequisites usually refer to hardware
resources, QoS requirements, and soft-
ware services. Runtime dependencies

refer to loaded software components.
Thus, we believe that the separation of
concepts is justifiable. In the future, after
we solve the basic problems, we might
consider unifying these concepts to build
a simpler and more generic model.

PREREQUISITES
An inert component’s prerequisites

must specify any special requirement
needed to load, configure, and execute
it. A prerequisite list can contain three
different kinds of information:

• The nature of the hardware resources
the component needs.

• The capacity of the hardware re-
sources it needs.

• The software services (such as com-
ponents) it requires.

A distributed resource management
service might use the first two items to
determine where, how, and when to exe-

cute the component. QoS-aware systems
can use this data to enable proper admis-
sion control, resource negotiation, and
resource reservation. The last item
determines which auxiliary components
must load and in which kind of software
environment they will execute.

Recent QoS specification languages
can express the first two items. The third
item is equivalent to the require clause in
architecture description languages, such
as Darwin, and module interconnection
languages, like the one used in Polylith
(see the “Related work” sidebar).

We recently completed a prototype
implementation of prerequisite-based
automatic configuration1 in the 2K dis-
tributed operating system. (Visit choices.
cs.uiuc.edu/2K for more information.).
We based the prototype on a skeleton that
different kinds of prerequisite parsers and
prerequisite resolvers can plug into, which
allows for different specification languages
and different prerequisite resolution poli-

Different from previous work in this area, our model
does not dictate a particular communication paradigm like
connectors or buses. As we show in our discussion of
dynamicTAO, we applied the model to a legacy system
without requiring any modification to its functional imple-
mentation or to its intercomponent communication mech-
anisms.

Researchers at the Imperial College in London used the
Darwin architectural description language in environments
such as Regis8 and CORBA9 to specify the overall structure of
component-based applications. A Darwin specification
defines all the components of an application and the com-
munication interactions between them. At application start
time, the middleware loads all the application components
and establishes the links between them. They do not repre-
sent dependencies of application components toward sys-
tem components, other applications, or services available in
the distributed environment. Our approach differs from
theirs in the sense that, for each individual component, we
specify its dependencies on all different kinds of environ-
ment components, and we maintain and use these dynamic
dependencies at runtime.

Research in software architecture and dynamic configu-
ration generally assumes that the operating system is an
omnipresent, monolithic black box that can be left out of
the discussion; it concentrates on the architecture of indi-
vidual applications. We believe that, rather than conflicting
with their approach, our vision complements it by reasoning
about all the dependencies that might affect reliability, per-
formance, and QoS.

The final solution to the problem of supporting reliable
automatic configuration might reside on the combination
of our model with recent work in ADLs and dynamic recon-
figuration.4,10

References
1. M. Shapiro et al., “SOS: An Object-Oriented Operating System—

Assessment and Perspectives,” Computing Systems, Vol. 2, No.
4, Dec. 1989, pp. 287–338.

2. W.S. Liao, S. Tan, and R.H. Campbell, “Fine-grained, Dynamic
User Customization of Operating Systems,” Proc. Fifth Int’l
Workshop Object-Orientation in Operating Systems, IEEE Com-
puter Soc. Press, Los Alamitos, Calif., 1996, pp. 62–66.

3. M. Shaw, R. DeLine, and G. Zelesnik. “Abstractions and Imple-
mentations for Architectural Connections,” Proc. Third Int’l
Conf. Configurable Distributed Systems (CDS’96), IEEE Computer
Soc. Press, Los Alamitos, Calif., 1996.

4. R. Balter et al., “Architecturing and Configuring Distributed
Applications with Olan,” Proc. IFIP Int’l Conf. Distributed Sys-
tems, Platforms, and Open Distributed Processing (Middleware
‘98), Springer-Verlag, 1998, pp. 241–256.

5. S. Frolund and J. Koistinen, “Quality of Service Aware Distributed
Object Systems,” Proc. Fifth USENIX Conf. Object-Oriented Tech-
nology and Systems (COOTS’99), USENIX Assoc., 1999, pp. 69–83.

6. P. Oreizy and R.N. Taylor, “On the Role of Software Architec-
tures in Runtime System Reconfiguration,” Proc. Fourth Int’l
Conf. Configurable Distributed Systems (CDS’98), IEEE Computer
Soc. Press, Los Alamitos, Calif., 1998.

7. J. Purtilo, “The Polylith Software Bus,” ACM Trans. Program-
ming Languages and Systems, Vol. 16, No. 1, Jan. 1994, pp.
151–174.

8. J. Magee, N. Dulay, and J. Kramer, “Regis: A Constructive Devel-
opment Environment for Distributed Programs,” IEE/IOP/BCS
Distributed Systems Eng. J., Vol. 1, No. 1, 1994, pp. 37–47.

9. J. Magee, A. Tseng, and J. Kramer, “Composing Distributed
Objects in CORBA,” Proc. Third Int’l Symp. Autonomous Decen-
tralized Systems (ISADS’97), IEEE Computer Soc. Press, Los Alami-
tos, Calif., 1997.

10. S.K. Shrivastava and S.M. Wheater, “Architectural Support for
Dynamic Reconfiguration of Large Scale Distributed Applica-
tion,” Proc. Fourth Int’l Conf. Configurable Distributed Systems
(CDS’98), IEEE Computer Soc. Press, Los Alamitos, Calif., 1998.

4 IEEE Concurrency

cies. The prototype uses a simple prereq-
uisite description format (SPDF) that sup-
ports the three kinds of prerequisites men-
tioned earlier. The prerequisite resolver
fetches component implementations from
remote CORBA implementation reposi-
tories and caches them locally. We are
currently extending the prototype to spec-
ify dependencies in terms of the standard
CORBA trading format and to locate a
close-to-optimal machine for executing
each component. Figure 1 shows a typical
SPDF description.

Proper prerequisite specification
and handling is a field that deserves
close attention from the software com-
munity because it is fundamental for
achieving a good level of reliability and
quality of service in component-based
systems. However, we focus on
describing the infrastructure’s design
and implementation to represent run-
time dependencies.

DYNAMIC DEPENDENCIES
In our model, a component configurator

manages each component. The compo-
nent configurator is responsible for stor-
ing the runtime dependencies between a
specific component and other system
and application components. Depend-
ing on the implementation, a component
configurator might be able to refer to
components running on a single address
space, on different address spaces and
processes, or even on different machines
in a distributed system. Figure 2 depicts
the dependencies that a component con-
figurator reifies.

Each component C has a set of hooks to
which other components can attach.
These hooked components are the compo-
nents on which C depends. There might
be other components, called clients, that
depend on C. In general, each time that a
component C1 depends on a component
C2, the system should perform two actions:

1. Attach C2 to one of the hooks in C1.

2. Add C1 to the list of clients of C2.

Consider a Web browser that speci-
fies, in its prerequisite list, that it requires
a TCP/IP service, a window manager, a
local file service, and a Java Virtual
Machine implementation. Its compo-
nent configurator should maintain a
hook for each of these services. When
the browser loads, the system must ver-
ify whether these services are available
in the local environment. If they are not
available, the system must create new
instances of them. In any case, the sys-
tem stores references to the services in
the browser configurator hooks and can
later retrieve and update them.

The ComponentConfigurator
class

We accomplish the reification of run-
time dependencies by assigning one
ComponentConfigurator object to
each component. Figure 3 contains a
simplified declaration of the Compo-
nentConfigurator abstract class in
pseudo C++. Figure 4 shows a schematic
representation of some of its method
calls.

The class constructor receives a
pointer to the component implementa-
tion as a parameter. Users can later
obtain this pointer through the imple-
mentation()method.

Thehook()method specifies that this
component depends on another compo-
nent and unhook() breaks this depen-
dence. The registerClient() and
unregisterClient()methods are sim-
ilar to hook() and unhook(), but they
specify that other components (called
clients) depend on this component.

The eventOnHookedComponent()
method announces that a component
that is attached to this component
has generated an event. Subclasses of
ComponentConfigurator() imple-
ment different behaviors to treat events
in different ways. Examples of common
events are the destruction of a hooked
component, the internal reconfiguration
of a hooked component, and the replace-
ment of the implementation of a hooked
component.

:hardware requirements

machine_type SPARC

native_os Solaris

min_ram 5MB

optimal_ram 40MB

cpu_speed >300MHz

cpu_share 10%

:software requirements

FileSystem /sys/storage/DFS1.0 (optional)

TCPNetworking /sys/networking/BSD-sockets

WindowManager /sys/WinManagers/simpleWin

JVM /interp/Java/jvm1.2 (optional)

Figure 1. A simple prerequisite description.

H
o
o
k
s

C
l
i
e
n
t
s

Depends on

Hooked
components Clients

C
o
m
p
o
n
e
n
t

Depends on

Figure 2. Reification of component dependence.

January–March 2000 5

The eventOnClient() method is
similar to the previous method but it
announces that a client has generated an
event. This method can be used, for
example, to trigger reconfigurations in a
component to adapt to new conditions
in its clients. Our reference implemen-
tation defines a basic set of events includ-
ing DELETED, FAILED, RECONFIGURED,
REPLACED, andMIGRATED. Applications
can extend this set by defining their own
events.

The name()method returns a pointer
to a string containing the name of the
component and info() returns a
pointer to a string containing a descrip-
tion of the component. Specific info()
implementations can return different
kinds of information such as a list of con-
figuration options accepted by the com-
ponent, or a URL for its documentation
and source code.

The listHooks() method returns
a pointer to a list of Dependency-
Specifications. A Dependency-
Specification is a structure defined
as

struct DependencySpecification {

const char *hookName;

ComponentConfigurator *

component;

};

The listClients() method re-
turns a pointer to a list of Dependency-
Specifications corresponding to the
components that depend on this com-
ponent (its clients) and the name of the
hooks (in the client’s ComponentCon-
figurator) to which this component
is attached.

Finally, getHookedComponent()
returns a pointer to the configurator of
the component that is attached to a given
hook.

Toward automatic reconfiguration
Reified intercomponent dependencies

can help automate configuration pro-
cesses. The operating system or middle-
ware can scan the prerequisite list to
ensure that all hardware and software
requirements for the execution of a par-
ticular component are met before the

component initiates. This can prevent
many problems that are common in
existing systems where detection of the
lack of a particular component or re-
source happens only after the application
is running.

In its turn, the dynamic dependence

information enables the reconfiguration
of components that are already running.
Although our infrastructure does not
guarantee safe reconfiguration by itself,
it provides a valuable framework for pro-
grammers to implement safe reconfigu-
ration more easily and uniformly.

class ComponentConfigurator {

public:

ComponentConfigurator(Object *implementation);

~ComponentConfigurator ();

int hook (const char *hookName,

ComponentConfigurator *component);

int unhook (const char *hookName);

int registerClient (ComponentConfigurator *client,

const char *hookNameInClient = NULL);

int unregisterClient

(ComponentConfigurator *client);

int eventOnHookedComponent

(ComponentConfigurator *hookedComponent, Event e);

int eventOnClient

(ComponentConfigurator *client, Event e);

char *name ();

char *info ();

DependencyList *listHooks ();

DependencyList *listClients ();

ComponentConfigurator *

getHookedComponent (const char *hookName);

Object *implementation ();

}

Figure 3. The ComponentConfigurator abstract class.

H
o
o
k
s

C
l
i
e
n
t
s

Depends on

Hooked
components Clients

C
o
m
p
o
n
e
n
t

Depends on

eventOnClient()

(un)registerClient()

eventOnHookedComponent()

(un)hook()

Figure 4. Methods for specifying dependencies and sending events.

6 IEEE Concurrency

Continuing with our Web browser
example, the application developer
could implement a WebBrowserCon-
figurator by using inheritance from
the ComponentConfigurator and
customizing it to handle the dynamic
replacement of the system’s JVM. Fig-
ure 5 shows that the eventOn-
HookedComponent method can be
overridden to catch REPLACED events
coming from the JVM Component-
Configurator.

When the implementation of the JVM
is updated, the JVMConfigurator
sends a REPLACED event to its clients.
When the WebBrowserConfigura-
tor receives this event, it freezes all the
objects in the current JVM, updates the
current JVM with the new JVM imple-
mentation, and melts the objects in the
new JVM.

Generally, when replacing an old com-
ponent with a new one, it might be neces-

sary to transfer the state from the former
to the latter. The underlying reconfigura-
tion engine can automate this process by
requiring every component to implement
a pair of operations—export_state()
and import_state(). All the compo-
nents of a certain type should then agree
a priori on a common external representa-
tion of that type of component’s internal
state. The underlying engine would sim-
ply transfer the state from one component
to the other without having to interpret
its meaning.

To replace a component and remove
the old version safely, we must make sure
that no other component will try to con-
tact the component being removed. We
can achieve this by using a combination
of four mechanisms:

• using the ComponentConfigura-
tor to notify all the components that
have a reference to the old one,

• using the ComponentConfigura-
tor as an indirection on calls to
replaceable components,

• leaving a forwarding pointer in place
of the old component, and

• making every access to the old com-
ponent throw an exception that is
captured by the client which then gets
a reference to the new component by
contacting a third party such as a
naming service.

In certain cases, we can adopt a fifth
option: keeping the old versions accessi-
ble to old client components and redi-
recting new clients to the new version.
When the reference count in the old ver-
sion reaches zero, it can be removed
safely. Different combinations of these
mechanisms can be used in different
parts of a single system.

Dynamic dependencies also provide
important information for implement-
ing fault tolerance and smooth exception
handling in an environment of central-
ized or distributed components. For
example, consider the deletion of a com-
ponent containing our Component-
Configurator class. We can adopt
different policies for dealing with com-
ponent deletion. In general, when a com-
ponent C is destroyed, an announcement
must be made to components that
depend on C and to components on
which C depends. Figure 6 illustrates
this process with a conservative imple-
mentation of the ComponentConfig-
urator destructor.

We can customize implementations
of this destructor to adjust its behavior
to different component types and to
meet special application requirements.
Different component types must prop-
erly implement methods such as
eventOnHookedComponent() to
take care of the different kinds of depen-
dencies. In an extreme case, deleting a
component will cause all components
that depend on it to be deleted. In
another extreme case, these other com-
ponents will only be notified and noth-
ing else will change. In most cases, we
expect that these components will try to
reconfigure themselves to deal with the
loss of one of its dependencies.

int WebBrowserConfigurator::eventOnHookedComponent

(ComponentConfigurator *cc, Event e)

{

if (cc == JVMConfigurator)

{

if (e == REPLACED)

try {

FrozenObjs fo = currentJVM->freezeAllObjs ();

currentJVM = JVMConfigurator->implementation ();

currentJVM->meltObjects (fo);

}

catch (Exception exp)

throw ReconfigurationFailed(exp);

}

else...

}

Figure 5. Customization of the eventOnHookedComponent method.

ComponentConfigurator::~ComponentConfigurator()

{

for (c in hookedComponents)

c.configurator->unregisterClient (this);

for (c in clients)

c.configurator->eventOnHookedComponent (this, DELETED);

// delete list of hooks and hookedComponents

// delete list of clients

// release resources

// delete component implementation

}// ~ComponentConfigurator ()

Figure 6. A ComponentConfigurator destructor.

January–March 2000 7

The problem with this implementa-
tion is that the complete destruction of
the component only takes place if all the
method calls to hooked components and
clients return. If any of these calls block,
the component is not deleted. This
problem is particularly important if some
of the clients decide to initiate their own
destruction as a result of the call to
eventOnHookedComponent() and a
long chain of calls is established.

A naive solution we could use would
be to execute the method calls asyn-
chronously, for example, by creating new
threads to perform the calls. This solu-
tion would incur the additional cost of
creating new threads and could lead to
dangerous situations because a C++ com-
ponent could try to call a method on
another component after the latter is
destroyed.

Thus, it seems that we are trapped
between a safe, conservative solution that
might block indefinitely and a liberal but
unsafe solution that might crash the
whole system by executing invalid code.
We believe that there are alternatives2

that lie somewhere between these two
extremes, alternatives that are as safe as
the conservative solution but are less
subject to blocking.

Managing dependencies
Using our model in a language like

C++ requires strict collaboration from
the component developer to conform to
proposed guidelines. It is also important
that all the communication between
components is done through controlled
interfaces. However, to prevent a prolif-
eration of programming errors related
to dependence reification, we need to
develop special languages, compilers,
and runtime systems to guarantee the
safety of component execution and
reconfiguration.

A cleaner solution would be to use
existing reflective languages and envi-
ronments. For example, Iguana,3 an
extension of C++, reifies several features
of the language, allowing dynamic mod-
ification of their implementations. We
can use reflective languages to instru-
ment a method invocation to take care
of dependence maintenance. However,

a major goal of our research is not to
limit the implementation to a particular
programming language but to use widely
accepted standards.

Another possible solution is to tie
together the mechanisms for communi-
cation and dependence representation
using, for example, architectural con-
nectors (see the “Related work” sidebar).
However, our objective is not to limit the
expressiveness of the model but to
develop a generic methodology that we
can use in numerous heterogeneous
environments. These requirements can
only be met when we use a standard
architecture such as CORBA.

CORBA COMPONENTCONFIGURATOR
CORBA permits the integration of

components written in different pro-
gramming languages on heterogeneous
environments. In addition, CORBA’s
remote method invocation mechanism
can be decoupled from the base language
method call. Thus, it is possible to guar-
antee that bad CORBA references do not
get translated into bad base language ref-
erences (such as dangling C++ pointers).
Instead, the runtime neatly handles
exceptions and informs the application
of its occurrence.

In our model’s CORBA implemen-
tation, a DependencySpecifica-
tion stores a CORBA interoperable
object reference (IOR) so that the Com-
ponentConfigurator is able to
reify dependencies between distributed
components. We can specify software
component prerequisites either in terms
of persistent IORs4 or in terms of a pair
<ServiceTypeName, Constraints>.
In the former case, we can use an

implementation repository to dynami-
cally create a new CORBA object if one
is not available. In the latter case, we can
use the CORBA Trading Object Ser-
vice5 to locate an instance of the server
component that meets the requirements
specified by the given constraints.

When a CORBA component is
destroyed, the component implementa-
tion (or the ORB) must call the config-
urator destructor so that it can tell its
clients that the destruction is taking
place. If a node crashes or if the whole
process containing both the component
and the configurator crashes, it might
not be possible to execute the configu-
rator destructor. In this case, the clients
will not be informed of the component
destruction. Subsequent CORBA invo-
cations to the crashed component will
raise an exception announcing that the
object is not reachable or that it does not
exist. In this case, it is the responsibility
of the client component to locate a new
server component and update its Com-
ponentConfigurator.

In future work, we intend to experi-
ment with different ways of using the
CORBA ComponentConfigurator
to manage distributed applications. In
particular, component configurators can
be co-located with their respective com-
ponent implementations, located in a
separate process in the same machine, or
located in a central node on the network
while the component implementations
are distributed. We might adopt a com-
bination of two of these schemes. For
example, each component can have a
colocated instance of the Component-
Configurator as well as another
instance in a central node on the net-
work. In that case, the centralized depen-
dence graph would allow the execution
of algorithms dealing with the depen-
dencies of the distributed system effi-
ciently within a single process. The colo-
cated instance would provide fast
interaction between each component
and its configurator. Finally, the redun-
dant information would aid fault toler-
ance because the information lost with
the central node’s failure can be recon-
structed by contacting the distributed
instances.

A major goal of our
research is not to limit
the implementation to
a particular pro-
gramming language
but to use widely
accepted standards.

8 IEEE Concurrency

CONCURRENCY
In multithreaded and multiprocess

environments, we must take additional
care with regard to reliability and con-
sistency because two threads accessing
the same object concurrently might leave
the system in an inconsistent state or
cause its failure. One of our framework’s
ComponentConfigurator subtypes
uses locks to protect the configurator
from simultaneous updates by multiple
clients. Clients can also use these locks
to perform a sequence of operations on
a single configurator without interfer-
ence from other clients.

At the present moment, our frame-
work does not provide any guarantee
that a group of reconfiguration actions
performed in a collection of configura-
tors will be processed as a single unit. In
a CORBA environment, we can coordi-
nate the access to distributed configura-
tors by using the standard concurrency
control service.5 Ideally, a configuration
system should provide support for
grouping operations into atomic trans-
actions that satisfy the ACID properties:
atomicity, consistency, isolation, and
durability. We can achieve this by using
the CORBA object transaction service.5

SECURITY
In networked environments, we must

secure the configuration system from
unauthorized access. A hostile agent
obtaining access to the Component-
Configuratorsmight totally disrupt
system activities. Even read-only access
might be dangerous because sensitive
information about the internal structure
of an institution’s system can be stolen.
Therefore, we must provide access con-
trol to the configuration system. In
some cases, it is also desirable to pre-
vent eavesdropping by encrypting the
messages exchanged by components
and ComponentConfigurators,
such as the ones containing reconfigu-
ration events.

To support security in environments
such as Java, we must extend the config-
uration model to make it security-aware.
On the other hand, in environments sup-
porting reflection and in CORBA, we
can define security policies and deploy

security mechanisms without modifying
our model.

We can use the CORBA security ser-
vice5 to add message-level interceptors
to the ORB so that every data exchange
between CORBA objects is properly
encrypted. In addition, we can use re-
quest-level interceptors to control the
access to each individual operation on
the ComponentConfigurators based
on who issues the call, capabilities, or any
other customized mechanism the pro-
grammer defines.

DYNAMIC ADAPTABILITY
Although we use the prerequisites pri-

marily to load new components into the
system and make sure that their QoS
expectations are met, we can also use the
prerequisites later for dynamic adapta-
tion to resource availability changes.
Typically, the prerequisites’ resource
requirements should specify ranges of
acceptable service. A video-on-demand
application, for example, can specify that
it requires a network bandwidth of 500
kilobits per second on average but that
it might use peak rates of up to 1 megabit
per second. In addition, the application
can specify that although 500 Kbps is the
desirable average bandwidth, it can func-
tion using as little as 53 Kbps by chang-
ing the video stream characteristics. In
that case, the application would be able
to support mobile computers that move
from ATM to wireless to modem con-
nections by dynamically adapting to
these changes. Thus, prerequisites
should be available to the system at run-
time so that it can reorganize its resource
allocation to better fulfill the require-

ments of all the applications sharing the
system.

Application scenarios

We investigated the deployment of
the ComponentConfigurator frame-
work in both centralized and distributed
applications. On the one hand, dynamic-
TAO, a reflective ORB, illustrates how
we can use our model to represent and
manipulate the internal structure of a
centralized legacy system, enabling
dynamic reconfiguration. On the other
hand, the 2K distributed operating sys-
tem shows how we can use our model in
the early system design phases to achieve
maximum levels of reliability and
dynamic flexibility.

DYNAMICTAO
One of the major constituent elements

of 2K is a reflective middleware layer6

based on CORBA. After carefully study-
ing existing ORBs, we concluded that the
TAO ORB7 would be the best starting
point for developing our infrastructure.
TAO is a portable, flexible, extensible,
and configurable ORB based on object-
oriented design patterns. It is written in
C++ and uses the Strategy design pattern8

to separate different aspects of the ORB
internal engine. Administrators use a
configuration file to specify the strategies
the ORB uses to implement aspects such
as concurrency, request demultiplexing,
scheduling, and connection manage-
ment. At ORB startup time, the config-
uration file is parsed and selected strate-
gies are loaded.

TAO is primarily targeted for static,
hard real-time applications such as
avionics systems. After the initial ORB
configuration, TAO assumes that its
strategies will remain in place until it
completes its execution. There is little
support for on-the-fly reconfiguration.

The 2K project seeks to build a flexi-
ble infrastructure to support adaptive
applications that run on dynamic envi-
ronments. On-the-fly adaptation is ex-
tremely important for a wide range of
applications, including applications that
deal with multimedia, mobile computers,
and dynamically changing environments.

In environments
supporting reflection
and in CORBA, it is
possible to define
security policies and
deploy security
mechanisms without
modifying our model.

January–March 2000 9

The 2K design depends on dynamic-
TAO,9 our extension of TAO that
enables on-the-fly reconfiguration of its
strategies. dynamicTAO exports an
interface for loading and unloading
modules into the ORB runtime and for
inspecting the ORB configuration state.
We can use the interface for dynamic
reconfiguration of servants running on
top of the ORB and even for reconfig-
uring nonCORBA applications.

Problems encountered
Reconfiguring a running ORB while

it is servicing client requests is a difficult
task that requires careful consideration.
There are two major classes of problems.

Consider the case in which dynamic-
TAO receives a request to replace one of
its strategies (Sold) with a new strategy
(Snew). The first problem is that because
TAO strategies are implemented as C++
objects that communicate through
method invocations, the system must be
sure that no one is running Sold code and
that no one expects to run Sold code in the
future before the system unloads Sold.
Otherwise, the system might crash.
Thus, it is important to assure that Sold is
unloaded only after the system can guar-
antee that its code will not be called.

The second problem is that some
strategies need to keep state information.
When a strategy Sold is being replaced
with Snew, part of the internal state of Sold

might need to be transfered to Snew.
We can address these problems with

the help of the ComponentConfigu-
rator, which is used to reify the depen-
dencies among strategies, instances of
dynamicTAO, and servants.

DomainConfigurator and
TAOConfigurator

Each process running the dynamic-
TAO ORB contains a ComponentCon-
figurator instance called Domain-
Configurator. It is responsible for
maintaining references to ORB instances
and servants running in that process. In
addition, each ORB instance contains a
customized subclass of the Compo-
nentConfigurator called TAOCon-
figurator.
TAOConfigurator contains hooks

to which dynamicTAO strategies are
attached. A NetworkBroker imple-
ments a simple TCP-based protocol that
lets remote entities connect to the
process to inspect and change the
dynamicTAO configuration by loading
new strategies and attaching them to
specific hooks. Local servants and
remote CORBA clients can also access
the Configurator objects through a
programmatic CORBA interface. Figure
7 illustrates this mechanism when a sin-
gle instance of the ORB is present.

If necessary, individual strategies
might have their own customized sub-
class of ComponentConfigurator to
manage their dependencies on ORB
instances and other strategies. These
subclasses may also store references to
client connections that depend on them.
With this information, the system can
decide when to unload a strategy safely.

Consider, for example, the three con-
currency strategies dynamicTAO sup-
ports—single-threaded, thread-per-con-
nection, and thread-pool. If we switch
from the thread-per-connection or reac-
tive strategies to another concurrency
strategy, we do not need to do anything
special. dynamicTAO might simply load
the new strategy, update the proper
TAOConfigurator hook, unload the
old strategy, and continue. Old client

connections will complete using the con-
currency policy dictated by the old strat-
egy. New connections will use the new
policy.

However, if we switch from the
thread-pool strategy to another strat-
egy, we must take special care. Our
thread-pool strategy maintains a pool
of threads created when the strategy ini-
tializes. All incoming connections share
the threads in order to achieve a good
level of concurrency without having the
runtime overhead of creating new
threads. A problem arises when we
switch from this strategy to another
strategy: the code of the strategy being
replaced cannot be immediately un-
loaded. This happens because reused
threads return to the thread-pool strat-
egy code each time a connection fin-
ishes. We can solve this problem by
using a ThreadPoolConfigurator
to keep information about which
threads are handling client connections
and destroying them as the connections
are closed. When the last thread is
destroyed, the thread-pool strategy sig-
nals that it can be unloaded.

Another problem occurs when we
replace the thread-pool strategy with a
new one. There might be several incom-
ing connections that are queued in the
strategy and are waiting for a thread to

TAOConfigurator

...

NetworkBroker

DomainConfigurator
CORBA interface

ConcurrencyStrategy

SchedulingStrategy

MonitoringStrategy

SecurityStrategy

Servant2ConfiguratorServant1Configurator

Figure 7. Remote configuration of dynamicTAO strategies.

10 IEEE Concurrency

execute them. The solution is to use the
Memento pattern8 to encapsulate the old
strategy state in an object that is passed
to the new strategy. The object is used
to encapsulate the queue of waiting con-
nections. The system simply passes this
object to the new strategy, which then
takes care of the queued connections.

Our group is currently expanding the
set of dynamicTAO strategies that can
be replaced on-the-fly. At the present,
TAOConfigurator hooks hold strate-
gies for concurrency, security, and per-
formance monitoring. We plan to add
hooks for connection management,
(de)marshalling, request demultiplexing,
method dispatching, transport protocols,
and scheduling. With dynamicTAO, we
learned that an explicit knowledge of the
dependencies between the ORB compo-
nents is essential to implement dynamic
reconfiguration safely.

ARCHITECTURAL AWARENESS IN 2K
In contrast to existing systems where

a large number of unused modules are
carried along with the basic system
installation, we base the 2K operating
system on a “what you need is what you
get” (WYNIWYG) model.1 The system
configures itself automatically and loads
the minimum set of components re-
quired to execute user applications effi-
ciently. The system downloads compo-
nents from the network and only a small
subset of system services is needed to
bootstrap a node.

We achieve this by reifying the hard-
ware and software prerequisites for each
loadable component. As mentioned ear-
lier, the operating system uses this infor-
mation to make sure that all the basic
services that a component requires are
available before the component is
loaded. In addition, a distributed
resource manager uses the specifications
of the component hardware require-
ments to decide in which machine to
load the component and also to perform
admission control and resource reserva-
tion. That way, we are less likely to
encounter a situation in which a compo-
nent fails to execute its task with the
desired QoS because an unspecified
dependency was not resolved.

As a component is loaded into the sys-
tem, the component’s prerequisites are
scanned and all the specified services are
made available. During this process, the
system incrementally builds a dynamic
graph of dependencies using the Com-
ponentConfigurator framework.

The 2K design supports fault-toler-
ant, self-adapting systems by monitor-
ing the environment and maintaining a
dynamic structural representation of its
services and applications. The CORBA
implementation of the Component-
Configurator framework reifies the
distributed system dynamic structure.

When a 2K component fails, the sys-
tem inspects its dependencies and in-
forms the proper components about the
failure. The system might alternatively
recover from a failure by replacing the
faulty component with a new one.

A local resource manager, that resides in
each machine and monitors resource uti-
lization, supports QoS. Changing para-
meters such as network bandwidth, CPU
load, memory availability, and user
access patterns might trigger adaptations
and resource reallocation based on the
component prerequisites, which are
accessible at runtime.

Implementation status
and future work

We implemented prototypes of the
ComponentConfigurator for single-
process applications in C++ and Java. We
deployed the C++ implementation in the
dynamicTAO ORB. Researchers at the
University of São Paulo are using the Java
implementation to prototype a domain
decomposition manager with applica-
tions in a distributed information system
for mobile agents and in the paralleliza-
tion of an atmospheric modeling system.

More recently, we completed an imple-
mentation of distributed Component-
Configurators that was based on
CORBA. We are using the implementa-
tion to construct 2K distributed services
such as the persistent object service and
the automatic configuration service.

We provide complete documentation
and source code for the framework in
C++, Java, and CORBA/C++ at our Web

site: choices.cs.uiuc.edu/2K/Dynamic-
Configuration.

WE BELIEVE that the reification of inter-
component dependence and component
prerequisites is fundamental for systems
supporting reliable, reconfigurable com-
ponents. Our initial experience with the
framework has proved very fruitful. We
successfully deployed it in a legacy sys-
tem, which was made aware of its own
internal dependencies, allowing the easy
addition of dynamic reconfiguration.
Future work in the 2K operating system
will demonstrate how the model behaves
in a complex, distributed CORBA-based
system.

Dependence management is probably
the most crucial problem we must re-
solve before operating systems are able
to provide automatic configuration of
component-based applications and ser-
vices. Only then will we be able to re-
move the burden of system configura-
tion from users and administrators.

ACKNOWLEDGMENTS

Fabio Kon is supported in part by CAPES-
Brazil, process 1405/95-2. The National Sci-
ence Foundation grants NSF 98-70736 and
99-70139 support this research. We gratefully
acknowledge the help provided by Manuel
Román on the implementation of dynamic-
TAO. We thank Dilma Menezes, Francisco
Ballesteros, and the 2K team members for
their feedback on the ideas presented here.
Finally, we thank the anonymous reviewers
and Murthy Devarakonda who contributed
valuable comments for improving this article.

References
1. F. Kon, D. Carvalho, and R. Campbell,

“Automatic Configuration in the 2K Oper-
ating System,” Proc. ECOOP ‘99 Workshop
Object Orientation and Operating Sys-
tems, Chemnitzer Informatik-Berichte,
Germany, June 1999, pp. 10–14.

2. F. Kon and R.H. Campbell, On the Role of
Inter-Component Dependence in Sup-
porting Automatic Reconfiguration, Tech.
Report UIUCDCS-R-98-2080, Dept. Com-
puter Science, Univ. of Illinois, Urbana-
Champaign, Dec. 1998.

3. B. Gowing and V. Cahill, “Meta-Object
Protocols for C++: The Iguana Approach,”
Proc. Reflection ‘96Apr. 1996, pp. 137–152.

4. M. Henning, “Binding, Migration, and

January–March 2000 11

Scalability in CORBA,” Comm. ACM, Vol.
41, No. 10, Oct. 1998, pp. 62–71.

5. CORBAservices: Common Object Services
Specification, OMG Document 98-12-09,
Object Management Group, Framingham,
Mass., 1998.

6. A. Singhai, A. Sane, and R. Campbell,
“Quarterware for Middleware,” Proc.
18th Int’l Conf. Distributed Computing
Systems (ICDCS), IEEE Computer Soc. Press,
Los Alamitos, Calif., 1998, pp. 192–201.

7. D. C. Schmidt and C. Cleeland, “Applying
Patterns to Develop Extensible ORB Mid-
dleware,” IEEE Comm., Vol. 37, No. 4, May
1999, pp. 54–63.

8. E. Gamma et. al., Design Patterns: Ele-
ments of Object-Oriented Software, Addi-
son-Wesley, Reading, Mass., 1995.

9. M. Roman, F. Kon, and R.H. Campbell,
“Design and Implementation of Runtime
Reflection in Communication Middleware:
the dynamicTAO Case,” Proc. ICDCS ‘99
Workshop Middleware, IEEE Computer
Soc. Press, Los Alamitos, Calif., June 1999,
pp. 122–127.

Fabio Kon is a PhD candidate in computer
science at the University of Illinois at Urbana-
Champaign. He is working on the overall
design and implementation of the 2K distrib-
uted operating system. His research interests
include distributed operating systems, multi-
media, and computer music. He developed
SODA, a consistent distributed file system
based on leases; MAXAnnealing, a tool for
algorithmic musical composition; a scalable
multimedia distribution system; and dynam-
icTAO, a dynamically configurable reflective
ORB. He received his BS and MS in com-
puter science from the University of São
Paulo and his BA in music from the São Paulo
State University. Contact him at Digital
Computer Lab, 1304 W. Springfield Ave.,
Urbana, IL, 61801; f-kon@cs.uiuc.edu.

Roy H. Campbell is a professor of computer
science at the University of Illinois at Urbana-
Champaign. His research interests include
operating systems, distributed multimedia,
network security, and ubiquitous computing.
His recent research accomplishments include
VDP, an adaptive continuous media transport
protocol; a robust video compression and
packetization scheme for unreliable networks;
and dynamic security policy systems for dis-
tributed objects, mobile computers, and active
networks. He received his BSc in mathemat-
ics from the University of Sussex, and his MSc
and PhD in computing from the University
of Newcastle upon Tyne. Contact him at Dig-
ital Computer Lab, 1304 W. Springfield Ave.,
Urbana, IL, 61801, USA; roy@cs.uiuc.edu.

