
A Pattern-based Tool for Learning Design Patterns

Christian Paz-Trillo , Renata Wassermann , Fabio Kon

1Computer Science Department
Institute of Mathematics and Statistics

University of S̃ao Paulo, Brazil
Rua do Mat̃ao 1010, S̃ao Paulo, SP 05508-090

{cpaz, renata, kon }@ime.usp.br

Abstract. Looking for information in long videos can be a time-consuming ex-
perience. TheONAIR system was developed in order to allow the users to find
the information they want through queries in written natural language. We im-
plemented the vector space model for information retrieval and used ontologies
to improve the retrieval. In this paper we describe the system architecture, which
makes strong use of patterns. We then describe an application of the system to
the domain of Object-Oriented patterns in a course lectured by Joseph Yoder at
the University of S̃ao Paulo.

1. Introduction
The ONAIR(Ontology-Aided Information Retrieval) system [Paz-Trillo et al., 2004] was
originally developed to allow users to query a video collection using written natural lan-
guage. Our intention is to save the user from the time-consuming experience of manually
browsing the entire collection to satisfy his/her information needs. The system includes a
retrieval engine based in the vector space model [Salton et al., 1975]. It also implements a
query expansion mechanism using an ontology [Gruber, 1993], containing the main con-
cepts of the domain related to the interviews. In adition to the terms in the original user
query, the expanded query includes some related terms. These terms are obtained from
the video collection and their selection depends on an ontology-based similarity measure.

The system was first used with an interview with Ana Teixeira, a Brazilian Artist.
The interview falls in the Contemporary Art domain and the language used is Brazilian
Portuguese. We designed this system to be adapted to other subjects by changing the
underlying ontology and video collection and some other configurations available from
an administrative interface.

The system architecture is complex and uses some open-source libraries to achieve
the expected functionality. We used some design patterns to reduce the complexity and to
facilitate the maintenance and readability of the system.

In this paper, we describe an application of ONAIR to allow students learning
about Object Oriented Programming (OOP) and Design Patterns [Gamma et al., 1995]
taking advantage of a filmed course lectured by Joseph Yoder at the University of São
Paulo, in 2004. The course is almost twelve hours long and it is not expected (neither
realistic) to have students watching it from beginning to end. The idea is to help them to
find the part of the course which best answers their questions.

1



In Section 2 we explain the two main processes of ONAIR: indexing and retrieval.
Section 3 shows ONAIR’s architecture, highlighting the use of patterns. We describe our
proposal to use ONAIR with the filmed course in Section 4. In that section we also justify
the use of an ontology to improve the retrieval in this domain. In Section 5, we describe
the results we expect to get when using ONAIR with the course.

2. The ONAIR System

ONAIR is in essence an information retrieval system for retrieving documents from a
collection [van Rijsbergen, 1979, Baeza-Yates and Ribeiro-Neto, 1999]. And, as such, it
has two main processes: indexing and retrieval. The indexing process takes a collection
of documents and other information (a domain ontology and keywords associated to each
document) and generates the structures needed to allow the retrieval process to use it to
respond to user queries. In this section, we describe both processes and in the next section
we show how we used patterns to keep the architecture simple.

2.1. Indexing Process

The indexing process is responsible for the creation of the structures that the retrieval
process will use. The input of this process consists in:

• A Video Collection: In the case of ONAIR, the collection consists in a set of short
clips, manually extracted from a long interview or lecture. Each clip is associated
with: (1) a set of manually assigned keywords, usually selected by the domain
specialist; (2) a set of resources (images) that can be shown during the video in a
specified period and, optionally; (3) a transcription of the speech.

• A Domain Ontology: An ontology is“a specification of a conceptualization”
[Gruber, 1993]. It describes the domain concepts and the relationships between
them. The ontology forms the system vocabulary, so it should contain the main
concepts that are referred to in the collection, as well as the terms that will be
possibly used in user queries. It is used in the retrieval process to expand the
original user queries.
OWL [McGuinness and van Harmelen, 2004]1 format is a recently adopted stan-
dard to represent ontologies. We used Protéǵe [Gennari et al., 2003, Knublauch et al., 2004]
ontology editor to build the ontologies used by ONAIR. Prot́eǵe is an open-source
tool with an easy-to-use interface which facilitates the creation of the ontology by
the domain expert.

The indexing process is executed through an administrative application that al-
lows a system administrator to register the video clips, the ontology and establish other
configuration values. This process produces the three following components:

• XML Configuration File : Contains the associations between the clips and their
transcriptions, keywords and resources, and some general configuration data.

• Inverted Index: An inverted index is an structure that stores the frequency and
the occurrences of the terms in a collection [Jackson and Moulinier, 2002], in ON-
AIR case, the video collection. It also stores the weight of terms in a document,

1OWL: Web Ontology Language

2



to avoid computing it in the retrieval phase. The terms are saved after their affixes
are removed by a stemming process. In ONAIR’s first application we used the
RSLP2 algorithm proposed by [Orengo and Huyck, 2001]. Stopwords, i.e., com-
mon words such as articles or prepositions, are not included in this index because
they do not help to determine the relevance of the document to a query.
An index using the text in video transcriptions and a second one using just the
keywords registered by the domain expert can be generated, depending on the
information availability.

• Ontology Data Structure: OWL is a very expressive language, but in this ap-
plication we did not use all of its representational power. Given that Ontology
engines, like Jena3[McBride, 2001], are prepared to deal with much of OWL ex-
pressiveness, we designed a simplified data structure that simulates the ontology
behavior used by the retrieval process. This allowed us to improve the perfor-
mance of the system significatively in terms of processing time4.

The indexing process is a computationally expensive process but it needs to be
executed only when the video collection or the ontology are modified.

2.2. Retrieval Process

Once the indexing process is executed, the configuration file, the inverted index and the
ontology data structure are used by the retrieval process, implemented by a visualizer
application. Figure 1 shows a screenshot of ONAIR using the original tested domain
about the interview with Ana Teixeira.

This application allows the user to enter a query in natural language and shows
to the user a list containing the videos that better answer the query ordered by relevance.
It also allows the user to watch sequentially the listed videos or manually select one of
them.

The retrieval process is shown in Figure 2 and its subprocesses are described here:

• Pre-processor: In this subprocess, a misspelling detection is applied to the user
query. The Jazzy API5 is used with a general dictionary (we used a Brazilian Por-
tuguese dictionary, br.ispell [Ueda, 2002]) and a domain dictionary automatically
extracted from the domain ontology, during the indexing process. Suggestions
are presented with the results of the query, so the user can manually reformulate
his/her query.
Besides the misspelling detection, the stemming process is applied to the query.
Finally, weights are assigned to the terms in the query, based on their presence or
absence in the ontology and their frequency in the collection. For example, in the
query“Give me an example of a Wrapper implementation”, “me” , “an” and“of”
are stopwords,“give” receives a weight of1, “example” and“implementation”
are present in the ontology and receive a weight of1.5 and“Wrapper” receives

2RSLP: Portuguese Language Suffix Remover
3http://jena.sourceforge.net/
4 Despite of this fact, we kept the implementation using Jena, because ontology engines are in constant

development and possibly, in future versions, its performance will allow us to use it.
5Jazzy is an open-source Java API for misspelling correction and it is available athttp://jazzy.

sourceforge.net/

3

http://jena.sourceforge.net/
http://jazzy.sourceforge.net/
http://jazzy.sourceforge.net/


Figure 1: ONAIR visualizer application screenshot showing part of the interview
with Ana Teixeira.

Figure 2: Retrieval process.

a weight of2 because besides being in the ontology it has low frequency in the
collection.

• Query Expansion: For each term in the collection, its similarity to the query is
computed. This similarity is a weighted average of the similarity between the term
and each query term. A synonym of a term, expressed as an equivalent class in
OWL, has the maximum similarity value:1.
We used an approach that combines the use of the class hierarchy in the ontology,
the terms frequency in the collection and the relationships in the ontology to com-
pute the similarity [Lin, 1998]. Ther most similar terms to the query are added to
the original query, wherer is a system parameter.
In the former example, the expansion mechanism would add the terms“Adapter”

4



and“Decorator” to the query because they are very related to“wrapper” in the
ontology (Figure 6).

• Retrieval: In this stage, the query is compared with the video clips contents (tran-
scriptions or keywords) and the system retrieves those who best answer the query.
We used the vector space model [Salton et al., 1975, Jackson and Moulinier, 2002]
for retrieval. Both indices explained in the previous section can be used in con-
junction and combined by a factor specified in the XML configuration file.

• Video Player: The system presents the list of videos ordered by relevance to
the query. The user can then select which videos to play or watch all of them
in a sequential manner. We implemented the video player using the Java Media
Framework6, which offers basic video functionalities such as play, stop, and pause.

3. A pattern-based architecture

ONAIR consists of two main applications: an administrative tool, that exposes the in-
dexing process functionalities and a visualizer, for the user retrieval. They share a lot of
structures and some processes implement and allow switching between different strate-
gies. All this behavior suggested us the use of patterns, and we will show the patterns that
helped us the most to enhance system design.

To explain the patterns used, we first describe the overall system architecture. In
Figure 3 we present a simplified package diagram representing it. The packages in the
system are:

• admin: Encloses the administrative application.
• model: Contains all classes needed to represent the videos, keywords and re-

sources. It also contains a subsystem that allows to serialize and read it in XML
format.

• invertedindex: Implements the data structure that stores the inverted index and
contains a subsystem that generates it based on the model.

• ontology: Encapsulates the ontology behavior used in the application and imple-
ments the ontology data structure.

• stemmer: Implements a Java version of the RSLP algorithm.
• retrievalengines: Offers an interface to a retrieval engine and includes two imple-

mentations: a simple keyword-based engine that matches exact terms in the query
with the video keywords and a ranked retrieval engine that uses the vector space
model and query expansion as explained before.

• visualizer: Encloses the visualizer application.
• extern packages: Jazzy, JMF and Jena are the external APIs used by the system.
• spellchecker: Offers aFaçade [Gamma et al., 1995] to the Jazzy API for spell

checking.

The architecture uses the following design patterns from the GoF book [Gamma et al., 1995].

3.1. Façade

TheFacade pattern provides a unified interface to a set of interfaces of a subsystem [Gamma et al., 1995].
We used this pattern to encapsulate the Jazzy and Jena external packages (Figure 4). The

6http://java.sun.com/products/java-media/jmf/

5



Figure 3: O NAIR arquitecture.

model package also offers aModel class that exposes all of its functionality to the other
packages.

3.2. Strategy

TheStrategy pattern allows to define a family of algorithms [Gamma et al., 1995]. We
used it to switch between options of retrieval. Theretrievalenginespackage contains
the Engine andQuery interfaces specifying that anyEngine implementation must
respond to aretrieve method, receiving a query string and a boolean specifying whether
expansion should be done or not. TheQuery interface enforces aload method, which
loads a string query into aQuery object and anexpand method, that expands the query
to add related terms, for instance. If an engine does not implement expansion, it should
throw anUnsupportedExpansionException .

Two strategies were originally implemented: (1) a simple keyword based retrieval
(kwbasedpackage) and (2) a ranked retrieval, based on the vector space model (ranked
package).

3.3. Template Method

TheTemplate Method defines the skeleton of an algorithm deferring some steps to sub-
classes [Gamma et al., 1995]. The similarity between two terms is computed by weight-
ing two factors: one based on the class hierarchy and the terms frequency and the other
based in the density of properties relating the terms. Depending whether we use the infer-
ence engine or the ontology data structure, some computations differ.

We used theTemplate Method pattern in the abstract classOntologyWrapper ,
which is responsible for computing similarity (Figure 4). It delegates frequency comput-

6



ing, common parent classes, and property extraction to subclasses (OntologyWrapperJena
andOntologyWrapperED ).

Figure 4: Ontology package showing the use of the Template Method Pattern.

3.4. Mediator

In themodel package, we needed to represent the relations between video clips and key-
words, and between videos and resources. These relations are complex and we tried to
keep them separated, so we used theMediator pattern [Gamma et al., 1995]. In Figure 5,
we show how we modeled this interaction.

3.5. Singleton

Both in the administrative application and in the visualizer application, the classModel
has only one instance, representing the current model being modified or queried. Given
that, we used the Singleton pattern [Gamma et al., 1995]. This pattern also helps allowing
Model to be accessed from anywhere in the system.

4. Using ONAIR with the OOP and Patterns Course
In 2003, the Institute of Mathematics and Statistics at University of São Paulo offered an
advanced course on object-oriented design and development presented by Joseph Yoder,
software consultant from Refactory Inc7.

4.1. Description

The course is almost twelve hours long and covers three main topics: (1) Architecture
and Design of Adaptive Object Models; (2) Design Patterns (Java and C# edition) and;
(3) Refactoring Principles. This course was filmed, digitalized and made available in the
Web to the community interested in these themes (http://eclipse.ime.usp.br/
cursos/OO/yoder.html ).

Simply making the videos available does not make attractive for students to exploit
their contents. It is not expected (neither realistic) to have students watching it from
beginning to end. We expect ONAIR will make it easier for the community to explore the
videos, allowing to take more advantage of this course.

7http://www.refactory.com

7

http://eclipse.ime.usp.br/cursos/OO/yoder.html
http://eclipse.ime.usp.br/cursos/OO/yoder.html
http://www.refactory.com


Figure 5: model package showing the use of the Mediator Pattern.

4.2. Ontology

To be able to use ONAIR in a domain we need to fragment the video into small clips,
to select keywords for each clip and/or to transcript the speech. In addition, to exploit
intelligent retrieval in ONAIR , we need to develop an ontology to describe the course
domain.

In Figure 6 we show a sample fragment of an ontology that could help ONAIR to
improve retrieval. It relates to a small subset of the design patterns [Gamma et al., 1995]
described in the course. The ontology represents domain knowledge and is composed
of a class hierarchy, class instances, and their relationships. For example, aDesign
Pattern can be aCreational Pattern , aBehavioral Pattern or aStructural
Pattern . Façade is a structural pattern, and it is functionally related toMediator .
owl:sameAs is the OWL construction that represents class equivalence, so it joins
Wrapper to Adapter andDecorator given that it is an alias of both of them.

For instance, this ontology makes the system capable of relating the term“wrap-
per” to the term“decorator” , so a query like:“How can I implement a wrapper?”, would
retrieve some video fragments containing the term“decorator” , as they are probably rel-

8



Figure 6: Ontology sample to improve retrieval.

evant for the query.

5. Expected Results

This is an ongoing work, we describe in this section the current state, the expected results,
and future work.

We are currently making the transcriptions of the videos, as it is going to bring two
main advantages: (1) it will be useful to subtitle the videos and (2) it allows us to identify
the domain information that is required to be expressed in the ontology. Video subtitling
is important to help non-native English speakers to take advantage of the course.

Developing the ontology about patterns will be useful for other knowledge-based
systems, such as tutoring systems. [de Oliveira et al., 2004] proposed an Ontology for
the specification of pattern systems (ONTO-PATTERN), this work serves as a conceptual
base for our ontology, but as the approach is different it does not cover the domain the
way the course does.

Finally, we plan to make the system available on the Web, which will allow us
to evaluate the relevance of results and system usability. Also it will confirm the system
flexibility to work in a different domain and a different language. ONAIR ’s source code
is currently available athttp://www.ime.usp.br/˜cpaz/ontologies/arte .

9

http://www.ime.usp.br/~cpaz/ontologies/arte


Acknowledgements:ONAIR development was supported by CAPES. Renata Wasser-
mann is partially supported by the CNPq grant PQ 304486/2004-3. This work has been
supported by CNPq project 55.0222/2003-0.

We would like to thank the Art Historician Paula Braga for his expert support
through ONAIR ’s development.

References

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. and Ribeiro-Neto, B. (1999).Mod-
ern Information Retrieval. Addison Wesley Longman.

[de Oliveira et al., 2004] de Oliveira, I. R., de Sousa Neto, R., and Girardi, R. (2004). Uma
ontologia para a especificação de sistemas de padrões. InProceedings of the Fourth
Latin American Conference on Pattern Languages of Programming, Ceaŕa, Brazil.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, R. (1995).Design
Patterns: Elements of Reusable Object-Oriented Software. Adisson Wesley.

[Gennari et al., 2003] Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M.,
Eriksson, H., Noy, N., and S.Tu (2003). The evolution of Protéǵe–2000: An environ-
ment for knowledge–based systems development.International Journal of Human-
Computer Studies, 58(1):89–123.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontologies.Knowl-
edge Acquisition, 5(2):199–220.

[Jackson and Moulinier, 2002] Jackson, P. and Moulinier, I. (2002).Natural Language Pro-
cessing for Online Applications: Text Retrieval, Extraction, and Categorization. John
Benjamins Publishing Co.

[Knublauch et al., 2004] Knublauch, H., Musen, M., and Rector, A. (2004). Editing de-
scription logics ontologies with the Protéǵe OWL plugin. InInternational Workshop
on Description Logics, Whistler, BC, Canada.

[Lin, 1998] Lin, D. (1998). An information-theoretic definition of similarity. InProceed-
ings of the 15th International Conference on Machine Learning, pages 296–304, San
Francisco, USA. Morgan Kaufmann Publishers Inc., 1998.

[McBride, 2001] McBride, B. (2001). Jena: Implementing the rdf model and syntax spec-
ification. InProceedings of the Second International Workshop on the Semantic Web,
Hong Kong, China.

[McGuinness and van Harmelen, 2004] McGuinness, D. and van Harmelen, F. (2004).
OWL Web Ontology Language Overview. Technical report, World Wide Web Consor-
tium. http://www.w3.org/TR/2004/REC-owl-features-20040210/ .

[Orengo and Huyck, 2001] Orengo, V. and Huyck, C. (2001). A stemming algorithm for
the Portuguese language. InProceedings of the 8th International Symposium on
String Processing and Information Retrieval(SPIRE) 2001, pages 186–193. An im-
plementation of the algorithm in C is available at:http://www.cs.mdx.ac.uk/
research/PhDArea/rslp/RSLP.htm .

10

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.cs.mdx.ac.uk/research/PhDArea/rslp/RSLP.htm
http://www.cs.mdx.ac.uk/research/PhDArea/rslp/RSLP.htm


[Paz-Trillo et al., 2004] Paz-Trillo, C., Wassermann, R., and Braga, P. (2004). Using on-
tologies to retrieve video information. In Freitas, F., Stı́ckenschmidt, H., and Volz,
R., editors,Proceedings of the Workshop on Ontologies and their Applications, pages
55–66, S̃ao Lúıs Maranh̃ao, Brazil.

[Salton et al., 1975] Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model
for automatic indexing.Commun. ACM, 18(11):613–620.

[Ueda, 2002] Ueda, R. (2002). Ispell Dictionary for Brazilian Portuguese: br.ispell. Avail-
able athttp://www.ime.usp.br/˜ueda/br.ispell/ .

[van Rijsbergen, 1979] van Rijsbergen, C. J. (1979).Information Retrieval. Butterworths,
2nd edition.

11

http://www.ime.usp.br/~ueda/br.ispell/

	Introduction
	The OnAIR System
	Indexing Process
	Retrieval Process

	A pattern-based architecture
	Façade
	Strategy
	Template Method
	Mediator
	Singleton

	Using OnAIR with the OOP and Patterns Course
	Description
	Ontology

	Expected Results

