
A Comprehensive View of Hadoop Research - A Systematic Literature Review

Ivanilton Polatoa,b,⇤, Reginaldo Réb, Alfredo Goldmana, Fabio Kona

aDepartment of Computer Science, University of São Paulo, São Paulo, Brazil
bDepartment of Computer Science, Federal University of Technology - Paraná, Campo Mourão, Brazil

Abstract

[Context:] In recent years, the valuable knowledge that can be retrieved from petabyte scale datasets – known as Big Data –
led to the development of solutions to process information based on parallel and distributed computing. Lately, Apache Hadoop
has attracted strong attention due to its applicability to Big Data processing. [Problem:] The support of Hadoop by the research
community has provided the development of new features to the framework. Recently, the number of publications in journals
and conferences about Hadoop has increased consistently, which makes it di�cult for researchers to comprehend the full body of
research and areas that require further investigation. [Solution:] We conducted a systematic literature review to assess research
contributions to Apache Hadoop. Our objective was to identify gaps, providing motivation for new research, and outline collab-
orations to Apache Hadoop and its ecosystem, classifying and quantifying the main topics addressed in the literature. [Results:]
Our analysis led to some relevant conclusions: many interesting solutions developed in the studies were never incorporated into
the framework; most publications lack su�cient formal documentation of the experiments conducted by authors, hindering their
reproducibility; finally, the systematic review presented in this paper demonstrates that Hadoop has evolved into a solid platform to
process large datasets, but we were able to spot promising areas and suggest topics for future research within the framework.

Keywords: Systematic Literature Review, Apache Hadoop, MapReduce, HDFS, Survey

1. Introduction

One of the largest technological challenges in software sys-
tems research today is to provide mechanisms for storage, ma-
nipulation, and information retrieval on large amounts of data.
Web services and social media produce together an impressive
amount of data, reaching the scale of petabytes daily (Face-
book, 2012). These data may contain valuable information,
which sometimes is not properly explored by existing systems.
Most of this data is stored in a non-structured manner, using
di↵erent languages and formats, which, in many cases, are in-
compatible (Bakshi, 2012; Stonebraker et al., 2010).

Take, for instance, Facebook, which initially used relational
database management systems (DBMS) to store its data. Due
to the increasingly large volume of information generated on a
daily basis (from a 15TB dataset in 2007 to a 700TB dataset
in 2010) (Thusoo et al., 2010), the use of such infrastructure
became impracticable. Specially because, most of its data is
unstructured, consisting of logs, posts, photos, and pictures.
One of the Facebook’s largest cluster holds more than 100 PB
of data, processing more than 60,000 queries a day (Facebook,
2012). Having achieved in September 2012 more than 1 billion
active users, Facebook may be considered one of the largest and
most valuable social network.

Companies holding large amounts of user data started to be
evaluated not just by their applications but also by their datasets,

⇤Corresponding author. Telephone/Fax: +55 44 3518 1449
Email address: ipolato@utfpr.edu.br (Ivanilton Polato)

specially the information that can be retrieved from them. Big
companies like Google, Facebook and Yahoo! have an aggre-
gate value not only for their provided services but also for the
huge amount of information kept. This information can be used
for numerous future applications, which may allow, for exam-
ple, personalized relationships with users.

The “Big Data” (Zikopoulos and Eaton, 2011; White, 2012)
term is used to refer to a collection of large datasets that may
not be processed using traditional database management tools.
Some of the challenges involved when dealing with Big Data
goes beyond processing, starting by storage and, later, analy-
sis. Concerning data analysis and Big Data, the need for infras-
tructures capable of processing large amounts of data, within
an acceptable time and on constrained resources, is a signif-
icant problem. Plausible solutions make use of parallel and
distributed computing. This model of computation has demon-
strated to be essential nowadays to extract relevant information
from Big Data. Such processing is accomplished using clusters
and grids, which use, generally, commodity hardware to aggre-
gate computational capacity at a relatively low cost.

Although parallel and distributed computing may be one
of the most promising solutions to store and manipulate Big
Data, some of its characteristics may inhibit its use by common
users. Data dependency and integrity, cluster load balancing
and task scheduling are major concerns when dealing with par-
allel and distributed computing. Adding the possibility of an al-
most certain machine failure, the use of these concepts becomes
non-trivial to inexperienced programmers. Several frameworks
have been released to abstract these characteristics and provide

1

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



high level solutions to end users (DeWitt et al., 2008; Battré
et al., 2010; Malewicz et al., 2010; Isard et al., 2007); some of
them were built over programming paradigms, such as MPI and
MapReduce.

The MapReduce programming paradigm, now highly used
in the context of Big Data, is not new. One of the first uses
of this paradigm was on the LISP programming language. It
relies basically on two functions, Map and Reduce. The first
generates maps based on a given user defined function and the
second groups Map outputs together to compute an answer.
The paradigm is very useful when dealing with batch programs
where data is manipulated in a sequential way. Recently the
MapReduce paradigm attracted attention because of its appli-
cability to parallel computing. Google’s MapReduce composed
initially of the GFS distributed filesystem (Ghemawat et al.,
2003) and the implementation of MapReduce (Dean and Ghe-
mawat, 2004, 2008), brought to the fore the use of the sim-
ple and consolidated functions Map and Reduce in parallel and
distributed computing using Java and C++ libraries. This ap-
proach feeds the Reduce function with the Map function results.
This enables parallelism since partitioned portions of data may
be fed into di↵erent instances of Map tasks throughout the clus-
ter. The results are gathered, used as inputs to the Reduce in-
stances, and the computation is accomplished. The great nov-
elty here is that the approach hides from users a lot of the com-
plexity of parallelization and distribution. Users can focus on
the functionality of their programs and the framework abstracts
the complexity and controls the infrastructure.

Based on this novel approach, Doug Cutting, an employee of
Yahoo! at the time, and Mike Cafarella, a professor at Univer-
sity of Michigan, developed Hadoop, later called the Apache
Hadoop framework. It is an open source implementation of
the Google’s MapReduce approach. It uses the same idea from
Google’s: hiding complexity from users allowing them to fo-
cus on programming. Mostly known by its MapReduce imple-
mentation, Apache Hadoop also has an ecosystem composed of
several applications ranging from data warehousing to a data
flow oriented programming language. The Apache Hadoop
framework provides solutions to store, manipulate and extract
information from Big Data in several ways. The framework
has evolved over the last few years and promotes data integrity,
replication, scalability, and failure recover in a transparent and
easy-to-use way. All these factors have made Apache Hadoop
very popular both in academia and in industry.

The early adoption of Hadoop by the research community
has provided rapid evolution and development of new features
to the framework. Over the last five years, the framework re-
ceived numerous contributions from researchers, most of them
published worldwide in journals and conferences. The large
number of publications makes it di�cult for researchers to find
specific topics or areas that still need further investigation, re-
sulting in a need for an unbiased analysis of the scientific and
technological research results obtained in this field in the past
years. Thus, this article is mainly directed to:

• Researchers and graduate students willing to carry out new
research around Hadoop, which can use the current paper

as a guide to which areas have been covered in past re-
search and which areas deserve more attention;

• Practitioners, and users interested in knowing what are
the major technological features incorporated into Hadoop
and how they evolved over time;

• Researchers interested in having an overall panorama of
the research that has been carried out around the field.

This work is also an opportunity to map publications and
classify them into categories, which indicates possible promis-
ing areas in which contributions are needed. In this paper we
present the results of a systematic literature review on Hadoop
research. Our objectives include reviewing the literature on the
framework to find out which topics have been researched over
the last few years. We want to discover which areas have re-
ceived improvements and solutions from academic research and
which areas still have room for advancements. Thus, our main
contributions are:

• A systematic literature review pointing out which studies
have directly contributed to the Apache Hadoop;

• A taxonomy of the selected studies to allow an in-depth
analysis of the more active areas regarding the framework;

• Pointing out the main research areas that still need and
have room for improvements around Hadoop.

The rest of the paper is organized as follows. We start pre-
senting our research method and protocol used to develop this
systematic review. Section 3 presents the characterization of
the selected studies. In Section 4, we classify the selected stud-
ies describing and presenting the contributions of each one to
the Apache Hadoop project. We discuss the findings in Section
5 and analyze the results to point out hot and cold zones in the
project. Related papers are presented in Section 6 and finally, in
Section 7 we present our conclusions and discuss opportunities
for future research.

2. Research Method

Systematic reviews provide a way to execute in-depth un-
biased literature reviews, aggregating scientific value to its re-
sults. The objective of a systematic review is to present a correct
assessment regarding a research topic through the application of
a reliable, rigorous, and auditable methodology, for example as
proposed by Kitchenham and Charters (2007). The systematic
review starts with the definition of a protocol that will guide
the progress of the research, including research questions and
methods used during the revision process. According to those
authors, the protocol must include:

• The research questions that the study aims to respond;

• Strategies used in the searches for the primary studies like
search strings and selected digital libraries, journals, and
conferences;

2

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



• Inclusion and exclusion criteria for primary studies;

• Quality assessment procedure for selected studies;

• Strategy for data extraction and subsequent synthesis of
extracted data.

In this section, we present the protocol we used in our
Apache Hadoop systematic review. The main objective of this
review was to elucidate both fundamental aspects and contribu-
tions to Apache Hadoop, including its programming paradigm,
MapReduce, its storage file system, the Hadoop Distributed File
System (HDFS), and the rest of its ecosystem.

2.1. Objectives and research questions
Parallel and distributed computing currently has a fundamen-

tal role in data processing and information extraction of large
datasets. Over the last years, commodity hardware became part
of clusters, since the x86 platform cope with the need of hav-
ing an overall better cost/performance ratio, while decreasing
maintenance cost.

Apache Hadoop is a framework developed to take advantage
of this approach, using such commodity clusters for storage,
processing and manipulation of large amounts of data. The
framework was designed over the MapReduce paradigm and
uses the HDFS as a storage file system. Hadoop presents key
characteristics when performing parallel and distributed com-
puting, such as data integrity, availability, scalability, exception
handling, and failure recovery. Even more, these features are
presented in a transparent manner to the user, which represents
a novel approach to newcomers.

In this context, the objective of this work is to answer the
question: What are the main topics of investigation related to
Apache Hadoop and its programming paradigm, MapReduce?
Although Hadoop is a fairly adopted platform for distributed
processing of large datasets, it still has room for improvements
and we want to discover what are these areas. To achieve our
goal, it is necessary to evaluate the aspects addressed in the
studies of the academic community. This is our Research Ques-
tion 1:

RQ1: What are the main research topics and as-
pects covered by publications concerning the Apache
Hadoop framework and the MapReduce paradigm?

Our second objective is to organize the selected studies in a
structured taxonomy. Thus, our Research Question 2 must also
be answered during our research.

RQ2: How to organize the main aspects covered
by the recent studies about Apache Hadoop in a tax-
onomy?

This question aims to classify the recent studies according to
their collaboration with the Apache Hadoop framework, and to
answer RQ2 we could subdivide the question into three items
that will help the classification of the selected studies and the
formalization of the taxonomy:

• RQ2.1: How to create categories from the selected studies
to classify them into a taxonomy?

• RQ2.2: What kind of validation is performed in each
study? Simulation, analytical model, and experimenta-
tion?

• RQ2.3: The proposed approaches take into account
whether the problem being solved is application/data-
specific or more generic?

2.2. Search strategies

Having the research questions established, the search strate-
gies and search string were defined. We also defined the search
scope and the consulted digital libraries.

Research Keywords. We identified the keywords based on
the research questions. There was no need to consider syn-
onyms to the keywords since the names were predefined based
on the names defined by the project developers. The search
terms identified were “Hadoop” and “MapReduce” written ex-
actly as defined by the developers in the Apache Hadoop web-
site (http://hadoop.apache.org).

Search Strings. The search strings were built based on the
research questions using the selected keywords. Sometimes
search strings have to be adapted according to the specific needs
of digital libraries, but this was not necessary in our case. The
search string used to obtain the initial results of this review was
“(Hadoop) OR (MapReduce)”. This type of expression, more
generic, may be used in almost all digital libraries.

Sources. The criteria used to select sources of studies were:
must have web search mechanism; search mechanisms must al-
low customized searches by title and abstract; full articles must
be available for download using available contracts between our
university and the digital library; importance and relevance of
sources. With the search string defined, we chose the following
digital libraries as sources:

• ACM Digital Library

• IEEEXplore Digital Library

• ScienceDirect

2.3. Selection of studies

Studies selected for further analysis on this systematic review
must be published as full papers in Journals or in Conferences
indexed by the selected digital libraries. After obtaining the re-
sults from the digital libraries, all studies have to be analyzed
individually to confirm the relevance in the context of our re-
view. This way, we composed a group of primary papers that
were reviewed during our research. To select or discard studies,
inclusion and exclusion criteria were defined as follows. Table
1 shows the stages involved in the selection of papers.

Inclusion criteria. The inclusion of a work is made based on
its relevance to the research questions. First, we analyzed title,
keywords and abstract of the studies obtained from the initial
search on the libraries. The selected studies from this stage

3

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Stage 1 Apply the search query to all the sources, gather-
ing the results.

Stage 2 Exclude invalid and duplicated papers.
Stage 3 Apply inclusion/exclusion criteria to the papers

titles, keywords, and abstracts.
Stage 4 Apply inclusion/exclusion criteria to introduc-

tions and conclusions.
Stage 5 Review the selected studies applying, when nec-

essary, inclusion/exclusion criteria to the text.

Table 1: Studies selection stages

were analyzed again, this time by its introduction and conclu-
sions. If at any time one of the inclusion criteria was broken,
the study was discarded.

The inclusion criteria were the following:
1. Studies dealing primarily with concepts related to the de-

velopment of solutions for the Apache Hadoop MapRe-
duce platform and its ecosystem;

2. Studies having Hadoop/MapReduce as a final objective (as
an end) and not as a means (infrastructure) to accomplish
computations for other areas;

3. Studies that present complementary approaches that ex-
tend Hadoop/MapReduce and/or its ecosystem; and,

4. Studies published in Journals and/or Conferences.

Exclusion criteria. Exclusion of studies was made by the
analysis of title, keywords, abstract, and later by introduction
and conclusions when necessary, observing the following crite-
ria:

1. Studies published in Workshops, since they are very nu-
merous and normally represent less mature work that later,
after refinement, are enhanced and published in confer-
ences and journals;

2. Studies that make use of Hadoop as an infrastructure plat-
form to obtain results without modifying or proposing new
solutions directly related to Hadoop;

3. Studies that do not cite Hadoop although citing MapRe-
duce, i.e., other MapReduce frameworks;

4. Studies that present complementary approaches that do not
extend Hadoop/MapReduce and/or its ecosystem;

5. Studies that do not have the complete full text available at
the source;

6. Studies that do not answer or are irrelevant to the research
questions;

7. Repeated studies that were published in more than one
source;

8. Short papers, talks, demonstrations, or tutorials;
9. Similar studies published by the same authors. In this case,

the most recent or most complete one was considered.

3. Characterization of the Selected Studies

This systematic review follows a protocol developed based
on Kitchenham and Charters’s methodology (2007). This sec-
tion presents the characterization of the selected studies accord-
ing to our protocol.

Source Query Results Stage 2 Stage 3 Stage 4
ACM 634 347 70 38
IEEE 966 630 94 63
ScienceDirect 84 15 9 5

Table 2: Number of selected papers per source.

Selected studies were obtained from three digital libraries:
IEEEXplore, ACM, and ScienceDirect. Searches were con-
ducted in the beginning of 2013 and later updated in June, 2014;
in both cases, the search was limited to papers published until
December 31, 2013. Table 2 shows the numbers of studies se-
lected from each digital library. Our final selection resulted in
38 studies from the ACM Digital Library, 63 from the IEEE
Xplore Digital Library, and 5 from the ScienceDirect Digital
Library, totaling 106 studies that were reviewed.

Paper Type Journal Conference
Initial Selected Initial Selected

ACM 105 10 344 28
IEEE 37 2 763 61
ScienceDirect 84 5 0 0
Total 226 17 1107 89

Table 3: Studies by type.

Table 3 presents the results separated by source and type of
publication. Note that our protocol focused on selecting only
studies published in Journals and Conferences. We also have
limited the initial search to studies published since 2008 since
Hadoop became a major project at the Apache Software Foun-
dation in 2008. The di↵erence on totals from Table 2 is ex-
plained by the Workshop papers, discarded by our research pro-
tocol. Table 4 shows the year distribution of the selected papers.

Publication Journal Conference
Year ACM IEEE SD ACM IEEE
2013 0 1 5 2 3
2012 4 0 0 12 17
2011 1 1 0 8 23
2010 3 0 0 4 15
2009 2 0 0 1 3
2008 0 0 0 1 0

Table 4: Studies by year.

With the selection stage complete, each study was analyzed
and reviewed, being also classified into one or more categories
of our taxonomy, presented in the next section.

4. Contributions to Apache Hadoop and its Ecosystem

Apache Hadoop is best known for being the open source im-
plementation of Google’s MapReduce computing model. Be-
ing an open source solution, Hadoop attracted the attention of
both the academic and industrial communities. Yet, the major

4

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



reasons for its wide adoption are related to its intrinsic charac-
teristics, namely scalability, fault tolerance, and the ability to
perform parallel and distributed computations on low-end com-
puting clusters. This section presents the papers selected via our
research protocol, which are somehow related to these Hadoop
characteristics.

One of the objectives of this systematic literature review is to
propose a taxonomy and classify the related research literature
into categories. Our taxonomy creation methodology was based
on the project structure proposed by the Apache Hadoop devel-
opers. After careful review of the selected papers, we devel-
oped our proposed taxonomy, in which we classified the stud-
ies into four major categories related to the Hadoop framework
architecture: MapReduce, Storage, Ecosystem, and Miscella-
neous. The first category, MapReduce, includes studies that de-
velop some solution involving the paradigm and its associated
concepts, like scheduling, data flow, and resource allocation.
The Data Storage & Manipulation category includes studies
comprising HDFS, gathering studies involving storage, repli-
cation, indexing, random access, queries, research involving
DBMS infrastructure, Cloud Computing, and Cloud Storage.
The third category includes studies containing new approaches
to the Hadoop Ecosystem, including papers related to both ex-
isting and new components created to cope with specific classes
of problems. Finally, the last category received studies that did
not fit well in the other three categories, including research in-
volving GPGPU, cluster energy management, data security, and
cryptography. Our taxonomy was then structured as shown in
Figure 1.

Each study was placed into one or more categories, since
most of the selected papers involve one or more concepts of
Hadoop. These intersecting areas are specially represented in
the projection graphs presented in Section 5, which show a rela-
tionship among several studies from di↵erent categories. Now,
we present the main contributions observed in the selected stud-
ies, classified according to our taxonomy. Note that some cate-
gories were grouped here to promote a better organization and
comprehension in this section.

Each of the following subsections presents the concepts and
issues involved in key areas, as well the published approaches
with enhancements to Apache Hadoop. Readers interested in
the details of specific aspects of Hadoop research shall read the
corresponding subsections below. Readers interested in having
only a general overview of Hadoop research may skip now to
the discussion in Section 5.

4.1. Scheduling
Scheduling, alongside with storage, is one of the most critical

aspects of highly-concurrent parallel systems and was a topic
addressed by a large number of the studies we analyzed. Orig-
inally, Hadoop comes with three schedulers: FIFO, Fair, and
Capacity. The default Hadoop scheduler is the FIFO, where
jobs are loaded into a queue and scheduled to execute according
to their order in the queue. The Fair Scheduler was originally
developed by Facebook and later released to the Hadoop com-
munity. It gives a fair share of the cluster capacity over time,
thus its name. Jobs are put into allocated pools, which receive a

Figure 1: Taxonomy hierarchical organization.

guaranteed minimum number of Map and Reduce slots. Using
preemption, the scheduler manages the cluster to assure a fair
share of resources to each job. The third scheduler, named Ca-
pacity Scheduler, was developed by Yahoo! to guarantee a fair
allocation of computational resources to a large number of clus-
ter users. To do so, it uses queues with a configurable number
of task (Map or Reduce) slots. Resources are shared among
queues according to its priority. Free resources from empty
queues are temporarily allocated to other queues. While FIFO
was the first and most simple scheduler implemented, the Fair
and the Capacity scheduler were created to address the problem
of managing multiple users sharing the same resources. We
now present schedulers and new approaches designed to en-
hance the performance or to solve untreated classes of problems
in Hadoop.

Regarding the original schedulers, Tan et al. (2012a) propose
analytical models for FIFO and Fair schedulers, based on exten-
sive measurements and source code investigations. For a class
of heavy-tailed Map service time distributions, authors derive
the distribution tail of the job processing delay under the three
schedulers. Analytically analyzing the delays under di↵erent
schedulers for MapReduce, the authors discovered an interest-
ing starvation problem with the widely used Fair Scheduler due
to its greedy approach to launch Reduce tasks. To address this
issue, the Coupling Scheduler was designed and implemented.
This scheduler couples the progresses of Mappers and Reduc-
ers and jointly optimize the placements for both of them. This
mitigates the starvation problem and improves the overall data
locality. Tao et al. (2011) propose an improved FAIR schedul-
ing algorithm, which takes into account job characteristics and
data locality. This scheduler kills tasks to free slots for new
users. It adopts di↵erent policies for I/O- and CPU-bound jobs
based on data locality. Results demonstrate that the improved
version decreases both data transfer and the execution time of
jobs. Similarly, Nguyen et al. (2012) propose a hybrid sched-
uler based on dynamic priority aimed to reduce the latency for
variable length concurrent jobs. This algorithm is designed for
data intensive workloads and tries to maintain data locality dur-
ing job execution.

5

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Other concern regarding schedulers is the heterogeneity of
the hardware within clusters, which is discussed by some au-
thors. The LATE (Longest Approximate Time to End) sched-
uler proposed by Zaharia et al. (2008) addresses the problem of
speculative execution of straggling tasks while still concerned
with performance. Zaharia et al. (2010) also developed another
technique named delay scheduling, which intends to address the
problem of data locality while keeping fairness during task exe-
cution. In the work of Zhao et al. (2012), a new job scheduling
based on the Fair scheduler is presented. The scheduler takes
into account job characteristics and, similarly to the Fair Sched-
uler, allocates them into queues. The scheduler manages three
queues: one for large jobs, another one for small jobs, and a
third one for priority jobs. The authors claim that, compared to
the Fair scheduler, tasks of large jobs could be executed with
higher parallelism; short jobs will not starve and long jobs can
still finish in a reasonable time; and, higher priority jobs that
come up may be computed as soon as possible. Ibrahim et al.
(2012) developed a scheduling algorithm called Maestro to al-
leviate the non-local Map tasks execution problem that relies
on replica-aware execution of Map tasks. To accomplish this,
Maestro keeps track of the chunks and replica locations, along
with the number of other chunks hosted by each node. This
way, Maestro can schedule Map tasks with low impact on other
nodes’ local Map tasks execution by calculating the probabili-
ties of executing all the hosted chunks locally.

Lei et al. (2011) propose a novel approach, CREST (Com-
bination Re-Execution Scheduling Technology), which can
achieve the optimal running time for speculative Map tasks and
decrease the response time of MapReduce jobs. To mitigate the
impact of straggler tasks, it is common to run a speculative copy
of the straggler task. The main idea is that re-executing a com-
bination of tasks on a group of cluster nodes may progress faster
than directly speculating the straggler task on a target node, due
to data locality. The evaluation conducted demonstrates that
CREST can Reduce the running time of speculative Map tasks
by 70% on the best cases and 50% on average, compared to
LATE.

Kumar et al. (2012) propose a context-aware scheduler. The
proposed algorithm uses the existing heterogeneity of most
clusters and the workload mix, proposing optimizations for jobs
using the same dataset. Although still in a simulation stage, this
approach seeks performance gains by using the best of each
node on the cluster. The design is based on two key insights.
First, a large percentage of MapReduce jobs are run periodi-
cally and roughly have the same characteristics regarding CPU,
network, and disk requirements. Second, the nodes in a Hadoop
cluster become heterogeneous over time due to failures, when
newer nodes replace old ones. The proposed scheduler is de-
signed to tackle this, taking into account job characteristics
and the available resources within cluster nodes. The sched-
uler uses then three steps to accomplish its objective: classify
jobs as CPU or I/O bound; classify nodes as Computational
or I/O good; Map the tasks of a job with di↵erent demands to
the nodes that can fulfill the demands. Chen et al. (2010) pro-
pose another approach for heterogeneous environments. The
SAMR (Self-Adaptive MapReduce) scheduling algorithm im-

proves MapReduce by saving execution time and system re-
sources. On MapReduce, slow tasks prolong the execution time
of an entire job. In heterogeneous clusters, nodes require di↵er-
ent times to accomplish the same tasks due to their di↵erences,
such as computation capacities, communication, architectures,
memory, and power. The scheduler uses historical information
of each cluster node to tune parameters and discover slow tasks.
This way, the scheduler is able to classify certain nodes as slow,
launching backup tasks using the data locality principle.

A di↵erent approach to heterogeneity is presented by Ra-
sooli and Down (2011), which propose a Hadoop scheduling
algorithm that uses system information such as estimated job
arrival rates and mean job execution times to make schedul-
ing decisions. Using system information, the algorithm clas-
sifies jobs into classes and matches them with available re-
sources. Priority, minimum share required, and fair share of
users are also considered when making a scheduling decision.
The proposed algorithm is dynamic and updates its decisions
based on changes in these parameters. Another approach was
proposed by You et al. (2011), a Load-Aware scheduler (LA
scheduler) used in heterogeneous environments with dynamic
loading. The scheduler consists of a data collection module,
which gathers the system-level information of the TaskTrack-
ers periodically, and a task assignment module, which makes
scheduling decisions according to the information previously
collected.

Polo et al. (2010) implemented an application-centric task
scheduler to predict the performance of concurrent MapReduce
jobs dynamically and adjust resource allocation for them. It
uses estimates of individual job completion times given a par-
ticular resource allocation. The scheduler tries to maximize
each job’s chance of meeting its performance goal by dynami-
cally estimating the completion time for each MapReduce job.
It benefits from MapReduce jobs composition of a large number
of tasks, which is known in advance, during the job initializa-
tion phase, and from the job progression that can be observed
during runtime. Similarly, Tang et al. (2012) propose an al-
gorithm to satisfy the users job deadline requirements in the
cloud environment. The MTSD (MapReduce Task Scheduling
for Deadline) algorithm uses the data locality and cluster het-
erogeneity information to classify nodes and improve the Map
tasks data locality. Authors also present a task execution model
based on the node classification algorithm. Di↵erently from
Polo et al., the authors consider Map and Reduce tasks di↵er-
ently, since their execution times are not correlated, and could
not be accurate to compute average task execution time using
Map and Reduce tasks together.

Ahmad et al. (2012) propose an implementation called
Tarazu, comprising a suite of optimizations to improve MapRe-
duce performance on heterogeneous clusters. The proposed op-
timizations are a communication-aware load balancing scheme
of Map computations across the nodes, a communication-
aware scheduling of Map computations to avoid bursty net-
work tra�c, and a predictive load balancing of Reduce com-
putations across the nodes. Finally, the authors also propose
online measurement-based heuristics to estimate the informa-
tion needed for making application- and cluster-aware deci-

6

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



sions. Focusing on the same problem, Wang et al. (2012) pro-
pose Predator, an experience guided configuration optimizer,
which uses a MapReduce cost model to estimate jobs execu-
tion times and classifies MapReduce parameters into groups by
their di↵erent tunable levels, using the most adequate to achieve
better performance.

Concerning not only heterogeneous environments but also
heterogeneous MapReduce workloads, Tian et al. (2009) pro-
pose another dynamic scheduler integrated to Hadoop. The
main goal is to improve the hardware utilization rate when dif-
ferent MapReduce workloads run on the cluster. Originally,
Hadoop schedulers are not aware of di↵erences among MapRe-
duce workloads, e.g., CPU-bound or I/O-bound workloads. The
proposed scheduler studies as a workload prediction mecha-
nism, distributing workloads into three queues: CPU-bound,
I/O-bound, and Wait-queue. The authors proposed an analyt-
ical model to calculate and classify the workloads at runtime.
First, new jobs are put into the waiting queue. Next, the sched-
uler assigns one Map task to every TaskTracker for predicting
the job type. An analytical model is used to classify the job and
allocate it to the other two queues to finish its execution. The
triple-queue scheduler can balance the usage of both CPU and
disk I/O, improving Hadoop throughput by about 30% under
heterogeneous workloads.

Data locality as a performance issue has also been recently
studied in Hadoop. He et al. (2011a) propose a new scheduler
with the premise that local Map tasks are always preferred over
non-local Map tasks, no matter which job a task belongs to.
A locality marker is used to classify nodes and to ensure each
node has a fair chance to grab its local tasks. To accomplish
this, the scheduler relaxes the job order for task scheduling.
Doing so, it improves performance by avoiding data transfer
in Map tasks, which may degrade job execution performance.
This scheduler also tries to guarantee, besides high data local-
ity, high cluster utilization. This is achieved by minimizing data
transfer so nodes can maximize the use of its resources for com-
putation. Zhang et al. (2011c) propose a scheduling method
called next-k-node scheduling (NKS) that improves the data lo-
cality of Map tasks. The scheduler calculates a probability for
each Map task in a job, generating low probabilities for tasks
that have its input data stored on the next node. Following, the
method preferentially schedules the task with the highest prob-
ability. Thus, it reserves tasks with lower probabilities to the
nodes holding their input data, improving data locality.

Scheduling Map tasks on a Hadoop instance deployed in a
heterogeneous environment may degrade system performance.
This happens because the schedulers may not be able to Re-
duce the occurrence of Map tasks not scheduled to the nodes
storing the input data. Zhang et al. (2011b) propose a data-
locality-aware scheduling method to address this problem. Af-
ter receiving a compute request from an idle node, the method
preferably schedules the task whose input data is stored on this
requesting node. If there are no such tasks, it selects the task
whose input data is nearest to the requesting node. The sched-
uler also makes a decision on whether to reserve a certain task
for the node storing its input data or scheduling it on a request-
ing node by transferring its input data on the fly. Although the

former decision may improve data locality, it may incur on run-
time overhead, e.g., waiting time. This overhead may also occur
when adopting the latter decision, when the transmission time
for copying the input data to the requesting node may overcome
the waiting time.

The Hadoop original schedulers neither exploit data local-
ity nor addresses partitioning skew (the case where the compu-
tational load is unbalanced among Map and/or Reduce tasks,
generally causing performance degradation) present in some
MapReduce applications. Hammoud and Sakr (2011) present
another approach discussing the data locality problem. It deals
specifically with Reduce tasks. The Reduce phase scheduling is
modified to become aware of partitions, locations, and size, to
decrease network tra�c. The scheduler, named Locality-Aware
Reduce Task Scheduler (LARTS), uses a practical strategy that
leverages network locations and sizes of partitions to exploit
data locality. LARTS attempts to schedule Reducers as close as
possible to their maximum amount of input data and conserva-
tively switches to a relaxation strategy seeking a balance among
scheduling delay, scheduling skew, system utilization, and par-
allelism. The work of Zhang et al. (2012a) also deals with the
Reduce tasks data locality. The authors propose a two-phase
execution engine of Reduce tasks to cope with massive remote
data access delays that may degrade system performance. The
degradation is related to massive remote I/O operations to copy
the intermediate results of Map tasks. In the first phase, the en-
gine selects the nodes to run Reduce tasks and then informs the
selected nodes to prefetch intermediate results for Reduce tasks.
In the second phase, the selected nodes allocate computing and
memory resources to execute the Reduce tasks.

Hammoud et al. (2012) propose another approach named
Center-of-Gravity Reduce Scheduler (CoGRS). The work de-
signs a locality-aware, skew-aware Reduce task scheduler for
saving MapReduce network tra�c. The proposed scheduler at-
tempts to schedule every Reduce task at its center-of-gravity
node determined by the network locations. By scheduling Re-
ducers at their center-of-gravity nodes, they argue for decreased
network tra�c, which may possibly allow more MapReduce
jobs to co-exist on the same system.

Seo et al. (2009) present a prefetching and a pre-shu✏ing
scheme that can improve the overall performance in shared
MapReduce computation environments. The prefetching
scheme exploits data locality, while pre-shu✏ing is designed to
reduce the network overhead required to shu✏e key-value pairs.
The proposed prefetching scheme is subdivided in two types.
First, intra-block prefetching, which prefetches data within a
single block while performing a complex computation. Sec-
ond, inter-block prefetching runs in the block level, by prefetch-
ing an entire block replica to a local rack. In the pre-shu✏ing
scheme, the task scheduler looks into the input splits of the Map
phase and predicts how to partition the key-value pairs consid-
ering the Reducer locations. The expected data are assigned
to a Map task near the future Reducer before the execution of
the Mapper. The proposed schemes are implemented in HPMR
(High Performance MapReduce Engine), as a plug-in type com-
ponent for Hadoop.

Task splitting is another relevant issue around scheduling.

7

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Guo et al. (2011) propose a mechanism to dynamically split and
consolidate tasks to cope with load balancing and break through
the concurrency limit resulting from fixed task granularity. The
default strategy of Map operation organization in Hadoop is
that each Map task processes key-value pairs contained in one
block. The sizes of key-value pairs may vary so that the num-
bers of key-value pairs stored in di↵erent blocks may di↵er. The
proposed task splitting tackles these problems. For single-job
scheduling, Aggressive Scheduling with Prior Knowledge and
Aggressive Scheduling were proposed for both cases, first with
prior knowledge and then without it. For multi-job scheduling,
the authors present the Overlapped Shortest-Job-First Schedul-
ing, which invokes the basic short-job-first scheduling algo-
rithm periodically and schedules all waiting jobs in each cycle.
Combined with a task splitting mechanism, it gives an optimal
average job turnaround time if tasks are arbitrarily splittable.

Finally, Inter-job parallelism may also be interesting to en-
hance MapReduce performance, although its data flow was not
originally designed to do it. All intermediate results belong to
the jobs that have created and used them. One relatively com-
mon situation happens when multiple jobs access the same file.
Nykiel et al. (2010) propose a module named MRShare to ap-
proach this problem. MRShare transforms a batch of queries
into a new batch that is executed more e�ciently, by merging
jobs into groups and evaluating each group as a single query.
Merging multiple jobs allows the entire batch of jobs to be an-
alyzed to maximize the degree of resource sharing, minimizing
resource consumption. Another approach is proposed by Shi
et al. (2011). The Shared Scan Scheduler, named S3 and devel-
oped as a plugin to Hadoop, shares the scanning of a common
file for multiple jobs. The scheduler is designed to deal with
jobs arriving at di↵erent times, processing them as early as pos-
sible. This is the main di↵erence between the two approaches:
MRShare operates before the job execution starts and S3 pro-
cesses jobs at di↵erent times. Both approaches can enhance the
performance of Hadoop when dealing with single data being
used by multiple jobs.

4.2. Data Flow
The data processing strategy employed by MapReduce con-

sists of two primitive functions: Map and Reduce. Behind this
simple abstraction is a single fixed data flow. A MapReduce job
is divided into Map and Reduce tasks, and assigned to idle slots
of workers according to these two stages. Thus, there are two
types of workers, Mappers to Map tasks and Reducers to Re-
duce tasks. In the beginning of the Map phase, the input data is
loaded into HDFS. To ensure fault tolerance, the input data are
partitioned into equal sized blocks and replicated according to
a replication factor. Each block will be processed by a Mapper,
resulting in intermediate outputs, which are locally sorted, op-
tionally combined from key-value pairs sharing the same key,
and stored in local disks of the Mappers. The Reduce phase
starts as soon as there are enough Map outputs to start a Re-
duce task. In this moment, the scheduler assigns Reduce tasks
to workers. The data transfer is performed by each Reducer that
pulls and shu✏es intermediate results using a one-to-one shuf-
fling strategy. Reducers are responsible to read intermediate

results and merge them to group all values with the same keys.
Subsequently, each Reducer applies Reduce to the intermediate
values considering these keys to produce the final output that is
stored in HDFS.

Leo and Zanetti (2010) implemented a solution to make
Hadoop available to Python programmers called Pydoop. A
Python package based on CPython provides an API for MapRe-
duce and HDFS. This works as an alternative to Hadoop
Streaming or Jython. Hadoop Streaming uses a communication
protocol to execute a Python script as the Mapper or Reducer
via the standard input and output. Therefore, it cannot process
arbitrary data streams, and the user directly controls only the
Map and Reduce parts, except for HDFS operations.

There are some papers that alter the Hadoop MapReduce data
flow to improve performance (Wang et al., 2011; Vernica et al.,
2012; Ho et al., 2011; Ibrahim et al., 2010; Kwon et al., 2012;
Verma et al., 2011, 2012; Zhu and Chen, 2011; Lin et al., 2010;
Ahmad et al., 2013) or to augment features to meet specific re-
quirements (Elnikety et al., 2011; Li et al., 2011; Bu et al., 2012;
Elteir et al., 2010; Grover and Carey, 2012; Laptev et al., 2012;
Bhatotia et al., 2011; Zhang et al., 2011d). Wang et al. (2011)
propose Hadoop-A, an acceleration framework that optimizes
the e�ciency of Hadoop using plugin components for fast data
movement. It addresses the performance issues in multiple
ways. First, the authors developed a novel merge algorithm
that avoids multiple rounds of disk accesses to merge the same
intermediate data segments from Map tasks. Second, the orig-
inal architecture of Hadoop ensures the correctness of the two-
phase MapReduce protocol by forbidding Reduce tasks to start
before all intermediate data have been merged together. This
results in a serialization barrier that significantly delays the Re-
duce phase. This barrier is broken by a full redesigned pipeline
of shu✏e, merge, and Reduce phases for Reduce tasks. In this
pipeline, Map tasks map data splits as soon as they can. Finally,
they propose a novel algorithm that merges data without the use
of disks and enables data movement via RDMA (Remote Direct
Memory Access). Using these techniques, Hadoop-A is capa-
ble of increasing the throughput of Hadoop and reduce the CPU
utilization.

Similarly, the proposal of Vernica et al. (2012) also describes
solutions to improve Hadoop’s performance. Di↵erently from
Wang et al., who overlap the Shu✏e, Merge, and Reduce
phases, Vernica et al. focus on the interaction of Mappers,
introducing an asynchronous communication channel between
Mappers. In the current implementation of Hadoop, Mappers
are completely independent. Using a transactional distributed
meta-data store (DMDS), Mappers can post metadata about
their state and check the state of all other Mappers. The au-
thors argue that this “situation-aware Mappers” (SAMs) make
Hadoop more flexible and adaptive, since optimizations can be
done based on the Mappers global state. SAMs are used in a
number of adaptive techniques: Adaptive Mappers (AM) dy-
namically control the checkpoint interval, Adaptive Combiners
(AC) use best-e↵ort hash-based aggregation of Map outputs,
Adaptive Sampling (AS) uses some early Map outputs to pro-
duce a global sample of their keys, and Adaptive Partitioning
(AP) dynamically partitions Map outputs based on the sample.

8

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



The solution of Wang et al. focuses on tasks executed by
Reducers while the work of Vernica et al. focuses on tasks ex-
ecuted by Mappers. Similarly, Ahmad et al. (2013) proposed
MaRCO (MapReduce with communication overlap), which is
directed to the overlapping of the Shu✏e with the Reduce com-
putation. The original Hadoop data flow was modified allow-
ing the operation of Reduce tasks on partial data. MaRCO
breaks Reduce into many smaller invocations on partial data
from some map tasks, and a final reducing step re-reduces all
the partial reduce outputs to produce the final output. Lin et al.
(2013) have proposed an overlapping model between map and
shu✏e phases. The approach is based on two complementary
scheduling algorithms called MaxSRPT and SplitSRPT. MaxS-
RPT minimizes the average response time of the queue, while
SplitSRPT addresses the poor performance of MasSRPT when
jobs are more unbalanced. Moreover, this study presents an
analytical model proving that the problem of minimizing re-
sponse time in the proposed model is strongly NP-hard. Yet on
the data flow modifications Mohamed and Marchand-Maillet
(2013) have proposed to change the Hadoop data flow by using
MPI to overlap Map and Reduce phases. Thus, Map and Re-
duce phases are executed in a concurrent parallel manner by ex-
changing partial intermediate data through a pipeline provided
by MPI. In the proposed model Map and Shu✏e phases are
merged and work as a single phase. The authors have also pro-
posed a scheduler to improve the performance of the prototype.
The work of Xie et al. (2013) uses a preshu✏ing approach to
reduce the network overload imposed by shu✏e-intensive ap-
plications. To accomplish this, a push model using in-memory
bu↵er and a 2-stage pipeline in the preshu✏ing scheme to ex-
change partial data between map and reduce tasks are imple-
mented.

Ho et al. (2011) and Ibrahim et al. (2010) concentrate their
e↵orts on improving performance by changing the data flow
in the transition between Mappers and Reducers. Originally,
Hadoop employs an all-to-all communication model between
Mappers and Reducers. This strategy may result in saturation
of network bandwidth during the shu✏e phase. This problem
is known as the Reducers Placement Problem (RPP). Ho et al.
modeled the tra�c in a multiple-racks environment. Two algo-
rithms and an analytical method were proposed as a solution to
the RPP. The approach uses optimization techniques to formu-
late the problem. They developed a greedy algorithm to find
the optimal solution for the problem. Ibrahim et al. address the
problem of how to e�ciently partition the intermediate keys
to decrease the amount of shu✏ed data. This guarantees fair
distribution of the Reducers’ inputs, improving the overall per-
formance. The correct partition of the intermediate key may
also solve the RPP. The locality-aware and fairness-aware key
partitioning (LEEN) algorithm was developed to decrease par-
titioning skew, reducing also data transfer while balancing the
data distribution among nodes. LEEN improves the data local-
ity of the MapReduce execution e�ciency with the use of an
asynchronous Map and Reduce scheme.

On the other hand, instead of considering the lack of flexi-
bility of data flow as the main problem, Zhu and Chen (2011)
and Kwon et al. (2012) change the data flow to solve problems

that degrades the Hadoop performance. Zhu and Chen propose
two mechanisms to cope with the problem of detection of the
failed worker. The proposed Adaptive Interval tries to config-
ure dynamically the expiration time, which is adaptive on the
job size. In turn, the Reputation-based Detector tries to eval-
uate the reputation of each worker. Once the reputation of a
worker is lower than a threshold, the worker will be considered
as a failed worker. The skew problem is characterized when the
Reduce phase cannot start until straggling Map tasks have been
completed. Kwon et al. present a system called SkewTune,
which mitigates skew due to an uneven distribution of data be-
tween Map and Reduce phases. It also mitigates skew due to
some subsets of the data taking longer to process than others.

Lin et al. (2010) proposed a framework called MOON to im-
prove Hadoop performance introducing several modifications.
MOON uses a hybrid resource architecture that comprises a
set of dedicated reliable computers to overcome higher rates
of node unavailability in volunteer computing systems, and
adaptive task and data scheduling algorithms to o↵er reliable
MapReduce services. The main problems tackled by MOON
are the prohibitively high replication cost of HDFS to provide
reliable storage in volatile systems, the lack of replication of in-
termediate outputs produced by Map tasks resulting in task re-
execution, and the inability of schedulers to handle suspended
or interrupted tasks on volunteer computing systems.

Hadoop was not originally developed to support iterative
computing, which represents an important class of applications.
Machine learning, among other data analysis algorithms and
techniques, makes use of iterative computing to obtain results.
One example is the Apache Mahout library, which is meant to
develop scalable machine learning applications using collab-
orative filtering, recommenders, clustering, and others. Ma-
hout is able to promote iterative computing by grouping to-
gether a series of chained jobs to obtain the results. The re-
sults of each job are fed into the next chained job until final
results are obtained. In the MapReduce paradigm, each iter-
ation must wait until the previous one finishes completely and
have its output entirely written and committed to the underlying
file system. Elnikety et al. (2011) proposed iHadoop. It modi-
fies the data flow techniques and task scheduling to make them
aware of the nature of iterative computations. The framework
tries to achieve better performance by executing iterations asyn-
chronously, where an iteration starts before its preceding itera-
tion finishes. This way, outputs of iterations (as they progress)
are fed to the following ones, allowing processing their data
concurrently.

In the same manner, Liang et al. (2011) propose a Hadoop ex-
tension called Dacoop to cope with data-iterative applications.
However, Dacoop uses cache mechanisms to treat the repeat-
edly processing of data shared among jobs. Dacoop extends the
MapReduce programming interface by introducing the shared
memory-based data cache mechanism and caching the data on
the file split level, providing the extended programming in-
terface with the explicit specification of the repeatedly pro-
cessed data files and the data caching management model, and
adopting a data-caching-aware task scheduling, which sched-
ules tasks following cache-level and disk-level data locality.

9

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Similarly, the HaLoop approach (Bu et al., 2012) proposes
a new system that modifies Hadoop to support large-scale, it-
erative data analysis applications. Although built on top of
Hadoop, HaLoop proposes a new loop-aware task scheduler.
This, together with loop-invariant data caching, improves the
performance of iterative jobs. MapReduce frameworks gener-
ally are capable of performing large-scale data processing in a
single pass and are not suited to iterative programming. Two
known examples that may obtain better performances using
such approaches are page ranking and social graph analysis.

Bhatotia et al. (2011) propose a MapReduce framework
called Incoop to process datasets that evolve over time. The
work of Bhatotia et al. changes the Reduce phase of the Hadoop
data flow introducing a contraction phase, more precisely al-
tering the Combiner functions. This phase is responsible for
controlling the granularity of tasks, dividing large tasks into
subtasks to reuse them appropriately during iterations. How-
ever, di↵erent from other approaches, Bhatotia et al. do not
make use of cache mechanisms between processing iterations;
instead, Incoop runs a daemon process on the NameNode ma-
chine that acts as a memoization server that stores intermediate
results. Another key point on the work of Bhatotia et al. is
Inc-HDFS, a modified version of HDFS that identifies similari-
ties in input data of consecutive job runs splitting the input into
chunks based on their content instead of using a fixed-size.

Zhang et al. (2011d) propose a framework called iMapRe-
duce that uses Hadoop to process structured data iteratively.
iMapReduce tackles some Hadoop problems to process itera-
tive computation: the waste of resources to create, schedule,
and destroy jobs that perform constant functions in each iter-
ation; the performance penalty to load and shu✏e immutable
data that remains the same through the iterations; and the serial
execution of jobs in each iteration, resulting in synchronism in
Map and Reduce tasks. iMapReduce introduces the concept of
persistent tasks to cope with the problem of waste of resources,
avoiding unnecessary creation, scheduling, and destruction of
tasks. This mechanism also avoids repeatedly data load and
shu✏e operations between iterations. To break the synchro-
nism and allow the execution of Map tasks as soon as possible,
iMapReduce implements a persistent socket connection, keep-
ing alive communication between tasks to store transient data.

Notwithstanding the importance of improving the perfor-
mance of Hadoop, some studies change the data flow to meet
specific requirements. Elteir et al. (2010) propose modifica-
tions to start the Reduce phase before the end of the Map phase,
to cope with a specific class of problems called recursively re-
ducible MapReduce jobs. Problems of this category do not im-
pose synchronization on the processing of data. The authors
present two di↵erent approaches to cope with the problem by
changing the data flow in the Reduce phase. First, the Re-
duce phase is executed hierarchically after a number of Map
tasks have been completed. In the second approach, a prede-
fined number of Reduce tasks incrementally process records
collected from Map tasks. Grover and Carey (2012) and Laptev
et al. (2012) focus on sampling issues of workflows. Grover and
Carey’s approach provides ways to sample a massive dataset
to produce a fixed-size sample whose contents satisfy a given

predicate. The proposed model allows data to be incrementally
processed. This gives the job the ability to control its growth.
Laptev et al. propose the incremental computation of early re-
sults for arbitrary workflows estimating the degree of accuracy
achieved in the computation. The proposal provides approxi-
mate results based on samples in advanced analytical applica-
tions on very massive datasets with the objective of satisfying
time and resource constraints.

Finally, Verma et al. (2011) propose a framework called
ARIA that, given a job completion deadline, is capable of dy-
namically allocating the appropriate amount of resources to the
job so that it meets the required Service Level Objective (SLO).
ARIA builds a job profile from a job that is routinely executed
on a new dataset. Using the profile and the SLO-based sched-
uler, ARIA can estimate the amount of resources required for
job completion and it determines job ordering and the amount
of resources to allocate to meet the job deadlines. Verma et al.
(2012) evolved ARIA to enhance workload management deci-
sion in jobs with deadlines. That evolution includes three com-
plementary mechanisms: an ordering policy for the jobs in the
processing queue based on the EDF policy (Earliest Deadline
First); a mechanism for allocating a tailored number of Map
and Reduce slots to each job with a completion time require-
ment; and a mechanism for allocating and deallocating spare
resources. The authors implemented a deadline-based sched-
uler which integrates all the three mechanisms.

4.3. Storage & Replication
The Hadoop Distributed File System is the block storage

layer that Hadoop uses to keep its files. HDFS was de-
signed to hold very large datasets reliably using data replica-
tion (Shvachko et al., 2010). This allows HDFS to stream large
amounts of data to user applications in a reasonable time. Its
architecture is composed of two main entities: NameNode and
DataNodes, which work in a master-slave fashion. NameNode
is responsible for keeping the metadata about what and where
the files are stored in the file system. DataNodes are responsi-
ble for storing the data itself. HDFS works as a single-writer,
multiple-reader file system. When a client opens a file for writ-
ing, it is granted a lease for the file and no other client can write
to the file until the operation is complete. Additionally, after the
file is closed, the bytes written cannot be altered or removed ex-
cept that new data can be added to the file by reopening the file
for append. HDFS have received several contributions that im-
plements enhancements so that it can be used in di↵erent type
of approaches in MapReduce computations.

A particular study that contributes in di↵erent ways to the
framework was developed specifically to improve Hadoop’s
performance. The work of Jiang et al. (2010) presents a
MapReduce performance study, using Hadoop as basis to tackle
its performance bottlenecks. Jiang et al. propose known alter-
native methods as solutions to tuning MapReduce performance.
They enhanced the way a reader retrieves data from the storage
system with a direct I/O support, which outperforms stream-
ing I/O by 10%. They implemented a simple range-indexing
scheme for sorted files, improving the Hadoop performance.
Finally, the authors also proposed an optimization to the HDFS

10

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



to deal with small files; HDFS may have loss of performance
when dealing with a large group of small files due to its strategy
of keeping all metadata in the master node memory. This ap-
proach allows DataNodes to save some metadata of small files
in their memory, improving performance when dealing with
small files. Similarly, Shafer et al. (2010) analyze the HDFS
performance bottlenecks under concurrent workloads. The au-
thors claim that HDFS performance can be improved using
application-level I/O scheduling and still preserve the porta-
bility. Authors also explore solutions like pre-allocating file
space on disk, adding pipelining and prefetching to both task
scheduling and HDFS clients, and modifying or eliminating the
local file system as a way to improve HDFS performance. But,
since portability is a project premise in Hadoop, some of these
changes may not be fully convenient, because of the portability
reduction they may cause.

Being designed to store and keep large files/datasets, Dong
et al. (2010) propose a novel approach to improve the e�ciency
of storing and accessing small files on HDFS. In this approach,
characteristics of file correlations and access locality of small
files. The approach is addressed to solve the small file prob-
lems of a specific resource sharing system, to store and share
courseware majorly in the form of presentation files and video
clips. Performance is also a↵ected by file correlations for data
placement, and without a prefetching mechanism for reads, a
considerable overhead may be generated.

Focusing on the same problem of correlated data place-
ment, Eltabakh et al. (2011) propose CoHadoop, a extension
of Hadoop that allows applications to control where data are
stored. CoHadoop addresses Hadoop’s lack of ability to col-
locate related data on the same set of nodes. The approach
is designed such that the strong fault tolerance properties of
Hadoop are retained. Colocation can be used to improve the
e�ciency of many operations, including indexing, grouping,
aggregation, columnar storage, and joins. Additionally, the au-
thors propose e�cient Map-only algorithms that exploit col-
located data partitions. Exploiting data placement on HDFS,
Xie et al. (2010) propose a new strategy to HDFS running on a
heterogeneous cluster. The approach focuses on distributing a
large dataset to the nodes according to the computing capacity
of each one. Two algorithms were implemented and incorpo-
rated into HDFS. The first one initially distributes the file blocks
from a dataset to the cluster nodes. The second data placement
algorithm is used to solve data skew problems, reorganizing the
file blocks distribution along the cluster.

Hadoop may work using a replacement file system, when
changes in HDFS are not possible or practicable to be made.
Mikami et al. (2011) proposes the use of a new file system
named GFarm. It is POSIX compliant and uses data locality,
which makes it suitable to be used on Hadoop. GFarm can
also be used to run MPI applications. Thus, the same data used
on MapReduce applications can be used on di↵erent applica-
tions such as POSIX compliant and MPI applications. This
would not be possible when using HDFS without generating
extra copies of these data. To integrate GFarm into Hadoop, a
plugin named Hadoop-GFarm was designed, implemented, and
tested with MapReduce applications.

Concerned with Byzantine fault-tolerance, Costa et al.
(2013) implemented a new Hadoop version incorporating
Byzantine fault-tolerance to MapReduce. Initially, the ap-
proach runs f + 1 map tasks, being f the maximum number of
faulty replicas. This was the minimum number of replicas the
authors reached by considering the expected low probability of
arbitrary faults. The model also achieves better performance
by using speculative execution of reduce tasks. Although the
resources used practically doubles in this approach, this cost
may be acceptable for a large number of applications handling
critical data.

The use of Solid State Disks (SSDs) as a storage solution
is increasing as the cost/MB is decreasing. The use of these
technologies on clusters is such a recent trend in industry that
the first solutions regarding its use on MapReduce clusters start
to surface. Most of the research up to date tends to analyze
whether MapReduce can benefits in terms of performance when
deploying HDFS on SSDs. The work of Jeon et al. (2013) an-
alyzes the Flash Translation Layer (FTL) – the core engine for
the SSDs – to understand the endurance implications of such
technologies on Hadoop MapReduce workloads. As a result,
the research presents the behavior of SSD for Hadoop-based
workloads including wear-leveling details, garbage collection,
translation and block/page mappings. The research of Kang
et al. (2013) explores the benefits and limitations of in-storage
processing on SSDs (the execution of applications on proces-
sors in the storage controller). This approach benefits from
characteristics such as high performance on concurrent random
writes, powerful processors, memory, and multiple I/O chan-
nels to flash memory provided by the SSDs, enabling in-storage
processing with small hardware changes. The authors imple-
mented a model (Smart SSD model) that uses an object-based
protocol for low-level communication with the host, extending
the Hadoop MapReduce framework to support a Smart SSD.
Experiments shows benefits such as increase of performance
and reduce of total energy consumption.

4.4. Cloud Computing
Although designed to be applied on distributed environ-

ments, Hadoop was not originally conceived to work using
Cloud Computing concepts. In this sense, some approaches
try to cope with these needs. Regarding Cloud Computing
management, Kousiouris et al. (2011) design a data manage-
ment system to enable Storage as a Service transparently using
Hadoop. To do so, the authors developed a new file system,
ODFS (OPTIMIS Data Manager and Distributed File System),
using HDFS as a base. The file system adds RESTful inter-
faces to expose critical functionalities from Hadoop as services
and extends HDFS. These components are used to enrich se-
curity, logging, and data analysis features. Components also
provide data access compatibility between federated Clouds.
The main contribution resides in the fact that ODFS enables
suitable interfaces with the external infrastructure providers to
launch storage VMs and extend the distributed file system, cre-
ating a transparent cloud federation to the user. Kondikoppa
et al. (2012) designed and implemented a network-aware sched-
uler to be used on federated clusters, improving the map tasks

11

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



scheduling in such environment and, consequently, achieving
better performance. Using the previously presented GFarm file
system, Wang et al. (2013) have proposed G-Hadoop, a MapRe-
duce framework that enables large-scale distributed computing
across multiple clusters. It replaces HFDS for the Gfarm file
system and schedules tasks across multiple nodes of multiple
clusters controlled by di↵erent organizations.

To provide a Byzantine Fault Tolerance (BFT) model into
Hadoop, Clement et al. (2009) propose UpRight-Zookeeper
and UpRight-HDFS using the Zookeeper (a centralized ser-
vice for maintaining configuration information, naming, pro-
viding distributed synchronization, and providing group ser-
vices) and HDFS open source code bases. Zookeeper was mod-
ified, adding authenticators to messages and to send/receive
them to/from the right quorums of nodes. These modifications
allow Zookeeper to protect its clusters against a wider range of
faults. Concerning HDFS, it was modified to remove its single
points of failure. UpRight-HDFS also provides end-to-end BFT
against faulty clients, DataNodes, and NameNodes.

Data transfer between nodes in a Cloud Computing environ-
ment may consume large bandwidth and time. The use of such
resources represents an elevation of cost to users. An approach
to solve these problems, HadoopRSync, is presented by Zhang
et al. (2011a). Such approach uses an incremental update de-
rived from the original RSync, which minimizes the data trans-
ferred by transmitting only an encoding of the changes to the
file instead of the whole file itself. An upload algorithm to
update files on Hadoop and a download algorithm to renew
files on user side composes HadoopRsync. The asymmetric
scheme is employed because file synchronization in both direc-
tions have di↵erent characteristics. This approach seems to be
suitable for file hosting services using HDFS, which can lower
the bandwidth usage and speed up file updates. Following the
cloud data transfer problem and concerned with the cloud in-
termediate data problem, Ko et al. (2010) implement a new
storage system (ISS - Intermediate Storage System) that im-
plements three techniques designed to store cloud intermediate
data while maintaining performance. In a summarized view,
the three techniques consist of an asynchronous replication of
intermediate data, a replication of selective intermediate data,
and, finally, the exploitation of bandwidth heterogeneity of dat-
acenter topology applied to the cloud environment. The system
replicates intermediate data from Map and Reduce outputs pre-
venting re-execution of multi-stage applications.

Regarding cloud storage and data availability, QDFS
(Guang-hua et al., 2011) is an HDFS replacement that employs
a backup policy based on recovery volumes and a quality-aware
DataNode selection strategy to store files. The idea is to de-
velop a reliable file system under unstable network environ-
ments. HDFS assumes that each DataNode have analogous
storage characteristics and all DataNodes are connected within
a reliable network. Therefore, to store data blocks, HDFS se-
lect DataNodes that have enough storage space to ensure that all
DataNodes have balanced workload. The QDFS approach se-
lects DataNodes based on their quality of service (QoS), which
is calculated using characteristics such as transfer bandwidth,
availability of service, and free storage space. QDFS enforces

a data redundancy policy based on recovery volumes, reducing
the used storage space. It also evaluates the QoS of a DataN-
ode dynamically, making it more suitable for dynamic network
environments.

Yet on availability and replication, Wei et al. (2010) present
a cost-e↵ective dynamic replication management scheme re-
ferred to as CDRM to provide cost-e↵ective availability and
improve performance and load balancing of cloud storage. The
work addresses two issues: how many minimal replicas should
be kept in the system to satisfy availability requirements and
how to place these replicas to e↵ectively distribute workloads
over the data nodes. A novel model is proposed to capture the
relationship between availability and number of replicas, and
the replica placement is based on capacity and blocking proba-
bility of data nodes. By adjusting the replica label and location
according to workload changes and node capacity, CDRM can
dynamically redistribute workloads among data nodes in a het-
erogeneous cloud.

Resource virtualization is a strong trend industry. The work
of Mao et al. (2011) proposes a system named EHAD (Elas-
tic Hadoop Auto-Deployer) that integrates and shares resources
among users on a Hadoop cluster. Virtualization technologies
are used to gather physical resources and allocate virtual ma-
chines to users. The authors designed a request handler to de-
ploy multithreaded virtual machine nodes for users. Cluster re-
sources such as computing power, storage, and network com-
poses a resource pool. This pool is allocated for user virtual ma-
chines on demand. The created environment automatically de-
ploys the Hadoop framework according to the needs described
on user requests. This is a similar approach to Hadoop On De-
mand (HOD), which is a system for provisioning and manag-
ing independent Hadoop MapReduce and Hadoop Distributed
File System (HDFS) instances on a shared cluster environment.
The main di↵erence relies on the fact that the EHAD approach
claims to create, deploy, and destroy Hadoop environments au-
tomatically and on demand.

A similar approach is presented in the work of Mandal et al.
(2011). The di↵erence here is the use of Hadoop clusters
across multiple cloud domains. Hadoop clusters are created on-
demand and are composed of virtual machines from di↵erent
available clouds. The concept of virtual pools of heterogeneous
resources like computing power, storage, and networks orches-
trated through a common interface is also used here. This way,
cloud-integrated Hadoop workflows read and write data reposi-
tories co-located with cloud sites out in the network. The proto-
type was developed using a cloud framework called Open Re-
source Control Architecture (ORCA), which is responsible for
managing available resources. The prototype is capable of pro-
viding sets of resources from multiple cloud and network do-
mains and runs Hadoop automatically in these resources. This
approach may also be considered similar to the Hadoop On De-
mand. The di↵erence here is the use of multiple cloud domains,
instead of a single local cluster.

AROMA (Lama and Zhou, 2012) is another approach to au-
tomated allocation of heterogeneous Cloud resources. The sys-
tem also configures Hadoop parameters for achieving quality of
service goals while minimizing the incurred cost. AROMA ad-

12

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



dresses the challenge of provisioning ad-hoc jobs that have per-
formance deadlines in Clouds through a novel two-phase ma-
chine learning and optimization framework.

Data transfer in virtualized environments is addressed in the
work of Lee et al. (2013), which propose an adaptive data trans-
fer algorithm in virtual MapReduce clusters. The algorithm is
capable of moving files across di↵erent virtual machines lo-
cated at the same physical machine without any network trans-
fers between virtual machines. The work is specially useful to
transfer the output of each map task to the appropriate reducer
without using network bandwidth, which reduces overall job
completion time.

Park et al. (2012) propose an important contribution to virtu-
alization. They developed a dynamic virtual machine reconfig-
uration technique (DRR - Dynamic Resource Reconfiguration)
for distributed data-intensive platforms on virtualized cloud en-
vironments running Hadoop. The dynamic reconfiguration of
virtual machines improves the overall job throughput by im-
proving the input data locality of a virtual MapReduce cluster.
DRR temporarily increases the number of cores to virtual ma-
chines to run local tasks. It also schedules tasks based on data
locality and adjusts the computational capability of the virtual
nodes to accommodate the scheduled tasks. The idea is that
di↵erent resource requirements by di↵erent tasks or jobs may
cause each virtual node to under-utilize its resources. With the
virtual machine reconfiguration, each node can be adjusted to
provide only the necessary amount of resources demanded from
the node.

Related to Cloud Computing, the approach of He et al.
(2012) runs Hadoop MapReduce distributed on the Open Sci-
ence Grid, which uses multiple clusters geographically dis-
tributed. Hadoop on the Grid claims to provide elastic MapRe-
duce environment on opportunistic resources available. The
goal is to improve Hadoop fault tolerance for wide area data
analysis by mapping the distributed data centers to virtual racks,
transparent to MapReduce applications.

4.5. DBMS, Indexing, Queries, and Random Access
Although HDFS shows good performance on scalability,

fault tolerance, high throughput, and flexibility to handle un-
structured data, it presents drawbacks in some contexts when
compared with Data Base Management Systems (DBMS) and
other approaches. Several studies intend to improve Hadoop’s
performance altering or replacing HDFS with other solutions as
presented before. Some approaches intend to develop indexing,
query processing, hybrid solutions using DBMS and structured
data processing inside Hadoop. Further, most studies present
advanced solutions comprising more than one of these strate-
gies as follows.

Liao et al. (2010) and Dittrich et al. (2012) propose improve
Hadoop’s performance by means of a complete new indexing
manner, while An et al. (2010) and Dittrich et al. (2010) suggest
alter existing indexing mechanisms as their strategy. Liao et al.
(2010) propose the use of built-in hierarchical indexing to sup-
port complex type queries in HDFS. The method of hierarchi-
cal structures is applied to both B-tree, R-tree and their variants
to optimize queries. Several enhancements of index structure

with respect to node size, bu↵er strategy, and query process-
ing were developed using properties of HDFS. Dittrich et al.
(2012) propose an enhancement of HDFS and Hadoop MapRe-
duce that improves runtimes of several classes of MapReduce
jobs. The approach, named HAIL (Hadoop Aggressive Index-
ing Library), changes the upload pipeline of HDFS in order to
create di↵erent clustered indexes on each data block replica.
HAIL keeps the existing physical replicas of an HDFS block
in di↵erent sorted orders and with di↵erent clustered indexes.
Hence, for a default replication factor of three at least three
di↵erent sort orders and indexes are available. Thus, the likeli-
hood to find a suitable index increases, improving the runtimes
for workloads.

In the system proposed by An et al. (2010), a global index ac-
cess mechanism was adopted. The B+-tree index data is stored
in HDFS and distributed across all the nodes. Thus, the index
access is parallelized following the MapReduce execution style.
Part of the work of Dittrich et al. (2010) comprises a Trojan in-
dex used to co-partition the data at load time. This indexing
technique is the used solution to integrate indexing capability
in a non-invasive and DBMS-independent manner.

Indeed, Hadoop++ (Dittrich et al., 2010) concentrates on
query processing, particularly query execution plan. The pro-
posed system boosts task performance without changing the
Hadoop. To reach this goal, ten UDFs (User Defined Functions)
were injected into Hadoop source code, a↵ecting it from inside.
Thus, Hadoop++ do a hard-coded query processing pipeline
explicit and represent it as a DB-style physical query execution
plan.

The HDFS has been designed originally to support sequen-
tial queries. Zhou et al. (2012a) propose an approach to en-
able random queries to the file system. Accessing small data
on HDFS may cause unnecessary data transfer, once the size
of the packet may be bigger than the data packet being sent.
The approach presents a data transfer policy that support both
sequential and random access. It uses a dynamic method to set
the size of data packet. If a random access is requested, the data
packet is set to be equal to or less than the required data size.
Otherwise the default data packet size will be used. Similarly
to Zhou et al. Buck et al. (2011) propose a query processing so-
lution to compute a specific type of data. A plugin to Hadoop,
named SciHadoop, is intended to process scientific structured
data using a simple query language. Thus, the query processing
in SciHadoop is expressed entirely at the level of scientific data
models.

Iu and Zwaenepoel (2010) propose a query optimizer called
HadoopToSQL to work especially when only a subset of the
data should be processed. HadoopToSQL is a hybrid system
that seeks to improve Hadoop performance by transforming
MapReduce queries to use the indexing, aggregation and group-
ing features provided by DBMS. The authors proposes two al-
gorithms that generate SQL code from MapReduce queries:
one algorithm can extract input set restrictions from MapRe-
duce queries; and, the other can translate entire MapReduce
queries into equivalent SQL queries. The HadoopToSQL is able
to take a compiled MapReduce program generated by the Java
compiler and analyze it to find ways to run it e�ciently on an

13

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



SQL database.
A Hadoop-DBMS hybrid system is presented by Abouzeid

et al. (2009). This work completely replaces HDFS by a par-
allel DBMS. HadoopDB approaches parallel databases in per-
formance and e�ciency, yet still yields the scalability, fault
tolerance, and flexibility of Hadoop. The basic idea behind
HadoopDB is to use MapReduce as the communication layer
above multiple nodes running single-node DBMS instances.
Queries are expressed in SQL, translated into MapReduce by
extending existing tools, and as much work as possible is
pushed into the higher performing single-node databases. An
et al. (2010) propose a new Hadoop-DBMS hybrid communi-
cation layer as well. In that work, DBMS engines are read-only
execution layer into Hadoop. In this approach the DBMS is
used to provide e�cient operators while the HDFS is responsi-
ble for managing the data providing a fault tolerance environ-
ment in the data layer. The modified database engine is able to
process data from HDFS file at the block level, which makes it
suitable to the MapReduce paradigm.

Similarly, Bajda-Pawlikowski et al. (2011) also propose a
Hadoop-DBMS hybrid system, in addition to addressing query
processing. The work o↵ers extensions in HadoopDB to pro-
cess e�ciently data warehousing queries. The authors discuss
more advanced execution plans where some joins access multi-
ple database tables within the Map phase of a single job. After
repartitioning on the join key, related records are sent to the
Reduce phase where the actual join is computed.

In some ways, the work of Abouzeid et al. (2009) deals on
processing of structured data. As well as that research, the par-
tially outlined work of Buck et al. (2011) and the approach of
Kaldewey et al. (2012) also deal with structured data process-
ing. The proposal of Buck et al. is intended to process array-
based queries. The array-based model used by SciHadoop is
defined by two properties: the shape of an array, which is given
by the length along each of its dimensions, and the corner point
of an array, which defines the array’s position within a larger
space. SciHadoop was designed to accept queries expressed
in a query language developed by the authors. The plugin im-
plemented modifies the standard task scheduler to function at
the level of scientific data models using arrays, rather than low-
level byte streams, used regularly by the HDFS.

In turn, the Kaldewey et al. (2012) objective is to cope with
structured datasets that fit a star schema. The research proto-
type for structured data processing can achieve performance im-
provements over existing solutions, without any changes to the
Hadoop implementation. This prototype, called Clydesdale, in-
herit the fault-tolerance, elasticity, and scalability properties of
MapReduce. This is also of significant practical value since it
allows to run Clydesdale on future versions of Hadoop without
having to re-compile and re-test Hadoop with a set of custom
changes. Clydesdale achieves this through a novel synthesis
of several techniques from the database literature and carefully
adapting them to the Hadoop environment.

4.6. The Hadoop Ecosystem: Hive, Pig, HBase
The MapReduce paradigm is not suitable for all problems

involving large datasets. The four modules that currently

compose the Apache Hadoop core (Hadoop Common, HDFS,
MapReduce and YARN) are well suitable for unstructured data.
However, when processing common old-fashioned structured
data, Hadoop may su↵er from performance issues since the
framework was not originally developed to process these data.
To overcome these problems, several Apache Hadoop related
projects have been developed over the past years. For example:
Pig, a high-level data-flow language and execution framework
for parallel computation; Mahout, a scalable machine learn-
ing and data mining library; Hive, a data warehouse infras-
tructure that provides data summarization and ad hoc querying;
and, HBase, a scalable distributed database inspired on Google
BigTable that supports structured data storage for large tables.

Konishetty et al. (2012) propose the implementation of the
Set data structure and operations of union, intersection, and dif-
ference in a scalable manner on top of Hadoop HBase. The
work presents optimizations for three Set operations and also
limitations on implementing this data structure in the Hadoop
ecosystem. Zhang and De Sterck (2010) propose Cloud-
BATCH, a new Hadoop component that enables it to function
as a traditional batch job queuing system with enhanced func-
tionality for cluster resource management. The approach allows
the cluster management using only Hadoop to discover hybrid
computing needs involving both MapReduce and legacy appli-
cations. CloudBATCH runs on top of HBase and includes a
set of tables used for storing resource management informa-
tion, globally accessible across all nodes to manage metadata
for jobs and resources.

Among the Apache Hadoop ecosystem projects, Pig (Gates
et al., 2009) has received relevant contributions recently. Pig is
a high-level data flow system that fills the existent gap between
SQL and MapReduce. Pig o↵ers SQL-style high-level data ma-
nipulation constructs, such as filter and join, which can be as-
sembled in an explicit data flow and interleaved with custom
Map- and Reduce-style functions or executables. Pig programs
are compiled into sequences of MapReduce jobs to be executed.
Pig uses Pig Latin (Olston et al., 2008), a language that com-
bines the best of both worlds: high-level declarative querying in
the spirit of SQL and low-level procedural programming using
MapReduce. Pig compiles Pig Latin into physical plans that are
executed over Hadoop.

A Pig Latin program is a sequence of steps, much like in a
programming language, each of which carries out a single data
transformation. Writing a Pig Latin program is similar to spec-
ifying a query execution plan. Tanimura et al. (2010) propose
an extension to Pig. The approach implements a RDF data pro-
cessing framework built on top of Hadoop. Pig has received
additional extensions to support RDF data processing, provid-
ing a scalable architecture, a set of data processing tools and
a general query optimization framework. These enhancements
allow users to perform e�cient integrated data processing using
RDF data.

Since Pig brought support to query like languages to Hadoop,
the reuse of intermediate results may be an interesting tech-
nique to save processing time and enhance performance on
similar jobs. Elghandour and Aboulnaga (2012) present Re-
Store, an extension to Pig that enables it to manage the stor-

14

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



age and reuse of intermediate results of the MapReduce work-
flows executed in the Pig data analysis system. This maximizes
data reuse opportunities between MapReduce jobs which are
independently executed by the system. ReStore matches input
workflows of MapReduce jobs with previously executed jobs
and rewrites these workflows to reuse the stored results of the
positive matches. According to Elghandour and Aboulnaga,
even though ReStore has been developed as an extension to Pig,
its techniques may be applied in any data flow system that gen-
erates workflows of MapReduce jobs for input queries such as
Hive (Thusoo et al., 2009) and Jaql (Beyer et al., 2011).

Similarly, Olston et al. (2011) propose a workflow manager
called Nova, which pushes continually-arriving data through
graphs of Pig programs being executed on Hadoop clusters.
Nova is like data stream managers in its support for statefull
incremental processing, but unlike them, it deals with data
in large batches using disk-based processing. The proposal
of a workflow manager enables key scheduling and data han-
dling capabilities such as: continuous processing; independent
scheduling, where di↵erent portions of a workflow may be
scheduled at di↵erent times/rates; and, cross-module optimiza-
tion in which a workflow manager can identify and exploit cer-
tain optimization opportunities, e.g., common input being con-
sumed by two di↵erent workflows. It is di↵erent from ReStore
because Nova is supposed to deal with di↵erent workflows that
may use common input data, while ReStore is supposed to keep
intermediate results from workflows executions to future reuse.

Zhang et al. (2012b) present a performance modeling frame-
work for Pig programs. The idea is to suggest a solution for two
common problems regarding Cloud Computing and Pig pro-
grams. First, estimating the completion time of such programs
as a function of allocated resources. Second, estimating the
amount of resources (number of task slots) to complete a Pig
program in a given deadline. The approach forces Pig to use
the optimal schedule of its concurrent jobs, the authors were
able to eliminate the existing non-determinism in Pig program
execution of concurrent jobs, achieving better performance pre-
dictions.

Finally, another important concern when dealing with struc-
tured data inside Hadoop is data placement, as mentioned be-
fore. Hadoop components such as Hive and Pig rely on the
HDFS to store its data and cannot directly control this stor-
age. Based on conventional data placement structures, an
approach named RCFile (Record Columnar File) (He et al.,
2011b) presents a solution to this problem. Since RCFile is de-
veloped and integrated to Hive, it stores tables by horizontally
partitioning them into multiple row groups. Following, each
group is vertically partitioned so that each column is stored in-
dependently. Columns may also be compressed and grouped
according to the needs. RCFile promotes four desirable require-
ments for data placement in MapReduce environments: fast
data loading, fast query processing, e�cient storage space uti-
lization, and adaptivity to dynamic workload patterns enhanc-
ing Hive performance.

4.7. Energy Management

The reduction in cost of hardware enabled corporations to
increase the number of data centers and machines. Conse-
quently, energy consumption has become a vital issue regarding
costs of data storing and its processing. Several papers discuss
the cluster energy management problem generically. Regard-
ing Apache Hadoop clusters, Li et al. (2011) propose an algo-
rithm for maximizing throughput of a rack of machines running
a MapReduce workload, subject to a total power budget. The
main idea is to optimize the trade-o↵ between job completion
time and power consumed. The novelty in the approach relies
on the accounting for thermally-induced variations in machine
power consumption. The algorithm minimizes job completion
time (or equivalently, maximizes the computational capacity of
a cluster) for any given power budget.

GreenHadoop, proposed by Goiri et al. (2012), is an Apache
Hadoop variant for data centers powered by photovoltaic so-
lar (green energy) arrays and electrical grid (brown energy)
as a backup. The objective is to investigate how to man-
age the computational workload to match the green energy
supply in small/medium data centers running data-processing
frameworks. However, scheduling the energy consumption of
MapReduce jobs is challenging because they do not specify
the number of servers to use, their run times, or their energy
needs. Moreover, power-managing servers should guarantee
that the data to be accessed by the jobs remain available. Green-
Hadoop seeks to maximize the green energy consumption of the
MapReduce workload, or equivalently to minimize its brown
energy consumption. GreenHadoop predicts the amount of so-
lar energy that is likely to be available in the future, using his-
torical data and weather forecasts. By using these predictions,
it may then decide to delay some (low-priority) jobs to wait for
available green energy, but always within their time bounds. If
brown energy must be used to avoid bound violations, it sched-
ules the jobs at times when brown energy is cheaper, while also
managing the cost of peak brown power consumption.

Another approach to energy management in clusters is the
GreenHDFS (Kaushik et al., 2010, 2011). Instead of dealing
with the MapReduce component of Apache Hadoop, it deals
with the HDFS. GreenHDFS partitions cluster servers into Hot
zones, used for frequently accessed files, and Cold zones, for
rarely used files. This approach enables energy saving by
putting Cold zones servers to sleep. To do so, a migration pol-
icy moves files between zones accordingly. Initially, this pol-
icy was reactive and used historical data to move files between
zones. This approach was improved creating a predictive file
zone placement, which defines the initial placement of a file,
and then uses a predictive file migration policy. This approach
uses supervised machine learning to train its file attribute com-
ponent and to manage changes between zones.

GreenPipe, presented by Mao et al. (2012), provides a spe-
cific solution to bioinformatics, but its main objective is related
to energy consumption problems. GreenPipe is a MapReduce-
enabled high-throughput workflow system for applications of
bioinformatics, which defines a XML based workflow and exe-
cutes it on Hadoop. The workflow execution is divided in two

15

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



modes. In the first one, called physical mode, the XML work-
flow is translated into MapReduce jobs and launched on a phys-
ical Hadoop cluster. The second mode, called virtual mode,
works with virtualization, obtaining virtual machines from IaaS
(Infrastructure as a Service) platforms and running Hadoop jobs
in the VM cluster. Authors also address the optimizations of the
planning and job priority, and energy e�ciency by introduc-
ing a power-aware scheduling algorithm in the workflow en-
gine. The scheduler tries to allocate VM resources based on
the power consumed by the applications. It also tries to group
similar energy trace VMs in a physical machine, reducing the
energy consumption without sacrificing the application perfor-
mance.

4.8. GPGPU
GPGPU (General-purpose computing on graphic processing

units) (Owens et al., 2008) is a technique to use commodity
GPUs to perform general purpose computing in applications
traditionally handled by CPUs. CUDA and OpenCL are exam-
ples of integrated development environments that may be used
to such purposes. Shirahata et al. (2010) presents a hybrid Map
task scheduling technique for GPU-based heterogeneous com-
puter clusters. The developed job scheduler assigns the Map
tasks onto CPU cores and GPU devices in order to minimize
the overall MapReduce job execution time. The scheduler uses
profiles collected from dynamic monitoring of Map task’s be-
havior to decide where to schedule a task. Jobs containing
tasks that have data parallelism may be suitable for GPU execu-
tion, while tasks containing many branches or synchronizations
are not recommended to be executed using this approach. The
model uses Hadoop Pipes, a C++ interface to Hadoop MapRe-
duce. Hadoop Pipes uses sockets as the channel over which the
TaskTracker communicates with the process running the C++-
based Map and Reduce functions. Its use is justified because
other native methods such as Hadoop Streaming and Java Na-
tive Interface may introduce significant overhead, representing
loss of performance.

Xin and Li (2012) have successfully demonstrated that the
use of OpenCL in commodity Hadoop clusters may outper-
form regular clusters significantly. Their approach concerns to
both data- and compute-intensive applications. Grossman et al.
(2013) also integrated OpenCL into Hadoop to enable the use
of heterogeneous processors, such as the CPU and GPU com-
bination. The extension supports the execution of user-written
Java kernels on heterogeneous devices, optimizes communica-
tion through asynchronous transfers and dedicated I/O threads.
Authors claim that the approach can achieve nearly 3x overall
speedup for some specific Hadoop MapReduce applications.

Another approach proposed by Fang et al. (2011) is named
Mars, a MapReduce runtime system accelerated with GPUs to
improve Hadoop performance. Mars runs on NVIDIA GPUs
(MarsCUDA), AMD GPUs (MarsBrook) as well as multicore
CPUs (MarsCPU). Mars was integrated into Hadoop, being
called MarsHadoop. In this scenario, each machine in a net-
work can utilize its GPU with MarsCUDA or MarsBrook in ad-
dition to its CPU with the original Hadoop. By using both the
GPU and the CPU, GPU-only performance was improved by 40

percent for some applications tested by the authors. Finally, Tan
et al. (2012b) introduce a new framework capable of using both
GPU and CPU processing elements collaboratively in MapRe-
duce jobs. The framework named Pamar (Processing Element
Aware MapReduce) was designed to clusters having asymmetry
in GPGPU/CPU node configurations. It automatically detects
the type of processing elements available on each node. Pamar
also scans for the processing elements requirements of submit-
ted jobs. The authors also implemented a scheduler called HPE
(Heterogeneous Processing Element) that uses the job require-
ments to make scheduling decisions. After the integration into
Hadoop, the framework has demonstrated improvement in job
queue completion time.

4.9. Data Security & Cryptography
In the cloud computing era, data security, privacy, and in-

tegrity became important features to be supported by frame-
works and service providers. In Apache Hadoop, data is stored
according to user accounts. This mechanism may not be secure
enough when dealing with data spread across multiple datacen-
ter and cloud providers. Some studies addresses these prob-
lems, presenting solutions to enhance both Hadoop data secu-
rity and confidentiality. Wei et al. (2009) design a model that
enhances the basic MapReduce framework with a set of security
components. In open systems, MapReduce faces a data pro-
cessing service integrity problem since service providers may
come from di↵erent administration domains that are not always
trustworthy. The approach is meant to provide a service in-
tegrity assurance framework for MapReduce, replicating some
tasks and assigning them to di↵erent Mappers/Reducers. This
is achieved by using a decentralized replication-based integrity
verification scheme for running MapReduce in open systems.
It uses a set of security properties such as non-repudiation and
resilience to DoS attacks and replay attacks while maintaining
the data processing e�ciency of MapReduce.

Another approach proposed by Lin et al. (2012) addresses
the data confidentiality issue in Hadoop by enhancing HDFS.
Two hybrid encryption schemes were implemented and inte-
grated into HDFS to achieve data confidentiality: the HDFS-
RSA, which uses the RSA encryption and AES and the HDFS-
Pairing, which uses a pairing-based encryption scheme and
AES. As expected, both schemes introduce overhead on read-
ing and writing operations. The biggest overhead is on writing,
because the encrypting process is accomplished in two parts.
Reading operations also have an overhead, although it is much
lower and acceptable than the writing overhead.

Regarding cloud security, Shen et al. (2011) focus on the
problem of data migration between public and private clouds.
The authors discuss the potential threats that may occur when
migrating data between clouds. Based on these threats, a model
was developed to secure the data transfer. The model uses SSL,
tickets and data encryption. A module named MDM (Migra-
tion Decision Module) was developed and used in the HDFS.
Results and validation show that, although secure, the encryp-
tion process generates a considerable overhead in the transfer
process, which may reach up to nine times the time cost with-
out using the MDM. Cloud security is also addressed by Zhou

16

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



et al. (2013), but instead of using encryption, it uses the prin-
ciple of sensitive data splitting, where sensitive data is kept in
trusted private cloud, while insensitive data may be moved to
public cloud. The system called Prometheus is able to properly
work on the semi-honest cloud model as well as on the mali-
cious cloud model.

Khaled et al. (2010) propose a token-based access control
system for RDF Data in a cloud implemented using Hadoop.
One of the most e�cient ways to handle RDF data is to store it
in cloud computers. However, access control is a major concern
for cloud-resident RDF data. The proposed mechanism defines
six types of access levels and one enforcement strategy for the
resulting access control policies. The enforcement strategy is
implemented at three levels: Query Rewriting (preprocessing
phase), Embedded Enforcement (MapReduce execution phase),
and Post-processing Enforcement (data display phase). This
way, users are granted tokens based on their business needs and
authorization levels previously determined.

Concerning problems with data integrity in the cloud,
Nguyen and Shi (2010) propose a model called Opera (Open
Reputation Model) that employs reputation-based trust man-
agement to improve Hadoop computational e�ciency. In gen-
eral, the existing methods rely on a single-value reputation to
capture the di↵erences between the Service Providers in terms
of properties such as performance or availability. The approach
tracks node trust as a vector of e�ciency-related considerations,
such as node downtime and failure frequency. Users are al-
lowed to query the reputation vector of any registered compo-
nent. This model is associated to the use of the proposed sched-
uler, which may improve the performance of jobs and reduce
the number of failed/killed tasks.

While the Opera approach is intended to achieve better per-
formance on Hadoop, malicious behaviors (e.g., falsified com-
putation) are not considered, making it unsuitable for protec-
tion against data integrity attacks. Khan and Hamlen (2012)
present a solution to this problem. Hatman (Hadoop Trust Man-
ager) considers a reputation-based trust management approach
to detect integrity violation in Hadoop clouds. It augments
Hadoop NameNodes with reputation-based trust management
of their slave DataNodes. NameNodes maintain a trust matrix
that keeps trust and reputation information used to dispatch jobs
to DataNodes. To obtain high scalability, all trust management
computations are formulated as distributed cloud computations.
This approach increases the computing power and improves the
data integrity of cloud computations.

5. Discussion

In this section, we discuss the results and findings of our anal-
ysis and classification of the selected studies. First, we intro-
duce an overview of the Hadoop evolution, presenting its main
features that have changed over time. Following, we discuss an
overview of the selected studies and some interactions among
the taxonomy categories, presented further ahead.

5.1. Hadoop evolution

Since its initial release, Hadoop changed constantly and con-
siderably in 59 releases – the last one was version 2.2.0 on
October 15, 2013 – over six years of development. Besides
bug fixes, present in each one of these releases, new features
and modules were developed and incorporated, consolidating
the framework as the main solution to process large amounts
of data using the MapReduce paradigm. Some releases deserve
special attention. From the initial releases, versions 0.20.x were
the first ones considered more stable, which could be used on
production environments. The first one was released in April
2009, and this branch was one of the longest active branches in
the history of Hadoop. This release missed and important fea-
ture present on subsequent releases: support for file appending
on HDFS. A couple years later, versions 0.23.x were released.
Albeit being considered alpha-quality releases, they included
two important features to present Hadoop versions: HDFS fed-
eration and the initial release of Hadoop NextGen MapReduce,
also known as YARN.

In 2011, after years of development, Hadoop reached the
1.0.0 version. This release included webHDFS and security
features on HBase, besides performance enhancements. Being
a cut from the 0.20.x branch, it did not include some bug fixes
and features incorporated between 0.20.x and 0.23.x releases,
which missed some important security features. This was fixed
on later 1.x releases.

On May 2012, Hadoop 2.0.x was first released. The 2.0.0-
alpha included significant major features over the 1.x series.
Derived from the 0.23.x branch, the most important features
included were the HDFS HA (High Availability), YARN and
HDFS federation, besides some performance tuning. This ver-
sion is considered as a consolidated release from the 0.23.x
branch.

These two branches, 1.x and 2.x, are the major branches on
Hadoop releases and have significant di↵erences that deserve
some observations. The first one was the introduction of the
YARN, or Nextgen MapReduce (initially present on 0.23.x re-
leases). YARN proposes a separation between two major func-
tions of the JobTracker: resource management and job schedul-
ing/monitoring. In 2.x releases, YARN is a distributed appli-
cation management framework while Hadoop MapReduce re-
mains as a pure distributed computation framework. Another
inclusion was the HDFS HA (Oriani and Garcia, 2012), which
promotes the high availability of HDFS. Prior to the 2.0.0 re-
lease, the NameNode was a single point of failure in an HDFS
cluster. A failure on the NameNode machine would make the
entire HDFS cluster unavailable. The HDFS High Availability
feature provides the option of running two redundant NameN-
odes in the same cluster in an Active/Passive configuration with
a hot standby. Finally, the third feature is the HDFS Federation,
which supports multiple Namenodes in a HDFS file system.

Theoretically, although still supported in versions 2.x, the
distance between version 1.x tends to increase and, in the fu-
ture, backwards compatibility in version 2.x will no longer be
supported. This is reasonable, since the separation between re-
source management and job/task allocation benefits the cluster

17

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



infrastructure in terms of use and flexibility. As shown next, we
have been able to identify several interrelated studies, which
evolved over the last five years using Apache Hadoop and its
ecosystem.

5.2. Overview and Studies Interaction

Scheduling is considered crucial to Hadoop performance.
In this sense, the selected papers that were allocated in the
scheduling, data flow, and resource allocation categories are
majorly concerned with this issue. Some works propose multi-
queue schedulers to improve performance (Zhao et al., 2012;
Tian et al., 2009; Kumar et al., 2012). Other authors use dif-
ferent approaches to achieve it, such as the data locality aware
schedulers (Zaharia et al., 2010; He et al., 2011a; Zhang et al.,
2011b; Hammoud and Sakr, 2011; Zhang et al., 2012a; Ham-
moud et al., 2012; Ibrahim et al., 2012; Zhang et al., 2011c;
You et al., 2011; Tao et al., 2011), which are concerned with the
correct allocation and placement of Map and Reduce tasks. Per-
formance problems may also be tackled by using historical data
from cluster nodes, which allows, e.g., the speculative execu-
tion of MapReduce tasks (Zaharia et al., 2008; Lei et al., 2011;
Rasooli and Down, 2011; Chen et al., 2010). Although con-
cerned with performance, some papers present solutions cover-
ing important correlated areas, for example, Cloud Computing
resource allocation (Zhang et al., 2011b; Hammoud et al., 2012;
Tang et al., 2012; Zhang et al., 2012b; Park et al., 2012), which
reflects directly on Hadoop performance in such environments.
Thus, scheduling in heterogeneous clusters is also an important
topic addressed by some studies (Tian et al., 2009; Ahmad et al.,
2012; Kumar et al., 2012). Ultimately, some approaches de-
velop mechanisms of reuse of intermediate data among MapRe-
duce jobs using common datasets (Kumar et al., 2012; Nykiel
et al., 2010; Shi et al., 2011).

As discussed earlier, changes in data flow, manipulation, and
resource allocation are mainly made to address performance or
to meet specific requirements. When dealing with improving
performance, some studies break the synchronization barrier
between phases of the Map and Reduce stages (Wang et al.,
2011; Ibrahim et al., 2010). While Wang et al. (2011) propose
a full pipeline to overlap the shu✏e, merge and Reduce phases,
Ibrahim et al. (2010) focus on data locality, altering only the
partitioning of intermediate keys on the Map phase. Although
Vernica et al. (2012) do not directly alter the synchronism of the
phases, they introduce a communication channel among Map-
pers, breaking its isolated execution. Besides Ibrahim et al.
(2010), other studies deal with data locality (Kwon et al., 2012;
Zhu and Chen, 2011; Ho et al., 2011). Kwon et al. (2012)
propose a skew mitigation approach to UDOs (User Defined
Operations), which resplits input data when failed workers
are detected. Failed workers are detected on Zhu and Chen’s
(2011) studies by two mechanisms called adaptive interval and
reputation-based detector. In contrast, Ho et al. (2011) tackle
the RPP (Reducer Placement Problem) problem caused by all-
to-all communication between Mappers and Reducers. This
work proposes algorithms to place Reducers in correct racks
to minimize the saturation of network bandwidth.

The proposal of Verma et al. (2011) is slightly di↵erent from
the aforementioned, since they suggest a framework named
ARIA that can allocate the appropriate amount of resources to
execute a job, meeting a soft deadline, which is routinely exe-
cuted on a new dataset. To do this, the framework uses a sched-
uler based on earliest deadline first policy. Verma et al. (2012)
evolve ideas used in ARIA to propose a better solution based
on other mechanisms. On the other hand, Lin et al. (2010)
propose changes in data flow and resource allocation to ac-
commodate reliable nodes, categorized as dedicated or volatile,
which store reliable or temporary files. Furthermore, the au-
thors implement schedulers particularly to that scenario. Al-
though Hadoop was not originally developed to support iter-
ative computing, some e↵orts have been made to give it this
capability (Elnikety et al., 2011; Liang et al., 2011; Bu et al.,
2012; Bhatotia et al., 2011; Zhang et al., 2011d). Except for the
proposals presented by Bhatotia et al. (2011) and Zhang et al.
(2011d), research studies presented by Elnikety et al. (2011),
Liang et al. (2011) and, Bu et al. (2012) use di↵erent cache lev-
els to treat the repeatedly processing and schedulers which are
loop or cache-aware. Other papers (Elteir et al., 2010; Grover
and Carey, 2012; Laptev et al., 2012) deal with very specific
problems, such as recursively reducible jobs, early results, and
sampling issues.

Storage is another intersection point in selected papers con-
cerning the framework. HDFS was modified to increase perfor-
mance, as for the case of its I/O mode (Jiang et al., 2010; Zhang
et al., 2011a; Shafer et al., 2010), solving data placement prob-
lems (Xie et al., 2010), or adapting it to deal with small files
(Jiang et al., 2010; Dong et al., 2010) since HDFS was not orig-
inally designed to store such files. Some works replace the orig-
inal HDFS with a more suitable solution for specific compati-
bility problems (Mikami et al., 2011; Kousiouris et al., 2011)
or to support areas such as Cloud Computing (Kousiouris et al.,
2011; Guang-hua et al., 2011). Cloud Computing has received
considerable attention in research studies trying to improve per-
formance and resource usage (Zhang et al., 2011a; Wei et al.,
2010; Mao et al., 2011; Mandal et al., 2011; Ko et al., 2010)
while using Hadoop.

In order to improve Hadoop performance, several approaches
make modifications in how data is indexed, recovered by query
processing, and stored. Indeed, most studies suggest the use
of more than one strategy to boost Hadoop performance. Liao
et al. (2010) and Dittrich et al. (2012) propose a completely
new indexing technique, while An et al. (2010) and Dittrich
et al. (2010) propose changes in Hadoop’s original indexing.
Liao et al. (2010) and Bajda-Pawlikowski et al. (2011) change
query processing in order to cope with complex type queries
and warehouse queries. Other studies approach query process-
ing in di↵erent ways, like query optimization (Dittrich et al.,
2010; Iu and Zwaenepoel, 2010), query languages (Abouzeid
et al., 2009; Buck et al., 2011), and random queries (Zhou
et al., 2012a). Some of these works (An et al., 2010; Iu and
Zwaenepoel, 2010; Abouzeid et al., 2009; Bajda-Pawlikowski
et al., 2011) use hybrid solutions (DBMS based) to support
indexing methods and modifications in query processing. Fi-
nally, two studies focus on structured data (Buck et al., 2011;

18

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



(sql,workloads,performance,hadooptosql)[4.06]

(query,index)[12.04]

(energy,green,greenhadoop,brown)[9.84]

(query,index)[7.06]

(energy,green,greenhadoop,brown)[9.84]

(pig, map-reduce)[5.16]
(iterative,ihadoop,iterations)[6.75]

(gpus,mars,cpus)[8.63]

(dbms,hadoopdb,hdfs,
read-only)[8.48]

(random,queries,hdfs,methods,sequential)[4.78]
(cloud,virtual,network,clouds,migration)[4.50]
(distributed,storage,qdfs)[4.36]
(service,integrity,securemr)[3.93]

(leen,partitioning,key)[6.69]
(engine,results,performance,allocation,
remote,resource)[5.02]

(environment,samr,heterogeneous,algorithm,slow,backup,late)[3.68]
(scheduler,job)[3.43]
(network,traffic,cloud,skew,cogrs,partitioning,gravity,
center-of-)[3.41]

(traffic,network,cloud,cogrs,partitioning,gravity,
center-of-,skew)[6.81]
(scheduler,delay,fair,coupling)[6.11]

(environment,samr,heterogeneous,scheduling,
algorithm,slow,backup,late)[7.78]

(larts,functional,scheduling,languages,programming,
scheduler,network)[7.50]
(requesting,node,heterogeneous)[6.00]

(gpus,mars,cpus)[15.00]

(iterative,ihadoop,iterations,cycles,iteration)[11.81]

(structured,clydesdale,star)[5.67]
(pig,map-reduce,dataflow)[5.00]
(distributed,rdf,scalable,high,
plataform,level)[4.28]

(virtual,network,
cloud)[9.60]

(random,queries,hdfs,methodssequential)[7.11]
(service,integrity,securemr)[5.43]

(leen,
partitioning)[11,56]

(dbms,hadoopdb,hdfs,
read-only)[8.48]

(cloud,hadoopsync,syncronization,storage,devices,update,sync)[5.25]
(framework,cross-rack,algorithms,optimizations,comunication,
optimal,reducers,analysis,job,traffic,placement,problem)[4.50]

(engine,results,performance,allocation,remote,resource)[8.00]
(cloud,cdrm,storage,replication,replica,management,cost-effective,availability)[7.88]

Figure 2: Comparison of two clusterization steps using the Neighborhood Join projection technique.

Kaldewey et al., 2012).
The Apache Hadoop ecosystem is composed of parallel

projects that intend to provide support to specific areas in which
the MapReduce paradigm would not be suitable or would have
performance issues. The most known ones are Pig, Hive, and
HBase. Pig – a high-level data flow language that runs on top of
MapReduce – received contributions that enabled the support
to RDF data (Tanimura et al., 2010), the reuse of intermedi-
ate processing results (Elghandour and Aboulnaga, 2012), and
continuous streaming of newly arrived data into Pig programs
that are already in execution (Olston et al., 2011). Pig, Hive,
and HBase have received many other contributions, since they
are used as infrastructure for several research projects around
Scheduling, DBMS, Indexing, Random Data Access, Storage,
and Cloud Computing.

Some areas, although not directly related to the framework,
developed several contributions to Apache Hadoop, including
themes such as energy management, the use of GPUs and data
integrity/security. Energy management has demonstrated to be
an important research topic as the number of data centers has
increased consistently over the last few years. The demand for
electric power to such computing facilities has been addressed
in some studies, including the use of green energy (Goiri et al.,
2012; Kaushik et al., 2010, 2011), energy e�ciency (Mao et al.,
2012), and power budget directed data processing (Li et al.,
2011). In the case of GPU use, papers addressed the increase

on performance (Xin and Li, 2012; Fang et al., 2011; Tan et al.,
2012b) by using the GPU shipped as part of x86 hardware
nodes compounding commodity clusters. Finally, researchers
developed approaches concerning data security, privacy, and in-
tegrity within the framework (Wei et al., 2009; Lin et al., 2012),
some of them were specifically designed to be used with Cloud
Computing technologies (Shen et al., 2011; Khaled et al., 2010;
Nguyen and Shi, 2010; Khan and Hamlen, 2012).

5.3. Taxonomy

We placed all studies into one or more categories of our tax-
onomy. These categories were created based on the Apache
Hadoop project and considering the context of the selected pa-
pers. The framework is divided into subprojects, which ini-
tially guided early versions of our taxonomy. Key areas such as
scheduling, resource allocation, and storage were first selected.
When the analysis of the selected studies began, new categories
were created in our taxonomy based on the new topics found.
The final set of categories and their subdivision were presented
in the previous section.

Another way to analyze the grouping of studies is to use spe-
cific visualization tools. We created a corpus using title, key-
words, and abstract from the selected studies and we used a
tool called Projection Explorer (PEx) (Paulovich et al., 2007;
Cuadros et al., 2007) to create a set of visualizations for our
work. PEx is able to create and explore visual representations

19

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Taxonomy Subcategory Number of Percent
Category Studies
MapReduce Scheduling 42 40%

Resource Allocation 40 38%
Data flow 28 26%

Data Storage Storage & Replication 18 17%
& Manipulation Cloud Computing 17 16%

Queries 16 15%
Cloud Storage 8 8%
DBMS 8 8%
Indexing 7 7%
Random Access 3 3%

Ecosystem New Component 23 22%
Hive. Pig. Hbase 12 11%

Miscellaneous Data Security & Crypto 7 7%
Energy Management 6 6%
GPGPU 4 4%

Table 5: Research topics addressed in selected studies

of document collections. Each document is represented as a cir-
cle in a plane and the distance between circles in subtrees rep-
resents their similarity. The closer the circles are in the same
subtree, the similar the documents are. By using this tools we
were able to group documents into categories and to visualize
the results as shown in Figure 2. The figure shows two cluster-
ization steps. In the first step, represented in the subgraph on
the left, we used 8 clusters. In the second step, represented in
the subgraph on the right, we used 15 clusters. We understand
from the figure that with more clusters, there are more terms
that group the articles into specific branches, which shows the
correlation among works. The use of such visualizations helps
to confirm studies placement into categories. Also, the results
were close to our manual classification. To generate the visu-
alizations, we conducted a series of experiments, varying the
number of groups, and the best results were achieved using
eight groups, the number of subsections previously presented
in Section 4.

2" 1" 2"
8"

4"
7"

14"

12"

16"

18"

7"

16"

2"

4"

2"

5"
10"
15"
20"
25"
30"
35"
40"
45"
50"

Scheduling" Dataflow" Resource""
Alloca?on"

2013"

2012"

2011"

2010"

2009"

2008"

Figure 3: Number of Studies by Year - MapReduce Category

5.4. Results and Findings
Our taxonomy was created to help answer our first research

question, RQ1: “What are the main research topics and aspects

covered by publications concerning the Apache Hadoop frame-
work and the MapReduce paradigm?”. We were able to classify
the studies and their contributions into categories. This classi-
fication gives a visualization of which areas are well explored
in Hadoop. Table 5 and Figure 3 show that the MapReduce
paradigm within Hadoop aggregates more contributions to the
framework. Scheduling and data flow, and consequently, re-
source allocation, have major roles on Hadoop performance. In
fact, all the papers in this category are concerned with perfor-
mance improvements in MapReduce applications. Also, most
proposals changing the MapReduce data flow are related to
achieving better application runtimes. This is accomplished
by breaking existing paradigm enforced barriers, such as the
isolation between the Map and Reduce phases. Yet, on the
MapReduce category, some papers are not concerned with per-
formance. By altering the MapReduce data flow, some ap-
proaches extend the applicability of Apache Hadoop to sup-
port, e.g., iterative applications, originally not suitable to use
the framework.

2" 1"
2"

5"
4" 3" 4" 2"

3"

6"

6"

4" 5" 2"

4"

5"

1"

7"

1"
1"

2"

3"

3"

1"

1"

1"

5"

10"

15"

20"

25"
St
or
ag
e"
&
""

Re
pl
ic
a7

on
"

Cl
ou

d"
"

St
or
ag
e"

Cl
ou

d"
"

Co
m
pu

7n
g"

In
de

xi
ng
"

Ra
nd

om
""

Ac
ce
ss
"

DB
M
S"

Q
ue

rie
s"

2013"

2012"

2011"

2010"

2009"

2008"

Figure 4: Number of Studies by Year - Data Storage & Manipulation Category

We can also see in Table 5 and in Figure 4 that research stud-
ies enhancing HDFS and approaches to create or develop query
strategies are relatively common. At least one out of five pa-
pers in this review cover data storage and manipulation. The
HDFS file system was developed to have high throughput stor-
ing large datasets. Most of the papers in the area alter HDFS
to store other types of datasets, e.g., small files such as RDF
files, or scattered datasets, in a more e�cient way. Additionally,
works enhancing or developing new techniques to query data on
HDFS are present. This is reflected in the Ecosystem category
(Figure 5), since several approaches are developed as new com-
ponents being placed on top of Hadoop. Although most of these
approaches do not result in significant changes in Hadoop, some
contributions in the DBMS area demand several changes to the
framework, making it di�cult to use them with a new Hadoop
version as soon as it is released. We may still see some cat-
egories with few contributions, e.g., indexing and random ac-
cess, which have partial support from Apache Hadoop and have
received contributions to solve specific classes of problems. Fi-
nally, recent research areas, such as green computing, energy
management, GPGPU, Cloud Computing, and Cloud Storage,
are promising but few works were published involving Hadoop

20

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



(Figure 6). Works intersecting these areas may be more likely
to be developed, since the framework became more stable along
the last two years and the MapReduce paradigm was rethought
as a support to unprecedented areas. They have a direct impact
on Table 5, where most studies have been placed into more than
one category.

1"
2" 3"
2"

5"
4"

10"
4"

3"

5"

10"

15"

20"

25"

Hadoop""
Ecosystem"

New"Ecosystem""
Component"

2013"

2012"

2011"

2010"

2009"

2008"

Figure 5: Number of Studies by Year - Ecosystem Category

With the selected papers organized into the taxonomy, we
were able to show more clearly how the proposals were vali-
dated and what were real contributions to the Apache Hadoop.
The validation methods used in the work proposed in the se-
lected papers are discussed in RQ2.2 “What kind of validation
is performed in each study? Simulation, analytical model, ex-
perimentation?”. Tables A.6, A.7, A.8 in Appendix A shows
the validation techniques used in each topic of our taxonomy.

Source code contributions to the Apache Hadoop and its
ecosystem are proofs of a concept that validates the propos-
als. Hence, we consider that implementation is the most valu-
able form of validation. Also, the proposals, including the ones
containing implementations, can be additionally validated by
experiments, simulations and, more formally, using analytical
models. Indeed, we can conclude that most studies (88%) use
more than one form of validation.

1"
2"

1"

2"

2"

1"

1"

2"

2"

2"
1"

1"

1"

2"

3"

4"

5"

6"

7"

8"

Green"Compu3ng""
&"Energy"

GPGPU" Data"Security"
"&"Crypto"

2013"

2012"

2011"

2010"

2009"

2008"

Figure 6: Number of Studies by Year - Miscellaneous Category

As described in 2.2, our search strategies prioritize studies
presenting concrete contributions to the Apache Hadoop, i.e.,
source code contributions. Only 5% of the papers do not con-

tain any implementation (Guo et al., 2011; Kaushik et al., 2011;
Lei et al., 2011; Rasooli and Down, 2011; Jeon et al., 2013).
Even without implementation into Hadoop, these works were
included because they present other important contributions.
Guo et al. (2011), Lei et al. (2011), and Rasooli and Down
(2011) propose schedulers and validate their proposals using
simulations. Kaushik et al. (2011) present new ecosystem com-
ponents. It is interesting to notice that these studies are not
present in the column “Implementation” of the Table A.6 and
Table A.7 because they do not contribute directly to Hadoop.
Thus, the other 95% of the works contain source code contri-
butions to Hadoop. In contrast, 8% of the proposals only con-
tain implementation, without any other form of validation (Ol-
ston et al., 2008; Wei et al., 2009; Zhang and De Sterck, 2010;
Kousiouris et al., 2011; Shi et al., 2011). The majority of the
implementations is originated from academic works. Some of
these proposals intend to provide source code and evolve the
Hadoop project. Others use the implementation only as proof
of concept. In contrast, few papers aim to solve specific indus-
try problems.

Experimentation is the second validation technique most
used by researchers to evaluate the proposals (82%). In fact,
the combination of experimentation and implementation is the
most used, and was observed in 80% of the papers. It shows
the attention employed by researchers to validate the proposed
implementations. However, it is important to highlight some
problems encountered during this systematic literature review.
Many of the experiments conducted by the researchers cannot
be fully reproduced, since we did not identify any formal ex-
periment explicitly described. For some research studies, even
more troubling, datasets and/or benchmarks used in experi-
ments are unavailable to other researchers. The absence of a
package and/or dataset may precludes the quality assessment of
the original experiments and their replication. For example, ex-
periments containing very specific benchmarks and/or datasets,
or experiments inadequately designed may introduce biases or
even influence the results obtained. A real example of this prob-
lem can be noted comparing the proposals of Wang et al. (2011)
and Ho et al. (2011). The proposal of Wang et al. (2011) tries to
solve the problem caused by repetitive merges and disk access
in the Reduce phase using a network-levitated merge algorithm.
However, they do not discuss the Reducer Replacement Prob-
lem (RPP), caused by an increase of network tra�c. In turn,
Ho et al. (2011) attack the RPP problem minimizing the net-
work tra�c, but they do not mention the impact on disk access.
In both cases, the experiments conducted do not refer to threats
of validity.

Finally, analytical models and simulations were used to vali-
date few studies, 25% and 13% respectively. Analytical models
are a formal way to validate the studies and are generally used
in conjunction with implementation. Only 3 out of 18 stud-
ies presenting analytical models do not contain implementation
(Rasooli and Down, 2011; Guo et al., 2011; Ho et al., 2011).
Proposals regarding scheduling, data flow, resource allocation,
data storage, and replication were mostly the ones validated by
analytical models. On the other hand, simulation is more used
in papers involving scheduling. Surely, scheduling is an appro-

21

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



priate subject to be validated both with analytical models and
simulation, since it is a widely studied topic in Computer Sci-
ence and well understood from a theoretical point of view. In
fact, 7 out of 9 papers presenting simulations were related to
scheduling proposals which are also concerned with resource
allocation. As well as analytical models, simulations were gen-
erally used in conjunction with another validation technique.
Just three proposals were validated exclusively via simulation.

Another way of viewing the proposals is to consider the focus
of the provided solution. This is addressed by RQ2.3 “The pro-
posed approaches take into account whether the problem being
solved is application/data-specific or more generic?”. Specific
solutions are proposed by 21% of the studies while 79% are
general solutions. Specific and general solutions encompass in-
di↵erently all topics in our taxonomy. Similarly, specific and
general solutions were indistinctly validated by the techniques
aforementioned. However, we can point out that all specific
solutions were validated at least via an implementation.

6. Related Work

Although some surveys about the MapReduce paradigm may
be found in the literature, up to this date, no other systematic
literature review specifically about the Apache Hadoop frame-
work was found. Concerning parallel data processing using
MapReduce, Lee et al. (2012) present a survey focused on this
paradigm. The authors present the MapReduce architecture, its
advantages and pitfalls. This survey is not specifically focused
on Hadoop, but on the paradigm itself. Therefore, other ap-
proaches such as Dryad (Isard et al., 2007), Nephele/PACTs
(Battré et al., 2010) and Clustera (DeWitt et al., 2008) are con-
sidered in the MapReduce context. The work of Lee et al. lists
improvements and variants made on these frameworks in terms
of high-level languages, data flow, schema, I/O optimizations,
scheduling, performance, energy issues, and hybrid systems.

Other surveys approach specific areas in Hadoop, such
as scheduling. Yoo and Sim (2011) review a collection of
approaches for scheduling jobs for MapReduce considering
scheduling issues such as locality, synchronization overhead,
and fairness constraints. The work presents two main sched-
ulers, including Hadoop approaches, comparing their features,
strengths, and weaknesses. Rao and Reddy (2011) present a
similar approach. Dealing with scheduling, the authors present
improvements and guidelines on how to improve it in Hadoop
on Cloud Environments.

7. Conclusion, Research Opportunities, and Future Work

The Apache Hadoop framework has been widely adopted
by both the industry and research communities. A proof of
this is the number of publications about the framework, which
amounts to a very large number over the past five years. We
conducted a systematic literature review as a mean to map the
contributions made by several authors to Hadoop. From more
than 1500 papers, we have selected 106 that contributed directly
to the project. We classified the papers into a taxonomy, which

helped to observe areas that are well explored, as well as more
recent topics. Hadoop performance, scheduling, data flow mod-
ifications, and resource allocation management are the topics
that have received the majority of contributions.

After analyzing the selected papers, we were able to draw
important conclusions regarding Hadoop development. First of
all, we have noticed that the number of publications have in-
creased constantly over the last years, but the main focus on the
papers have changed. Since our major concern is the analysis
of studies that have Hadoop as an end/final objective, according
to the second inclusion criteria, we have selected papers with
contributions to the framework. According to our research, the
number of publications seems to have reached its peak in 2012,
and probably will not experience another peak in the future.
That may be explained for several reasons:

• Apache Hadoop has overcome its initial “unstable” phase.
The framework have grown solid and stable. HDFS is a
reality used to store large files. Performance issues were
addressed. MapReduce was consolidated as a distributed
computing paradigm.

• Hadoop early adoption by several big companies (Yahoo!,
Facebook, Ebay, Amazon, Adobe, among many others)
drew attention of many IT companies. Due to its key
concept of parallel and distributed abstraction, Hadoop
was widely adopted to process data using the MapRe-
duce paradigm. The major Apache Hadoop premise that
“users should be writing their programs and obtaining re-
sults from their data” became a reality. Aside from config-
uring correctly the cluster (which, actually is not an easy
task), users should not be concerned with task distribution,
load balancing, and failures.

• The growth on Hadoop adoption have consolidated be-
cause users were able to understand what Apache Hadoop
MapReduce is designed for. Applying MapReduce to the
appropriate classes of problems yields the expected per-
formance and results.

This arises from the e↵ort made by academia and industry,
which have, over the last 6 years, developed a solid solution to
process Big Data. The last three years were the apex of Hadoop
development, incorporating new projects to its ecosystem, up-
grading its architecture, and reaching stability. That is one of
the reasons we have seen the number of studies in our research
increase constantly from 2010 up to 2012 and decreasing in
2013. But we noticed that from 2012 on, papers are focused on
using Hadoop as a consolidated infrastructure to solve existent
problems, without significant modifications to the framework;
a proof of that is the large number of solutions produced over
the last three years that can be applied to di↵erent problems.

Another consideration is that Cloud Computing platforms
have also consolidated and provided correct support for Hadoop
and its ecosystem. On the one hand, projects such as Sa-
vanna from OpenStack and Apache Mesos are providing sup-
port for Hadoop in the Cloud. OpenStack’s Savanna provides

22

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



a means to provision Hadoop clusters on top of OpenStack ac-
cording to the users needs, while Apache Mesos provides re-
source isolation, sharing them across distributed applications of
frameworks, which enables the possibility to run, e.g., Apache
Hadoop and MPI on the same cluster, bringing flexibility to the
infrastructure. Both projects are open source and are evolv-
ing rapidly. On the other hand, platforms such as the well-
established Amazon Elastic MapReduce, and products from
several other companies provide ready-to-go platforms (Hor-
tonworks, EMC, Cloudera, MapR, and many others), bringing
to reality the possibility of Hadoop over Cloud Computing tai-
lored to user’s needs and budget.

With this in mind, it is worth to notice that several research
e↵orts conducted by academics do not become direct contri-
butions to Hadoop. Even tough, Apache Hadoop managed
to become a stable platform. In general, approaches devel-
oped by companies related to the Apache Hadoop project, such
as Yahoo! and Facebook are incorporated into the project at
some time. On the other hand, although some approaches men-
tioned in this study could be released as an extra ecosystem
component, this step most of the times is not accomplished
by researchers. Being an open source framework, the Apache
Hadoop community should try to reduce this gap with academic
researchers. Solutions described in several of the papers we an-
alyzed could be useful if provided as alternative approaches to
di↵erent classes of problems in Apache Hadoop. At this point,
we can a�rm that more generic solutions have a better chance
to be incorporated into the Hadoop project than solutions to
specific problems. Another point that deserves attention is that
the separation between Hadoop 1.x and 2.x in terms of archi-
tectural changes may have impact on this generic/specific solu-
tions statement, e.g., the separation between resource manage-
ment and scheduling in Hadoop 2.x, may have e↵ects on some
studies that were concerned with both topics, such as (Zhang
et al., 2012b; Nguyen and Shi, 2010; Verma et al., 2011). Most
of the scheduling works were developed on Hadoop 0.20.x, be-
fore the introduction of MapReduce NextGen, which a↵ects its
applicability. Even so, we were able to observe that most stud-
ies that were tied to a particular version of Hadoop evolved their
works, either implementing new versions or developing new ap-
proaches/components that could take a better advantage of the
new Hadoop architecture.

A second point to be observed is the absence of formal doc-
umentation in the experiments conducted by the authors. This
is a problem that was already described in some publications
concerning the quality of the research that we were able to con-
firm. We observed a focus in almost all studies on the infras-
tructure used in the experiments. Data used on experiments
sometimes are not clearly described and, most of the times,
are not publicly available. This could be considered a threat
to validity of many works, since experiments cannot be fully
reproduced. This problem could be solved by using concepts
such as open data or data provenance. In this case, approaches
proposed by Zhou et al. (2012b) and Akoush et al. (2013) are
bringing data provenance to the Hadoop platform. Another con-
cern are the benchmarks used in experiments. The absence of
publicly available data for experiments, could lead to the use of

specific biased datasets, which could favor specific approaches.
But, as di↵erent areas require di↵erent kinds of benchmarks,
they would have to be developed according to the area of ap-
plication, e.g., scheduling, resource allocation, file system, and
network communication. Even with the development of new
tools, authors should register their experiments in a formal way
and make them available for further evolution of their research,
using adequate data provenance.

Finally, this review was also conducted trying to find out
promising areas for research in the MapReduce paradigm, spe-
cially in the Hadoop framework. The storage and cloud com-
puting areas have consistently raised the number of publica-
tions and new improvements have already been achieved. Al-
though we observed a great evolution, this area is likely to be
further explored to enhance the performance in specific areas,
such as the HDFS file system. Low-latency times for random
reads are still a challenge, since the distributed file system was
not originally developed with these features in focus. Another
interesting area is the flash storage. These technologies are be-
ing introduced into clusters and grids, but their full potential
is not explored yet. The analysis of workloads and behavior
of Hadoop MapReduce are beginning to be explored and can
bring another rush of performance to the framework. Linked
to these technologies is the green computing area, which could
definitely benefit from the low-power consumption from solid
state disks. We did not find a high number of publications in the
green computing field. This may represent a gap in the area that
needs further research, or because research being conducted are
in an initial stage and were not published yet. With new storage
technologies becoming cheaper, the intersection among stor-
age, cloud, and green computing will probably deserve further
exploration and development, presenting new challenges to the
research community.

8. Acknowledgements

This work was partially funded by Fundação Araucária and
NAPSoL-PRP/USP.

References

Abouzeid A, Bajda-Pawlikowski K, Abadi D, Silberschatz A, Rasin A.
HadoopDB: an architectural hybrid of MapReduce and DBMS technolo-
gies for analytical workloads. Proceedings of the VLDB Endowment
2009;2(1):922–33.

Ahmad F, Chakradhar ST, Raghunathan A, Vijaykumar TN. Tarazu: optimiz-
ing MapReduce on heterogeneous clusters. SIGARCH Computer Architec-
ture News 2012;40(1):61–74.

Ahmad F, Lee S, Thottethodi M, Vijaykumar T. Mapreduce with commu-
nication overlap (marco). Journal of Parallel and Distributed Computing
2013;73(5):608 –20.

Akoush S, Sohan R, Hopper A. Hadoopprov: Towards provenance as a first
class citizen in mapreduce. In: Proceedings of the 5th USENIX Confer-
ence on Theory and Practice of Provenance. Berkeley, CA, USA: USENIX
Association; TaPP’13; 2013. p. 1–4.

An M, Wang Y, Wang W, Sun N. Integrating DBMSs as a read-only execution
layer into Hadoop. In: International Conference on Parallel and Distributed
Computing, Applications and Technologies. 2010. p. 17–26.

Bajda-Pawlikowski K, Abadi DJ, Silberschatz A, Paulson E. E�cient pro-
cessing of data warehousing queries in a split execution environment. In:

23

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Proceedings of the International Conference on Management of Data. New
York, NY, USA: ACM; 2011. p. 1165–76.

Bakshi K. Considerations for big data: Architecture and approach. In:
Aerospace Conference. IEEE; 2012. p. 1–7.

Battré D, Ewen S, Hueske F, Kao O, Markl V, Warneke D. Nephele/PACTs:
a programming model and execution framework for web-scale analytical
processing. In: Proceedings of the 1st Symposium on Cloud Computing.
New York, NY, USA: ACM; 2010. p. 119–30.

Beyer KS, Ercegovac V, Gemulla R, Balmin A, Eltabakh MY, Kanne
CC, Özcan F, Shekita EJ. Jaql: A scripting language for large scale
semistructured data analysis. Proceedings of the VLDB Endowment
2011;4(12):1272–83.

Bhatotia P, Wieder A, Rodrigues R, Acar UA, Pasquin R. Incoop: MapReduce
for incremental computations. In: Proceedings of the 2nd Symposium on
Cloud Computing. New York, NY, USA: ACM; volume 7; 2011. p. 1–14.

Bu Y, Howe B, Balazinska M, Ernst MD. The HaLoop approach to large-scale
iterative data analysis. The VLDB Journal 2012;21(2):169–90.

Buck JB, Watkins N, LeFevre J, Ioannidou K, Maltzahn C, Polyzotis N, Brandt
S. SciHadoop: array-based query processing in Hadoop. In: Proceedings
of International Conference for High Performance Computing, Networking,
Storage and Analysis. New York, NY, USA: ACM; volume 66; 2011. p.
1–11.

Chen Q, Zhang D, Guo M, Deng Q, Guo S. SAMR: A self-adaptive MapRe-
duce scheduling algorithm in heterogeneous environment. In: 10th Interna-
tional Conference on Computer and Information Technology. IEEE; 2010.
p. 2736–43.

Clement A, Kapritsos M, Lee S, Wang Y, Alvisi L, Dahlin M, Riche T. Up-
right cluster services. In: Proceedings of the 22nd symposium on Operating
systems principles. New York, NY, USA: ACM; 2009. p. 277–90. ACM.

Costa P, Pasin M, Bessani A, Correia M. On the performance of byzantine fault-
tolerant mapreduce. Dependable and Secure Computing, IEEE Transactions
on 2013;10(5):301–13.

Cuadros A, Paulovich F, Minghim R, Telles G. Point placement by phyloge-
netic trees and its application to visual analysis of document collections. In:
Symposium on Visual Analytics Science and Technology. IEEE; 2007. p.
99–106. PeX.

Dean J, Ghemawat S. MapReduce: simplified data processing on large clus-
ters. In: Proceedings of the 6th Conference on Operating Systems Design
and Implementation. Berkeley, CA, USA: USENIX Association; volume 6;
2004. p. 137–50.

Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters.
Communications of the ACM 2008;51(1):107–13.

DeWitt DJ, Paulson E, Robinson E, Naughton J, Royalty J, Shankar S, Kri-
oukov A. Clustera: an integrated computation and data management system.
Proceedings of the VLDB Endowment 2008;1(1):28–41.

Dittrich J, Quiané-Ruiz JA, Jindal A, Kargin Y, Setty V, Schad J. Hadoop++:
making a yellow elephant run like a cheetah (without it even noticing). Pro-
ceedings of the VLDB Endowment 2010;3(1-2):515–29.

Dittrich J, Quiané-Ruiz JA, Richter S, Schuh S, Jindal A, Schad J. Only ag-
gressive elephants are fast elephants. Proceedings of the VLDB Endowment
2012;5(11):1591–602.

Dong B, Qiu J, Zheng Q, Zhong X, Li J, Li Y. A novel approach to improving
the e�ciency of storing and accessing small files on Hadoop: A case study
by PowerPoint files. In: International Conference on Services Computing.
IEEE; 2010. p. 65–72.

Elghandour I, Aboulnaga A. ReStore: reusing results of MapReduce jobs. Pro-
ceedings of the VLDB Endowment 2012;5(6):586–97.

Elnikety E, Elsayed T, Ramadan H. iHadoop: Asynchronous iterations for
MapReduce. In: Third International Conference on Cloud Computing Tech-
nology and Science. IEEE; 2011. p. 81–90.

Eltabakh MY, Tian Y, Özcan F, Gemulla R, Krettek A, McPherson J. Co-
Hadoop: flexible data placement and its exploitation in Hadoop. Proceed-
ings of the VLDB Endowment 2011;4(9):575–85.

Elteir M, Lin H, chun Feng W. Enhancing MapReduce via asynchronous data
processing. In: 16th International Conference on Parallel and Distributed
Systems. IEEE; 2010. p. 397–405.

Facebook . Under the hood: Scheduling MapReduce jobs more e�ciently with
Corona. 2012. URL: http://fb.me/Engineering/.

Fang W, He B, Luo Q, Govindaraju N. Mars: Accelerating MapReduce with
graphics processors. Parallel and Distributed Systems, IEEE Transactions
on 2011;22(4):608–20.

Gates AF, Natkovich O, Chopra S, Kamath P, Narayanamurthy SM, Olston C,
Reed B, Srinivasan S, Srivastava U. Building a high-level dataflow system
on top of Map-Reduce: the Pig experience. Proceedings of the VLDB En-
dowment 2009;2(2):1414–25.

Ghemawat S, Gobio↵ H, Leung ST. The Google File System. ACM SIGOPS
Operating Systems Review 2003;37(5):29–43.

Goiri In, Le K, Nguyen TD, Guitart J, Torres J, Bianchini R. GreenHadoop:
leveraging green energy in data-processing frameworks. In: Proceedings of
the 7th European Conference on Computer Systems. New York, NY, USA:
ACM; 2012. p. 57–70.

Grossman M, Breternitz M, Sarkar V. Hadoopcl: Mapreduce on distributed het-
erogeneous platforms through seamless integration of hadoop and opencl.
In: Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2013 IEEE 27th International. 2013. p. 1918–27.

Grover R, Carey M. Extending Map-Reduce for e�cient predicate-based sam-
pling. In: 28th International Conference on Data Engineering. IEEE; 2012.
p. 486–97.

Guang-hua S, Jun-na C, Bo-wei Y, Yao Z. QDFS: A quality-aware distributed
file storage service based on hdfs. In: International Conference on Computer
Science and Automation Engineering. IEEE; volume 2; 2011. p. 203–7.

Guo Z, Pierce M, Fox G, Zhou M. Automatic task re-organization in MapRe-
duce. In: International Conference on Cluster Computing. IEEE; 2011. p.
335–43.

Hammoud M, Rehman M, Sakr M. Center-of-Gravity reduce task scheduling
to lower MapReduce network tra�c. In: International Conference on Cloud
Computing. IEEE; 2012. p. 49–58.

Hammoud M, Sakr M. Locality-aware reduce task scheduling for MapReduce.
In: Third International Conference on Cloud Computing Technology and
Science. IEEE; 2011. p. 570–6.

He C, Lu Y, Swanson D. Matchmaking: A new MapReduce scheduling tech-
nique. In: Third International Conference on Cloud Computing Technology
and Science. IEEE; 2011a. p. 40–7.

He C, Weitzel D, Swanson D, Lu Y. Hog: Distributed hadoop mapreduce on the
grid. In: High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. 2012. p. 1276–83.

He Y, Lee R, Huai Y, Shao Z, Jain N, Zhang X, Xu Z. RCFile: A fast and space-
e�cient data placement structure in MapReduce-based warehouse systems.
In: 27th International Conference on Data Engineering. IEEE; 2011b. p.
1199–208.

Ho LY, Wu JJ, Liu P. Optimal algorithms for cross-rack communication opti-
mization in MapReduce framework. In: International Conference on Cloud
Computing. IEEE; 2011. p. 420–7.

Ibrahim S, Jin H, Lu L, He B, Antoniu G, Wu S. Maestro: Replica-aware map
scheduling for MapReduce. In: 12th International Symposium on Cluster,
Cloud and Grid Computing. IEEE/ACM; 2012. p. 435–42.

Ibrahim S, Jin H, Lu L, Wu S, He B, Qi L. LEEN: Locality/fairness-aware key
partitioning for MapReduce in the cloud. In: Second International Confer-
ence on Cloud Computing Technology and Science. 2010. p. 17–24.

Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: distributed data-parallel
programs from sequential building blocks. ACM SIGOPS Operating Sys-
tems Review 2007;41(3):59–72.

Iu MY, Zwaenepoel W. HadoopToSQL: a MapReduce query optimizer. In:
Proceedings of the 5th European conference on Computer systems. New
York, NY, USA: ACM; 2010. p. 251–64.

Jeon H, El Maghraoui K, Kandiraju GB. Investigating hybrid ssd ftl schemes
for hadoop workloads. In: Proceedings of the ACM International Confer-
ence on Computing Frontiers. New York, NY, USA: ACM; CF ’13; 2013. p.
20:1–20:10.

Jiang D, Ooi BC, Shi L, Wu S. The performance of MapReduce: an in-depth
study. Proceedings of the VLDB Endowment 2010;3(1-2):472–83.

Kaldewey T, Shekita EJ, Tata S. Clydesdale: structured data processing on
MapReduce. In: Proceedings of the 15th International Conference on Ex-
tending Database Technology. New York, NY, USA: ACM; 2012. p. 15–25.

Kang Y, suk Kee Y, Miller E, Park C. Enabling cost-e↵ective data processing
with smart ssd. In: Mass Storage Systems and Technologies (MSST), 2013
IEEE 29th Symposium on. 2013. p. 1–12.

Kaushik R, Abdelzaher T, Egashira R, Nahrstedt K. Predictive data and energy
management in GreenHDFS. In: International Green Computing Confer-
ence and Workshops. 2011. p. 1–9.

Kaushik R, Bhandarkar M, Nahrstedt K. Evaluation and analysis of Green-
HDFS: A self-adaptive, energy-conserving variant of the Hadoop Dis-

24

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



tributed File System. In: Second International Conference on Cloud Com-
puting Technology and Science. IEEE; 2010. p. 274–87.

Khaled A, Husain M, Khan L, Hamlen K, Thuraisingham B. A token-based
access control system for RDF data in the clouds. In: Second International
Conference on Cloud Computing Technology and Science. 2010. p. 104–11.

Khan S, Hamlen K. Hatman: Intra-cloud trust management for Hadoop. In:
International Conference on Cloud Computing. IEEE; 2012. p. 494–501.

Kitchenham B, Charters S. Guidelines for performing Systematic Literature
Reviews in Software Engineering. Technical Report EBSE 2007-001; Keele
University and Durham University Joint Report; 2007.

Ko SY, Hoque I, Cho B, Gupta I. Making cloud intermediate data fault-tolerant.
In: Proceedings of the 1st Symposium on Cloud Computing. New York, NY,
USA: ACM; 2010. p. 181–92. ACM.

Kondikoppa P, Chiu CH, Cui C, Xue L, Park SJ. Network-aware scheduling
of mapreduce framework ondistributed clusters over high speed networks.
In: Proceedings of the 2012 Workshop on Cloud Services, Federation, and
the 8th Open Cirrus Summit. New York, NY, USA: ACM; FederatedClouds
’12; 2012. p. 39–44. Scheduling, Cloud Computing.

Konishetty VK, Kumar KA, Voruganti K, Rao GVP. Implementation and eval-
uation of scalable data structure over HBase. In: Proceedings of the In-
ternational Conference on Advances in Computing, Communications and
Informatics. New York, NY, USA: ACM; 2012. p. 1010–8.

Kousiouris G, Vafiadis G, Varvarigou T. A front-end, Hadoop-based data man-
agement service for e�cient federated clouds. In: Third International Con-
ference on Cloud Computing Technology and Science. IEEE; 2011. p. 511–
6.

Kumar KA, Konishetty VK, Voruganti K, Rao GVP. CASH: Context Aware
Scheduler for Hadoop. In: Proceedings of the International Conference on
Advances in Computing, Communications and Informatics. New York, NY,
USA: ACM; 2012. p. 52–61.

Kwon Y, Balazinska M, Howe B, Rolia J. SkewTune: mitigating skew in
mapreduce applications. In: Proceedings of the International Conference
on Management of Data. New York, NY, USA: ACM; 2012. p. 25–36.

Lama P, Zhou X. Aroma: Automated resource allocation and configuration of
mapreduce environment in the cloud. In: Proceedings of the 9th Interna-
tional Conference on Autonomic Computing. New York, NY, USA: ACM;
ICAC ’12; 2012. p. 63–72. Cloud Computing, Resource Allocation.

Laptev N, Zeng K, Zaniolo C. Early accurate results for advanced analytics on
MapReduce. Proceedings of the VLDB Endowment 2012;5(10):1028–39.

Lee K, Nam Y, Kim T, Park S. An adaptive data transfer algorithm using block
device reconfiguration in virtual mapreduce clusters. In: Proceedings of the
2013 ACM Cloud and Autonomic Computing Conference. New York, NY,
USA: ACM; CAC ’13; 2013. p. 1–8.

Lee KH, Lee YJ, Choi H, Chung YD, Moon B. Parallel data processing with
MapReduce: a survey. SIGMOD Record 2012;40(4):11–20.

Lei L, Wo T, Hu C. CREST: Towards fast speculation of straggler tasks in
MapReduce. In: 8th International Conference on e-Business Engineering.
IEEE; 2011. p. 311–6.

Leo S, Zanetti G. Pydoop: a Python MapReduce and HDFS API for Hadoop.
In: Proceedings of the 19th International Symposium on High Performance
Distributed Computing. New York, NY, USA: ACM; 2010. p. 819–25.

Li S, Abdelzaher T, Yuan M. TAPA: Temperature aware power allocation in
data center with Map-Reduce. In: International Green Computing Confer-
ence and Workshops. 2011. p. 1–8.

Liang Y, Li G, Wang L, Hu Y. Dacoop: Accelerating data-iterative applications
on map/reduce cluster. In: 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies. 2011. p. 207–14.

Liao H, Han J, Fang J. Multi-dimensional index on Hadoop Distributed File
System. In: 5th International Conference on Networking, Architecture and
Storage. IEEE; 2010. p. 240–9.

Lin H, Ma X, Archuleta J, Feng Wc, Gardner M, Zhang Z. MOON: MapReduce
On Opportunistic eNvironments. In: Proceedings of the 19th International
Symposium on High Performance Distributed Computing. New York, NY,
USA: ACM; 2010. p. 95–106.

Lin HY, Shen ST, Tzeng WG, Lin BS. Toward data confidentiality via inte-
grating hybrid encryption schemes and Hadoop Distributed File System. In:
26th International Conference on Advanced Information Networking and
Applications. IEEE; 2012. p. 740–7.

Lin M, Zhang L, Wierman A, Tan J. Joint optimization of overlapping phases
in mapreduce. Performance Evaluation 2013;70(10):720 –35. Proceedings
of {IFIP} Performance 2013 Conference.

Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski
G. Pregel: a system for large-scale graph processing. In: Proceedings of
the International Conference on Management of Data. New York, NY, USA:
ACM; 2010. p. 135–46.

Mandal A, Xin Y, Baldine I, Ruth P, Heerman C, Chase J, Orlikowski V,
Yumerefendi A. Provisioning and evaluating multi-domain networked
clouds for Hadoop-based applications. In: Third International Conference
on Cloud Computing Technology and Science. IEEE; 2011. p. 690–7.

Mao H, Zhang Z, Zhao B, Xiao L, Ruan L. Towards deploying elastic Hadoop
in the cloud. In: International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery. 2011. p. 476–82.

Mao Y, Wu W, Zhang H, Luo L. GreenPipe: A Hadoop based workflow system
on energy-e�cient clouds. In: 26th International Parallel and Distributed
Processing Symposium Workshops PhD Forum. IEEE; 2012. p. 2211–9.
IEEE.

Mikami S, Ohta K, Tatebe O. Using the Gfarm File System as a POSIX compat-
ible storage platform for Hadoop MapReduce applications. In: Proceedings
of the 12th International Conference on Grid Computing. Washington, DC,
USA: IEEE/ACM; 2011. p. 181–9.

Mohamed H, Marchand-Maillet S. Mro-mpi: Mapreduce overlapping us-
ing {MPI} and an optimized data exchange policy. Parallel Computing
2013;39(12):851 –66. Programming models, systems software and tools
for High-End Computing.

Nguyen P, Simon T, Halem M, Chapman D, Le Q. A hybrid scheduling algo-
rithm for data intensive workloads in a mapreduce environment. In: Pro-
ceedings of the 2012 IEEE/ACM Fifth International Conference on Util-
ity and Cloud Computing. Washington, DC, USA: IEEE Computer Society;
UCC ’12; 2012. p. 161–7. ACM, Scheduling.

Nguyen T, Shi W. Improving resource e�ciency in data centers using
reputation-based resource selection. In: International Green Computing
Conference. 2010. p. 389–96.

Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: sharing
across multiple queries in MapReduce. Proceedings of the VLDB Endow-
ment 2010;3(1-2):494–505.

Olston C, Chiou G, Chitnis L, Liu F, Han Y, Larsson M, Neumann A, Rao
VB, Sankarasubramanian V, Seth S, Tian C, ZiCornell T, Wang X. Nova:
continuous Pig/Hadoop workflows. In: Proceedings of the International
Conference on Management of Data. New York, NY, USA: ACM; 2011.
p. 1081–90.

Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: a not-so-
foreign language for data processing. In: Proceedings of the International
Conference on Management of Data. New York, NY, USA: ACM; 2008. p.
1099–110.

Oriani A, Garcia I. From backup to hot standby: High availability for hdfs.
In: Reliable Distributed Systems (SRDS), 2012 IEEE 31st Symposium on.
2012. p. 131–40.

Owens J, Houston M, Luebke D, Green S, Stone J, Phillips J. GPU Computing.
Proceedings of the IEEE 2008;96(5):879–99.

Park J, Lee D, Kim B, Huh J, Maeng S. Locality-aware dynamic VM recon-
figuration on MapReduce clouds. In: Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Computing. New
York, NY, USA: ACM; 2012. p. 27–36. ACM.

Paulovich FV, Oliveira MCF, Minghim R. The projection explorer: A flexible
tool for projection-based multidimensional visualization. In: Proceedings of
the XX Brazilian Symposium on Computer Graphics and Image Processing.
Belo Horizonte, Brazil: IEEE; 2007. p. 27–36. PeX.

Polo J, Carrera D, Becerra Y, Torres J, Ayguade and E, Steinder M, Whalley
I. Performance-driven task co-scheduling for MapReduce environments. In:
Network Operations and Management Symposium. IEEE; 2010. p. 373–80.
IEEE.

Rao B, Reddy DL. Survey on improved scheduling in Hadoop MapReduce
in cloud environments. International Journal of Computer Applications
2011;34(9):29–33.

Rasooli A, Down DG. An adaptive scheduling algorithm for dynamic hetero-
geneous Hadoop systems. In: Proceedings of the Conference of the Center
for Advanced Studies on Collaborative Research. Riverton, NJ, USA: IBM
Corp.; 2011. p. 30–44.

Seo S, Jang I, Woo K, Kim I, Kim JS, Maeng S. HPMR: Prefetching and pre-
shu✏ing in shared MapReduce computation environment. In: International
Conference on Cluster Computing and Workshops. IEEE; 2009. p. 1–8.

Shafer J, Rixner S, Cox A. The Hadoop Distributed Filesystem: Balancing

25

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



portability and performance. In: International Symposium on Performance
Analysis of Systems Software. IEEE; 2010. p. 122–33. IEEE.

Shen Q, Zhang L, Yang X, Yang Y, Wu Z, Zhang Y. SecDM: Securing data
migration between cloud storage systems. In: 9th International Conference
on Dependable, Autonomic and Secure Computing. IEEE; 2011. p. 636–41.

Shi L, Li X, Tan KL. S3: An e�cient Shared Scan Scheduler on MapReduce
framework. In: International Conference on Parallel Processing. 2011. p.
325–34.

Shirahata K, Sato H, Matsuoka S. Hybrid map task scheduling for GPU-based
heterogeneous clusters. In: Second International Conference on Cloud Com-
puting Technology and Science. 2010. p. 733–40.

Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop Distributed File
System. In: Proceedings of the 26th Symposium on Mass Storage Systems
and Technologies. Washington, DC, USA: IEEE; 2010. p. 1–10.

Stonebraker M, Abadi D, DeWitt DJ, Madden S, Paulson E, Pavlo A, Rasin A.
MapReduce and parallel DBMSs: friends or foes? Communications of the
ACM 2010;53(1):64–71.

Tan J, Meng X, Zhang L. Delay tails in MapReduce scheduling. In: Proceed-
ings of the 12th Joint International Conference on Measurement and Mod-
eling of Computer Systems. New York, NY, USA: ACM; 2012a. p. 5–16.

Tan YS, Lee BS, He B, Campbell R. A Map-Reduce based framework for het-
erogeneous processing element cluster environments. In: 12th International
Symposium on Cluster, Cloud and Grid Computing. IEEE/ACM; 2012b. p.
57–64.

Tang Z, Zhou J, Li K, Li R. MTSD: A task scheduling algorithm for MapRe-
duce base on deadline constraints. In: 26th International Parallel and Dis-
tributed Processing Symposium Workshops PhD Forum. IEEE; 2012. p.
2012–8. IEEE.

Tanimura Y, Matono A, Lynden S, Kojima I. Extensions to the Pig data pro-
cessing platform for scalable RDF data processing using Hadoop. In: 26th
International Conference on Data Engineering Workshops. IEEE; 2010. p.
251–6.

Tao Y, Zhang Q, Shi L, Chen P. Job scheduling optimization for multi-user
MapReduce clusters. In: 4th International Symposium on Parallel Architec-
tures, Algorithms and Programming. 2011. p. 213–7. IEEE.

Thusoo A, Sarma J, Jain N, Shao Z, Chakka P, Zhang N, Antony S, Liu H,
Murthy R. Hive - a petabyte scale data warehouse using Hadoop. In: 26th
International Conference on Data Engineering. IEEE; 2010. p. 996–1005.

Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wycko↵
P, Murthy R. Hive: a warehousing solution over a Map-Reduce framework.
Proceedings of the VLDB Endowment 2009;2(2):1626–9.

Tian C, Zhou H, He Y, Zha L. A dynamic MapReduce scheduler for heteroge-
neous workloads. In: 8th International Conference on Grid and Cooperative
Computing. 2009. p. 218–24.

Verma A, Cherkasova L, Campbell RH. ARIA: automatic resource inference
and allocation for mapreduce environments. In: Proceedings of the 8th In-
ternational Conference on Autonomic Computing. New York, NY, USA:
ACM; 2011. p. 235–44.

Verma A, Cherkasova L, Kumar V, Campbell R. Deadline-based workload
management for MapReduce environments: Pieces of the performance puz-
zle. In: Network Operations and Management Symposium. IEEE; 2012. p.
900–5.

Vernica R, Balmin A, Beyer KS, Ercegovac V. Adaptive MapReduce using
situation-aware mappers. In: Proceedings of the 15th International Confer-
ence on Extending Database Technology. New York, NY, USA: ACM; 2012.
p. 420–31.

Wang K, Lin X, Tang W. Predator an experience guided configuration opti-
mizer for hadoop mapreduce. In: Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on. 2012. p. 419–26.

Wang L, Tao J, Ranjan R, Marten H, Streit A, Chen J, Chen D. G-hadoop:
Mapreduce across distributed data centers for data-intensive computing. Fu-
ture Generation Computer Systems 2013;29(3):739 –50. Special Section:
Recent Developments in High Performance Computing and Security.

Wang Y, Que X, Yu W, Goldenberg D, Sehgal D. Hadoop acceleration through
network levitated merge. In: Proceedings of International Conference for
High Performance Computing, Networking, Storage and Analysis. New
York, NY, USA: ACM; volume 57; 2011. p. 1–10.

Wei Q, Veeravalli B, Gong B, Zeng L, Feng D. CDRM: A cost-e↵ective dy-
namic replication management scheme for cloud storage cluster. In: Inter-
national Conference on Cluster Computing. IEEE; 2010. p. 188–96.

Wei W, Du J, Yu T, Gu X. SecureMR: A service integrity assurance framework

for MapReduce. In: Annual Computer Security Applications Conference.
2009. p. 73–82.

White T. Hadoop: The Definitive Guide. 3rd ed. O’Reilly Media, Inc., 2012.
Xie J, Tian Y, Yin S, Zhang J, Ruan X, Qin X. Adaptive preshu✏ing in hadoop

clusters. Procedia Computer Science 2013;18(0):2458 –67. 2013 Interna-
tional Conference on Computational Science.

Xie J, Yin S, Ruan X, Ding Z, Tian Y, Majors J, Manzanares A, Qin X. Im-
proving MapReduce performance through data placement in heterogeneous
Hadoop clusters. In: International Symposium on Parallel Distributed Pro-
cessing, Workshops and Phd Forum. IEEE; 2010. p. 1–9. IEEE.

Xin M, Li H. An implementation of GPU accelerated MapReduce: Using
Hadoop with OpenCL for data- and compute-intensive jobs. In: Interna-
tional Joint Conference on Service Sciences. 2012. p. 6–11.

Yoo D, Sim KM. A comparative review of job scheduling for MapReduce.
In: International Conference on Cloud Computing and Intelligence Systems.
IEEE; 2011. p. 353–8.

You HH, Yang CC, Huang JL. A load-aware scheduler for MapReduce frame-
work in heterogeneous cloud environments. In: Proceedings of the Sympo-
sium on Applied Computing. New York, NY, USA: ACM; 2011. p. 127–32.
ACM.

Zaharia M, Borthakur D, Sen Sarma J, Elmeleegy K, Shenker S, Stoica I. Delay
scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: Proceedings of the 5th European Conference on Computer
Systems. New York, NY, USA: ACM; 2010. p. 265–78.

Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce
performance in heterogeneous environments. In: Proceedings of the 8th
Conference on Operating Systems Design and Implementation. Berkeley,
CA, USA: USENIX Association; volume 8; 2008. p. 29–42.

Zhang C, De Sterck H. CloudBATCH: A batch job queuing system on clouds
with Hadoop and HBase. In: Second International Conference on Cloud
Computing Technology and Science. 2010. p. 368–75.

Zhang J, Yu X, Li Y, Lin L. HadoopRsync. In: International Conference on
Cloud and Service Computing. 2011a. p. 166–73.

Zhang X, Feng Y, Feng S, Fan J, Ming Z. An e↵ective data locality aware
task scheduling method for MapReduce framework in heterogeneous envi-
ronments. In: Proceedings of the International Conference on Cloud and
Service Computing. Washington, DC, USA: IEEE; 2011b. p. 235–42.

Zhang X, Wang G, Yang Z, Ding Y. A two-phase execution engine of reduce
tasks in Hadoop MapReduce. In: International Conference on Systems and
Informatics. 2012a. p. 858–64.

Zhang X, Zhong Z, Feng S, Tu B, Fan J. Improving data locality of MapReduce
by scheduling in homogeneous computing environments. In: 9th Interna-
tional Symposium on Parallel and Distributed Processing with Applications.
IEEE; 2011c. p. 120–6. IEEE.

Zhang Y, Gao Q, Gao L, Wang C. iMapReduce: A distributed computing
framework for iterative computation. In: International Symposium on Par-
allel and Distributed Processing Workshops and Phd Forum. IEEE; 2011d.
p. 1112–21. IEEE.

Zhang Z, Cherkasova L, Verma A, Loo BT. Optimizing completion time and
resource provisioning of Pig programs. In: 12th International Symposium
on Cluster, Cloud and Grid Computing. IEEE/ACM; 2012b. p. 811–6.

Zhao Y, Wang W, Meng D, Lv Y, Zhang S, Li J. TDWS: A job scheduling
algorithm based on MapReduce. In: 7th International Conference on Net-
working, Architecture and Storage. IEEE; 2012. p. 313–9.

Zhou W, Han J, Zhang Z, Dai J. Dynamic random access for Hadoop Dis-
tributed File System. In: 32nd International Conference on Distributed
Computing Systems Workshops. 2012a. p. 17–22.

Zhou W, Mapara S, Ren Y, Li Y, Haeberlen A, Ives Z, Loo BT, Sherr M.
Distributed time-aware provenance. Proc VLDB Endow 2012b;6(2):49–60.

Zhou Z, Zhang H, Du X, Li P, Yu X. Prometheus: Privacy-aware data retrieval
on hybrid cloud. In: INFOCOM, 2013 Proceedings IEEE. 2013. p. 2643–51.

Zhu H, Chen H. Adaptive failure detection via heartbeat under Hadoop. In:
Asia-Pacific Services Computing Conference. IEEE; 2011. p. 231–8.

Zikopoulos P, Eaton C. Understanding Big Data: Analytics for Enter-
prise Class Hadoop and Streaming Data. Mcgraw-hill, 2011. URL:
http://books.google.com.br/books?id=Plcg 9NJ fUC.

26

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Appendix A. Validation Techniques Used in the Selected Studies

Implementation Experiments
Scheduling Tian et al. (2009); Zhang et al. (2012a); Vernica et al. (2012);

Zhang et al. (2011b); Verma et al. (2011); Kumar et al. (2012);
Hammoud et al. (2012); Zhang and De Sterck (2010); Liang
et al. (2011); Tan et al. (2012a); Goiri et al. (2012); Seo et al.
(2009); Shirahata et al. (2010); Elnikety et al. (2011); Nguyen
and Shi (2010); Ibrahim et al. (2010); Hammoud and Sakr
(2011); He et al. (2011a); Nykiel et al. (2010); Shi et al. (2011);
Chen et al. (2010); Ahmad et al. (2012); Zhao et al. (2012); Bu
et al. (2012); Bhatotia et al. (2011); Lin et al. (2010); Verma
et al. (2012); Ibrahim et al. (2012); Mao et al. (2012); Polo et al.
(2010); Tan et al. (2012b); Tang et al. (2012); Tao et al. (2011);
You et al. (2011); Zhang et al. (2011c, 2012b); Kondikoppa et al.
(2012); Nguyen et al. (2012); Wang et al. (2012); Lin et al.
(2013); Mohamed and Marchand-Maillet (2013)

Tian et al. (2009); Vernica et al. (2012); Zhang et al. (2011b);
Verma et al. (2011); Guo et al. (2011); Kumar et al. (2012);
Hammoud et al. (2012); Liang et al. (2011); Tan et al. (2012a);
Goiri et al. (2012); Seo et al. (2009); Shirahata et al. (2010);
Elnikety et al. (2011); Nguyen and Shi (2010); Ibrahim et al.
(2010); Hammoud and Sakr (2011); Nykiel et al. (2010); Ah-
mad et al. (2012); Zhao et al. (2012); Bu et al. (2012); Bhato-
tia et al. (2011); Lin et al. (2010); Verma et al. (2012); Ibrahim
et al. (2012); Mao et al. (2012); Polo et al. (2010); Tan et al.
(2012b); Tang et al. (2012); Tao et al. (2011); You et al. (2011);
Zhang et al. (2011c, 2012b); Kondikoppa et al. (2012); Nguyen
et al. (2012); Wang et al. (2012); Lin et al. (2013); Mohamed and
Marchand-Maillet (2013)

Data flow Zhu and Chen (2011); Vernica et al. (2012); Liang et al. (2011);
Tan et al. (2012a); Laptev et al. (2012); Elteir et al. (2010);
Grover and Carey (2012); Wang et al. (2011); Seo et al. (2009);
Shirahata et al. (2010); Elnikety et al. (2011); Ibrahim et al.
(2010); Hammoud and Sakr (2011); He et al. (2011a); Olston
et al. (2011); Ho et al. (2011); Shi et al. (2011); Buck et al.
(2011); Kwon et al. (2012); Bu et al. (2012); Bhatotia et al.
(2011); Lin et al. (2010); Verma et al. (2012); Zhang et al.
(2011d); Ahmad et al. (2013); Lin et al. (2013); Mohamed and
Marchand-Maillet (2013); Xie et al. (2013)

Zhu and Chen (2011); Vernica et al. (2012); Liang et al. (2011);
Tan et al. (2012a); Laptev et al. (2012); Elteir et al. (2010);
Grover and Carey (2012); Wang et al. (2011); Seo et al. (2009);
Shirahata et al. (2010); Elnikety et al. (2011); Ibrahim et al.
(2010); Hammoud and Sakr (2011); Olston et al. (2011); Ho
et al. (2011); Buck et al. (2011); Kwon et al. (2012); Bu
et al. (2012); Bhatotia et al. (2011); Lin et al. (2010); Verma
et al. (2012); Zhang et al. (2011d); Ahmad et al. (2013); Lin
et al. (2013); Mohamed and Marchand-Maillet (2013); Xie et al.
(2013)

Resource Allocation Tian et al. (2009); Zhang et al. (2012a); Zhu and Chen (2011);
Zhang et al. (2011b); Verma et al. (2011); Kumar et al. (2012);
Hammoud et al. (2012); Zhang and De Sterck (2010); Liang
et al. (2011); Grover and Carey (2012); Goiri et al. (2012); Seo
et al. (2009); Shirahata et al. (2010); Nguyen and Shi (2010);
Hammoud and Sakr (2011); He et al. (2011a); Nykiel et al.
(2010); Mandal et al. (2011); Chen et al. (2010); Li et al. (2011);
Ahmad et al. (2012); Zhao et al. (2012); Mao et al. (2011);
Lin et al. (2010); Verma et al. (2012); Ibrahim et al. (2012);
Mao et al. (2012); Park et al. (2012); Polo et al. (2010); Tan
et al. (2012b); Tang et al. (2012); Tao et al. (2011); You et al.
(2011); Zhang et al. (2011c, 2012b, 2011d); Costa et al. (2013);
Kondikoppa et al. (2012); Lama and Zhou (2012); Wang et al.
(2013)

Tian et al. (2009); Zhu and Chen (2011); Zhang et al. (2011b);
Verma et al. (2011); Guo et al. (2011); Kumar et al. (2012);
Hammoud et al. (2012); Liang et al. (2011); Grover and Carey
(2012); Goiri et al. (2012); Seo et al. (2009); Shirahata et al.
(2010); Nguyen and Shi (2010); Hammoud and Sakr (2011);
Nykiel et al. (2010); Mandal et al. (2011); Ahmad et al. (2012);
Zhao et al. (2012); Mao et al. (2011); Lin et al. (2010); Verma
et al. (2012); Ibrahim et al. (2012); Mao et al. (2012); Park et al.
(2012); Polo et al. (2010); Tan et al. (2012b); Tang et al. (2012);
Tao et al. (2011); You et al. (2011); Zhang et al. (2011c, 2012b,
2011d); Costa et al. (2013); Kondikoppa et al. (2012); Lama and
Zhou (2012); Wang et al. (2013)

Storage & Replication Wei et al. (2010); Eltabakh et al. (2011); Zhou et al. (2012a);
Bajda-Pawlikowski et al. (2011); Goiri et al. (2012); Dittrich
et al. (2012); Guang-hua et al. (2011); He et al. (2011b); Wei
et al. (2009); Lin et al. (2012); Mikami et al. (2011); Verma
et al. (2012); Clement et al. (2009); Ko et al. (2010); Shafer et al.
(2010); Xie et al. (2010); Costa et al. (2013); Kang et al. (2013)

Dong et al. (2010); Wei et al. (2010); Eltabakh et al. (2011);
Zhou et al. (2012a); Bajda-Pawlikowski et al. (2011); Goiri et al.
(2012); Dittrich et al. (2012); Guang-hua et al. (2011); He et al.
(2011b); Lin et al. (2012); Mikami et al. (2011); Verma et al.
(2012); Clement et al. (2009); Ko et al. (2010); Shafer et al.
(2010); Xie et al. (2010); Costa et al. (2013); Jeon et al. (2013);
Kang et al. (2013)

Cloud Storage Kousiouris et al. (2011); Wei et al. (2010); Zhang and De Sterck
(2010); Zhang et al. (2011a); Guang-hua et al. (2011); Shen et al.
(2011); Dong et al. (2010); Ko et al. (2010); He et al. (2012); Lee
et al. (2013)

Wei et al. (2010); Zhang et al. (2011a); Guang-hua et al. (2011);
Dong et al. (2010); Ko et al. (2010); He et al. (2012); Lee et al.
(2013)

Cloud Computing Khaled et al. (2010); Zhang et al. (2011b); Hammoud et al.
(2012); Zhang et al. (2011a); Khan and Hamlen (2012); Nguyen
and Shi (2010); Mandal et al. (2011); Guang-hua et al. (2011);
Shen et al. (2011); Ko et al. (2010); Mao et al. (2012); Park et al.
(2012); Tang et al. (2012); Zhang et al. (2012b); He et al. (2012);
Lama and Zhou (2012); Zhou et al. (2013); Wang et al. (2013);
Ahmad et al. (2013)

Zhang et al. (2011b); Hammoud et al. (2012); Zhang et al.
(2011a); Khan and Hamlen (2012); Nguyen and Shi (2010);
Mandal et al. (2011); Guang-hua et al. (2011); Ko et al. (2010);
Mao et al. (2012); Park et al. (2012); Tang et al. (2012); Zhang
et al. (2012b); He et al. (2012); Lama and Zhou (2012); Zhou
et al. (2013); Wang et al. (2013); Ahmad et al. (2013)

Indexing Dong et al. (2010); Dittrich et al. (2010); An et al. (2010); Liao
et al. (2010); Dittrich et al. (2012)

Dong et al. (2010); Dittrich et al. (2010); An et al. (2010); Liao
et al. (2010); Dittrich et al. (2012)

Random Access Dong et al. (2010); Zhou et al. (2012a); Liao et al. (2010) Dong et al. (2010); Zhou et al. (2012a); Liao et al. (2010)
DBMS Kaldewey et al. (2012); Bajda-Pawlikowski et al. (2011); Tan-

imura et al. (2010); Dittrich et al. (2010); Abouzeid et al. (2009);
Konishetty et al. (2012); An et al. (2010); He et al. (2011b)

Kaldewey et al. (2012); Bajda-Pawlikowski et al. (2011); Tan-
imura et al. (2010); Dittrich et al. (2010); Abouzeid et al. (2009);
Konishetty et al. (2012); An et al. (2010); He et al. (2011b)

Table A.6: Studies with Implementation and/or Experiments (MapReduce and Data Storage & Manipulation Categories)

27

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022



Implementation Experiments
Queries Vernica et al. (2012); Gates et al. (2009); Kaldewey et al.

(2012); Bajda-Pawlikowski et al. (2011); Tanimura et al.
(2010); Dittrich et al. (2010); Abouzeid et al. (2009); Iu and
Zwaenepoel (2010); An et al. (2010); Nykiel et al. (2010);
Liao et al. (2010); Olston et al. (2011); Dittrich et al. (2012);
Olston et al. (2008); He et al. (2011b); Buck et al. (2011)

Vernica et al. (2012); Gates et al. (2009); Kaldewey et al.
(2012); Bajda-Pawlikowski et al. (2011); Tanimura et al.
(2010); Dittrich et al. (2010); Abouzeid et al. (2009); Iu and
Zwaenepoel (2010); An et al. (2010); Nykiel et al. (2010);
Liao et al. (2010); Olston et al. (2011); Dittrich et al. (2012);
He et al. (2011b); Buck et al. (2011)

Hadoop Ecosystem Kousiouris et al. (2011); Gates et al. (2009); Bajda-
Pawlikowski et al. (2011); Grover and Carey (2012); Tan-
imura et al. (2010); Iu and Zwaenepoel (2010); Konishetty
et al. (2012); Olston et al. (2011, 2008); He et al. (2011b);
Elghandour and Aboulnaga (2012); Clement et al. (2009);
Zhang et al. (2012b)

Gates et al. (2009); Bajda-Pawlikowski et al. (2011); Grover
and Carey (2012); Tanimura et al. (2010); Iu and Zwaenepoel
(2010); Konishetty et al. (2012); Olston et al. (2011); He et al.
(2011b); Elghandour and Aboulnaga (2012); Clement et al.
(2009); Zhang et al. (2012b)

New Ecosystem Component Kaldewey et al. (2012); Zhou et al. (2012a); Bajda-
Pawlikowski et al. (2011); Wang et al. (2011); Dittrich et al.
(2010); Abouzeid et al. (2009); Nguyen and Shi (2010); An
et al. (2010); Fang et al. (2011); Olston et al. (2011); Guang-
hua et al. (2011); Elghandour and Aboulnaga (2012); Buck
et al. (2011); Wei et al. (2009); Mao et al. (2011); Mikami
et al. (2011); Bhatotia et al. (2011); Leo and Zanetti (2010);
Lin et al. (2010); Clement et al. (2009); Zhang et al. (2011d)

Kaldewey et al. (2012); Zhou et al. (2012a); Bajda-
Pawlikowski et al. (2011); Wang et al. (2011); Dittrich et al.
(2010); Abouzeid et al. (2009); Nguyen and Shi (2010); An
et al. (2010); Fang et al. (2011); Olston et al. (2011); Guang-
hua et al. (2011); Elghandour and Aboulnaga (2012); Buck
et al. (2011); Mao et al. (2011); Mikami et al. (2011); Bha-
totia et al. (2011); Leo and Zanetti (2010); Lin et al. (2010);
Clement et al. (2009); Zhang et al. (2011d)

Green Computing & Energy Goiri et al. (2012); Shirahata et al. (2010); Nguyen and Shi
(2010); Li et al. (2011); Mao et al. (2012)

Goiri et al. (2012); Shirahata et al. (2010); Nguyen and Shi
(2010); Mao et al. (2012)

GPGPU Xin and Li (2012); Shirahata et al. (2010); Fang et al. (2011);
Tan et al. (2012b); Grossman et al. (2013)

Xin and Li (2012); Shirahata et al. (2010); Fang et al. (2011);
Tan et al. (2012b); Grossman et al. (2013)

Data Security & Crypto Khaled et al. (2010); Zhang and De Sterck (2010); Khan and
Hamlen (2012); Shen et al. (2011); Wei et al. (2009); Lin
et al. (2012); Zhou et al. (2013)

Khan and Hamlen (2012); Lin et al. (2012); Zhou et al.
(2013)

Table A.7: Studies with Implementation and/or Experiments (Ecosystem and Miscellaneous Categories)

Analytical Model Simulation
Scheduling Tian et al. (2009); Zhang et al. (2012a); Rasooli and Down

(2011); Verma et al. (2011); Guo et al. (2011); Tan et al.
(2012a); Nykiel et al. (2010); Ahmad et al. (2012); Zhao et al.
(2012); Bhatotia et al. (2011); Ibrahim et al. (2012); Tang
et al. (2012); Tao et al. (2011); Zhang et al. (2012b); Nguyen
et al. (2012); Wang et al. (2012); Lin et al. (2013)

Rasooli and Down (2011); Verma et al. (2011); Guo et al.
(2011); Kumar et al. (2012); Lei et al. (2011); He et al.
(2011a); Chen et al. (2010); Kondikoppa et al. (2012);
Nguyen et al. (2012); Lin et al. (2013)

Data flow Zhu and Chen (2011); Tan et al. (2012a); Elteir et al. (2010);
Ho et al. (2011); Kwon et al. (2012); Bhatotia et al. (2011);
Zhang et al. (2011d); Lin et al. (2013)

He et al. (2011a); Lin et al. (2013)

Resource Allocation Tian et al. (2009); Zhang et al. (2012a); Zhu and Chen (2011);
Rasooli and Down (2011); Verma et al. (2011); Guo et al.
(2011); Nykiel et al. (2010); Li et al. (2011); Ahmad et al.
(2012); Zhao et al. (2012); Mao et al. (2011); Ibrahim et al.
(2012); Tang et al. (2012); Tao et al. (2011); Zhang et al.
(2011d); Costa et al. (2013); Lama and Zhou (2012)

Rasooli and Down (2011); Verma et al. (2011); Guo
et al. (2011); Kumar et al. (2012); Lei et al. (2011); He
et al. (2011a); Chen et al. (2010); Zhang et al. (2012b);
Kondikoppa et al. (2012)

Storage & Replication Wei et al. (2010); Eltabakh et al. (2011); Guang-hua et al.
(2011); Lin et al. (2012); Costa et al. (2013)

Kaushik et al. (2011); Jeon et al. (2013)

Cloud Storage Wei et al. (2010); Guang-hua et al. (2011); Lee et al. (2013) Shen et al. (2011)
Cloud Computing - -
Indexing - -
Random Access - -
DBMS - -
Queries Nykiel et al. (2010) -
Hadoop Ecosystem - -
New Ecosystem Component - -
Green Computing & Energy Li et al. (2011) Kaushik et al. (2011)
GPGPU - -
Data Security & Crypto Lin et al. (2012); Zhou et al. (2013) Shen et al. (2011)

Table A.8: Studies with Analytical Models and/or Simulation

28

Ivanilton Polato
Journal of Network and Computer Applications. Volume 46, November 2014, Pages 1–25
http://dx.doi.org/10.1016/j.jnca.2014.07.022


