
Batching: A Design Pattern for

Efficient and Flexible Client/Server Interaction

Francisco J. Ballesteros1, Fabio Kon2, Marta Patiño3, Ricardo Jiménez3,
Sergio Arévalo1, and Roy H. Campbell4

1 University Rey Juan Carlos
nemo@lsub.org

2 University of São Paulo
kon@ime.usp.br

3 Technical University of Madrid
4 University of Illinois at Urbana-Champaign

Abstract. The Batching design pattern consists of a common piece of
design and implementation that is shared by a wide variety of well-known
techniques in Computing such as gather/scatter for input/output, code
downloading for system extension, message batching, mobile agents, and
deferred calls for disconnected operation.

All techniques mentioned above are designed for applications running
across multiple domains (e.g., multiple processes or multiple nodes in a
network). In these techniques, multiple operations are bundled together
and then sent to a different domain, where they are executed. In some
cases, the objective is to reduce the number of domain-crossings. In other
cases, it is to enable dynamic server extension.

In this article, we present the Batching pattern, discuss the circum-
stances in which the pattern should and should not be used, and identify
eight classes of existing techniques that instantiate it.

1 Introduction

Applications such as code downloading, message batching, gather/scatter, and
mobile agents follow the client/server model of interaction. A closer look reveals
that all of them group a set of operations, and submit them to a server for exe-
cution. The submission of operations aims at reducing domain-crossings and/or
enable dynamic server extension. For instance, code downloading into operating
system kernels intends to save domain-crossings and, at the same time, enable
system extension. Message batching and mobile agents intend to save domain-
crossings.

Consider a program using a file server such as the one in Figure 1. In a
typical client/server interaction, the client sends a command (read or write) to
the server, waits for the reply, and then continues.

Suppose that read and write are handled by the same server and that cross-
domain calls (i.e., calls from the client to the server) are much heavier than calls
made within the server. In this case, it will be much more efficient to send the
entire while loop to the file server for execution.

J. Noble and R. Johnson (Eds.): TPLOP I, LNCS 5770, pp. 48–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Batching: A Design Pattern for Client/Server Interaction 49

copy (File aFile, File otherFile) {

while (aFile.read (buf))

write (otherFile.write (buf));

}

Fig. 1. File copy code

Client Server

read(f1, buf)

write(f2, buf)

write(f2, buf)

Client Server

execute(copy(f1,f2))

read(f1, buf)

Fig. 2. Interactions corresponding to read/write services and a copy service

Instead of having multiple cross-domain calls, as depicted in the left-hand
side of Figure 2, a single call suffices if the client sends the code to the server
for execution, as shown in right-hand side of Figure 2. To do so, it is necessary
to extend the file server to support the execution of programs submitted by
different clients.

2 The Problem

Both cross-domain data traffic and cross-domain call latency have a significant
impact on the efficiency of multi-domain applications. Cross-domain calls and
cross-domain data transfers also happen on centralized environments. For in-
stance, almost every operating system has a domain boundary between user
space and kernel space (both entering and leaving the kernel requires a domain
crossing). An application using multiple processes has a domain boundary be-
tween every two of its processes. Besides, in a distributed system, the network
behaves as a domain boundary.

The line separating two different domains has to be considered while designing
the application. There are two main issues causing problems to any application
crossing the line: data movement and call latency.

Within a protection domain (e.g., a Unix process), an object can pass data
efficiently to any other object. For passing a large amount of data, a reference
can be used. However, whenever an object has to pass data to another object in
a different domain, data has to be copied. Although some zero-copy networking
frameworks avoid data copying within a single node in a network, data still has
to be “copied” through the network in distributed applications.



50 F.J. Ballesteros et al.

In many domains, such as file systems and databases, data movement can be
the major performance bottleneck. Therefore, avoiding unnecessary data transfer
operations may be crucial. Under many circumstances, unnecessary data trans-
fers occur just because the object controlling the operation resides far from the
data source or sink. That is precisely what happens in the file copy example in
the previous section: the client object performing the copy and the file server
objects were placed in different domains. Thus, data came to the client just to
go back to the server.

Another issue is call latency. A call between two objects residing in different
domains takes much more time to complete than a typical method call within a
single domain. The reason is simply that a domain boundary has to be crossed;
that usually involves either crossing the operating system kernel interface (in a
single node), network messaging (in a distributed environment), or both. There-
fore, avoiding domain crossing when performing calls is crucial for performance.
Any solution reducing the number of domain crossings can make the application
run faster.

When designing a solution, it should be taken into account that, under certain
circumstances (e.g., when inexpensive domain crossing is available and efficiency
is the primary objective), the overhead introduced to solve the problem might
actually degrade performance. However, even when cheap domain crossing is
available, the overhead caused by cross-domain data transfers (e.g., copying data
or sending messages over a network) might still cause a performance problem.

Any solution must take into account carefully what is the real penalty caused
by data copying and call latency. Also, this solution should be employed only
when the overhead it causes is small compared to the penalties it avoids.

3 The Solution

Batching, also known as CompositeCall.
By batching separate method calls, i.e., transforming them into a single cross-

domain call, one can avoid unnecessary data copying and reduce the number of
cross-domain calls. Clients can build a program (a “batch call”) and transfer it
to the server at once. The program performs multiple operations on that server
even though the client had to send it only once.

In our example (see Figure 2, the interactions for copy), if Batching is not
used, the file content has to travel twice across the network. When a copy pro-
gram is submitted to the server, however, the file does not leave the server,
it is copied locally. It behaves as if we had extended the server functionality
dynamically by adding support for a copy operation.

4 Pattern Structure

In the following, we present the general structure of the pattern in its more
complete and sophisticated form. Specific instances of the pattern often apply
simplified implementations of the pattern. In Section 4.2, we describe the appli-
cation of the pattern to the file service domain.



Batching: A Design Pattern for Client/Server Interaction 51

4.1 Participants

The class hierarchy corresponding to the Batching pattern is shown in Figure 3.

BatchServer

execute(vars, aProgram)

run (vars)
terminate ()

VarTable vars
Program

VarTable

set (bytes)
get (bytes)

mode
Var

set (bytes)
get (bytes)

ConcreteVarrun (vars)
terminate ()

Command

run (vars)
terminate ()

ControlStructure

ConcreteControlStructure (somePrograms)
run (vars)

terminate ()

ConcreteControlStructure

service1 (parms)
service2 (parms)

ConcreteServer

// Assuming ConcreteControlStructure
// is a SequenceControlStructure
run (vars: VarTable) {
while (!terminated ())
    calls[program_counter].run (vars)
}

// Assuming Command 
// is a CallService1Command
run (vars: VarTable) {
   args = argsFromVars (vars)
   ConcreteServer::service1 (args)
}

Fig. 3. Batching

BatchServer behaves as a Façade [GHJV95] to services provided by the server.
An object of this class is located on the server side. It supplies interpretative
facilities to service callers, so that clients can send a program to the server
side instead of making direct calls to the server. The execute method is
an entry point to the interpreter [GHJV95], which interprets the “batch”
program and returns its results to the client.

ConcreteServer is only present on the server side; it provides the set of entry
points that can be called by the client.

Note that the ConcreteServer is actually the class (or the set of classes)
one has on the server side before instantiating the pattern. It is mentioned
here for completeness.



52 F.J. Ballesteros et al.

Program is an abstract class that represents the batched calls or program to be
interpreted. Clients build Program instances and send them to the Batch-
Server for execution. It is also responsible for maintaining an associated
table of variables. The run method of a Program class implements the inter-
preter needed to run it on the server.

The Program is also responsible for performing proper program termina-
tion when an error occurs. The terminatemethod is provided as an abstract
interface for program termination.

An alternate name for Batching is CompositeCall since Program and
the following couple of classes form an instance of the Composite pattern
[GHJV95].

ControlStructure is a construct made of Programs. Its purpose is to bun-
dle several Programs together according to some control structure (e.g., se-
quence, iteration, etc.).

ConcreteControlStructures represent structures such as conditionals, while
constructs, sequences, etc. At the server side, this class is responsible for
executing the concrete control structure represented by the class. Concrete-
ControlStructure constructors can be used at the client side to build com-
plex Programs.

Command is a Program that represents a single operation; it resembles the Com-
mand pattern shown in [GHJV95], hence the name. Examples of concrete
Commands are arithmetic operations, logic operations, or calls to Concrete-
Server entry points. The only purpose of Batching is to bundle several
concrete Commands together using ConcreteControlStructures.

VarTable stores the variables (i.e., the state) of the Program. It provides local
storage and also holds any input parameter for the program. Output values
from the program are also kept within the VarTable. The table is built at
the client using the set of input parameters for the Program. Then, it is
used within the server, while the Program is interpreted. The table is finally
returned back to the user after completion of the Program.

There is a variable table per Program (pairs of VarTable and Program
are sent together to the BatchServer). Thus, all components of a concrete
Program share a single variable table so that they can share variables.

Var is an abstract class representing a variable of the program sent to the server.
It has some associated storage (bytes, in Figure 3). Var instances are kept
within a VarTable. Variables have a mode, which can be either in (parameter
given to the Program), out (result to be given to the user), inout (both),
or local (local variable). By including the mode qualifier, this class can be
used for local variables as well as for input/output parameters.

ConcreteVar is a variable of a concrete type (integer, character, etc.). Its con-
structor is used at the client to declare variables or parameters to be used
by the Program. At the server side, instances of this class are responsible for
handling single, concrete pieces of data used by the program.

Note that in a concrete instance of the pattern, the Program (and related
classes) may differ from the ones shown. That is, the core of the pattern in-
cludes BatchServer, Program, and ConcreteServer classes; but other classes



Batching: A Design Pattern for Client/Server Interaction 53

shown here may differ depending on how the pattern is instantiated. The struc-
ture shown here is a general form for the pattern and can be directly applied
to any particular implementation. However, to solve a concrete problem where
the pattern applies, this structure can be modified and a Program class might
be implemented in quite different ways depending on the particular form for
the “program” sent from the client to the server. Doing so would also require
changes to BatchServer because it must be able to process the program.

For example, all classes used by a client to build a program might be compiled
to a bytecode representation of the program, to be sent to the server. In this case
the BatchServer would be actually a bytecode interpreter. As another example,
serialized forms of the program structures shown in this paper could be directly
sent to the server, and BatchServer would simply use them after unpacking to
interpret the program. More radical examples exist, such as making Program
use a textual representation of the program and BatchServer, a compiler or

execute (vars, aProgram)

BatchFileServer

run (vars)
terminate ()

VarTable vars
Program

VarTable

set (bytes)
get (bytes)

Mode mode
Var

set (bytes)
get (bytes)

ConcreteVarrun (vars)
terminate ()

Write

run (vars)
terminate ()

Read

WhileCtrlStructure (aCond, aBody)
run (vars)

terminate ()

WhileCtrlStructure

read (buf)
write (buf)

FileServer

run (vars: VarTable) {
while (aCond.run())
    aBody.run(vars)
}

run (vars: VarTable) {
   buf = bufFromVars (vars)
   FileServer::write (buf)
}

run (vars)
terminate ()

ControlStructure

SeqCtrlStructure (commands)
run (vars)

terminate ()

SeqCtrlStructure

Fig. 4. Batching File server



54 F.J. Ballesteros et al.

interpreter for such “source”; or yet making Program use a binary representation
of the program and implementing BatchServer simply as a call to the binary
code received from the client.

All this said, in general, the structure shown for the pattern suffices and works
well to solve the problem addressed by this pattern. In what follows, we use it
in all our examples, but one should be aware that there are other useful variants
of the pattern that use other forms of programs.

4.2 The Pattern Applied to a File Server

The concrete structure of classes for our file server example is shown in Fig-
ure 4. Intuitively, this Batching instance simply adds an interpreter (see the
Interpreter pattern in [GHJV95]) to the file server. That interpreter can ex-
ecute programs that (1) call read and write and (2) can use while as a control
structure.

We took as a starting point the FileServer class, which provides both read
and write methods that operate on a file. We simplified the typical interface
provided by a file server; a typical file server would contain several File objects
that would supply read and write methods. To illustrate the pattern in a simple
way, we omitted the file being used1.

The BatchFileServer is co-located with the FileServer, providing a new
execute service that supplies an interpreted version of FileServer services.
The BatchFileServer corresponds to the BatchServer in the pattern (see the
pattern diagram in Figure 3).

The BatchFileServer accepts a Program, which is built in terms of Control-
Structures and Read and Write commands.

To execute

while (read (buf))
write (buf);

the Program sent to the BatchFileServermust be made of a WhileCtrlStruc-
ture, using a Read as the condition. The body for the WhileCtrlStructure
must be a sequence made of a single Write command.

Here, WhileCtrlStructure and SeqCtrlStructure correspond to Concrete-
ControlStructures in the pattern. Read and Write match Commands in the pat-
tern. The buffer used in the read and write operations is handled by a BufferVar
class instance, corresponding to a ConcreteVar in the pattern.

A client can build a program (accessing the file server) by using constructors
provided by WhileCtrlStructure, SeqCtrlStructure, Read, and Write. The
client can later submit this batched call to the BatchFileServerexecutemethod.

1 Obtaining a complete implementation is a matter of adding a File class and adding
file parameters to the read and write methods.



Batching: A Design Pattern for Client/Server Interaction 55

5 Dynamics

The client builds a program (a “script” of commands) and sends it to the server,
which interprets it. When the server receives a program, it first deserializes it.
The interaction that follows is shown in Figure 5.

BatchFileServer

execute(vars,prg)

Program WhileCtrlStructure

run(vars)

SeqCtrlStructure

run(vars)

run(vars)

run(vars)

Read Write FileServer

run(vars)

run(vars)

read(buff)

write(buff)

run(vars) read(buff)

write(buff)
run(vars)

Fig. 5. Interaction diagram for a copy program

A BatchFileServer object at the server side is in charge of interpreting client
programs. When its execute method is called, a program and a table of variables
must be supplied. The execute method calls the run method of the program
providing the table of variables; this method interprets the “batch” program.
Once execute finishes, the results are returned.

The actual dynamics resulting from executing the “batch” program depends
on the actual form used for the program. In our suggested form, the run method
of the Program class implements recursive interpretation. When the program has
been interpreted, that is, the run method has finished, the results of the program
execution are still in the variable table. As part of the execute method, the table
is serialized and sent back to the client.

Figure 5 shows the interaction diagram for our example copy batch program
(with calls to Open and Close suppressed for the sake of simplicity). The run
method of the Program calls the run method of the ConcreteControlStructure
representing the program (the WhileCtrlStructure in the interaction diagram).
ControlStructures provide a run method to interpret themselves. That is, a
program has built-in its own interpreter, an instance of the Interpreter pat-
tern [GHJV95]. So, the While command calls the run method of its inner com-
ponent (SeqCtrlStructure in the interaction diagram for copy).

6 Implementation Issues

We now discuss two important aspects of using Batching: how to build pro-
grams for Batching and what to do when they fail.



56 F.J. Ballesteros et al.

6.1 Composing Programs

How to build a program depends on the structure used for it. As an example, we
use in this section the form suggested for programs in the previous description of
the pattern. Readers should be aware, however, that other forms of implementing
the pattern do exist.

Programs are made of statements and variables. In a Batching Program,
each statement corresponds to a ConcreteControlStructure or concrete Com-
mand. Variables are instances of a ConcreteVar class. To build a program, clients
declare an object of the Program class and invoke its constructor method.

Ideally, the client side for an instance of Batching would be exactly like the
code of a client making direct calls to the server; i.e., like a client not using
Batching at all. In practice, ConcreteControlStructure constructors (which
are functions) are used. Thus, code in the client for a Program looks like the
code that the user would write without using the pattern. Command objects are
not declared; they are built with functional constructors.

To support the usage of expressions within the Program, subclasses inheriting
from an Expr class can be provided (see Figure 6). Expr is a functional service
representing an expression, and can be used as a function within expressions.

Program variables are stored in a table. They contain initial values as well
as intermediate values and results of the program execution at the server side.
To build that table, the programmer of the client must declare an object of the
VarTable class. When variable objects are instantiated, they are constructed
and stored in that table with an initial value, if any, and their mode, that is, in,
out, inout, or local. When a variable table is sent to the server, only values of
in and inout variables have to be copied to the server. After the execution of

getValue()

Expr

getValue()
get(bytes)

Var

getValue()

Value

getValue()

FuncServCall

getValue()

BinOp

getValue()

RelOp

getBool()

BoolValue

getInt()

IntValue IntVar(varTbl, mode)
int theInt
IntVar

BoolVar(varTbl, mode)
bool theBool
BoolVar

Fig. 6. Expression Hierarchy



Batching: A Design Pattern for Client/Server Interaction 57

the program, out and inout variables are sent back to the client. Variables on
the table can be consulted and modified on both sides.

The adequacy of the table implementation depends on the context of the
pattern instance. For example, it can be interesting in an operating system to
implement the table as a chunk of raw memory, while a remote server could
represent it as a heterogeneous list of concrete variables.

This kind of implementation of Batching programs has the advantage that
most of type-checking is done at compilation time. Note that server calls are
type-checked, because the parameters of constructors of server call commands
are typed. In a different context, however, a system designer may opt for a
different implementation, for example, based on dynamic typing.

Revisiting our example, the code for the copy program is shown in Figure 7.
In the figure, constructors are functions that build objects within the program.
In this example, SeqCtrlStructure and WhileCtrlStructure are Concrete-
ControlStructures of the language. Open, Close, Read, and Write are classes
derived from Program. Clients invoke their constructors to let the Program issue
calls into the server. Program variables are stored in the vars variable table. In
this case, f1, f2 and car are local variables, so their mode is local.

Finally, note that the concrete instruction set used through this section is just
an example. Any other one, like a bytecode-based program could be used, too.
Instruction sets suggested in the pattern are very simple compared to the ones
used in other systems. For instance, µChoices [LTS+96] and Aglets [PPE97]
use a Java interpreter. A Modula-3 compiler is used in SPIN [BSP+95], and
NetPebbles [MPZ+98] uses a script interpreter.

When implementing the pattern, the design of the instruction set and its
interpreter is one of the most important things the designer should keep in
mind. The quality of the implementation depends heavily on the instruction set
and interpreter being well-balanced and secure.

VarTable vars;

Program program;

IntVar f1(vars, local), f2 (vars, local);

CharVar car (vars, local);

program = SeqCtrlStructure ((

Open (f1, StringLit ("name1")),

Open (f2, StringLit ("name2")),

WhileCtrlStructure (Read (f1, car),

Write (f2, car)),

Close (f1),

Close (f2)

));

execute (program, vars);

Fig. 7. Program for Copy



58 F.J. Ballesteros et al.

6.2 Exception Handling

One of the problems of submitting the client code to the server is what happens
when a call fails. The server programmer knows when a server call has failed, so
he or she can decide to terminate the program in that case. This can be done by
calling the terminatemethod of the Program class from a run method. However,
the client could wish to continue the program despite any failures. To support
this, we have included two commands in our pattern instances: AbortOnError
and DoNotAbortOnError. They let the user switch between the two modes. When
AbortOnError has been called, a call to terminate causes program termination;
otherwise it has no effect. In this way, the client can control the effects of a
failed call.

The implementation of terminate depends on both the kind of instruction
set being implemented and on the implementation language. A bytecode-based
program can be stopped very easily as there is a main control loop (in the run
method), just by setting a terminated flag to true. Stopping a structured pro-
gram (e.g., the one used in our file server example) is a little more complicated.
This is due to recursive interpretation: calls to run in a Program propagate calls
to the run method of its components. To stop that program, it is necessary to
finish all the nested run calls. Depending on the implementation language, it
can be done in one way or another. In a language with exceptions, such as C++,
Java or Python, it suffices to raise and propagate an exception in the terminate
code, catching it in the Program run code. In languages without exceptions, such
as C, setjmp can be used in the top-level run method before calling any other
run, and longjmp can be used, for the same purpose, in the terminate body.

7 Consequences

The pattern brings the following benefits:

1. It provides a virtual machine view of the server. When using Batching,
clients no longer perceive servers as a separate set of entry points. Servers
are now perceived as virtual machines [Nai05]. Their instruction set is made
of the set of server entry points, together with some general-purpose control
language.

Therefore, it is feasible for users to reuse programs for different Batching
calls. Programs that interact with the server can be built, and reused later.

2. It reduces protection-domain crossings, as the copy program did above. If this
is the main motivation to use the pattern, domain crossing (client/server
invocation) time must be carefully measured. Whenever complex control
structures are mixed with calls to the server, or when client computations
need to be done between successive calls, the pattern might not pay.

In any case, the time used to build the program must be lower than the
time saved in domain crossing. The latter is approximately the difference
between the time to perform a cross-domain call and the time to interpret
and dispatch a server call.



Batching: A Design Pattern for Client/Server Interaction 59

3. It reduces the number of messages exchanged by clients and servers; provided
that the Program issues repeated calls to the server and the control structure
is simple enough.

Again, the improvement due to the reduced number of messages can be
lower than the overhead due to program construction and interpretation.
Therefore, careful measurement must be done prior to pattern adoption.

4. It decouples client/server interaction from the call mechanism. Batching
provides a level of indirection between the client and the server. The client
can perform a call by adding commands to a Program; while the Program
can be transmitted to the server by a means unknown to the client.

5. It decouples client calls from server method invocations. As said before, a
client can perform calls by adding commands to a Program. The resulting
Program can be sent to the server at a different time. Therefore, there is no
need for the client and the server to synchronize for the call to be made.

6. It enables dynamic extension of servers. Servers can be extended by accept-
ing Programs from clients. Those programs could be kept within the server
and used as additional entry points into the server. Should it be the main
motivation to use the pattern, the concrete command set should be powerful
enough.

7. It makes the communication more secure because one can encrypt the com-
plete sequence of commands in a single session, with a single signature. Many
attack techniques rely on having a large quantity of messages to work with.
Having a single message exchanged between the client and the server pre-
vents variants of man-in-the-middle, replay, or other attacks [GSS03] that
would operate on individual commands if multiple messages were exchanged
within a client/server communication session.

The pattern brings the following drawbacks:

1. Client requests might take arbitrary time to complete. A batched programmight
lead to a nonterminating program. If server correctness depends on bounded
client requests, it may fail. As an example, a server can use a single thread
of control to service all client requests. Should a Program not terminate, the
entire server would be effectively switched off by a single client.

In such case, either avoid using Batching, or implement BatchServer
with support for multithreading. That is, arrange for each Program to use its
own thread. In this case, make sure the instruction set is thread-safe, otherwise
programmers will need to rely on locking to protect critical, shared resources.

2. Server security can be compromised. The more complex the command set,
the more likely the server integrity can be compromised due to bugs in the
command interpreter. If high security is an issue, either avoid Batching or
reduce the complexity of the command set to the bare minimum.

On the other hand, note that the pattern does not add functionality to the
server. It simply enables the use of existing functionality in a “batch”. Any
server must always check its inputs (from clients) and these checks must still
be performed when the individual calls come from the pattern interpreter.



60 F.J. Ballesteros et al.

3. It might slow down the application. When cheap domain crossing is available
and efficiency is the primary objective, using Batching might slowdown the
application if the time saved on domain crossings is not enough to compen-
sate for the overhead introduced by Batching.

4. Clients might become more complex because they must build the program
to be sent, instead of simply issuing the calls to the server when they are
needed.

8 Related Patterns

Both Program and ControlStructure rely on instances of the Interpreter
pattern [GHJV95]. Indeed, the interpreter of a Program is behind its run method.

Program, ControlStructure, and Commands make up an instance of the Com-
posite pattern [GHJV95]. Composite programs, such as Sequence and
Conditional, are aggregates of Assignments, ServerCalls, and other primi-
tive commands.

If an instruction set for a Batching language is to be compiled, Program
might include a method to compile itself into a low-level instruction set. More-
over, Programs should be serialized (and later deserialized) when transmitted
to the server. Once in the server, they can be verified for correctness. All these
tasks can be implemented following the Visitor pattern [GHJV95].

A server call issued within a Program might fail or trigger an exception. If
that is the case, the entire Program can be aborted and program state transmit-
ted back to the client—so that the client could fix the cause of the error and
resume Program execution. The Memento pattern [GHJV95] can encapsulate
the program state while in a “frozen” state. As said before, such program state
can be used to resume the execution of a failed program (e.g., after handling
an exception). Mementos can also be helpful for (de)serializing the program
during transmission to the server.

As a program can lead to an endless client request, single threaded or a-
request-at-a-time servers can get into trouble. To accommodate this kind of
server so that Batching could be used, the ActiveObject [LS95] and the
RendezVous [JPPMA99] patterns can be used.

CompositeMessages can be used to transfer the Program from the client
to the server. The CompositeMessages pattern [SC95] applies when different
components must exchange messages to perform a given task. It groups several
messages in a structured fashion, doing with messages what Batching does
with server entry-points. In that way, extra latency due to message delivery
can be avoided and components are decoupled from the transmission medium.
The main difference is that Batching is targeted at the invocation of concrete
server-provided services, not at packaging data structures to be exchanged.

ComposedCommand [Tid98] is similar to Batching in that it bundles sev-
eral operations into a single one. However, Batching is more generic in spirit.

Adaptive Object-Models [YJ02] is an architectural style in which the
users’ object model is interpreted at runtime and can be changed with immediate



Batching: A Design Pattern for Client/Server Interaction 61

effects on the system interpreting it. It is normally seen in advanced commercial
systems in which business rules are stored in places such as databases or XML
files. Although its implementation might resemble the Batching pattern, its
major goal is to provide more flexibility and enable runtime reconfiguration of
business rules and not to improve the performance.

9 Known Uses

Our experience with Batching started when we noticed that a single piece of
design had been used to build systems we already knew well. Then we tried to
abstract the core of those systems, extracting the pattern. Once we identified
the pattern, we tried to find some new systems where it could be applied to
obtain some benefit. We did so [BJP+00] and obtained substantial performance
improvements.

For us, this pattern has been a process where we first learned some “theory”
from existing systems and then applied what we learned back to “practice.” In
this section, we show how existing systems match the pattern described in the
previous sections—certainly, this will lead to a better understanding of the pat-
tern, as happened in our case. We also include a brief overview of the two systems
where we applied the pattern ourselves with a priori knowledge of the pattern.

Note that the Batching design lets a single implementation of the pattern
handle the various applications described below. As the activity carried out at
the server is specified every time a Program runs, the same Batching implemen-
tation could perfectly handle most of the applications shown below. Nevertheless,
existing systems, built without a priori knowledge of the pattern, hardly share
the common code needed to implement all these applications (e.g., gather/scatter
is always implemented separately from message batching facilities, when both
are provided.)

Operating System extensions by downloading code into the kernel (as per-
formed in SPIN [BSP+95], µChoices [LTS+96], and Linux [Hen06]) can be
considered to be an instance of this pattern. These systems use code down-
loading as the means to extend system functionality. The mechanism em-
ployed is based on defining new programs, which are expressed in terms of
existing services.

In this case the Program is the extension performed, the set of Concrete-
ControlStructures depends on the extension language, and the run method
is implemented either by delegation to the extension interpreter or by the
native processor (when binary code is downloaded into the system.)

Agents. An agent is a piece of autonomous code that can be sent to a dif-
ferent domain. Agents may move from one domain to another, carrying its
runtime state [BR05]. The aim is to avoid multiple domain crossings (or
network messages), improving performance, and support disconnection from
the agent home environment.



62 F.J. Ballesteros et al.

Programs built using Batching are meant to stay at the server until
termination, and they possess no go2 statement. However, Batching already
includes most of the machinery needed to implement an agent system; a go
statement could be provided by the command language itself. Nevertheless,
even within the mobile agent paradigm, a very common situation is to have
a single-hop agent that leaves a client, visits a single server and return to
the client, as is the case with Batching.

Gather/Scatter I/O. In gather/scatter I/O a list of input or output descrip-
tors is sent to an I/O device in a single operation. Each descriptor specifies a
piece of data going to (or coming from) the device. Written data is gathered
from separate output buffers. Read data is scattered across separate input
buffers. Its major goal is to save data copies.

In this case, the program is just the descriptor list, where each descriptor
can be supported by a Command. The program run method iterates through
the descriptor (i.e., command) list and performs the requested I/O opera-
tions. The services (i.e., commands) are simply Read and Write.

Note that, by using this pattern, gather/scatter I/O could be generalized
so that the I/O device involved would not necessarily be the same for all
descriptors sent by the user. Moreover, multiple Read and Write operations
could be bundled into a single one.

Message batching. Grouping a sequence of messages into a single low-level pro-
tocol data unit is yet another instance of the pattern. In this case, the run
method (i.e., the interpreter) is the packet disassembler. A program is a bunch
of packets bundled together. Each packet, or each packet header, is a com-
mand that is interpreted by the packet disassembler. This is the Batching
application that more closely resembles ComposedCommand [Tid98].

Deferred calls. Batching can be used to support disconnected operation
[MRM06]. Clients build programs while they perform operations on non-
reachable servers whenever they are in a disconnected state. Upon reconnec-
tion, each program is finally submitted to the target domain for interpreta-
tion. Note that several clients might add code to a single program to be sent
to the server later on.

Each operation is a Command, the list of operations sent to a server is a
Program. The interpreter could be either:
1. the piece of code sending each command when the client is reconnected

to the server, or
2. an actual Program interpreter in the server domain, accepting just a list

of commands (a program)—to save network traffic.
Futures or Promises [LS88] can be used by client code to synchronize with
server responses.

Improving latency in Operating Systems. Many user programs happen to
exhibit very simple system call patterns. This is an opportunity for using

2 The go instruction is typical on Agent systems and is meant to trigger the migration
of an agent to a different location.



Batching: A Design Pattern for Client/Server Interaction 63

Batching to save domain crossings and, therefore, execution time. As a
matter of fact, we have done so by instantiating Batching for two sys-
tems: Linux and Off ++ [BHK+99]. In both systems, we obtained around
25% speedups for a copy program written with Batching [BJP+00].

We implemented two new domain-specific languages (i.e., ControlStruc-
tures and Command sets) that let users bundle separate calls into a single
one, like in the copy example of Section 1. The first language we imple-
mented was based on bytecodes. We included just those commands needed
to code loops, conditional branches, and basic arithmetic. This language was
used both on Linux and Off ++. The second language we implemented was a
high-level one, designed specifically for Off ++. It includes just the commands
needed to Repeat a given operation n times and to perform a Sequence of
operations [BJP+00].

Heterogeneous resource allocation. Most operating systems are structured
as a set of resource unit providers. Separate servers provide resource unit
allocation for different types of resources. In these systems, users issue mul-
tiple requests at a time.

Batching can be used to request allocation of multiple heterogeneous
resources in a single system call. Off ++ is an operating system modeled as
a set of hardware resource unit providers and it uses Batching in this way
to improve the performance of its applications [BJP+00].

Transaction processing. A transaction is a set of operations executed atomi-
cally in isolation [Gra78]. A given transaction can either terminate normally,
by committing, or abnormally, by aborting. Should a transaction abort, its
effects must be undone; otherwise (i.e., when it commits), its results should
be made permanent.

Commits typically involve multiple disk writes for different data items.
Writes must follow a carefully chosen order to preserve the consistency of re-
sults, even when failures occur. One of the strategies uses a redo algorithm
[BHG87]. Such algorithm does not modify the persistent data until the trans-
action is completed, it works on a volatile copy of the data until the commit is
performed. At commit time, a sequence of redo records is written into a disk
log, followed by a commit record. Redo records contain new values for objects
changed by the transaction. Finally, persistent state for objects involved is
updated. If the system fails before the write of the commit record, the trans-
action is aborted and their redo records are ignored. If the system fails after
writing the commit record, redo records are replayed.

Another instance of Batching is group commit [DKO+84], used to avoid
the latency of forced disk writes of log records in each commit. In group com-
mit, instead of forcing the log with each commit, a set of consecutive commits
are batched. Then, a single forced disk write is performed to write all the
log records associated with all the commits, amortizing the latency of forced
disk writes across several commits. This results in a substantial improvement
in throughput for commits.



64 F.J. Ballesteros et al.

Batching can be used both to implement commit and for crash recovery.
Performance of transactional distributed object systems (e.g., Arjuna [SDP91])
could be improved due to the reduced number of domain crossings.

10 Variant

A widely-used variant of this pattern is the Client-side Batching pattern. In
this case, instead of the client sending batched code to be executed in the server,
it is the server that sends code to be executed in the client.

The Client-side Batching pattern is frequently used on the Web where the
inter-domain communication latency is normally very large. Known uses include
Java applets [Boe02], Javascript functions embedded in Web pages [Fla02], and
Macromedia Flash applications [Abe02].

In both Batching and Client-side Batching, the goal is to improve the
response time of the system as perceived by the client and, in both cases, this
is achieved by avoiding multiple cross-domain calls. The difference is where the
batched program is executed, in the client or in the server.

11 Conclusions

Batching unifies several, apparently unrelated, techniques. Most notably, the
pattern integrates techniques to (1) reduce domain crossings and (2) avoid un-
necessary data copying. Encapsulation of the command language has been a key
feature in the integration of existing techniques, decoupling the command set
from the submission method.

We showed eight different applications where the Batching pattern was pre-
viously used and cases where the pattern was applied with a-priori knowledge
of it. A client-side variant of the pattern is also implemented by different tech-
nologies and is widely-used on current Web systems.

Acknowledgments

We are sincerely grateful for the help provided by our shepherd, Frank Busch-
mann, and for the valuable feedback provided by John Vlissides, who suggested
the new name for this pattern (it was previously called CompositeCall). Fi-
nally, we are also grateful to the anonymous TPLoP reviewers and to the mem-
bers of the “Allerton Patterns Project” group of PLoP’99 for their comments
and suggestions.

References

[Abe02] Aberdeen Group: Flash Remoting MX: A Responsive Client-Server Ar-
chitecture for the Web. Technical report, Macromedia White paper (De-
cember 2002)

[BHG87] Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and
Recovery in Database Systems. Addison-Wesley, Reading (1987)



Batching: A Design Pattern for Client/Server Interaction 65

[BHK+99] Ballesteros, F.J., Hess, C., Kon, F., Arévalo, S., Campbell, R.H.: Object
Orientation in Off++ - A Distributed Adaptable µKernel. In: Proceed-
ings of the ECOOP 1999 Workshop on Object Orientation and Operating
Systems, pp. 49–53 (1999)

[BJP+00] Ballesteros, F.J., Jimenez, R., Patino, M., Kon, F., Arévalo, S., Campbell,
R.H.: Using Interpreted CompositeCalls to Improve Operating System
Services. Software: Practice and Experience 30(6), 589–615 (2000)

[Boe02] Boese, E.S.: Java Applets: Interactive Programming, 2nd edn. Lulu.com
(2002)

[BR05] Braun, P., Rossak, W.: Mobile Agents: Basic Concepts, Mobility Models,
and the Tracy Toolkit. Elsevier, Amsterdam (2005)

[BSP+95] Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski, M.,
Becker, D., Eggers, S., Chambers, C.: Extensibility, safety and perfor-
mance in the SPIN operating system. In: Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, December 1995,
ACM, New York (1995)

[DKO+84] DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R.,
Wood, D.: Implementation techniques for main memory database systems.
In: Proceedings of the ACM International Conference on Management of
Data (SIGMOD), pp. 1–8 (1984)

[Fla02] Flanagan, D.: JavaScript: the definitive guide. O’Reilly, Sebastopol (2002)
[GHJV95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Ele-

ments of Object-Oriented Software. Addison-Wesley, Reading (1995)
[Gra78] Gray, J.: Operating Systems: An Advanced Course. Springer, Heidelberg

(1978)
[GSS03] Garfinkel, S., Spafford, G., Schwartz, A.: Practical UNIX and Internet

Security. O’Reilly, Sebastopol (2003)
[Hen06] Henderson, B.: Linux Loadable Kernel Module HOWTO. Technical re-

port, Linux Documentation Project (September 2006)
[JPPMA99] Jiménez-Peris, R., Patiño-Mart́ınez, M., Arévalo, S.: Multithreaded Ren-

dezvous: A Design Pattern for Distributed Rendezvous. In: Proc. of ACM
Symposium on Applied Computing, February 1999, ACM Press, New York
(1999)

[LS88] Liskov, B., Shrira, L.: Promises: Linguistic Support for Efficient Asyn-
chronous Procedure Calls in Distributed Systems. In: Proc. of ACM
Conf. on Programming Language Design and Implementation, pp. 260–
267 (1988)

[LS95] Lavender, R.G., Schmidt, D.C.: Active object – an object behavioral pat-
tern for concurrent programming. In: Proceedings of the Second Pattern
Languages of Programs conference (PLoP), Monticello, Illinois (Septem-
ber 1995)

[LTS+96] Li, Y., Tan, S.M., Sefika, M., Campbell, R.H., Liao, W.S.: Dynamic Cus-
tomization in the µChoices Operating System. In: Proceedings of Reflec-
tion 1996, San Francisco (April 1996)

[MPZ+98] Mohindra, A., Purakayastha, A., Zukowski, D., Devarakonda, M.: Pro-
gramming Network Components Using NetPebbles: An Early Report. In:
Proceedings of the 4th USENIX Conference on Object-Oriented Technolo-
gies and Systems, Santa Fe, New Mexico (April 1998)



66 F.J. Ballesteros et al.

[MRM06] Mikic-Rakic, M., Medvidovic, N.: A Classification of Disconnected Oper-
ation Techniques. In: Proceeding of 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications (EUROMICRO 2006),
pp. 144–151. IEEE Computer Society, Los Alamitos (2006)

[Nai05] Nair, R.: Virtual Machines: Versatile Platforms for Systems and Processes.
Morgan Kaufmann, San Francisco (2005)

[PPE97] Clements, P.E., Papaioannou, T., Edwards, J.: Aglets: Enabling the Vir-
tual Enterprise. In: Proc. of the Managing Enterprises - Stakeholders, En-
gineering, Logistics and Achievement Intl. Conference (ME-SELA 1997),
Loughborough University, UK (1997)

[SC95] Sane, A., Campbell, R.: Composite Messages: A Structural Pattern for
Communication between Components. In: OOPSLA 1995 workshop on
design patterns for concurrent, parallel, and distributed object-oriented
systems (1995)

[SDP91] Shrivastava, S.K., Dixon, G.N., Parrington, G.D.: An Overview of Ar-
juna: A Programming System for Reliable Distributed Computing. IEEE
Software 8(1), 63–73 (1991)

[Tid98] Tidwell, J.: Interaction Design Patterns. In: Proceedings of the Confer-
ence on Pattern Languages of Programs (PLoP 1998), Monticello, Illinois
(1998)

[YJ02] Yoder, J.W., Johnson, R.: The Adaptive Object Model Architectural
Style. In: Proceeding of The Working IEEE/IFIP Conference on Soft-
ware Architecture 2002 (WICSA3 2002). Kluwer Academic Publishers,
Dordrecht (2002)


	Batching: A Design Pattern for Efficient and Flexible Client/Server Interaction
	Introduction
	The Problem
	The Solution
	Pattern Structure
	Participants
	The Pattern Applied to a File Server

	Dynamics
	Implementation Issues
	Composing Programs
	Exception Handling

	Consequences
	Related Patterns
	Known Uses
	Variant
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




