
Published version available at
https: // doi. org/ 10. 1016/ j. entcom. 2021. 100421

Entertainment Computing, Volume 38, May 2021, 100421

Software Architecture for Digital Game Mechanics:
A Systematic Literature Review

Wilson K. Mizutania,∗, Vińıcius K. Darosb, Fabio Kona

aDepartment of Computer Science, University of São Paulo
R. do Matão 1010, São Paulo, Brazil

bWildlife – R. Dr. Renato Paes de Barros 1017, Conj. 81
São Paulo, Brazil

Abstract

Game mechanics, the rules that simulate the virtual world inside a game, take a great part in what makes
a game unique. For digital games, this uniqueness reduces the opportunity for software reuse. A high-level
software architecture for game mechanics, however, can still be reused where a single, specific implementa-
tion cannot. Despite that potential, existing research on game development lacks a comprehensive analysis
of how game mechanics could benefit from the field of software architecture. This limits the opportunities
for developers and researchers alike to benefit from findings on the subject. To help guide future research on
game development, we analyzed the state-of-the-art architectures in game mechanics through a systematic
literature review. This work carefully documents data from 36 studies, analyzing the reflections and com-
promises between design requirements, practices, and restrictions, as well as how they contribute to different
types of mechanics. The main findings are that researchers favor reduced development complexity, but often
tailor their solutions to specific games or genres. We conclude that a valuable avenue for future research in
the field is the generalization of architectural solutions around specific types of mechanics and formalizing
the use of software engineering for game mechanics.

Keywords: systematic literature review, digital games, software architecture

1. Introduction

Digital games are pieces of software developed
for the entertainment of users. From the perspec-
tive of computer science, these applications are real-
time interactive computer simulations most of the
time [1]. On one side, they simulate a virtual world
with an initial state, a number of state-changing
rules, and possible end states. On the other side,
users interact with that simulation by perceiving its
real-time state while also simultaneously affecting it

∗Corresponding author
Email addresses: kazuo@ime.usp.br (Wilson K.

Mizutani), vinicius.daros@wildlifestudios.com
(Vińıcius K. Daros), kon@ime.usp.br (Fabio Kon)

through real-time input devices. For instance, com-
puter graphics studies how to render virtual worlds
onto displays, allowing the user to visually read the
state of the game and, thus, perform an informed
interaction with it. Physics engines such as Bullet1

or Havok2, on the other hand, are tools developed
to simulate the laws of physics inside the game.

However, while interaction is often restricted by
the peripherals available to computers, simulation
is only limited by the computing resources it re-
quires. In practice, this means that games can dif-
fer widely one to the other in terms of the nature
of the virtual world they simulate, as the industry

1pybullet.org/wordpress
2www.havok.com

Preprint accepted for publication in Entertainment Computing April 5, 2021

https://doi.org/10.1016/j.entcom.2021.100421
pybullet.org/wordpress
www.havok.com


has demonstrated over the many decades since dig-
ital games came to be. It is, arguably, part of the
intrinsic value of games. Some might focus on real-
time action dynamics where the player is tested for
their coordination and reflexes, while other games
prefer simulations centered on strategic or puzzle-
solving thinking. Compared to computer graphics,
where there are algorithms and structures known to
provide the interaction features required for most
games – to the point where most successful game
engines support them – there are no standard or
completely generic implementations for simulating
the virtual worlds of games. Instead, every game at
least partly implements its own simulation. Given
the variety of possible virtual worlds, unless some
of their aspects are considerably common – such as
conventional physics simulation – individual simu-
lation implementations offer little reuse to develop-
ers in general.

On the other hand, knowledge about how to de-
sign software solutions in a specific domain – such as
simulation in games – can be reused [1, 2]. For that,
developers rely on the discipline of software archi-
tecture, which allows them to think “in terms of
computational components and interactions among
those components” [3], instead of in terms of specific
implementations. Knowledge of software architec-
ture can take different forms. For instance, data-
driven design is an architectural practice where de-
velopers implement their games without specifying
all of its simulation parameters through code, pro-
viding them as data inputs to the runtime applica-
tion instead [4]. Entity-Component-System, on the
other hand, is an architectural pattern where the
properties of game entities – both inside and out-
side the simulation – are determined by the aggre-
gation of objects (components) as opposed to class
inheritance [2, 5]. Both are examples of reusable
solutions in the architecture level of implementing
simulation in games.

In this systematic literature review, we analyze
the state-of-the-art of software architecture in the
context of digital game mechanics – a concept in
the development of games that is closely tied to
their virtual worlds and how they are simulated.
We explain the relation between them in Section
1.1. After that, Section 1.2 explains how this review
contributes to the field of software architecture in
digital game mechanics and to game development in
general. Section 1.3 shows how game mechanics fit
into the software architecture of games. With that,
Section 1.4 states the formal goals of this review.

Finally, Section 1.5 describes the organization of the
remaining sections of this paper, which comprise
the review itself.

1.1. Game Mechanics

There is no consensus on what “game mechan-
ics” means, despite its widespread use by the game
community. Sicart [6] defines them as “methods in-
voked by agents, designed for interaction with the
game state” and Järvinen [7, page 254] as “means
to guide the player into particular behavior by
constraining the space of possible plans to attain
goals”. Both these definitions consider mechanics
as affordances available to players (or AI agents)
when interacting with the virtual world simulated
in the game. Other authors with similar approaches
to this notion of game mechanics include Osborn et
al. [8] and Dubbelman [9].

These definitions contrast, for instance, with the
definition given by Schell, where mechanics “are the
procedures and rules” of the game [10, page 51],
Adams and Dormans’ definition that “game me-
chanics are the rules, processes, and data at the
heart of a game” [11, page 1], and the definition
used by Hunicke et al., where mechanics “describe
the particular components of the game, at the level
of data representation and algorithms” [12]. These
last definitions assume that mechanics cover the
general inner workings of the virtual worlds simu-
lated in games, whether these rules afford “outside”
interaction or not. Other definitions that follow this
general approach include the work from Larsen and
Schoenau-Fog [13].

A key distinction between these definitions is that
Sicart’s and Järvinen’s definitions allow game input
– an interaction feature – to be part of the mechan-
ics while the definitions used in the works of Schell,
Adams and Dormans, and Hunicke et al. frame
the scope of mechanics predominantly around the
simulation features of games. In fact, Sicart and
Järvinen argue that the rules of a game simulation
should be clearly distinguished from game mechan-
ics. That approach has many benefits in the design
process of games – especially due to the formality
Sicart and Järvinen achieve – but, as software ar-
chitects, we favor definitions that tie mechanics to
simulation rules for the following reasons.

As we mentioned in the beginning of Section 1,
games are software applications designed to enter-
tain users. Schell explains how not only the me-
chanics, but also the technology, the aesthetics, and
the story of a game all equally contribute to the

2



final player experience and each “powerfully influ-
ences each of the others” [10, pages 53]. From the
perspective of this elemental tetrad – as Schell calls
it – the piece of software composing the digital copy
of a game is part of the technology element. It
instrumentalizes the mechanics, the aesthetics and
the story of the game through its simulation and
interaction features.

This is a useful framework because, as software
architects, we can now understand that each com-
ponent of the game software promotes one or more
of the tetrad elements to produce the intended ex-
perience. For instance, an interaction feature such
as rendering the game state onto a digital display
explicitly exposes both the aesthetics and the story
of the game to the user. When a programmer im-
plements the rendering pipeline behind this feature,
they must make sure that the avatars of characters
and that the text of their speeches are properly con-
veyed to the users. That is, the elemental tetrad
provides us a lens to evaluate the impact of the im-
plementation of a given software component over
each other tetrad element and, therefore, the game
experience.

In Schell’s definition, mechanics are the processes
and rules of the game and what “make[s] a game a
game” [10, page 52] compared to more linear en-
tertainment experiences such as books or movies.
Computationally speaking, what mainly enables
game software as non-linear experiences is the fact
that its internal simulation is a state machine, al-
lowing multiple state “paths” from the initial state
to one of the many end states. Adams and Dormans
support this notion when they claim that “rules de-
fine games” [11, page 1] based on further definitions
from the literature. They also argue that a key as-
pect of what makes games fun is that their out-
come is unpredictable due to, among other reasons,
the presence of complex rules. Adams, in a differ-
ent work, further claims that game designers turn
“the general rules of the game into a symbolic and
mathematical model that can be implemented al-
gorithmically” and that this model consists of the
game mechanics [14, page 35]. In this characteriza-
tion of game mechanics, the simulation features of
a game are the ones mainly responsible for comput-
ing mechanics and handling mechanical complexi-
ties, which in turn makes us more explicitly aware of
how these software features contribute to the game
experience.

As such, we have seen that there are many defi-
nitions and interpretations to what “game mechan-

ics” means in game design or game programming.
However, we find that equating game mechanics
to simulation rules is a more useful convention for
studying the software architecture of games because
it exposes the role of the software components that
simulate the virtual world of a game – the role of
implementing the rules that make a game a game.
Furthermore, as we will see in Section 1.2, the
field of software architecture in games would bene-
fit from a standard terminology for game mechan-
ics, which we believe the following definition pro-
vides. Thus, in this systematic literature review,
we define game mechanics as the set of states of a
game virtual world simulation, the definition of the
initial and end states, and the corresponding state-
changing rules. This review presents the state-of-
the-art of the software architecture of digital game
mechanics.

1.2. Motivation

Game developers and researchers have used soft-
ware architecture to improve knowledge reuse in the
implementation of mechanics in games for years.
Several publications study this practice in the in-
dustry, mostly from developers describing the so-
lutions they used in their games [15, 16, 17]. It is
also often present when developers discuss broader
topics of software architecture in games [1, 2, 5, 4].
Although most do not adopt open source licenses,
many game engines make at least part of their
source code available on-line – such as Godot3,
CRYENGINE 4, Unity3D5, Lumberyard6, among
others – widely providing reusable knowledge about
game architecture.

However, we see that, outside of physics me-
chanics, general-purpose game engines do not of-
fer any precise architecture for implementing the
mechanics of games developed with them. In fact,
more genre-specific engines such as RPG Maker7

do provide reusable frameworks for the commonly
expected mechanics of role-playing games, such as
combat, character progression, inventory manage-
ment, etc. We consider this an evidence that archi-
tectural knowledge, including when and how to ap-
ply it, promotes the reuse of past efforts in the par-
ticularly open-ended implementations of mechanics
in games.

3github.com/godotengine/godot
4github.com/CRYTEK/CRYENGINE
5github.com/Unity-Technologies/UnityCsReference
6github.com/aws/lumberyard
7rpgmakerweb.com

3

github.com/godotengine/godot
github.com/CRYTEK/CRYENGINE
github.com/Unity-Technologies/UnityCsReference
github.com/aws/lumberyard
rpgmakerweb.com


Notwithstanding, academic publications, differ-
ently from the entertainment- and commercial-
oriented goals of game companies, have other rea-
sons to turn to digital games. Edutainment, per-
vasive games and artificial intelligence are common
examples of fields that study digital games but do
not necessarily share interests – and thus, experi-
ence – with the industry. Because of this diver-
sity, depending on the background, authors un-
knowingly use different terms to refer to the me-
chanics of digital game architectures. For instance,
they call it the “domain model” [18], “game logic”
[19], “game rules” [20], and even “G-factor” [21].
Sometimes, the terms cover wider or stricter as-
pects of the definition for “mechanics” we proposed
in Section 1.1.

This lack of standard terminology among com-
puter science researchers prevents authors from re-
liably finding previous works for reference, which
in turn may lead to duplicate efforts and redun-
dant studies. This also makes unclear what the cur-
rent advances in the software architecture of digital
game mechanics are. Thus, future research in this
area – which improves software reuse in front of the
endless design space of games for both developers
and researchers – requires first a structured under-
standing of the state-of-the-art to reconcile its di-
verse backgrounds and motivations. In other words,
despite the numerous contributions to the study of
software architectures of digital game mechanics, it
is just not clear how much is covered compared to
the industry or if there are any organized intents of
doing so and how they are characterized.

1.3. Software Architecture in Games

To study the architecture of game mechanics it
is useful to first determine our expectations and as-
sumptions over the general architecture of games.
Though the diversity of platforms, genres, and scale
of games is vast, there is one architectural pattern
most, if not all, game software abide by: the Game
Loop [1, 2]. In this pattern, an endless loop is re-
sponsible for synchronizing the interaction and the
simulation computations of a given game. By keep-
ing track of user time and alternating between in-
teraction queries and simulation steps at sufficiently
high frequencies (usually 30 or 60 cycles per sec-
ond), the Game Loop ensures that user input is
translated into its corresponding mechanics as soon
as possible and that what the user sees and hears in
real-time corresponds to the most up-to-date state
of the simulation.

The many interaction and simulation features of
a game are usually spread across different subsys-
tems [1, chapter 5] which the Game Loop services
periodically. Each subsystem usually has a main
routine for updating its corresponding part of the
general game state (both simulation and interac-
tion states) [2, chapter 10]. Despite our didactic
separation between interaction and simulation fea-
tures, game implementations do not necessarily di-
vide them explicitly when assigning roles to each
subsystem. However, software architecture studies
on interactive software not only claim that isolat-
ing interaction modules from domain-specific mod-
ules is a good separation of concerns but also pro-
pose an architectural pattern known as the Model-
View-Controller (MVC) [22, 23] to formalize this
architectural separation. This pattern assigns high-
level control flow of an application to Controllers,
which mediates user interface features in the View
modules with domain-specific features in the Model
modules.

In particular, Olsson et al. [24] argue that game
development very much benefits from the use of this
pattern. They highlight how a clean separation be-
tween the View (interaction) and the Model (sim-
ulation) improves the cross-platform support of a
game (since the same game mechanics can be reused
by simply changing the View modules) among other
enhancements to software quality. Theoretically,
then, game software uses the Game Loop pattern
as the Controller in a Model-View-Controller ar-
chitecture, dividing its subsystems between View
subsystems and Model subsystems. When collect-
ing data from the studies in this review, we are
interested in the architecture used in “Model” sub-
systems. When such a division is not explicit, we
investigate the architecture of any subsystem that
computes at least part of the game mechanics.

We are also interested in what types of mechan-
ics different architectures are more useful for. To
measure that, we propose a categorization of game
mechanics from the perspective of their implemen-
tation characteristics, though we use Adams and
Dormans’s [14, 25] game-design-based (and non-
exhaustive) classification as a starting point. We
chose their classification since our definition of game
mechanics is aligned with theirs. They divide game
mechanics into physics, internal economy, progres-
sion mechanisms, tactical maneuvering, and social
interaction.

Physics mechanics involve time and space-based
mechanics in the virtual world of the game. They

4



involve the simulation of space, bodies, and mo-
tion. This typically includes representing the posi-
tion and shape of elements in the virtual world and
simulating how they would physically collide if they
were in the real world. However, not all games fol-
low conventional physics, so this category includes
movement and collision mechanics in discrete grid-
based spaces, for instance. Computationally, these
mechanics require specialized data structures and
algorithms that allow efficient queries about simu-
lation positions, collisions, and force integrations.
In particular, spatial-partitioning techniques that
allow finding simulation objects based on their in-
game location are necessary for guaranteeing good
performance in larger games. As mentioned before,
“real-world” physics is so common in games that a
number of software libraries and engines have been
developed for physics reuse in games. As such, sub-
systems that implement these structures and algo-
rithms are categorized as supporting physics me-
chanics in this review.

Internal economy, as Adams and Dormans ex-
plain [14, 25], relate to the manipulation of virtual
in-game resources such as currency, health, skills,
items, cards, units, etc. A straightforward exam-
ple is a store where the player’s character can ex-
change a collectible currency for useful supplies,
but economy mechanics cover a broader range of
features. When a mage character spends magical
energy to conjure a huge rock into existence, the
conversion from energy into creation is part of the
economy mechanics. When the defensive system
of the player’s spaceship is powered, the rules and
calculations that determine that this act will cause
the oxygen supply to stop working for a lack of
power also belong to the economy mechanics. In
card games, paying to play a card by discarding
or tapping other cards is one of the many possible
economy mechanics in the genre.

In terms of their implementation, economy me-
chanics involve more scalar data as compared to
the predominantly vectorial data of physics. By
exclusion from physics mechanics as well, economy
mechanics do not have any locality by themselves,
which means a procedure implementing economy
mechanics can potentially access and write to any
part of the economy state of the simulation unless
there are physics mechanics that say otherwise. For
instance, in a platform game, a player may only col-
lect coins if they touch them, but a card in a card
game might change the state of any other card in
the entire board. Due to this contrast in the imple-

mentation between physics and economy, we con-
sider internal economy a category of interest in our
review.

Progression mechanisms are mechanics related to
the progression of the simulation state of a game
from start to finish, such as the transition between
stages, story “flags” that indicate advances in the
plot, win and loss conditions, etc. These mechanics
operate over the “narrative state” of the game, usu-
ally moving the simulation towards a certain con-
clusion. A progression mechanism can range from a
simple timed trigger that prevents the player from
meeting a certain goal, to how the mood of non-
playable characters toward the player affect which
plotline the game will follow.

In terms of their implementation, progression
mechanisms complement physics and economy fea-
tures by tying them to higher-level simulation
states, such as what stage the player is currently on
or how many points they need to beat a challenge
and proceed with the game story. Progression me-
chanics are also often associated with the interac-
tion modes of a game. In role-playing games, for in-
stance, interaction modes alternate between world
exploration (mostly physics-based) and combat res-
olution (mostly economy-based). The sequence of
world sections players can explore and the battles
they fight are part of the progression mechanisms as
well. Many engines provide a “scene” abstraction
to represent each interaction mode or progression
state inside the simulation (stages), often supported
by data-driven decoupling of scene data and engine
code. As such, we consider progression mechanisms
to be a relevant category for mechanics in our re-
view under the revised name of “narrative progres-
sion”.

Tactical maneuvering consists of mechanics that
associate the placement of simulation entities with
some form of in-game advantage or disadvantage.
In a strategic war game, units might protect them-
selves better if they are within a mountain range,
for instance. Computationally, this means that cer-
tain physical states cause changes in the economy of
the game. In the war game example, entities within
the area of the mountain range (a physics collision
check) gain a boost to their defenses (a change to
a combat resource, which is part of the economy).
For this reason, our proposed categories do not in-
clude tactical maneuvering, which we argue are im-
plemented in terms of direct interactions between
physics and economy states of the simulation.

Social interaction mechanics make two or more

5



players interact through the game. These inter-
actions can be competitive or cooperative, such
as player-versus-player challenges in on-line games
or team coordination in real-time tactical games.
Although the simulation implementation might be
aware of what entities belong to players, it does not
need to treat interactions with them any differently.
As its name suggests, we believe that interaction
features are what makes social interaction possible
in games, be them through the sharing of a video
game screen or by connecting multiple devices via
the Internet. Thus, we do not consider social in-
teraction a pertinent mechanics category for this
review. This is one of the points where our defi-
nition of mechanics diverges from the one used by
Adams and Dormans [14, 25].

1.4. Objective

We discussed the importance of game mechanics
in the development of entertaining experiences and
how software architecture knowledge provides reuse
that complements the reuse of actual implementa-
tions in that context. However, academic studies in
this field have yet to uniformize their terminology
and efforts, making unclear what the current state-
of-the-art is and what research venues demand fur-
ther investigation. In general terms, we aim to de-
termine this state-of-the-art as well as the current
challenges and research opportunities of software
architecture solutions for digital game mechanics.
More specifically, based on all uses of software archi-
tecture applied digital game mechanics across the
reviewed studies, we want to analyze, present, and
discuss:

1. what system requirements motivate them;

2. what types of game mechanics they support;

3. what are their design limitations; and

4. what future research they would benefit from.

1.5. Text Organization

Section 2 describes works that are similar or re-
lated to our systematic literature review, mostly
other literature surveys whose scope intersects with
ours. Next, in Section 3, we detail the methodology
used, presenting the review protocol we designed
and followed, including our research questions. In
Section 4, we present the data collected from the re-
viewed studies, an overall categorization, and quan-
titative results regarding each research question.
Section 5 analyzes the results of the review, high-
lighting any relevant patterns in the characteristics

and interactions between requirements, practices,
restrictions, and types of mechanics among the re-
viewed studies. It also discusses the opportunities
for future research we found from the analysis of
the literature. Finally, Section 6 draws conclusions
about the state-of-the-art of software architecture
in digital game mechanics, based on the findings
from previous sections.

2. Related Work

Morelli and Nakagawa’s systematic mapping [26]
identifies the most common software architecture
topics (reference architectures, frameworks, design
patterns, etc.) in game development research, as
well as the most commonly investigated game sub-
systems (graphics, audio, network, etc.). Differ-
ent from our proposal, their study considered ap-
plications of software architecture in all areas of
digital game development, while we focus on the
more specific field of mechanics, excluding subsys-
tems designed for either interaction features (graph-
ics, audio, input), infrastructural features (network-
ing, hardware, control), or artificial intelligence. In
fact, the only mechanics-related subsystem Morelli
and Nakagawa consider in their mapping is physics,
while we also account for economy and narrative
mechanics. Additionally, since our study is a sys-
tematic literature review instead of a systematic
mapping, our research questions target more spe-
cific topics and the analysis of the studies goes into
deeper considerations. However, since our field of
interest is a subset of the field mapped in their
study, we reuse some of their search and selection
parameters, as described in Section 3.

Ampatzoglou and Stamelos’ systematic litera-
ture review [27] studies the applications of software
engineering to game development and determines
the most commonly addressed topics and research
methodologies in that field. As such, their study
addresses an even broader field of which software
architecture is only a part. In particular, only 3%
of studies they reviewed proposed software archi-
tectures; also 3% of studies investigated software
design in games, and 2% of them regarded soft-
ware reuse. That is, Ampatzoglou and Stamelos’
work motivates our study on software architecture
in games since the topic is shown to be underex-
ploited. Their review also characterizes the litera-
ture surrounding the field of software architecture
of digital game mechanics. We borrow from their
methodology too, as we explain in Section 3.

6



There are a few other secondary studies (studies
about studies, such as literature reviews) regarding
different aspects of software engineering in game de-
velopment. Zhu et al.’s systematic literature review
[28] investigates the network architecture of games
using the Game World Graph framework to identify
research opportunities. Shi and Hsu [29] present
the state-of-the-art of interactive remote rendering
systems, which is the research field behind cloud
gaming. Yahyavi and Kemme [30] survey peer-to-
peer architectures of massively multiplayer online
games. None of these studies specifically address
the architecture of digital game mechanics.

3. Methodology

We conducted this study in the form of a sys-
tematic literature review (SLR) [31, 32]. Like any
other academic survey, SLRs aim to answer a set of
research questions inside a given field of knowledge
through the investigation of studies previously per-
formed on it. Authors commonly refer to the latter
as primary studies and, as secondary study,
the review itself [31, 26]. The characterizing fea-
ture of SLRs compared to surveys, in general, is
the formal structure of the methodology, which re-
duces bias in the selection and analysis of primary
studies while also promoting reproducibility of the
review itself.

An SLR is performed in three phases: first, the
authors design the protocol they will use in ad-
vance, and review it as necessary; second, they con-
duct the review itself, following the protocol estab-
lished in the previous step; third, they report the
results of the study [31, 32]. The foundation of an
SLR, which guides all of its phases, is the research
questions it addresses.

The protocol makes clear the process that led the
authors to the results and conclusions they claim.
It typically contains (1) the research questions, (2)
a study selection strategy, and (3) a data extrac-
tion method. Additional steps are included accord-
ing to the needs of a particular SLR. In our work,
the protocol designed during the planning phase is
composed of the following steps:

(1) Research Questions – Section 3.1;

(2) Search Strategy – Section 3.2;

(3) Selection Criteria – Section 3.3;

(4) Fitness Assessment – Section 3.4; and

(5) Data Extraction – Section 3.5.

The particular protocol used in this review
adapts Kitchenham and Charters’ technical report
on systematic reviews for software engineering [31]
– originally aimed at reviews of formally empirical
studies – to the specific context of software architec-
ture. For our review, we also broadened the analysis
to consider studies that propose architectures with
varying degrees of validation, not only those with
formal verifications. To compensate for this, we in-
clude an assessment of the level of validation of the
reviewed studies – step (4) above – as part of the
data extraction and analysis.

3.1. Research Questions

Since the aim of this study is to characterize the
relation between software architecture and the im-
plementation of digital game mechanics in academic
research, our review plan required the following re-
search questions to be addressed:

RQ1. What software design challenges do researchers
face when implementing game mechanics?

RQ2. What software architecture practices and pat-
terns do researchers use for the implementation
of game mechanics?

RQ3. What types of mechanics most often require,
in research, the use of architectural practices
and patterns, and which are they?

Software architecture is a discipline researchers
rely on to understand and express the “elements
from which systems are built, interactions among
these elements, patterns that guide their composi-
tion, and restraints on those patterns” [3]. The
software design of a system might target one or
more of these structural qualities for a number of
practical reasons. The purpose of RQ1 is to iden-
tify what these reasons are in the context of digi-
tal game mechanics, making explicit the areas that
require the most attention from software architec-
ture research. RQ2 complements that information
by inquiring what software architecture researchers
use to develop game mechanics. That provides us
with an understanding of what is the state-of-the-
art of this field of knowledge, as well as what are the
predominant approaches and their eventual short-
comings. Finally, RQ3 aims to determine what is
the demand for software architecture solutions from
each category of game mechanics – i.e., physics, pro-
gression, and economy mechanics (as per Section
1.3) – as a means of measuring the impact further
research could have on each of them.

7



3.2. Search Strategy

To select primary studies, an SLR must first de-
termine one or more sources – i.e. digital libraries –
from which to pool those studies, and what search
terms and filters to apply [31]. However, since
the subject of game mechanics is quite specific, we
found that wording the search terms too precisely
resulted in a very limited set of studies. We at-
tribute this to the problem of lack of terminology
conventions in game-related research discussed in
Section 1.2, which means many studies do regard
game mechanics but use different names to refer to
them, or do not name them at all. Because of this,
we opted for broader search terms and delegated
the responsibility of removing irrelevant studies to
the inclusion and exclusion criteria (Section 3.3).

The final list of primary study sources consisted
of digital libraries considered dominant publishers
in the field of entertainment computing, and was
based on the list used in Ampatzoglou and Stame-
los’ systematic literature review [27] (from Section
2): ACM Digital Library (with default parame-
ters), IEEE Xplore (with default parameters), and
Springer Link (filtered for the “Computer Science”
discipline).

As for the search terms, we chose the string used
by Morelli and Nakagawa’s systematic mapping [26]
(from Section 2), which prioritized studies which
regard both games and software architecture, but
may or may not discuss the game mechanics:

("computer game" OR "video game" OR

"digital game") AND "software

architecture"

3.3. Selection Criteria

Once the starting pool of primary studies is de-
fined, the next step in the protocol of an SLR speci-
fies how to select relevant studies from among them.
This is done by deciding on inclusion and exclu-
sion criteria [31, 32, 27, 26]: a primary study is se-
lected only if it meets all inclusion criteria and does
not match any exclusion criteria. We chose a single
inclusion criterion, which effectively attests whether
a study contributes to the discussion brought about
by our research questions:

IC1. The study describes the investigation of one
or more software architecture practices or pat-
terns for implementing gameplay mechanics in
digital games.

As for exclusion, we elected five criteria:

EC1. The study is not in English

EC2. The study does not have an abstract

EC3. The study is in abstract-only format

EC4. The study is not peer-reviewed

EC5. The study is a duplicate

EC1 to EC4 exclude studies that do not meet
the minimum requirements for our SLR, usually be-
cause its publication is inaccessible to us or its con-
tribution is not formally recognized by peers. EC5

removes studies that are shorter or previous ver-
sions of other studies to avoid duplicate data. Fi-
nally, IC1 detects whether a given study does not
address our research questions. Even if the context
of a study lies outside the field of software archi-
tecture, this inclusion criterion accepts the study if
it contains relevant discussions around the software
architecture of game mechanics.

3.4. Fitness Assessment

Since we impose no restrictions on the method-
ologies the collected studies adopt, our protocol in-
stead assigns them a fitness assessment. Its pur-
pose is to measure how relevant each selected study
is towards answering the research questions. For
instance, studies that propose a certain software ar-
chitecture but do not detail its design nor present
a reference implementation receive a low fitness as-
sessment since we cannot fully benefit from their
contributions. That is, we wish to measure how
helpful a study is for our research. Each study
was thus assigned a fitness assessment value in the
range [0, 1] – 0 means the study has no substan-
tial contributions towards answering the research
questions and 1 means the study addresses every-
thing we need to answer the research questions.
To formalize the criteria used to assign a fitness
assessment value, we designed five fitness scores
(described ahead) whose values are chosen from
{0, 0.25, 0.5, 0.75, 1} for each study. The fitness as-
sessment value of a study is thus computed by av-
eraging the scores together. The fitness scores mea-
sure different aspects of how a study could con-
tribute to our review. To reduce bias, we had two of
the authors assign scores independently to selected
studies, then discuss discrepancies and find a con-
sensus, as recommended in the literature [31]. We
list and explain each fitness score in the rest of this
section.

8



3.4.1. Study Documentation

This score measures the level of documentation
in a study, that is, how accessible are its resulting
artifacts. One parameter we use to establish a value
for this score is whether studies provide access to
source code and data produced in the authors’ re-
search. We also consider how clear the text presents
any proposed architecture, in the sense of how much
it enables the reader to reproduce the architecture
on their own.

3.4.2. Discussion of Architectural Choices

This score indicates how much the authors of a
study elaborate on the motivation for the software
architectures they chose. We found that many of
the selected studies are not about software architec-
ture, but about game-related technologies or games
themselves. In these cases, they might not fully ex-
plain why a certain architecture was used since it
falls out of scope for their study.

3.4.3. Description of Architecture Design

This score points out how detailed are the de-
scriptions of proposed software architectures in a
study. Here, we are especially interested in under-
standing the design patterns used, as well as archi-
tecture diagrams and other illustrations that clarify
the relations between different subsystems of game
mechanics.

3.4.4. Presence of Reference Implementation

This score accounts for how much a study ex-
plains the process of turning its proposed design
into practical implementation. This is usually done
through a reference implementation, but any imple-
mentation that illustrates the use of an architecture
counts for the purpose of this assessment.

3.4.5. Study Validation

Finally, the last score measures the formality
with which the authors validated their study. For
instance, proposals which have been successfully
used in case studies are considered to have a partial
validation. Studies with quasi-experiments, exper-
iments, or other formal empirical methods, rank a
higher score.

3.5. Data Extraction

After studies have been collected and selected,
the next step towards answering the research ques-
tions is extracting relevant data from them. First,

we need basic information such as venue and year
of publication. Besides that, we need the fitness
assessment value, which comes from the five fitness
scores as explained in Section 3.4. Last and most
importantly, we are interested in how each study
addresses our research questions. To collect this
information, we designed a form with seven data
fields that we filled for each selected study. Every
study is assigned a unique identifier and, as with
the fitness assessment, we had two of the authors
fill the forms separately, then converge the analysis
later. The data fields in the form are:

F1. Source venue (conference proceedings or jour-
nal)

F2. Year of publication
F3. Fitness assessment
F4. Software Design requirements
F5. Software architecture practices and patterns
F6. Type of game mechanics supported
F7. Design restrictions

F1 to F3 are simple metadata from the study
(including the fitness scores and assessment value
calculus). F4 describes what structural qualities
a study aimed for when proposing its software ar-
chitecture (e.g. scalability, portability, etc.). F5

enumerates practices the study used from the disci-
pline of software architecture (e.g. design patterns,
model-driven development, etc.) as well as architec-
tural patterns. F6 specifies what types of mechan-
ics are supported by the proposed architecture of a
study. Here we use the classification discussed in
Section 1.4, i.e. an architecture supports any com-
bination of physics, economy and progression me-
chanics, but not all three at the same time. When
a study supports all three types of mechanics, we
assign it a special code, as shown in Sections 4.1
and 4.4. Lastly, F7 points out the shortcomings of
the architecture proposed by the study.

For the qualitative fields F4 to F7, we used the
coding method from grounded theory [33] to rep-
resent the data: each of these fields is assigned a
list of codes indicating all the corresponding topics,
approaches, techniques, and issues that we iden-
tified in each study. A code assigned to a study
may not necessarily appear explicitly on its text,
because authors may rely on a concept without for-
mally stating they did. For instance, an architec-
ture found in a study can make evident use of the
Entity-Component-System pattern even if its au-
thors do not mention it, in which case we will assign
the corresponding code.

9



4. Results

We performed the search strategy described in
Section 3.2, collecting all matching studies as of
April 4th, 2018, then later again on August 12th,
20198. Then, using the inclusion and exclusion cri-
teria from Section 3.3 we selected relevant studies.
The selection comprised two passes, which one of
the authors carried out. During the first pass, we
applied the criteria only to the title and abstract of
the studies, while in the second pass the remaining
studies were selected based on their full text. The
initial search resulted in 512 studies; after the two
selection passes, we found 36 of them were relevant
to our research questions. Table 1 shows how many
studies we had after each selection pass, separated
by source. Appendix A lists all selected studies.

4.1. General Results

Once we established the pool of selected studies,
we read each of the studies to assign their fitness
scores (Section 3.4) and collect the data needed to
answer the research questions (Section 3.5). We
had two authors independently read the studies,
evaluate their fitness, and collect data using this
process, then merged the results. The authors dis-
cussed evaluations that differed by 0.5 score points
or more, increasing or decreasing the assigned val-
ues accordingly whenever the discussions led to
reevaluations of the studies. After resolving all of
these cases, for each study, we used the average of
the fitness assessment values produced by each au-
thor as the final value used for analysis. As for
the data, we used the union of codes assigned to
a given study to know what data it contained and
used the sum of their counts when analyzing the
frequency of the data. All the data and fitness as-
sessment values (together with the originating fit-
ness scores) of the studies can be found in a sep-
arate document9. Table 2 shows the codes found
for the qualitative data fields F4 through F7. Since
F5 regards well-established treatments used in soft-
ware development and studied in software engineer-
ing, we chose to use references to indicate explicitly
where they come from. Additionally, as we better
explain in Section 4.4 when we analyze the codes of
field F6, the All code is a special case.

8The second time we collected studies, we limited the
search to studies published since the previous collection.

9https://www.ime.usp.br/~kazuo/slr2020/data.xlsx

Since we do not filter studies by their research
field, a significant part of them are not direct pro-
posals in the disciplines of software engineering or
software architecture. They were rather from fields
such as serious games [42], where authors use games
for purposes beyond entertainment, such as edu-
cation or health care. In these cases, the studies
often approached the subject of software architec-
ture only tangentially, thus receiving a lower fit-
ness assessment. For instance, selected study S23

proposes a story-based exercise game system for
children which relies on light and audio devices to
provide immersion for students. The focus of that
study is in the novel use of these devices to encour-
age the participation of kids and their evaluation
measures how much they succeed in that regard.
The software architecture of that system is only dis-
cussed in a brief section (Section 4.1) and is of no
further relevance to the interests of study S23. As
such, we cannot know what were the benefits and
restrictions of the architecture they designed. In
other words, some studies did not fully contribute
towards answering our research questions, despite
the contributions they provide for other research
fields.

We found this to be a relevant factor to consider
in our analysis and classified the studies accord-
ingly, depending on whether they (1) explicitly pro-
pose a software architecture for game mechanics,
(2) incidentally discuss it as part of a wider inves-
tigation of software engineering, or (3) regard some
other area of game development but had at least
a minor part of their texts discuss architecture of
game mechanics. These other areas often included
different combinations of types of serious games,
like educational games (edugames) [42], pervasive
games [43], and exergames (games for physical ex-
ercise and health care) [44]. Figure 1 shows the dis-
tributions of studies according to these categories
(the exact studies of each category can be found in
Table B.1 in Appendix B).

We processed data gathered from the studies to
answer the research questions stated in Section 3.1.
Sections 4.2, 4.3, and 4.4 respectively address RQ1,
RQ2, and RQ3. In those sections, we provide a
broad view of the data, highlighting immediately
notable occurrences for reference in Sections 5 and
6. We present the results from fields F4 to F7, using
a bar chart for each of them (Figures 2, 3, 4, and 8).
These charts show how many selected studies (in
percentage) contain each code for that field, from
the most common to the least common. We call this

10

https://www.ime.usp.br/~kazuo/slr2020/data.xlsx


Source Keyword search Abstract pass Full-text pass
ACM Library 39 16 9
IEEE Xplore 106 29 7
Springer Link 368 51 20
Total 512 96 36
Inclusion rate 100% 19% 7%

Table 1: Number of studies by source after each selection pass

F4. Software design requirements
Accessibility Context-awareness
Emergent behavior Didactic development
Distributed-development friendly Domain model mapping
End-user development Extensibility
Flexibility Heterogeneous hardware
Integration with third-party tools Pattern conformance
Performance Portability
Minimization of brittle code Minimization of coupled code
Minimization of fragile code Rapid prototyping
Reusability Run-time adaptability
Security Testability
Type consistency Unstable network tolerance
Verifiability
F5. Architectural practices and patterns
Adaptive Object-Model [34] Custom Architecture
Data-driven design [1, 4] Design patterns [35]
Event-driven [3] Entity-Component [1, 2]
Inheritance-based [2] Layered subsystems [3]
Model-driven development [36] Model-View-Controller [22, 23]
Ontology-driven architecture [37] Modularization
Reference architecture [38] Requirements analysis [39]
Reuse of components [40] Test-driven development [41]
F6. Types of game mechanics supported
Economy Narrative progression
Physics All
F7. Design restrictions
Complex usage Does not scale well
Encourages hardcoding Game-specific
Genre-specific Incomplete
No proposed design No direct support for complex mechanics
Outdated requirements Outside-code support only
Requires cost/benefit analysis Requires domain-specific knowledge
Requires end-user expertise Technology-dependent

Table 2: Data codes found in the reviewed studies for F4 through F7.

11



Figure 1: Studies divided by their major research field.

metric the frequency of a code. For the precise list
of codes assigned to each study, see Tables B.2–B.5
in Appendix B.

4.2. Software design challenges (RQ1)

Figure 2 shows the frequency of selected stud-
ies containing codes that express software design
requirements (F4). We can see that Reusability,
Flexibility, and Extensibility are, by a significant
margin, the most common requirements when de-
signing or choosing a software architecture for game
mechanics, present in approximately 40% of stud-
ies. Other common codes for design requirements
include Performance, Integration with Third-Party
Tools, Heterogeneous Hardware, Portability, Do-
main Model Mapping, Didactic Development, and
Rapid Prototyping, present in between 18% and
23% of studies. Among the less frequent codes,
present in less than 10% of studies, we find many
codes regarding software stability, such as Pattern
Conformance, Minimization of Fragile Code, Min-
imization of Brittle Code, Verifiability, and Type
Consistency.

Figure 3 illustrates the frequency of codes for
each design restriction we found in the reviewed
architectural solutions. The most common restric-
tion among selected studies was the Technology-
Dependent code. This code was used to indicate
studies where the design of its proposed architec-
ture is coupled enough to third-party technology
that it is not self-evident how it could generalize to
games and engines that did not use such technol-
ogy, either because they chose another implemen-

tation or developed their own. The two most com-
mon cases of this were studies that used Unity3D,
proposing architectures that relied on the particu-
larities of that engine, and studies about pervasive
games which required the use of very specific hard-
ware and/or software to integrate their games and
tools with special peripherical devices.

Other common restrictions found were No Direct
Support for Complex Mechanics, Genre-Specific,
and Game-Specific, present in 29% to 45% of se-
lected studies. No Direct Support for Complex Me-
chanics is a code for proposed architectures that
do not formalize a way to increase the interaction
between mechanics – which is what we considered
“complex mechanics”. An example would be stud-
ies that use inheritance to model the types of en-
tities simulated in a game or engine because it is
usually hard to mix-and-match types in a hierar-
chical architecture [2, chapter 14]. That is, once
two different types of entities are defined in different
branches of the hierarchy, it is hard to implement
a new type with characteristics from both without
incurring in either repeated code or dangerous mul-
tiple inheritance. Another example of complex in-
teraction is when mechanics can dynamically affect
the behavior of other mechanics, like when differ-
ent equipment completely changes the way a char-
acter moves (walking, jumping, flying, swimming,
etc.). Architectures that do not explicitly address
any possibility of this kind were thus coded with
No Direct Support for Complex Mechanics.

12



Figure 2: Frequency of selected studies coded with each software design requirement found in the review. For the full list of
studies with each code, see Table B.2 in Appendix B.

Figure 3: Frequency of selected studies with codes for different design restrictions. For the full list of studies with each code,
see Table B.5 in Appendix B.

4.3. Architecture patterns (RQ2)

Figure 4 illustrates the frequency of selected stud-
ies that contain codes related to architectural prac-
tices (F5). We can see that Data-Driven De-
sign is, by a considerable margin, the most com-
mon code, present in 45% of studies. Other
common practices are Inheritance-Based Entities,

Layered Systems, Design patterns, Modularization,
and the Entity-Component pattern, present in be-
tween 20% and 30% of selected studies. However,
other practices with active research fields in soft-
ware engineering and architecture are less promi-
nent among selected studies, such as Reference
architecture, Model-Driven Development, Model-

13



Figure 4: Frequency of selected studies with codes for different architectural practices. For the full list of studies with each
code, see Table B.3 in Appendix B.

View-Controller, Adaptive Object-Model, and Test-
Driven Development, present in less than 10% of
studies.

Next, we complement the presentation of re-
sults by inspecting the fitness assessment (from Sec-
tion 3.4) assigned to the selected studies and com-
paring them to codes in data field F5 (architectural
practices and patterns). That is, instead of count-
ing how many studies contain each code like in Fig-
ure 4, we now consider the total fitness assessment
of the codes. To do so, we summarize how much
contribution there is for a given code across all re-
viewed studies by considering the fitness assessment
value of each study with that code. Basically, we
ponder the code count by the fitness assessment
values of the corresponding studies:

A(code) =

∑36
i=1 aici(code)∑36
i=1 ci(code)

(1)

Where A(code) is the total fitness assessment of
the code, ci(code) ∈ {0, 1} counts whether the i-th
study contains the code, and ai ∈ [0, 1] is the fitness
assessment value of the i-th study. This means each
count adds at most one, making the maximum the-
oretical value for the numerator be the total count
of that code. We are interested in the percentage of
that total that the code actually scored, hence the
denominator. Figure 5a shows that metric.

We observe that all practices have fitness greater
than 50% and there is no clear correlation between
the total fitness assessment and the frequency of
codes. For instance, Adaptive Object-Model and
Model-View-Controller exhibit simultaneously the
greatest fitness and the lowest frequencies. To fur-
ther explore the relationship between fitness and
frequency, we computed the ratio between them for
each code in F5. We called this metric the fitness-
frequency ratio of a code, and the result is presented
in Figure 5b. High values indicate practices with a
high fitness score but present in few studies. In ad-
dition to Adaptive Object-Model and Model-View-
Controller, we see Ontology-driven, Custom archi-
tecture, and Reference architecture with high ratios,
while Data-Driven Design shows a considerably low
ratio. We interpret these results in Section 5.

In addition to the frequency of architectural prac-
tices exhibited in Figure 4, we wish to understand
what motivated studies to adopt each practice. For
that, we analyze the connection between practices
and the design requirements from Figure 2. This
is shown in Figure 6, where each circle is associ-
ated with a practice-requirement pair by its po-
sition, and the percentage of studies that contain
both corresponding codes (we show only pairs with
10% or more in this case). To extract significant
information from this chart (and the others shown

14



(a) Total fitness assessment of practice codes.

(b) Fitness-frequency ratio of practice codes, following the same order from 5a.

Figure 5

15



Figure 6: Frequency (in percentage) of intersection between requirements (horizontal axis) and architectural practices (vertical
axis). We show only intersections with three or more studies.

after it), it is important to consider the original fre-
quency of each code, since very common codes are
more likely to have larger bubbles even if there is no
real association with the other codes. This means
we are interested in pairs that have a high percent-
age but one of the codes is not as frequent, or the
opposite. The first thing to notice is the high den-
sity in the columns of Extensibility, Flexibility, and
Reusability as a consequence of the high number of
studies listing these characteristics as requirements
– which we know from Figure 2. Moreover, Data-
Driven Design is the most common practice asso-
ciated with these three requirements.

We are also interested in understanding the de-
sign restrictions associated with noteworthy prac-
tices. This relationship is pictured in Figure 7,
as the frequency of each practice-restriction pair
found in studies. As we can see, the most recur-

rent restriction independently of practice adopted
is No Direct Support for Complex Mechanics, which
was also the second most common design restric-
tion in Figure 3. Surprisingly, Data-driven design
is the practice with the most associated restrictions.
The practice with the second-highest increase of re-
strictions is Inheritance-based, which, in particular,
increases the frequency of the No Direct Support
for Complex Mechanics code from 35% in Figure
3 to over 50%: an intersection of 15% in Figure
7 of the original 29% Inheritance-based codes in
Figure 4. On the other hand, even though it is
a strongly adopted practice as seen in Figure 4,
Entity-Component has little association with any
restriction (it does not even appear in Figure 7 due
to the cutoff). A similar lack of restrictions is also
remarkable with the Design patterns code.

16



Figure 7: Frequency (in percentage) of intersection between restrictions (horizontal axis) and architectural practices (vertical
axis). We show only intersections with three or more studies.

4.4. Game mechanics (RQ3)

Figure 8 shows the frequency of selected stud-
ies bearing codes for each type of game mechanics
as categorized in Section 1.4. We added a fourth
code, All, for studies whose contributions support
all types of mechanics, or rather, are not designed
to support any specific type of game mechanics in
particular. That is, we assume that if an architec-
ture contributes to all kinds of mechanics, we can-
not conclude whether it would be more particularly
useful for some mechanics but not others. Thus, we
code studies with such architectures with All so we
can analyze them separately. If they regard one
or two specific types of mechanics, we assigned the
corresponding codes. In other words, studies could
be assigned either one or two codes from Economy,
Physics, and Narrative Progression, or be only as-
signed with All and no other codes.

It is important to remember that, as explained
in Section 3.5, we assigned codes according to the

features identified in the studies, even if the study
itself does not declare that feature in its text. For
instance, even if a study does not mention “econ-
omy mechanics” (or even just the word “mechan-
ics”), we analyze the game or engine described to
assess whether it supports economy mechanics or
not despite what the authors say or do not say.

In the data we obtained, the frequencies of codes
for Economy and Physics mechanics are evenly dis-
tributed, with respectively 24% and 19% presence
in selected studies. Narrative Progression mechan-
ics is above both of them with a 35% presence in
selected studies, while 45% of the studies provided
solutions that support all types of mechanics.

The relationship between types of mechanics and
architectural practices is detailed in Figure 9. As
expected, there is a clear dominance of the All
code since it is, by a considerable margin, the
most common code regarding types of mechanics
as shown in Figure 8. On the other hand, we see

17



Figure 8: Frequency of selected studies with codes for each type of game mechanics. For the full list of studies with each code,
see Table B.4 in Appendix B.

that the Economy code is only strongly related to
Inheritance-based and Design patterns but with a
proportionally reduced intersection with the com-
monly adopted Data-driven design: its frequency
decreases significantly from the 45% in Figure 4 to
less than 38% (9% in Figure 9 out of 24% stud-
ies coded with Economy in Figure 8). In contrast,
we see Narrative progression highly associated with
Data-Driven Design. Physics and Narrative pro-
gression are both significantly related to the Event-
driven code, the former remarkably so: the fre-
quency of Event-driven codes increases from 16%
in Figure 4 to approximately 40% (7% in Figure 9
out of 18% studies coded with Physics).

By analyzing the relation between requirements
and mechanics in Figure 10, we see that Perfor-
mance, followed by Heterogeneous hardware and
Reusability are the most desired features from
Physics. Didactic development and Flexibility are
the only codes that significantly increase in fre-
quency among studies coded with All.

5. Analysis

This section discusses the results from Section
4. We address each research questions at a time
in Sections 5.1, 5.2, and 5.3. Then, we consider
promising research topics for future research based
on our findings in Section 5.4.

5.1. Software design challenges (RQ1)

The first research question our review addresses
is RQ1: What software design challenges do re-
searchers face when implementing game mechan-
ics? The goal of this question is to identify the
main concerns researchers take into account while
designing game mechanics architecture in general.
To analyze this topic, we evaluate field F4, Software
Design requirements.

The most commonly coded requirements (shown
in Figure 2) are, by a significant margin, Reusabil-
ity, Flexibility, and Extensibility, present in more
or less 40% of studies. This indicates that the fore-
most goal in research when designing the architec-
ture of game mechanics is favoring change and evo-
lution of the code, either by re-purposing parts of it
(reusability and flexibility) or by reducing the effort
needed to add parts to it (extensibility). If these are
recurrent requirements, then the studies agree that
developing game mechanics involves a great num-
ber of changes to the implementation, or that each
change is individually expensive, or both [1, 45].
It is, in particular, expected that games demand a
great number of changes to their mechanics as part
of balancing its gameplay [10].

At the same time, the cost of each addition to
the game mechanics can increase for a number of
reasons. For instance, the architecture could inad-
vertently require writing code to many source files
for every change, or the programmers (as can be the
case in some academic contexts) might still be inex-
perienced game developers and navigating the code
base of a game could be a slow process for them.
Additionally, even when costs are not high, limita-
tions such as deadlines, budget, and team size may
further motivate a research development team to
seek reusability, flexibility, and extensibility in their
software design. For instance, study S17 says that
the “creative team can demand changes to the soft-
ware architecture during development, but this deci-
sion depends on how far the project has progressed
and the cost and benefit of making the change”,
and study S21 defends that “one way to reduce the
cost of games is to reuse particular game compo-
nents. Rather than reinventing the wheel when de-
veloping a 3d engine, a physics engine or a network
component, game developers can choose to use an
existing Commercial of the Shelf (COTS) Compo-
nent”. Study S5 also clearly corroborates with this

18



Figure 9: Frequency (in percentage) of intersection between game mechanics (horizontal axis) and architectural practices
(vertical axis). We show only intersections with two or more studies.

idea, saying that “flexibility in software architec-
ture is especially important in game development,
when the object model needs to be rebuilt so often
that refactoring conventional architectures becomes
prohibitively expensive”.

Regarding other common requirements, the high
frequency for the Performance code is an expected
result since games require real-time processing and
because game research often studies implementa-
tion on less traditional platforms such as mobile or
pervasive games, which often demand a more opti-
mal use of computational resources. It is notable,
though, that Performance is not among the most
frequent codes among the studies, indicating that
studies prioritized Reusability, Flexibility, and Ex-
tensibility over it.

Another notably frequent code, Didactic Devel-
opment, demonstrates the interest of software ar-

chitecture research in games with educational en-
vironments, either via educational games or via
game development courses. For instance, study S15

states that “because of [games’] wonderful charac-
teristics and its popularity in children, more and
more peoples believe that computer games are pow-
erful educational tools, if used appropriately”, and
proposes a common software architecture for edu-
cational games. At the same time, study S2 used
game development as a project to teach software
engineering for undergraduate students, concluding
that the students “developed fundamental under-
standing of game engine architecture through design
and implementation of complex game systems” and
they “saw in detail how the use of design patterns
gave rise to a software architecture that was decou-
pled, scalable and data-driven”.

Close in frequency to Didactic Development, the

19



Figure 10: Frequency (in percentage) of intersection between game mechanics (vertical axis) and requirements (horizontal axis).
We show only intersections with two or more studies.

Integration with Third-Party Tools code reinforces
the preference for software reuse and is closely re-
lated to the next most frequent codes, Heteroge-
neous Hardware – which we mainly attribute to the
research field of pervasive games – and Portability –
which indicates the interest in making games more
accessible, even if only to increase the user base
and, perhaps, the sales of the final product. Inci-
dentally, the most common restriction among se-
lected studies was the Technology-Dependent code,
which means the solutions provided by many stud-
ies were coupled to some third-party technology or
platform, and their contributions might not be gen-
eralizable to other implementation contexts. Lastly,
the Rapid Prototyping code, with a frequency of
18% highlights the demand for technology that pro-
motes the quick experimentation and evaluation of
game concepts, a common practice in the iterative
development of games [10].

Comparing the least common codes and the pref-
erence for Flexibility, we see a tendency of studies
favoring versatility over stability when developing
game mechanics. On the other hand, the low fre-
quency of codes such as Security and Unstable Net-
work Tolerance might be simply due to the studies
being selected for their contributions to software
architecture and game mechanics, making require-
ments of other aspects of game development less

present in our particular sample.

When we consider the design restrictions found
in the selected studies, we see that Technology-
Dependent, Game-specific, and Genre-specific are
among the most common codes. This is explained
by the fact that the majority of the selected studies
do not aim for general purpose and reusable solu-
tions, such as game engines. Instead, they focus
on specific games and therefore have limited appli-
cability outside their well-defined scopes. Beyond
that, a significant number of studies deal with game
prototypes. By doing so, not only do they need to
restrict the project’s complexity, but they also need
to reduce implementation effort by extensively us-
ing libraries and frameworks previously built. It is,
thus, to be expected that Technology-Dependent is
the most common restriction in Figure 3, and the
second most common restriction independently of
practice in Figure 7.

There seems to be a curious dichotomy between
the most common architectural requirements and
the most common design restrictions. Studies seem
to favor architectures that are reusable, flexible,
and extensible, but end up proposing architectures
that can only be applied in relatively narrow con-
texts, usually involving a certain genre or technol-
ogy. Though apparently contradictory, we under-
stand that these conflicting features occur together

20



because, while studies do focus on specific and lim-
ited contexts, they still intend to provide reusable
solutions in that particular context. For instance,
study S7 proposes a framework for narrative-based
audio games, which are restricted both by genre and
technology. Nevertheless, the framework they pro-
pose is still reusable because, through data-driven
design, it accepts any number of “game worlds” as
input to simulate and present to players. We hy-
pothesize that this practice is actually very effec-
tive since, by controlling the scope of architectures,
developers and software designers can use more as-
sumptions about its requirements. This, in turn,
allows systems to be parameterized and, thus, be-
come more reusable.

To summarize, our analysis suggests that the
main concern of researchers when implementing
game mechanics is to reduce implementation effort
and cost through software reusability, flexibility,
and extensibility. That is, the implementation of
game mechanics is an organic process where writing
code can easily become a bottleneck, thus requiring
a versatile software design. Ideally, studies seek this
benefit without compromising runtime performance
but, as we explain in Section 5.3, this depends on
the type of mechanics involved. Finally, we believe
there is evidence that restricting the scope of an
architecture for game mechanics may improve its
opportunities for reusability.

5.2. Architecture patterns (RQ2)

Given the design requirements discussed in Sec-
tion 5.1, it is interesting to explore the methods
applied to meet these goals. Hence, our second re-
search question, RQ2, is What software architecture
practices and patterns do researchers use for the im-
plementation of game mechanics? Since there were
many interesting results for this question, we di-
vided this section to produce more focused discus-
sions.

5.2.1. Data-Driven Design

The high frequency of the Data-Driven Design
code in Figure 4 corroborates with industry experts
that defend this practice as a fundamental part of
game development [1, 4]. There is a significant pres-
ence of studies that involve or target researchers
without a programming background, given the mul-
tidisciplinary nature of games. This brings an in-
creased demand for tools and practices that pro-
mote more accessible game development, making

contributions with a data-driven approach a reli-
able and, thus, common solution. When compared
to the three most common requirement codes –
Reusability, Flexibility, and Extensibility – in Fig-
ure 6, reusability, flexibility and extensibility have a
substantial relation to studies that use data-driven
design. This can be explained by a series of factors:

• Data-driven design offers a practical way of
changing software behavior without modifying
the codebase;

• Besides behavior, data-driven design also
makes it easy to change and expand game con-
tent, helping non-programmers contribute to
projects;

• The reduced need for refactoring and recom-
piling promotes faster iteration during devel-
opment, fine-tuning, and post-release mainte-
nance.

It is also notable that Data-driven Design has
a low fitness-frequency ratio (Figure 5b). Given
the high relation to Reusability, Flexibility and Ex-
tensibility, and the fact that data-driven design is
one of the standard practices in the industry to
fulfill these requirements [1, 4] our review suggests
that investigations exclusively directed at this prac-
tice in particular (as opposed to incidentally related
studies) are sparse and would thus be welcome con-
tributions. One extreme example of how well data-
driven design can separate coding from the actual
production of a game is Doom, a computer game
released in 1993. The first-person shooter architec-
ture was developed in a way that the game engine,
responsible for the core mechanics, could support
customized additions via data packages known as
WAD files [1]. Through Doom WAD files it was
possible to modify game rules, as well as create cus-
tom levels, enemies, and weapons. As a result, the
engine could be considered a black box and many
players were able to create modified versions of the
game – also known as MODs – without actual ac-
cess to its source code.

However, when we look at Figure 7, we also
note the strong relation between Data-Driven De-
sign and a few restrictions. This is unexpected be-
cause this technique is known for its broadly generic
suitability, which should not relate to codes such
as Game-specific and Genre-specific, in particular.
Further investigation of this peculiar result showed
that, although data-driven design is not restrictive

21



in nature, the described instantiations of the prac-
tice by studies are themselves very specific and dif-
ficult to reuse in other contexts. It is a similar phe-
nomenon to what we discussed in Section 5.1 about
the dichotomy between versatility requirements and
restrictions due to limited scope. Again, study S7

provides an example of how an architecture can use
data-driven design but still be limited in its appli-
cation regarding genre and technology.

5.2.2. Inheritance-Based and Entity-Component
Architectures

A notable observation in Figure 4 is the presence
of both Inheritance-Based Entities and the Entity-
Component patterns among the most common
practices since they are usually mutually exclusive
architectural patterns. In particular, practitioners
and game engines in the last decades have favored
entity-component systems over inheritance-based
ones [2, 1], especially when implementing game
mechanics, while the selected studies showed a
slight preference for Inheritance-Based approaches,
though both methods ranked high in the review.
Some studies openly defend entity-component-
system architectures over inheritance-based ones,
such as study S1 that states that game development
is “moving from inheritance to component-based
software architecture in game engines”, and study
S5, that explains how “the reliance on implemen-
tation inheritance can cause many problems” and
that “an entity system architecture is delegation-
based alternative to an inheritance-based architec-
ture for implementing game engines”.

Figure 6 provides us with further information.
First, we see that Inheritance-Based Entities rarely
appears together with Flexibility, despite the high
frequency of both codes, which indicates that stud-
ies that require flexible architectural solutions sel-
dom rely on inheritance-based designs. On the
other hand, the Entity-Component code is present
in approximately 40% of studies that require flexi-
bility, even though it is present in only a little over
20% of the selected studies in general. We under-
stand from this that the literature considers the
entity-component-system pattern to be more flexi-
ble than its older alternative, inheritance-based en-
tities, which agrees with industry knowledge [2, 1].
However, the Inheritance-Based Entities code, with
a frequency of more or less 30%, is present in over
half the studies coded with Didactic Development,
suggesting that studies that target didactic designs
might prefer this approach – but further investi-

gation is required to confirm this. Additionally,
Section 4.3 highlighted many evidences in Figure
7 indicating advantages of entity-component sys-
tems over inheritance-based entities due their re-
duced design restrictions.

5.2.3. Traditional Research Topics and Architec-
tures

Another noteworthy observation is the low inci-
dence of codes that are otherwise active research
topics, such as Reference architecture and Test-
Driven Development. There are a few reasons that
could explain this. One of them is that the re-
view protocol selected only studies that regarded
the implementation of at least one game mechanic,
often leaving out studies that contributed to other
parts of game development with more active re-
search fields (e.g. computer graphics, networking)
which were thus more likely to rely on more formal
practices like the ones mentioned. This is the case,
for instance, of the Model-View-Controller code,
which refers to a pattern used in a number of stud-
ies not included in the review because they did not
pass one of the steps of the selection process de-
scribed in Section 3.3. That usually happened when
the study did not investigate the architecture in-
side the Model, which is our main interest in this
review (as explained Section 1.4). Such is the case,
for instance, of the works of Olsson et al.’s [24] and
Caltagirone et al.’s [46].

Other reasons for the low frequency of active re-
search fields applied to game mechanics could be ei-
ther that these applications of software engineering
and software architecture are still emergent fields of
research, or that they are indeed ill-suited for the
development of game mechanics in general. How-
ever, as we see in Figure 5b, Adaptive Object-Model,
Model-View-Controller, Ontology-Driven, and Ref-
erence architecture codes are all topics related to
software architecture, but their fitness-frequency
ratios rank among the highest found in our review.
This means that studies discussing them are usually
very relevant to our research questions, but there
are only a few of them, which suggests there is room
for further, significant contributions in these fields.

5.2.4. Layered Subsystems

The Layered Subsystems and Design patterns
codes are common practices shown in Figure 4, and
reflect strategies known in game development for
their practicality and/or effectiveness [1, 2]. By

22



comparing both figures 6 and 7, we follow an in-
teresting pattern regarding the Layered Subsystems
code. Although it is present in 29% of studies,
roughly 55% of studies that listed Integration with
Third-Party Tools as a requirement chose this soft-
ware architecture. This supports the general soft-
ware architecture the industry employs in large-
scale games [1], where the layers abstract lower-level
APIs to allow a more technology-agnostic design of
higher-level code. For instance, study S7 proposed
a layered architecture with which they “can design
and test audio games using PC hardware and later
transfer our work to a mobile platform by rewriting
the necessary code” on a single layer in the archi-
tecture. Additionally, more than 50% of studies
employing the layered architecture were also coded
Technology-dependent, a code present in only 42%
of studies in general, and the intersection between
these two codes is also among the largest in Figure
7, which reinforces this pattern.

We also notice in Figure 6 dense code intersec-
tions of the Reusability code with Layered Subsys-
tems and Modularization. Both practices are tra-
ditional approaches to organize features and allow
code reuse inside a project as well as among differ-
ent projects. Examples of features commonly writ-
ten as separate modules are physics, artificial in-
telligence, network. Recurrent examples of layered
systems are game engines and platform-specific in-
terfaces, such as file system access.

5.2.5. Answering RQ2

To sum up, the predominant approach used by
reviewed studies to implement extensible, flexible,
and reusable game mechanics is Data-driven design,
with Entity-Component, Layered subsystems, Mod-
ularization, and Design patterns further supporting
the software design of games. Inheritance-based is
also a reliable practice, but with more restrictions.
At the same time, underused practices from more
traditional research fields, such as Reference archi-
tecture, Test-Driven Development, and the Model-
View-Controller pattern, presented more substan-
tial contributions. The opposite happened with
data-driven design, which is investigated only su-
perficially by most studies, and its applications are
often restricted to the scope of the corresponding
game or game development tool.

5.3. Game mechanics (RQ3)

Finally, the third research question, RQ3, is
What types of mechanics most often require, in re-

search, the use of architectural practices and pat-
terns, and which are they? The data pictured
in Figure 8 is directly aligned with that question.
From there we see All as the most frequent code.
This shows that most studies do not guide their
software design towards types of mechanics sepa-
rately. At the same time, the high frequency of the
Game-specific and Genre-specific codes in Figure
3 indicates that a significant part of studies focus
on solutions to particular sets of game mechanics
instead of more general approaches, because this
allows authors to design architectures that best fit
their situation, at the cost of implementing less flex-
ible systems. That is, solutions are often tailored to
the particular needs of each study, but that does not
mean they necessarily differentiate the mechanics
between narrative progression, physics, and econ-
omy.

Despite that, Narrative Progression is the most
isolatedly present type of mechanic, which indi-
cates a preference in the selected studies for games
focused on story-telling. That, in turn, concurs
with the relevant amount of researches related
to Edugames within the Other category reported
in Figure 1, since exposition is a straightforward
method of providing knowledge. There is also a
strong relation between Narrative Progression and
Data-Driven Design, reinforcing that the practice
is very suitable for projects highly dependent on
content production and customization (in this case,
usually stages, dialogues, scene scripts, etc.). This
also matches our observation that games based on
narrative mechanics often require Reusability, pro-
moted by data-driven design.

As for the other types of mechanics, a few pat-
terns are notable. Economy mechanics relate to
Inheritance-based and Design patterns, but (pro-
portionally) not enough to Data-driven design, de-
spite it being a common practice in the reviewed
studies. This combination suggests that economy
mechanics in the literature are usually designed
for specific scenarios without flexibility in mind.
Physics mechanics present a relation to Event-
driven architectures, which regards a practice ap-
propriate for decoupling code when entities inter-
act with one another by triggering multiple events
(e.g. collision handling). Our data also showed
that researchers implementing physics of mechan-
ics seek Performance, Integration with third-party
tools, and Reusability. Indeed, for efficient ways of
implementing laws of physics there are well-known
and optimized libraries widely available. Because

23



of that, most authors opt to save time and work by
using third-party libraries.

On further inspection, we also noticed that stud-
ies that employed mechanics of narrative progres-
sion had an increased chance of being coded with
Layered Subsystems. As we saw in Section 5.2.4,
this architectural style is tied with the need for inte-
grating third-party tools in the context of software
architecture for game mechanics. Additionally, Fig-
ure 10 confirms that studies with narrative me-
chanics were more often coded with Heterogeneous
Hardware Thus, we understand that research in-
volving narrative-oriented mechanics is usually in-
terested in the use of innovative technology, to pro-
mote player immersion into the narrative through,
for instance, pervasive games. Similarly, studies
that separately target either narrative or – more no-
tably – economy mechanics had a greater incidence
of the Context-Awareness requirement code, indi-
cating that pervasiveness might be a key incentive
in the use of economy mechanics, which is otherwise
weakly related to most design requirements among
selected studies.

Answering the third and last research question,
we see that most architectural practices and re-
quirements involving game mechanics in the liter-
ature are not associated with specific types of me-
chanics. Studies usually focus on more general soft-
ware design aspects of games, with both interac-
tion and simulation features in mind, and whether
they frame their solution design by a certain type
of mechanics depends entirely on whether the kind
of game they want to develop is limited to that
type of mechanics. As a consequence of that, there
are only a few conclusive observations we can make
about the architectural needs of each type of game
mechanics separately. First, narrative mechanics
receive support from the practices of data-driven
design and, when they involve some technological
innovation, the layered subsystems pattern. Next,
physics mechanics benefit from event-driven designs
and require the most performance. Finally, econ-
omy mechanics are less tied to data-driven designs
despite it being the most common practice among
studies, with context-aware game applications be-
ing a particular case where studies favor economy
mechanics.

5.4. Opportunities, Challenges, and Future Trends

The reviewed studies often discussed games in
contexts outside the topic of software architecture.

The use of games as immersive experiences that en-
gage users into learning or exercising, for instance,
is a recurrent field of interest. In that context, the
software is designed to facilitate the management of
game content, often by game designers without the
background needed to venture into the game code
by themselves. Another use of games outside the
discipline of software architecture is when exploring
experimental technologies, such as pervasive games
or mobile games when the technology was still a
novelty. At the same time, there is educational use
for game software architecture in computer science
courses where students are tasked with implement-
ing games themselves [47, 48, 49]. In these cases,
the architecture might simply serve a didactic pur-
pose, instead of a practical one, like in study S2,
where the students “were required to use one or
more Gang-of-Four design patterns in their imple-
mentation”. This also means many studies focus
on prototyping, likely bearing different design re-
quirements when compared to commercial games.
The review reinforces that understanding the con-
text and scope of a game project is thus an im-
portant step in determining what requirements and
practices game mechanics demand.

An aspect that caught our attention is the rela-
tive absence of applications of common topics in
software architecture to digital game mechanics.
Popular software engineering topics such as refer-
ence architectures, the Model-View-Controller pat-
tern, test-driven development, and the Adaptive
Object-Model pattern are only rarely seen in studies
about the development of digital game mechanics.
This could be caused either by a lack of interest
from the software engineering community to apply
their knowledge to the context of game development
or by lack of an explicit description of how game
development researchers rely on software engineer-
ing techniques. It is also possible that they simply
do not adopt any formal software engineering ap-
proach. Since the benefits of software engineering
practices are well-known and could bring a number
of opportunities to game development, we see many
research possibilities in more formal applications of
software engineering to design implementations of
digital game mechanics.

In particular, the Model-View-Controller is a
widely studied architectural pattern and there is lit-
tle to no use of it among the selected studies. The
few studies that do discuss it scored high in our re-
view regarding their contribution towards the field
of software architecture in digital game mechanics,

24



which means that it is a relevant topic to investigate
more. It would be especially interesting to further
analyze the role of the Model part since it hosts the
implementation (and corresponding architecture) of
the game mechanics. Similar opportunities exist for
the Adaptive Object-Model, a pattern designed with
maximum runtime type flexibility in mind [34] since
it also scored a high fitness to our review but was
discussed only by very few studies.

In contrast, we found data-driven design to be
the most common practice, even though its total
fitness assessment ranked proportionally low. As
explained by authors in the industry, data-driven
design is a commonplace solution for reusability and
extensibility, and yet studies only superficially de-
scribe its use. This means that a more in-depth
investigation of this practice is needed. Further-
more, studies provide only game-specific uses of
data-driven design, which supports little reusabil-
ity across titles; thus, more general-purpose appli-
cations would provide greater contributions to the
field. At the same time, however, the tendency
for specific usages of data-driven design (and other
practices that promote reusability, flexibility, and
extensibility) suggests that this is an effective and
pragmatic approach to the software architecture of
game mechanics.

Another practice that presented opportunities for
future research was the entity-component system, a
very common pattern in the game industry [1, 2].
Despite there being more studies approaching its al-
ternative – inheritance-based entities – we saw that
entity-component solutions were more flexible, pre-
senting fewer design restrictions. The analysis sug-
gests that inheritance is a more didactic solution,
so we understand there is room for further research
in both practices.

The study of design patterns, such as the ones
described by Gamma et al. [35] and Nystrom
[2], showed no evident support towards the many
reviewed design requirements. Notwithstanding,
studies that relied on them had fewer design restric-
tions. This means that understanding good soft-
ware design practices in the development of game
mechanics is a reliable approach, and would also
benefit from further study.

Finally, a critical observation in this review is
that types of mechanics are seldom approached in-
dependently. An inconvenient consequence of that
is that studies do not present solutions that satisfy
the specific needs of each type. This points to the
research opportunity of investigating the architec-

tural requirements of game mechanics separately.
However, there are a few other tendencies our re-
view highlighted. While physics mechanics have a
long history of research activity, we see that narra-
tive progression is the most commonly studied when
software architecture is involved. There is a partic-
ular interest in designing implementations that sup-
port incremental narrative content, especially in a
way that non-programmers are empowered to con-
tribute content by themselves. On the other hand,
there are very few practices and requirements tied
with economy mechanics, which means it would
benefit from further investigation. In particular,
we see there is a relative lack of data-driven design
applications towards economy mechanics. A more
focused investigation could verify whether that is
characteristic of this type of mechanic, or if there
are still unexplored ways of applying data-driven
design to economy mechanics in games.

6. Conclusion

In this paper, we conducted a systematic litera-
ture review to determine the state-of-the-art, cur-
rent challenges, and research opportunities in the
field of software architecture for digital game me-
chanics. We collected 512 studies from three dom-
inant digital libraries. After a filter of inclusion
and exclusion criteria, the final sample was a set of
36 representatives. Each of them was assessed by
two different authors and received fitness scores in
five different aspects. The data extracted from the
studies were analyzed to answer the research ques-
tions stated in Section 3.1: what are the design
challenges of implementing game mechanics, what
software architectures are used to implement them,
and what is their relation to each specific type of
game mechanics?

Regarding RQ1, our findings show that research
involving software architecture of game mechanics
favor design versatility and, to a lesser but still con-
siderable extent, performance. The analysis sug-
gests that support for accessible and immediate
change to the mechanics of a game is a valuable
feature for researchers, who usually lack the team
size and experience of game companies. Even in the
industry, authors concur with the importance of it-
erating faster in game development through such
means. The key difference between academia and
industry we found was that research often inter-
acts more with education and innovation, which
weighs on the software design of game mechanics.

25



In particular, research solutions often lead at most
to a prototype, possibly opting for less stability and
robustness as opposed to production-ready games
from the industry.

To achieve the aforementioned versatility, we saw
in RQ2 that a number of established techniques
(from both academia and industry) remain the
practice of choice in studies, such as data-driven
development, modularization, and layered architec-
tures. Data-driven design was especially prevalent,
though most of the time only superficially inves-
tigated, i.e., applied to fit specific scenarios but
not studied as a more general technique. At the
same time, some practices emerged from the in-
teraction with innovative technology, as was the
case of layered architectures. When considering
the restrictions imposed by each approach, the re-
view revealed the entity-component-system pattern
and the use of design patterns in general to be re-
liable solutions. The most common restriction was
that practices were often coupled to the scope in
which they were used, both in terms of mechanics
support and of technology dependency, which ham-
pers extrapolating contributions to other contexts.
General-purpose software designs for game mechan-
ics were a minority, the case of data-driven design
being the most noteworthy example.

Concerning RQ3, the review also confirmed what
we stated in Section 1.2, that academic studies have
no clear terminology for referring to the parts of im-
plementing a game that regards its mechanics. The
great majority of studies generalized the developed
mechanics, and only a few relations could be found
between the types of mechanics and the correspond-
ing software design requirements and practices. We
see that physics mechanics have little intersection
with the field of software architecture in general,
and requires the most performance. On the other
hand, narrative and economy mechanics are sepa-
rately investigated mostly as a means of supporting
education or technological innovation. Moreover,
economy mechanics is the only type of mechanics
that displayed a reduced use of data-driven design,
despite its benefits.

Motivated by the seemingly discrepant practices
between the industry and academia regarding the
architecture of game mechanics, this study analyzed
how and why such differences exist, and what pos-
sibilities are there to increase the synergy between
these two contexts. We established that, while di-
vergences in prospect and circumstances have an
impact on the nature of research into this field,

some evidence exists that both academy and indus-
try could benefit from exchanging knowledge and
experience. Studies have much to investigate in
techniques used by game companies, and a num-
ber of long-standing research topics in software
architecture and engineering are barely untapped
sources of valuable contributions that professional
game developers would benefit from.

7. Acknowledgements

Funding. This work is supported by the Sao Paulo
State Research Foundation (FAPESP) under Grant
No.: 2017/18359-6.

References

[1] J. Gregory, Game engine architecture, second edition,
AK Peters/CRC Press, Boca Raton, FL, 2014.

[2] R. Nystrom, Game programming patterns, Genever
Benning, 2014.

[3] M. Shaw, D. Garlan, Software Architecture: Perspec-
tives on an Emerging Discipline, Prentice Hall, 1996.

[4] S. Rabin, The magic of data-driven design, in: M. De-
Loura (Ed.), Game Programming Gems, Charles River
Media, 2000, pp. 3–7.

[5] M. West, Evolve your hierarchy (Jan. 2007) [cited Sep
10, 2018].
URL http://cowboyprogramming.com/2007/01/05/

evolve-your-heirachy

[6] M. Sicart, Defining Game Mechanics, International
Journal of Computer Game Research 8 (2).
URL http://gamestudies.org/0802/articles/sicart

[7] A. Järvinen, Games without Frontiers: Theories and
Methods for Game Studies and Design, Ph.D. thesis,
University of Tampere (2008).

[8] J. C. Osborn, N. Wardrip-Fruin, M. Mateas, Refin-
ing operational logics, ACM International Conference
Proceeding Series Part F1301. doi:10.1145/3102071.

3102107.
[9] T. Dubbelman, Narrative Game Mechanics, in: Inter-

national Conference on Interactive Digital Storytelling,
2016, pp. 39–50. doi:10.1007/978-3-319-48279-8_4.

[10] J. Schell, The Art of Game Design: A book of lenses,
second edition, AK Peters/CRC Press, Boca Raton, FL,
2014.

[11] E. Adams, J. Dormans, Game mechanics: advanced
game design, New Riders, Berkeley, CA, 2012.

[12] R. Hunicke, M. LeBlanc, R. Zubek, Mda: A formal
approach to game design and game research, in: Pro-
ceedings of the AAAI Workshop on Challenges in Game
AI, Vol. 4, 2004, p. 1722.

[13] B. A. Larsen, H. Schoenau-Fog, The Narrative Quality
of Game Mechanics, International Conference on Inter-
active Digital Storytelling (2016) 61–72doi:10.1007/
978-3-319-48279-8.

[14] E. Adams, Fundamentals of game design, Pearson Ed-
ucation, 2014.

[15] S. Bilas, A data-driven game object system (2002)
[cited Sep 10, 2018].

26

http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy
http://gamestudies.org/0802/articles/sicart
http://gamestudies.org/0802/articles/sicart
http://dx.doi.org/10.1145/3102071.3102107
http://dx.doi.org/10.1145/3102071.3102107
http://dx.doi.org/10.1007/978-3-319-48279-8_4
http://dx.doi.org/10.1007/978-3-319-48279-8
http://dx.doi.org/10.1007/978-3-319-48279-8
https://www.gamedevs.org/uploads/data-driven-game-object-system.pdf


URL https://www.gamedevs.org/uploads/

data-driven-game-object-system.pdf

[16] T. Leonard, Postmortem: Thief: The dark project
(1999) [cited Sep 10, 2018].
URL http://www.gamasutra.com/view/feature/3355/

postmortem_thief_the_dark_project.php

[17] H. Fujibayashi, S. Takizawa, T. Dohta, Breaking con-
ventions with the legend of zelda: Breath of the wild
(2017) [cited Sep 10, 2018].
URL https://www.youtube.com/watch?v=QyMsF31NdNc

[18] D. Llansó, M. A. Gómez-Mart́ın, P. P. Gómez-Mart́ın,
P. A. González-Calero, Explicit domain modelling in
video games, in: Proceedings of the 6th International
Conference on Foundations of Digital Games, FDG ’11,
ACM, New York, NY, USA, 2011, pp. 99–106. doi:

10.1145/2159365.2159379.
[19] E. Folmer, Component based game development – a

solution to escalating costs and expanding deadlines?,
in: Component-Based Software Engineering, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 66–73.

[20] S. George, É. Lavoué, B. Monterrat, An environment
to support collaborative learning by modding, in: Scal-
ing up Learning for Sustained Impact, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 111–124.

[21] A. BinSubaih, S. Maddock, D. Romano, A survey of
’game’ portability.

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal, Pattern-Oriented Software Architecture, Vol-
ume 1: A System of Patterns, Wiley, Chichester, UK,
1996.

[23] G. E. Krasner, S. T. Pope, et al., A description of
the model-view-controller user interface paradigm in
the smalltalk-80 system, Journal of object oriented pro-
gramming 1 (3) (1988) 26–49.

[24] T. Olsson, D. Toll, A. Wingkvist, M. Ericsson, Evo-
lution and Evaluation of the Model-View-Controller
Architecture in Games, in: International IEEE/ACM
Workshop on Games and Software Engineering, 2015.
doi:10.1109/GAS.2015.10.

[25] J. Dormans, Engineering Emergence - Applied Theory
for Game Design, Ph.D. thesis, University of Amster-
dam (2012).

[26] L. B. Morelli, E. Y. Nakagawa, A panorama of software
architectures in game development, in: Proceedings of
the 23rd International Conference on Software Engi-
neering & Knowledge Engineering, SEKE’2011, Eden
Roc Renaissance, Miami Beach, USA, 2011.

[27] A. Ampatzoglou, I. Stamelos, Software engineering
research for computer games: A systematic review,
Information and Software Technology 52 (9) (2010)
888–901. doi:http://dx.doi.org/10.1016/j.infsof.

2010.05.004.
URL http://dx.doi.org/10.1016/j.infsof.2010.05.

004

[28] M. Zhu, A. I. Wang, H. Guo, From 101 to nnn: A
review and a classification of computer game archi-
tectures, Multimedia Systems 19 (3) (2013) 183–197.
doi:10.1007/s00530-012-0274-0.

[29] S. Shi, C.-H. Hsu, A survey of interactive remote
rendering systems, ACM Comput. Surv. 47 (4) (2015)
57:1–57:29. doi:10.1145/2719921.
URL http://doi-acm-org.ez67.periodicos.capes.

gov.br/10.1145/2719921

[30] A. Yahyavi, B. Kemme, Peer-to-peer architectures for
massively multiplayer online games: A survey, ACM

Comput. Surv. 46 (1) (2013) 9:1–9:51. doi:10.1145/

2522968.2522977.
[31] B. Kitchenham, S. Charters, Guidelines for perform-

ing systematic literature reviews in software engineer-
ing, EBSE Technical Report EBSE-2007-01, School of
Computer Science and Mathematics, Keele University,
Keele - Staffs, UK (2007).

[32] P. Brereton, B. Kitchenham, D. Budgen, M. Turner,
M. Khalil, Lessons from applying the systematic lit-
erature review process within the software engineering
domain, Journal of Systems and Software 80 (4) (2007)
571–583. doi:https://doi.org/10.1016/j.jss.2006.

07.009.
[33] K. Charmaz, Grounded Theory as an Emergent

Method, in: Handbook of Emergent Methods, 2008,
Ch. 7, pp. 155–170. doi:10.1002/9781405165518.

wbeosg070.pub2.
[34] J. W. Yoder, R. Johnson, The adaptive object-model

architectural style, in: Software Architecture, Springer,
2002, pp. 3–27.

[35] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Pearson Education India, 1995.

[36] O. Pastor, J. C. Molina, Model-driven architecture in
practice: a software production environment based on
conceptual modeling, Springer Science & Business Me-
dia, 2007.

[37] P. Tetlow, J. Z. Pan, D. Oberle, E. Wallace, M. Uschold,
E. Kendall, Ontology driven architectures and potential
uses of the semantic web in systems and software engi-
neering, W3C Working Draft.

[38] E. Y. Nakagawa, P. O. Antonino, M. Becker, Reference
architecture and product line architecture: A subtle but
critical difference, in: European Conference on Soft-
ware Architecture, Springer, Berlin, Heidelbrg, 2011,
pp. 207–211.

[39] G. Kotonya, I. Sommerville, Requirements engineering:
processes and techniques, Wiley Publishing, 1998.

[40] C. Szyperski, D. Gruntz, S. Murer, Component soft-
ware: Beyond object-oriented programming, Addison-
Westley: Boston, MA, USA, 1998.

[41] K. Beck, Test-driven development: by example,
Addison-Wesley Professional, 2003.

[42] T. M. Connolly, E. A. Boyle, E. MacArthur, T. Hainey,
J. M. Boyle, A systematic literature review of empirical
evidence on computer games and serious games,
Computers & Education 59 (2) (2012) 661 – 686. doi:

https://doi.org/10.1016/j.compedu.2012.03.004.
URL http://www.sciencedirect.com/science/

article/pii/S0360131512000619

[43] C. Magerkurth, A. D. Cheok, R. L. Mandryk, T. Nilsen,
Pervasive games: bringing computer entertainment
back to the real world, Computers in Entertainment
(CIE) 3 (3) (2005) 4–4.

[44] E. Brox, L. Fernandez-Luque, T. Tøllefsen, Healthy
gaming–video game design to promote health, Applied
clinical informatics 2 (02) (2011) 128–142.

[45] A. I. Wang, N. Nordmark, Software Architectures
and the Creative Processes in Game Development, in:
K. Chorianopoulos, M. Divitini, J. Baalsrud Hauge,
L. Jaccheri, R. Malaka (Eds.), Entertainment Com-
puting - ICEC 2015, Springer International Publishing,
Cham, 2015, pp. 272–285.

[46] S. Caltagirone, M. Keys, B. Schlief, M. J. Willshire, Ar-
chitecture for a massively multiplayer online role play-

27

https://www.gamedevs.org/uploads/data-driven-game-object-system.pdf
https://www.gamedevs.org/uploads/data-driven-game-object-system.pdf
http://www.gamasutra.com/view/feature/3355/postmortem_thief_the_dark_project.php
http://www.gamasutra.com/view/feature/3355/postmortem_thief_the_dark_project.php
http://www.gamasutra.com/view/feature/3355/postmortem_thief_the_dark_project.php
https://www.youtube.com/watch?v=QyMsF31NdNc
https://www.youtube.com/watch?v=QyMsF31NdNc
https://www.youtube.com/watch?v=QyMsF31NdNc
http://dx.doi.org/10.1145/2159365.2159379
http://dx.doi.org/10.1145/2159365.2159379
http://dx.doi.org/10.1109/GAS.2015.10
http://dx.doi.org/10.1016/j.infsof.2010.05.004
http://dx.doi.org/10.1016/j.infsof.2010.05.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2010.05.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2010.05.004
http://dx.doi.org/10.1016/j.infsof.2010.05.004
http://dx.doi.org/10.1016/j.infsof.2010.05.004
http://dx.doi.org/10.1007/s00530-012-0274-0
http://doi-acm-org.ez67.periodicos.capes.gov.br/10.1145/2719921
http://doi-acm-org.ez67.periodicos.capes.gov.br/10.1145/2719921
http://dx.doi.org/10.1145/2719921
http://doi-acm-org.ez67.periodicos.capes.gov.br/10.1145/2719921
http://doi-acm-org.ez67.periodicos.capes.gov.br/10.1145/2719921
http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/https://doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/https://doi.org/10.1016/j.jss.2006.07.009
http://dx.doi.org/10.1002/9781405165518.wbeosg070.pub2
http://dx.doi.org/10.1002/9781405165518.wbeosg070.pub2
http://www.sciencedirect.com/science/article/pii/S0360131512000619
http://www.sciencedirect.com/science/article/pii/S0360131512000619
http://dx.doi.org/https://doi.org/10.1016/j.compedu.2012.03.004
http://dx.doi.org/https://doi.org/10.1016/j.compedu.2012.03.004
http://www.sciencedirect.com/science/article/pii/S0360131512000619
http://www.sciencedirect.com/science/article/pii/S0360131512000619


ing game engine, Journal of Computing Science in Col-
leges 18 (2) (2002) 105–116.

[47] A. I. Wang, Extensive evaluation of using a game
project in a software architecture course, ACM Trans.
Comput. Educ. 11 (1) (2011) 5:1–5:28. doi:10.1145/

1921607.1921612.
URL http://doi.acm.org/10.1145/1921607.1921612

[48] P. Gestwicki, F.-S. Sun, Teaching design patterns
through computer game development, J. Educ. Resour.
Comput. 8 (1) (2008) 2:1–2:22. doi:10.1145/1348713.

1348715.
URL http://doi.acm.org/10.1145/1348713.1348715

[49] K. Claypool, M. Claypool, Teaching software engi-
neering through game design, in: Proceedings of the
10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’05, ACM, New York, NY, USA, 2005, pp. 123–127.
doi:10.1145/1067445.1067482.
URL http://doi.acm.org/10.1145/1067445.1067482

Appendix A. Selected Studies

[S1] Llansó, D., Gómez-Mart́ın, M. A., Gómez-Mart́ın,
P. P., & González-Calero, P. A. (2011, June). Ex-
plicit domain modelling in video games. In Pro-
ceedings of the 6th International Conference on
Foundations of Digital Games (pp. 99-106). ACM.

[S2] Keenan, E., Steele, A. (2011, May). Exploring
game architecture best-practices with classic space
invaders. In Proceedings of the 1st International
Workshop on Games and Software Engineering
(pp. 21-24). ACM.

[S3] Tutzschke, J., Zukunft, O. (2009, July). FRAP:
a framework for pervasive games. In Proceedings
of the 1st ACM SIGCHI Symposium on Engineer-
ing Interactive Computing Systems (pp. 133-142).
ACM.

[S4] Scacchi, W. (2011, May). Modding as a basis for
developing game systems. In Proceedings of the
1st International Workshop on Games and Soft-
ware Engineering (pp. 5-8). ACM.

[S5] Gestwicki, P. (2012, May). The entity system ar-
chitecture and its application in an undergradu-
ate game development studio. In Proceedings of
the International Conference on the Foundations
of Digital Games (pp. 73-80). ACM.

[S6] Freitas, L. G., Reffatti, L. M., Sousa, I. R., Car-
doso, A. C., Castanho, C. D., Bonifácio, R.,
Ramos, G. N. (2012, May). Gear2D: an extensible
component-based game engine. In Proceedings of
the International Conference on the Foundations
of Digital Games (pp. 81-88). ACM.

[S7] Roden, T., Parberry, I. (2005, June). Design-
ing a narrative-based audio only 3D game engine.
In Proceedings of the International Conference on
Advances in Computer Entertainment technology
(pp. 99-106). ACM.

[S8] Furini, M. (2008, April). An architecture to easily
produce adventure and movie games for the mobile
scenario. Computers in Entertainment, Volume 6,
Issue 2 (article no. 19). ACM.

[S9] Mottola, L., Murphy, A., Picco, G. P. (2006, Oc-
tober). Pervasive games in a mote-enabled virtual
world using tuple space middleware. In Proceed-
ings of 5th Workshop on Network and System Sup-
port for Games (article no. 29). ACM.

[S10] Sarinho, V. T., Apolinário, A. L. (2009, October).
A Generative Programming Approach for Game
Development. In Proceedings of the VIII Brazilian
Symposium on Games and Digital Entertainment
(pp. 83-92). IEEE.

[S11] El-Sattar, H. K. H. A. (2008, July). A Novel Inter-
active Computer-Based Game Framework: From
Design to Implementation. In Proceedings of the
International Conference Visualisation (pp. 123-
128). IEEE.

[S12] Lescano, N. L., Mamani, S. E., Illatopa, J. G.
(2016, August). Cultiventura software architec-
ture tool supporting the learning of the moche
culture. In Proceedings of the XXIII Interna-
tional Congress on Electronics, Electrical Engi-
neering and Computing (pp. 1-6). IEEE.

[S13] Valente, A., Marchetti, E. (2012, March). Kill
it or Grow it: Computer Game Design for Play-
ful Math-Learning. In Proceedings of the Fourth
International Conference On Digital Game And
Intelligent Toy Enhanced Learning (pp. 17-24).
IEEE.

[S14] Wu, B., Wang, A. I., Ruud, A. H., Zhang, W. Z.
(2010, April). Extending Google Android’s Ap-
plication as an Educational Tool. In Proceedings
of the Third International Conference on Digital
Game and Intelligent Toy Enhanced Learning (pp.
23-30). IEEE.

[S15] Hu, W. (2010, August). A Common Software Ar-
chitecture for Educational Games. In Proceedings
of the International Conference on Technologies for
E-Learning and Digital Entertainment (pp. 405-
416). Springer.

[S16] Scacchi, W. (2011, October). Modding as an Open
Source Approach to Extending Computer Game
Systems. In Proceedings of the International Con-
ference on Open Source Systems (pp. 62-74).
Springer.

[S17] Wang, A. I., Nordmark, N. (2015, September).
Software Architectures and the Creative Processes
in Game Development. In Proceedings of the In-
ternational Conference on Entertainment Comput-
ing (pp. 272-285). Springer.

[S18] George, S., Lavoué, É., Monterrat, B. (2013,
September). An Environment to Support Collab-
orative Learning by Modding. In Proceedings of

28

http://doi.acm.org/10.1145/1921607.1921612
http://doi.acm.org/10.1145/1921607.1921612
http://dx.doi.org/10.1145/1921607.1921612
http://dx.doi.org/10.1145/1921607.1921612
http://doi.acm.org/10.1145/1921607.1921612
http://doi.acm.org/10.1145/1348713.1348715
http://doi.acm.org/10.1145/1348713.1348715
http://dx.doi.org/10.1145/1348713.1348715
http://dx.doi.org/10.1145/1348713.1348715
http://doi.acm.org/10.1145/1348713.1348715
http://doi.acm.org/10.1145/1067445.1067482
http://doi.acm.org/10.1145/1067445.1067482
http://dx.doi.org/10.1145/1067445.1067482
http://doi.acm.org/10.1145/1067445.1067482


the European Conference on Technology Enhanced
Learning (pp. 111-124). Springer.

[S19] Delmas, G., Champagnat, R., Augeraud, M.
(2009, December). From Tabletop RPG to In-
teractive Storytelling: Definition of a Story Man-
ager for Videogames. In Proceedings of the Second
Joint International Conference on Interactive Dig-
ital Storytelling (pp. 121-126). Springer.

[S20] Dutchuk, M., Muhammadi, K. A., Lin, F. (2009,
August). QuizMASter - A Multi-Agent Game-
Style Learning Activity. In Proceedings of the
4th International Conference on E-Learning and
Games (pp. 263-272). Springer.

[S21] Folmer, E. (2007, July). Component Based Game
Development - A Solution to Escalating Costs
and Expanding Deadlines?. In Proceedings of the
International Symposium on Component-Based
Software Engineering (pp. 66-73). Springer.

[S22] Christopoulos, D., Mavridis, P., Andreadis, A.,
Karigiannis, J. N. (2013). Digital Storytelling
within Virtual Environments: “The Battle of
Thermopylae”. Transactions on Edutainment IX
(pp. 29-48). Springer.

[S23] Hakulinenm J., Turunen, M., Heimonen, T., Kesk-
inen, T., Sand, A., Paavilainen, J., Parviainen, J.,
Yrjänäinen, S., Mäyrä, F., Okkonen, J., Raisamo,
R. (2013, November). Creating Immersive Au-
dio and Lighting Based Physical Exercise Games
for Schoolchildren. In Proceedings of the Interna-
tional Conference on Advances in Computer En-
tertainment Technology (pp. 308-319). Springer.

[S24] Patel, S. N., Bunch, J. A., Forkner, K. K., John-
son, L. W., Johnson, T. M., Rosack, M. N.,
Abowd, G. D. (2004, September). The Design and
Implementation of Multi-player Card Games on
Multi-user Interactive Tabletop Surfaces. In Pro-
ceedings of the International Conference on Enter-
tainment Computing (pp. 339-344). Springer.

[S25] Mössenböck, H. (1999, July). Twin - A Design
Pattern for Modeling Multiple Inheritance. In
Proceedings of the International Andrei Ershov
Memorial Conference on Perspectives of System
Informatics (pp. 358-369). Springer.

[S26] Williams, J. R., Poulding, S., Rose, L. M.,
Paige, R. F., Polack, F. A. C. (2011, Septem-
ber). Identifying Desirable Game Character Be-
haviours through the Application of Evolutionary
Algorithms to Model-Driven Engineering Meta-
models. In Proceedings of the International Sym-
posium on Search Based Software Engineering (pp.
112-126). Springer.

[S27] Papaioannou, G. (2005, November). Interactive
Dynamics for Large Virtual Reality Applications.
In Proceedings of the Panhellenic Conference on
Informatics (pp. 307-316). Springer.

[S28] Pinhanez, C. S. (1999, December). The SCD Ar-
chitecture and its Use in the Design of Story-
Driven Interactive Spaces. In Proceedings of the
1st International Workshop on Managing Inter-
actions in Smart Environments (pp. 239-250).
Springer.

[S29] Valentin, J., Coudret, F., Gouardères, E., Lefer,
W. (2012). Human Behaviour Modelling for Sim-
ulating Evacuation of Buildings on Fire. Transac-
tions on Edutainment VII (pp. 12-23). Springer.

[S30] Paschali, M., Ampatzoglou, A., Bibi, S., Chatzi-
georgiou, A., Stamelos, I. (2016, June). A Case
Study on the Availability of Open-Source Com-
ponents for Game Development. In Proceedings
of the International Conference on Software Reuse
(pp. 149-164). Springer.

[S31] Cavazza, M., Hartley, S., Lugrin, J., Libardi, P.,
Bras, M. (2004, September). New Behavioural Ap-
proaches for Virtual Environments. In Proceed-
ings of the International Conference on Entertain-
ment Computing (pp. 23-31). Springer.

[S32] Sanneblad, J., Holmquist, L. E. (2003, Septem-
ber). OpenTrek: A Platform for Developing Inter-
active Networked Games on Mobile Devices. In
Proceedings of the International Conference on
Mobile Human-Computer Interaction (pp. 224-
240). Springer.

[S33] Maggiore, G., Spronck, P., Orsini, R., Bugliesi,
M., Steffinlongo, E., Abbadi, M. (2012, Septem-
ber). Writing Real-Time .Net Games in Casanova.
In Proceedings of the International Conference
on Entertainment Computing (pp. 341-348).
Springer.

[S34] Sarinho, V. T., de Azevedo. G. S., Boaventura,
F. M. B. (2018, October). AsKME: A Feature-
Based Approach to Develop Multiplatform Quiz
Games. In Proceedings of the Brazilian Sympo-
sium on Computer Games and Digital Entertain-
ment (pp. 38-48). IEEE.

[S35] Badia, S. B., Quintero, L. V., Cameirao, M. S.,
Triberti, A. C. S., Cipresso, P., Gaggioli, A. (2018,
October). Towards Emotionally-Adaptive Virtual
Reality for Mental Health Applications. Journal of
Biomedical and Health Informatics (early access).
IEEE.

[S36] Schneider, J., Schaal, S., Schlieder, C. (2019,
July). Integrating simulation tasks into an out-
door location-based game flow. Multimedia Tools
and Applications (pp. 1-27). Springer.

Appendix B. Additional Tables

Table B.1 shows how each study was classified ac-
cording to the major research field they belong to, as
discussed in Section 4.1. Tables B.2, B.3, B.4, and

29



Research field Reviewed Studies
Architectural proposal S1, S6, S7, S8, S10, S21, S25, S32, S34

Software Engineering S2, S4, S11, S14, S16, S17, S18, S19, S24, S26, S29, S30 S31, S33, S35

Other S3, S5, S9, S12, S13, S15, S20, S22, S23, S27, S28, S36

Table B.1: Studies categorized by major research field.

Design requirement code Coded studies
Accessibiliy S7, S8, S11, S12, S13, S18, S33

Context-awareness S3, S9, S24, S28, S36

Didactic development S2, S4, S5, S12, S13, S14, S15, S18, S32, S36

Distributed-development friendly S2, S4, S5,
S16, S18

Domain model mapping S1, S5, S10, S15, S18, S26, S31, S34, S35, S36

Emergent behavior S17, S19, S28,
S31 End-user development S4, S16, S18,
S25, S26

Extensibility S1, S3, S4, S5, S6, S10, S12, S16, S17, S20, S21, S22, S23, S24, S25,
S27, S28, S32, S36

Flexibility S1, S2, S3, S5, S6, S10, S12, S17, S19, S20, S21, S22, S23, S24, S25,
S28, S33, S34

Heterogeneous hardware S3, S7, S9, S12, S22, S23, S27, S28, S32, S34, S35

Integration with third-party tools S3, S7, S12, S14, S17, S18, S20, S24, S29, S30, S31, S35

Minimization of brittle code S2, S21

Minimization of coupled code S2, S5, S6, S25, S28

Minimization of fragile code S2, S5, S21

Pattern conformance S2, S5, S14

Performance S8, S11, S12, S17, S21, S22, S27, S29, S31, S32, S35

Portability S3, S7, S8, S10, S12, S15, S20, S22, S27, S32, S34, S36

Rapid prototyping S3, S6, S13, S17, S18, S21, S23, S32, S33

Reusability S1, S2, S3, S6, S7, S8, S9, S10, S12, S14, S15, S19, S20, S21, S22,
S23, S24, S27, S28, S30, S32, S33, S34, S36

Run-time adaptability S6, S28

Security S8, S20

Testability S2, S3, S5, S26

Type consistency S1

Unstable network tolerance S3, S36

Verifiability S1

Table B.2: Studies coded by design requirement.

B.5 present how each study was coded regarding data
fields F4, F5, F6, and F7, respectively. This data is dis-
cussed in Section 4.2, 4.3, and 4.4. However, it is im-
portant to note that the number of studies per code in
the tables here may not match the percentages shown
in Figures 2 through 10. The reason is that studies

were coded by two authors and, while the tables in this
appendix only show whether or not a study has a cer-
tain code, the data used to generate those figures con-
sidered how many times each study was assigned each
code. The complete data can be retrieved in the URL
mentioned in Section 4.1.

30



Architectural practice code Coded studies
Adaptive Object-Model S1, S6

Custom architecture S19, S25, S33, S34, S36

Data-driven design S1, S2, S4, S5, S6, S7, S8, S11, S16, S17, S18, S20, S21, S22, S23,
S27, S28, S29, S31, S34, S36

Design patterns S2, S3, S5, S6, S10, S14, S24, S25, S27, S33

Entity-Component S1, S2, S3, S4, S5, S6, S10, S12, S21, S27, S30, S35

Event-driven S9, S18, S27, S28, S31, S32, S35

Inheritance-based S1, S5, S10, S13, S14, S15, S18, S24, S25, S26, S27, S28, S32

Layered subsystems S3, S7, S12, S14, S15, S20, S21, S22, S24, S28, S29, S32, S36

Model-driven development S1, S10, S26

Model-View-Controller S9, S14, S34

Modularization S2, S3, S5, S10, S11, S14, S15, S21, S22, S23, S24, S30, S32, S35

Ontology-driven architecture S1, S31

Reference architecture S21, S28, S34

Requirement analysis S14, S15, S18, S19, S21, S29, S30

Reuse of components S10, S21, S30, S32, S34, S35

Test-driven development S5

Table B.3: Studies coded by architectural pratice.

Type of mechanics code Coded studies
All S1, S4, S5, S6, S10, S11, S12, S14, S15, S16, S17, S18, S21, S25, S30, S32,

S33

Economy S2, S3, S9, S13, S20, S24, S26, S34, S36

Narrative progression S3, S7, S8, S9, S13, S18, S19, S20, S22, S23, S28, S34, S35, S36

Physics S2, S7, S5, S13, S22, S27, S29, S31, S35

Table B.4: Studies coded by type of game mechanics.

Design restriction code Coded studies
Complex usage S10, S16, S29, S31

Does not scale well S10, S25, S26, S28, S31, S33, S34, S35

Encourages hardcoding S6, S9, S11, S13, S15, S18, S19, S25, S32

Game-specific S2, S4, S11, S13, S16, S19, S20, S22, S23, S26, S29, S35

Genre-specific S3, S4, S7, S8, S9, S15, S16, S23, S24, S27, S28, S29, S34, S36

Incomplete S10, S12, S33

No direct support for complex mechanics S7, S14, S15, S18, S19, S21, S22, S23, S24, S26, S27, S28,
S29, S32, S33, S34, S35, S36

No proposed design S11, S19

Outdated requirements S3, S8, S14, S24, S32

Outside-code support only S1, S15, S26

Requires cost/benefit analysis S10, S17, S21, S24, S30, S33, S35

Requires domain-specific knowledge S1, S3, S4, S10, S16, S24, S26, S28, S31,
S36

Requires end-user expertise S1, S4, S10, S16, S18, S20

Technology-dependent S3, S8, S9, S12, S13, S14, S16, S18, S20, S22, S23, S24, S28,
S29, S30, S31, S32, S35, S36

Table B.5: Studies coded by design restriction.

31


	Introduction
	Game Mechanics
	Motivation
	Software Architecture in Games
	Objective
	Text Organization

	Related Work
	Methodology
	Research Questions
	Search Strategy
	Selection Criteria
	Fitness Assessment
	Study Documentation
	Discussion of Architectural Choices
	Description of Architecture Design
	Presence of Reference Implementation
	Study Validation

	Data Extraction

	Results
	General Results
	Software design challenges (RQ1)
	Architecture patterns (RQ2)
	Game mechanics (RQ3)

	Analysis
	Software design challenges (RQ1)
	Architecture patterns (RQ2)
	Data-Driven Design
	Inheritance-Based and Entity-Component Architectures
	Traditional Research Topics and Architectures
	Layered Subsystems
	Answering RQ2

	Game mechanics (RQ3)
	Opportunities, Challenges, and Future Trends

	Conclusion
	Acknowledgements
	Selected Studies
	Additional Tables

