
Unlimited Rulebook: a Reference Architecture for
Economy Mechanics in Digital Games

Wilson Kazuo Mizutani
Department of Computer Science
University of São Paulo, Brazil

kazuo@ime.usp.br

Fabio Kon
Department of Computer Science
University of São Paulo, Brazil

kon@ime.usp.br

Abstract—In game development, mechanics are one of the
basis of the entertainment experience. However, the cost of
implementing, improving, and refactoring economy mechanics is
high because solutions cannot be easily reused across products.
We argue that a reference architecture reduces this cost by
providing knowledge reuse in addition to software reuse. To
achieve that, we designed Unlimited Rulebook, a reference
architecture for economy subsystems in games. It builds on
established techniques such as Predicate Dispatching, the Entity-
Component-System pattern, and the Adaptive Object-Model
architectural style to facilitate the addition and modification
of entity types and mechanics to the game while reducing the
cost of changing existing code. We evaluated this cost reduction
empirically via quasi-experiments with university students in two
game programming courses.

Index Terms—reference architecture, design patterns, adaptive
object-model, digital games, economy mechanics

I. INTRODUCTION

Games are designed to entertain users. This is largely done
through game mechanics: rules about how the game works and
interacts with user input, creating the dynamics that charac-
terize the gameplay experience [1], [2]. Game mechanics can
be organized into a few categories, such as physics mechanics
(position, movement, collision of objects, etc.) or narrative
progression mechanics (bookkeeping of game progression, win
and loss conditions, etc.) [3], [4]. Economy mechanics are
responsible for resource accounting and transactions inside the
game but in a very broad sense. They adjudicate operations
from the purchase of in-game goods to character combat
statistics and reserves of magic power in role-playing games,
troops and buildings in strategy games, cards and information
management in card games, and much more [3], [4].

However, developers can never guarantee for sure the
success of their games, despite the amount of time and
resources invested. To improve the odds or reduce the risks
and costs involved, developers rely on strategies such as
frequent playtests [2] or quality-assurance coverage [5]. One
of the most common approaches is to avoid implementing

Under grant from São Paulo Research Agency (FAPESP, proc. 2017/18359-
6.). ©2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

games from scratch by reusing existing software. The greatest
example of this are game engines: generic frameworks for
game development that come in many formats and prices.
Development teams include these tools in their pipeline to
focus on programming the parts that make their game unique.

For the most part, engines support a great number of basic
mechanics, especially physics mechanics since they are all
based on the physics of the real world. Nonetheless, the more
specific the mechanics, the less an engine can be reused. This
is particularly common in games centered around economy
mechanics because they do not try to simulate reality – instead,
they are more metaphoric in nature, such as the “attack” statis-
tics of a character in role-playing games. That is, economy
mechanics vary more from game to game because there is no
canonical model they follow. Thus, economy-centered games
are more expensive to implement due to reduced opportunities
for software reuse. In our research, we investigated how to
help further reduce the costs of economy mechanics through
knowledge reuse in the form of a reference architecture.

In the reminder of this section, we expose the exact problem
we propose to reduce in Section I-A, then describe the
proposal itself in more detail in Section I-B, followed by an
explanation of our methodology in Section I-C.

A. Problem

In previous work [6], we identified three main challenges
in the implementation of economy mechanics that reduce
the opportunities for software reuse across different games.
First, since economy mechanics vary widely among games, a
single implementation cannot reasonably support all possible
mechanics. It is not the case if we reduce the scope to a
more specific genre. Engines such as the RPG Maker product
series1 are evidence of that. However, for the general case of
economy-centered games, we can say that economy mechanics
are unpredictable. More specifically, to simulate economy
mechanics, it is a challenge to determine universal object types
that model its internal state and how to access such data in a
way that different games can reuse.

For instance, in an RPG, it is reasonably safe to assume
(as RPG Maker does) that characters, items, and spells are

1rpgmakerweb.com

Visit the published version of this paper at https://doi.org/10.1109/ICSA47634.2020.00014

different and separate parts of the state and that combat
exchanges between two or more characters are part of the
core mechanics. Thus, we can determine that RPGs can have
separate object types for characters, items, and spells, and that
combat effects need access only to the characters involved in
a specific skirmish. In a card game, however, a card could
be, at the same time, a character, an item, and a spell,
and their mechanics could involve a very wide spectrum of
possibilities, such as controlling the actions of an opponent.
Magic: the Gathering (Wizards of the Coast, 1993) is a card
game featuring all these cases. To implement it, we would
need a more flexible typing system and the mechanics would
require access to essentially the entire state of the economy
all the time. This challenge is much less present in physics
mechanics, where simulated entities can be more consistently
mapped into types and the use cases for data access (collision
detection, geometry inspection, etc.) fit into more typical cases.
Physics engines such as Bullet2 and Havok3 are evidence of
this.

The second problem is a characteristic that economy me-
chanics carry from just being mechanics: during the develop-
ment of a game, their specification will change constantly.
In the search for the intended game experience, projects
pivot their development directions multiple times within their
budget and time limits. Even after release, patches, updates,
expansions, and downloadable content (DLCs) could alter any
of the previously specified mechanics. This is very evident
in competitive multiplayer games, where developers change
the mechanics from time to time to topple currently win-
ning strategies and to diversify the players’ experience. For
economy mechanics, it becomes increasingly hard to add
features while minimizing changes to old code – that is,
they often face the Expression Problem, a remarkably non-
trivial issue to design for [7]. In this scenario, software reuse
is not possible because the application specification changes
significantly and retroactively all the time. Thus, we say that
economy mechanics are unstable.

Third, economy-centered games can be very complex. In
Hearthstone (Blizzard Entertainment, 2014), a competitive
multiplayer card game, the most common result of playing
a card is a change to the state of a target entity (a player or
another card), be it by causing damage to it, giving it a power
boost, impeding it from acting, or any one of the other dozens
of effects. After some years, Blizzard released a card collection
containing Mayor Noggenfogger (Figure 1), which completely
changes how the targeting mechanics work, but only when
it is in play. It is an example of how economy mechanics
change themselves at runtime, requiring dynamic and adaptive
behavior from the game. Software reuse is less applicable
when not only the games differ in economy mechanics, but
also have deep complexities in their execution, requiring a
variable number of layers of dynamic behavior.

2pybullet.org/wordpress
3havok.com

Fig. 1. Mayor Noggenfogger, a card from the game Hearthstone (Blizzard
Entertainment, 2014) which exemplifies the complexity of economy-centered
games. Its written effect only happens when it is in play, dynamically changing
how one of the core mechanics of the game works.

B. Proposal

Given the limitations of software reuse in economy-centered
games, we propose the reuse of knowledge – more specifically,
the reuse of architectural knowledge – to reduce costs of
developing the economy subsystem of game applications. Both
industry and academia have faced the challenges of economy
mechanics being unpredictable, unstable, and complex, and
both designed solutions for each case they faced [8]. These
solutions often come in the form of design and architectural
patterns, such as the Entity-Component-System (ECS) pattern
[5]. Our proposal complements this knowledge with a way
to consistently map economy mechanics onto these patterns
to guide the design of specific architectures. This mapping
is done in the form of a reference architecture [9]. The
architecture we designed and evaluated is called the Unlimited
Rulebook (URB).

C. Methodology

The methodology used to design, represent, and evaluate
the URB architecture is an iterative version of the ProSA-RA
process [10]. It is divided into four steps, which we iterate
on to produce an improved version of the architecture at the
end of each cycle. The first step is information gathering
about the domain when we determine which sources we
draw information from and investigate its characteristics and
common solutions. In the second step, we analyze the collected
information to understand the domain. With the support from
domain experts, we find patterns in the recurring system
requirements of studied sources. Next, we synthesize these
specific system requirements into more general architectural
requirements that, in turn, we group into domain concepts. The
third step is essentially designing the reference architecture or,
in the case of our iterative variant methodology, the changes

that should improve the architecture regarding the problems
stated in Section I-A. Last, the fourth step is to evaluate the
design and measure how well it meets our objectives, noting
where it could improve in the next iteration.

For our information sources in the first step, we performed a
systematic literature review [11] (still unpublished) analyzing
the architectures used for game mechanics in general. We
then gathered knowledge from industry authors and the gray
literature, which we discuss in Section II. Additionally, we
studied the implementation of open source games and engines
and consulted with USPGameDev4, a student special interest
group from the University of São Paulo. There are plans
for more information source investigations in future iterations
of the URB architecture (see Section VI). The architectural
requirements and corresponding domain concepts as well, as
the process through which we arrived at them, are published
in previous work [6]. In this paper, we focus on the latest
version of the URB architecture, which has been evaluated
through proofs-of-concept and two quasi-experiments.

D. Text Structure

This text is organized as follows. Section II discusses other
works related to our research and how they contribute to each
other. Section III describes the URB architecture, its reference
model, the used architectural and design patterns, and presents
how those relate to each other. We follow with a small usage
example of the URB architecture in Section IV. In Section V,
we explain how we evaluated the URB architecture and the
results of these evaluations. Section VI lists the next steps in
our research to converge the URB’s design. Last, Section VII
discusses the results and the impact our work has on the field.

II. RELATED WORK

The study of software architecture in games is very di-
verse but relatively sparse. Morelli and Nakagawa’s systematic
mapping [12] found 33 studies on the subject in 2011, and
Ampatzoglou and Stamelos’ systematic literature review [13]
on the broader subject of software engineering in games
found 84 studies, of which less than 10% regarded software
architecture or software design. Notable studies usually focus
on networked multiplayer games [14], such as Zhu et al.’s
systematic review of game network architectures [15] and
Zhu’s dissertation on model-driven game development [16],
especially their proposed Game World Graph (GWG) frame-
work.

That said, game mechanics are rarely well-defined in soft-
ware architecture studies. Our systematic literature review [11]
on this narrower field found only 36 pertinent studies, almost
ten years after Morelli’s initial mapping. Very few studies
in our review explicitly referred to the architecture of game
mechanics. BinSubaih et al. used the term “G-factor” (as in
“game factor”) to determine the part of a game responsible
for game state, object model, and game logic [17]. In studies
regarding the use of the Model-View-Controller (MVC) archi-
tectural pattern [18] in games [19], [20], mechanics coincide

4github.com/uspgamedev

with the Model part of the application. There is no study
(besides our previous work) about the architecture of economy
mechanics specifically.

The architecture of game mechanics has a very different
treatment in the industry. First, the term “mechanics” is
much more common [2], [3], which facilitates discussing and
studying the field. Wang and Nordmark’s survey with industry
professionals [8] found that “the game concept heavily influ-
ences the software architecture” and that “the creative team
can affect the software architecture through the creation of
a game concept, by adding in-game functionality”, indicating
how the industry recognizes the strong relation between game
mechanics and software architecture. That is why, in this field,
we consider the grey literature just as important as academic
literature.

In this sense, Gregory [5] explains how high-budget games
require a dedicated subsystem to support game mechanics in
its engine. He advocates the use of architectures with data-
driven design, a very widespread practice in the game industry
that makes as much as possible of a game be specified as
data instead of being coded into its executable application.
Rabin [21] explains that “without this flexibility [of data-
driven design], change is costly, and every change involves a
programmer”. That is, data-driven design is one of the methods
used by game developers to reduce cost through software
reuse.

Gregory [5] also presents the Entity-Component-System
(ECS) architectural pattern and its variant, the Property-
Centric Object Model – or a “pure” ECS. We will discuss the
ECS in more detail in Section III-B, but it is a pattern known
both to industry authors [5], [22], [23] and academic literature
[24]. It is also the architecture of the most popular commercial
game engine, Unity3D5. The ECS pattern is known for its
flexibility in representing complex object models [5], [22],
[24].

A last and very important group of related work is the
material published by the community of roguelike6 developers.
In particular, the closest we found to architectures that reduce
the cost of unpredictable, unstable and complex mechanics
was Plotkin’s talk on rule-based programming [25]. Despite
the similarities, Plotkin’s solution is not quite a rule-based
system, as we will explain in Section III-B.

Though the gray literature offers more tools for reducing
the cost of economy mechanics, we still found no equivalent
to a reference architecture. That is, no work formally explains
how to map the economy mechanics of a game into a specific
architecture, even using one or more of the aforementioned
practices and patterns. Our proposal is an entirely new solution
to the problem that builds on previous findings from both
industry and academia.

5unity.com
6A subset of role-playing games where resource management, permanent

death, and highly complex interaction of mechanics are core features. It is
a relatively niche genre in games, but that grew in popularity over the last
decade as many games tried to incorporate roguelike mechanics.

III. THE UNLIMITED RULEBOOK ARCHITECTURE

Through the ProSA-RA process explained in Section I-C,
we determined all the domain concepts of economy mechanics.
These concepts form our reference model, described in Section
III-A. At the same time, there are a number of architectural
patterns known to both industry and academia that reduce
the cost of economy mechanics. Section III-B explains them.
Afterward, Section III-C describes the URB architecture as
part of the ProSA-RA method.

A. Reference Model

Gregory defines game applications as real-time interactive
simulations [5]. They are interactive because user input and
application output are exchanged multiple times, instead of
receiving all data first then producing all the results as output
afterward. They are simulations because, with every user input,
the game changes its internal state to simulate a virtual world,
then presents the new state to the player. Both interaction and
simulation happen in real-time, which constricts how much
processor time the game can use between each interaction
cycle. Gregory also explains that games are divided into
runtime subsystems, each responsible for an aspect of the
game, be it user interaction or simulation.

The purpose of our reference model is to organize the
architectural requirements of the game subsystem responsible
for processing economy mechanics. These requirements aim to
reduce the cost of developing and maintaining this subsystem,
given the unpredictable, unstable, and complex nature of the
domain. In our previous work [6] we describe the complete
list of architectural requirements we collected from our in-
formation sources and how we found six domain concepts
that summarize these requirements: Game Loop integration,
simulation timeline, object model, behavior model, iterative
development, and data-driven design. Since then we have
further re-organized the domain concepts into three simpler
concepts given their shared concerns: Subsystem Integration
(Game Loop integration and simulation timeline), Mechanics
Model (object and behavior model), and Iterative Development
(which includes data-driven design). When designing the ar-
chitecture of an economy subsystem, the specific economy
mechanics of the game must be mapped into a model fitting
this reference model, which in turn will allow it to use the
URB architecture to specialize the architecture for that specific
game.

1) Subsystem Integration: Based on the principles of de-
coupling and encapsulation, the economy subsystem of a game
must regulate how much access other subsystems have to its
data and behavior. Taking the rest of the application as a
“client” of this subsystem, the services it must provide include
queries about the state of the economy, requests to change
that state, and notifications about events of interest. This basic
interface and separation of concerns compose the subsystem
integration concept and limit what parts of the code are subject
to changes due to new decisions in the design of economy
mechanics. To meet the requirements of this domain concept,

architects have to determine where the economy subsystem
begins and ends, and how it services other subsystems.

2) Mechanics Model: The economy subsystem stores and
manipulates data that represents virtual resources (player lives,
equipped items, cards in a deck, etc.). Part of developing the
game involves implementing the logic about what types of
resources can exist and what operations can be done with
them. That is the Mechanics Model of the economy subsystem
architecture. With an understanding of the design space desired
for these mechanics, architects must separate what mechanics
might be stored as data and what mechanics are dynamic and
must be computed at runtime. The URB architecture maps
these two aspects of the economy (data and computations)
into separate parts of the final architecture of the game.

3) Iterative Development: As the development of a game
progresses, its design changes constantly and economy me-
chanics are no exception. The economy subsystem has to often
change to meet new design decisions, but without a proper
architecture, change can be expensive. Thus, both the Subsys-
tem Integration and the Mechanics Model should support the
requirements for Iterative Development. More specifically, this
concept expects architects to identify what kind of changes are
more common or important, like adding new characters and
spells to a role-playing game or new cards to a card game. The
URB architecture considers this when specifying the dynamic
and static parts of the final architecture.

B. Architectural Patterns and Practices

Game developers have dealt with the costs of economy
mechanics for decades and a number of solutions were found
to help in different aspects of this field. Understanding the
architecture and practices used allows us to design an ar-
chitecture that not only relies on state-of-the-art and state-
of-the-practice solutions, but that also fits appropriately with
other game subsystems. We discuss first patterns that help
understand how an economy subsystem fits and interacts with
other parts of a game; then, we discuss practices and patterns
used specifically to implement economy mechanics. All the
practices and patterns were collected from the information
sources defined in the first step of the ProSA-RA methodology.
More specifically but not comprehensively, we decided on
relevant items using the most frequently observed in our
systematic literature review about the architecture of game
mechanics [11] among other academic studies [19], [20], [26],
the patterns and practices industry authors focus on in their
published works [5], [22], and other grey literature references
[25], [27].

1) Used outside the economy subsystem: The most basic
and important architectural pattern in games is the Game
Loop [5], [22], [26], which controls the execution flow of the
game to guarantee real-time interactivity and simulation. In
this pattern, there is an endless loop that periodically services
the many subsystems in a game while keeping track of real-
world time. Each loop is called a frame and performance is
measured in frames per second (FPS). Typically desired values
range from 30 FPS to 60 FPS. The economy subsystem could

either be one of the subsystems directly serviced by the Game
Loop or a subsystem serviced on demand by other subsystems
(or both).

Two other patterns might go along with the Game Loop.
The first is the MVC pattern [18]–[20], which can be applied
in different ways depending on the game and its platform.
This pattern explicits a separation of concerns between domain
logic (model), user interface (view), and high-level control
flow of a system (controller), and was, in fact, originally
designed for graphical interactive applications [18]. In games,
the general idea is that the Game Loop works as the game
controller: every frame, it queries input data from the interface,
feeds it into the model subsystems (physics, economy, etc.),
then uses the resulting state to request a new rendering of the
interface graphics and sound, which the view subsystems are
responsible for. A few best practices for MVC in games from
Olsson’s study [19] include:

• “Model classes should only carry functionality and state
related to the game rules”;

• “Use two interfaces to separate communication between
model and user interface: one for game events and one
for input”; and

• “Let controllers and view read information in the model
but all requests to change data should go via the input
interface”.

The second pattern that works hand-in-hand with the Game
Loop is the classic State pattern [5], [22], [28]. Games can
have different interaction modes: a title menu, exploration,
combat, inventory management, etc. Each mode has specific
needs for user input, simulation operations, and output ren-
dering. Game engines usually refer to each of these as scenes
[5] (which is the case for Unity3D and Godot7, for instance).
The use of the State pattern might mean that the interface used
to access game subsystems changes throughout the application
execution or that subsystems themselves might require a state-
machine-like behavior.

2) Used inside the economy subsystem: The Game Loop,
the MVC, and the State pattern help us understand how the
economy subsystem architecture integrates with other parts of
the game. As for specifically implementing economy mechan-
ics, there are a few notable patterns we used to design the URB
architecture. First, the ECS pattern [5], [22] is widely applied
in the industry, including in Unity3D, due to its flexibility and
extensibility. In this pattern, game objects (such as characters,
items, timers, scenery props, etc.) have components that each
define a characteristic of that object. The player’s avatar could
consist of an object with a “Sprite”, a “Collision”, a “Jump”,
and a “Life” component. This way, the “type” of an object is
the sum of its components (which can even change at runtime).

Being able to define entity types and behavior through
composition allows a wider variety of entities and behaviors at
a much lower cost than through inheritance-based typing [5],
[22]. It also simplifies adding new behavior, which amounts
to implementing a new component and adding it to relevant

7godotengine.org

entities. When taken to the extreme, in a “pure” ECS pattern,
entities can be reduced to an identifier value (e.g. an integer)
used to index their corresponding components in separate
lookup tables. When strictly used to implement gameplay
mechanics, Gregory refers to this pattern as a property-centric
object model [5].

Another pattern that flexibilizes object types and behavior
but focuses on runtime adaptability is the Adaptive Object-
Model (AOM) [29]. This pattern can be used in different levels,
scaling from the Type Object pattern to a full Type Square
(Figure 2) with an Interpreter pattern for dynamic rules [22],
[28], [29]. It is especially useful for statically typed languages
and to allow changes to software features without changing
its source code. Because of that, we considered this pattern to
reduce the cost of changing economy mechanics.

Fig. 2. The Type Square pattern [29]. The types of objects are defined
dynamically by the relation between instances of entity types, properties, and
property types. When we use it in the URB architecture, though, the names
are different: entities are properties and properties are fields. The figure comes
from [29].

Plotkin [25] argues that interactive fiction and roguelike
games, known for their deep and complex mechanics, have
many more exceptions than general rules in their gameplay.
He defends that tying behavior to objects fails to handle the
complexity of these games; instead, he proposes a language for
expressing mechanics based on rules. While similar, Plotkin’s
proposed language and its hypothetical execution do not
conform to a rule-based system.

Rule-based systems are systems where domain experts write
if-then rules in a domain-specific language, which are then
processed by a rule engine given an initial input, applying
rules with valid preconditions until an end state is reached.
In Plotkin’s hypothetical language, however, rules are not
applied in sequence. They have names that can be invoked,
and only the corresponding rule with valid preconditions is
executed. When two or more rules are valid, it is called
a conflict, which must be solved with consistent criteria.
Plotkin’s proposal, in fact, amounts to a predicate dispatching

system [30], where method dispatching is determined by
arbitrary predicates instead of limiting it to types, pattern
matching and other dispatching mechanisms.

Predicate dispatching is valuable to economy mechanics
because they allow rules to change at runtime (because their
preconditions changed) and they allow new rules to be added
to the game without interfering with preexisting ones since
their preconditions differ. That is, it reduces the cost of
economy mechanics being complex and unstable. Since it
makes very little assumption over what the rules actually do,
depending on the implementation specifics, it can overcome
their unpredictability too.

C. Reference Architecture

A reference architecture “is a reference model mapped
onto software elements” [9] and it provides “guidance for
the development, standardization, and evolution of system
architectures of a specific domain” [10]. Thus, we describe
the URB architecture by explaining how each domain concept
corresponds to components and interactions in a possible
architecture for economy mechanics in games. We also con-
stantly refer to the challenges stated in Section I-A to guide
our design.

The basic design of the URB architecture follows a pred-
icate dispatching approach similar to Plotkin’s [25]. As he
suggests, we begin by decoupling behavior from data. Econ-
omy simulation state is entirely kept in a Record object
and computations are defined by Rule objects, following
the Mechanics Model. This allows all computations to read
from and write to any part of the economy state, which
might seem counter-intuitive but, in fact, accounts for the
unpredictable nature of economy mechanics [27]. After all, we
are under the assumption that we cannot confidently estimate
what information future computations will need or affect.

Also as in Plotkin’s proposal, each rule defines how a
computation should be done given certain preconditions. That
is, each rule is composed of three parts: an identifier, which
we will call a keyword; a procedure (e.g. a function, lambda,
block, etc.) for evaluating whether the preconditions are true,
called the when-block, and a procedure defined for the com-
putation in such a case called the apply-block. Computations
are requested by invoking a keyword, which works much like
calling a function: you can pass arguments to it and receive the
value it returns. Whenever a given keyword is invoked in the
economy subsystem, it will infer what rule applies using their
when-blocks and then execute the corresponding apply-block.
Both when-block and apply-block can access everything in the
Record, but only the apply-block can write to it. For instance,
a hypothetical rule for the effect of the Mayor Noggenfogger
card in Hearthstone could be:

rule for "get_target":
when:

"Mayor Noggenfogger" is in play
apply:

return a random valid target

With this rule, anything that tried to invoke the
“get_target” keyword while Mayor Noggenfogger is in
play would result in a random target. We call the part of the
subsystem responsible for inferring rules the RuleSolver.
When more than one rule is applicable, the RuleSolver
must solve the conflict. The simplest approach is to always
consider the newest rule loaded onto the subsystem, but
extremely complex games can use the rule system itself to
define the precedence between rules [25].

The protocol for defining new rules in the economy sub-
system varies according to the level of dynamic behavior
required by the game. For simpler cases, hardcoded rules
might be sufficient. For sufficiently complex games, rules are
defined by RulePatch objects, which can be loaded by the
subsystem on demand. Each RulePatch defines rules for
a very specific aspect of the game mechanics, like damage
formulas, a new magical effect that changes visibility, or a
card and its corresponding rules. This allows for Iterative
Development since each specific feature in the subsystem
should be, if well-designed, in a single RulePatch, limiting
the costs of the change. Card games have the added benefit
of implementing cards as RulePatch instances that can be
loaded and unloaded when the cards they describe enter or
leave play. Figure 3 illustrates how each class interacts inside
the economy subsystem using the URB architecture (though
specific implementations do not necessarily map one-to-one to
this diagram).

As for the Record, where the economy state is kept,
the URB architecture relies on the “pure” version of the
ECS pattern. That is, a property-centric object model: the
Record has a pool for each type of property that entities
can have in the game while entities themselves are simple
identifiers that can be indexed into these pools to retrieve its
corresponding properties. If an entity has or does not have
a property, rules can check for that and define associated
computations accordingly. The Record should provide an
application programming interface (API) to allow the creation,
insertion, retrieval, listing, advanced querying, and removal of
properties.

In statically-typed languages, implementing a Record that
can dynamically register new types of properties is not
straightforward. One way to do this is to rely on metapro-
gramming techniques such as macros, generics, or templates.
Another way is to use the Type Object or the Type Square
from the AOM pattern, so that the type of the data structure
used to represent each property type can be generalized
and dynamically defined by its fields and field types. This
essentially makes properties behave like dynamically-typed
objects, adding to the flexibility and extensibility of the URB
architecture.

An important invariant of the URB architecture is that only
the economy subsystem can access the Record directly while
all external access has to go through the rule engine. This
guarantees not only a clean separation of concerns but also
prohibits other subsystems of bypassing the rules, which would
couple them to their property-centric representation, making

Rulebook

+ load(ruleset)
+ unload(ruleset)
+ invoke(keyword, ...:any): any

Record

+ new_property(property_name, fields)
+ is(e, property_name): bool
+ get(e, property_name, field): any
+ set(e, property_name, field, value)
+ all(property_name): array
+ where(property_name, query): array
+ clear(e, property_name)
+ clear_all(e)

RuleSolver

+ solve(keyword, ...:any): any

RulePatch

new_entity()
define_rule(keyword, when-block, apply_block)
+ load()

Rule

+ when(): bool
+ apply(): any

Other subsystems

<<use>>

1

N

<<call>>

<<create>>

<<use>>

<<use>>

1

11

1

<<call>>

1

1

N

N

1

1

N
N

N

1

Fig. 3. Module view (UML class diagram) of the URB architecture showing the relations between each key class in the reference architecture. The highlighted
abstract classes, Rule and RulePatch, are the only ones that need to be implemented into child classes to modify and add economy mechanics to the
economy subsystem.

future changes more expensive. For similar reasons, the ECS
used in the Record can be the same used by the game engine
in general, but it is recommended that it be kept as a separate
entity system.

The last domain concept is Subsystem Integration. The
economy subsystem uses the Façade pattern [28] to isolate
its rules and properties from other subsystems. Its Façade
component works as an API to the subsystem and is called
the Rulebook. It has two to three methods: one for invoking
keywords, on for loading RulePatch objects, and optionally
one for unloading them. Invoking a keyword can use any
number of arguments and may or may not return a value.
This design creates a clear definition of what does or does not
concern the economy subsystem and how it interfaces with
other subsystems and higher-level control patterns (e.g. the
Game Loop, MVC, or State-based scene system).

IV. AN EXAMPLE WITH Magic: the Gathering

To illustrate how the URB architecture is used to define the
architecture of a game, we use a very small and oversimplified

subset of the mechanics of an existing game – Magic: the
Gathering (MtG), a table-top card game (that also has a few
digital implementations). The choice is due to MtG being not
only an economy-centered game but a remarkably complex
one while also being notably successful and popular. In
Section V we point out an actual implementation we wrote
for this example, using slightly more complex mechanics.

In this example, we assume the game is divided into
subsystems for graphics rendering, user input, etc. that already
provide the interaction needed to play a digital card game. We
are interested in the architecture of the economy simulation
subsystem that essentially manages the state of the entities
of the game, most of which are the cards. It also provides
operations that other subsystems can invoke to read or write
to the economy state. For instance, the graphics rendering
subsystem needs to read the state of cards to draw them
and the input subsystem needs to invoke economy operations
whenever the players try to do something in the game. Calls
to these operations go through the Rulebook object, which
encapsulates access to the inner representation of the economy

state. Once this is all in place, most of the evolution of the
game revolves around new card sets which, in turn, bring
new mechanics into the fold. We emulate this by presenting
mechanics piece by piece, beginning with the basic definition
of creature cards:

• Some cards are creatures, having power and toughness
values written on them

• Creatures can be removed, which means they are taken
out of the game and placed into the discard pile (but
deleting their data from memory will suffice)

This means that some entities in the economy simulation
must be registered as “creatures” with power and toughness
values. Thus, the first RulePatch in this hypothetical im-
plementation of MtG needs to define a new property type
in the Record. In pseudo-code, the load method of a
specialized implementation of the RulePatch abstraction
would do something akin to:

record.new_property "creature":
power: 1
toughness: 1

rule for "new_creature" (power, toughness):
when:

return true
apply:

id <- new_entity()
record.set(id, "creature"):

power: power
toughness: toughness

rule for "remove_creature" (id):
when:

return record.is(id, "creature")
apply:

record.clear(id, "creature")

rule for "get_power" (id):
when:

return record.is(id, "creature")
apply:

return record.get(id, "creature",
"power")

rule for "get_toughness" (id):
when:

return record.is(id, "creature")
apply:

return record.get(id, "creature",
"toughness")

That is, it has to define four new rules, each with an ap-
propriate keyword: creation of creatures (new_creature),
removal of creatures (remove_creature), read-access to
a creature’s power (get_power), and read-access to a crea-
ture’s toughness (get_toughness). Next, we consider the
basic combat mechanics of MtG:

• Creatures can receive a damage value, which begins at
zero and increases by the amount received each time
damage is taken

• Creatures can fight each other, meaning each of them
gains an amount of damage equal to the power of the
other

• If a creature ever has as much damage as it has toughness,
it has lethal damage and dies

The second specialized implementation of RulePatch
loaded into the economy subsystem must then define a
new property, damaged, which carries a single unsigned
integer field. Additionally, it defines rules for the keywords
take_damage, fight, and has_lethal_damage:

record.new_property "damaged":
amount: 0

rule for "take_damage" (id, amount):
when:
return record.is(id, "creature")

apply:
record.set(id, "damaged"):
amount: amount

rule for "has_lethal_damage" (id):
when:
return record.is(id, "creature")

and record.is(id, "damaged")
apply:
damage <- record.get(id, "damaged",

"amount")
tough <- record.get(id, "creature",

"toughness")
return damage >= tough

This code assumes some simplifications: that creatures only
take damage once and that it only makes sense to ask for
lethality about a creature that has been damaged. So far, we
have only added types and operations that did not require
change to previous patches. Now, we introduce a new set of
mechanics that are an “exception” to these basic rules:

• Creatures can be indestructible, which means no amount
of damage is lethal to them

These mechanics require not only a new property
type (indestructible) but a change to how
has_lethal_damage works. The predicate dispatching
system of the URB architecture allows us to define how an
old operation works for a new type of data. Since this new
patch will be loaded after the one containing the initial rule
for has_lethal_damage, the RuleSolver will defer to
this new implementation in case of conflicts:

record.new_property "indestructible"

rule for "has_lethal_damage" (id):
when:
return record.is(id, "creature")

and record.is(id, "damaged")
and record.is(id, "indestructible")

apply:
return false

Later on in development, though, we create a new type of
in-game effect:

• Some cards have the effect of destroying a creature card
• Creatures that are destroyed are removed
• If a creature is indestructible, destroying it does nothing

instead
This new set of mechanics defines a new operation

(destroy), which must be implemented for a number of pre-
viously defined types (creature and indestructible).
We can do this in a single new RulePatch without having
to modify any previous patches:

rule for "destroy" (id):
when:

return record.is(id, "creature")
apply:

invoke "remove_creature" (id)

rule for "destroy" (id):
when:

return record.is(id, "creature")
and record.is(id, "indestructible")

apply:
do nothing

There are many things left out of this example. For example,
it does not demonstrate how keywords can have compound
implementations or how to integrate data-driven design in the
architecture. Some evaluation projects presented in Section V
contain more interesting uses of the URB architecture.

V. EVALUATION

We evaluated the URB architecture using two quasi-
experiments. Both followed the same design. Students in
a game programming course were tasked with making two
games: a turn-based role-playing game and a real-time tower
defense. Each student team was assigned one first then the
other – half the teams the role-playing game and the other
half the tower defense. The first time around, students were
free to design their game architecture. The second time, they
had to use the URB architecture, for which we provided a
sample implementation. That is, the experiments followed a
Latin Square design [31] (Table I) where we measure how
much does the cost of implementing economy mechanics
change between a game developed without and with the URB
architecture.

The first quasi-experiment was a pilot carried out in a
summer course and with a previous iteration of the URB
architecture. Games were written in Lua8 using the LÖVE
engine9. There were 6 students divided into two teams. The

8lua.org
9love2d.org

TABLE I
LATIN SQUARE DESIGN OF OUR QUASI-EXPERIMENTS.

First project Second project
Group 1 real-time game, free design turn-based game, URB
Group 2 turn-based game, free design real-time game, URB

results showed that the architecture proved useful but had a
steep learning curve. Since it was only a pilot, we used these
observations to prepare for the next quasi-experiment.

The second quasi-experiment took place during a college
computer science course for game programming. The games
were also written in Lua using LÖVE and the most recent
iteration of the URB architecture as described in Section III.
This implementation is available in a public repository10. We
had 25 undergraduates and 3 graduate students, most from a
computer science background. Our preliminary analysis shows
that:

• Implementing economy mechanics was neither harder nor
easier using the URB architecture;

• The URB architecture proved itself neither useful nor
useless;

• Using the URB architecture slightly reduced the amount
of changes needed to the architecture of the game;

• Almost all students would use URB again if possible.
As for threats to validity, we gave both projects the same

amount of time, but the students struggled more with the
second one due to finals and other deadlines in the same
period. This overload on the students outweighed even the
fact that by the second project they had more experience, as
we observed an evident decrease in their grades. Additionally,
though the games used were designed to be economy-centered,
we believe they still were rather small in scope for there to be
notable differences in the use of the URB architecture. Yet, it
would not be possible to assign students greater projects due
to time limitations. For this reason, as we explain in Section
VI, evaluations of future iterations of the URB architecture
will focus on case studies and proofs of concept.

The learning curve still needs improvement as well. We
found that code examples are particularly helpful. However,
understanding the rationale, purpose, and potential of the rule
system still seems to demand a firmer grasp of software
design. Unless there are simpler and more intuitive ways
to present and use the URB architecture, we risk limiting
its accessibility. Similarly, though the URB is designed to
reduce costs of an evolving codebase, it requires the extra
initial effort of implementing the bare minimum features. We
could not measure this aspect in the quasi-experiments because
students were already provided an initial implementation of the
economy simulation subsystem.

Besides the quasi-experiments, the design of the URB
architecture was always accompanied by minimal proof-of-
concept implementations. We have a sample project11 that

10gitlab.com/unlimited-rulebook/ur-proto
11gitlab.com/unlimited-rulebook/prototype-example

extends the Magic: the Gathering example from Section IV
using the same URB implementation as the quasi-experiment
and an ongoing Dungeons & Dragons 5th-edition simulator
(Wizards of the Coast, 2014) using a Ruby12 implementation13.
In the Magic: the Gathering example, we evaluated whether
the architecture could easily deal with mechanics that override
each other, with positive results.

Though the size of these proofs-of-concept and even the
games developed during the quasi-experiments was still too
small to draw any conclusive evidence, one of the main con-
cerns we have with the URB architecture is its performance.
In the current straightforward implementations, invoking rules
with many conflicts takes exponentially more time each time
a nested rule is invoked. Such cases are rare but, given the im-
portance of performance in the real-time experience of games,
further evaluation is required to assess the processing limits
of this approach and whether more optimized implementations
are possible.

A qualitative analysis of the design patterns used by the
URB architecture points to a few other considerations besides
the cost reduction over the lifetime of the codebase. The ECS
pattern, especially in the property-centric variation, provides
a very flexible, dynamic and expressive type system of game
entities [5], [22], [23], ensuring that the URB architecture sup-
ports a wide variety of game-specific object models. The use
of the Façade pattern to encapsulate the economy subsystem
decouples it from the rest of the game, increasing the opportu-
nity for refactoring, testing, and other maintenance practices.
The Adaptive Object-Model architectural style significantly
promotes the use of Data-Driven Design, since additional types
of entities can be defined as data and loaded at runtime,
which allows non-programmers to contribute to the economy
mechanics of the game directly.

VI. FUTURE WORK

Though the current version of the URB architecture is ready
for use, we believe there are still improvements to be made as
we begin a new cycle in the ProSA-RA process. Our future
plans include interviews with professional game developers as
a new information source, as well as investigation of open-
source economy-centered games, especially roguelikes. We
will continue our longitudinal studies as well. That includes
the proofs-of-concept evaluations with the Dungeons & Drag-
ons simulator and a roguelike of our own. Additionally, we
will perform a case study where we refactor a preexisting
open source game to use the URB architecture, measuring
the benefits and drawbacks.

There are also a few concerns that require further research.
The current implementations of the URB architecture solve
rule conflicts by ordering all applicable rules but this will
likely prove a performance bottleneck with larger games. We
plan to study when this solution stops scaling and how we can
speed-up the rule-solving mechanism then, especially through

12ruby-lang.org
13gitlab.com/unlimited-rulebook/ur-ruby

caching strategies. Additionally, the predicate dispatching de-
sign of the URB architecture is very generic, so we plan
on mining recurrent patterns for mechanics implementation
through rules. We also invite other game developers and
software architects to use the URB architecture and add to
the knowledge pool of this still new field of research.

VII. CONCLUSIONS

Game mechanics are a fundamental part of game design;
but not all mechanics are equally easy to implement and, more
importantly, easy to reuse across games. Economy mechanics
are unpredictable, unstable, and complex; thus, we designed,
evaluated and proposed the Unlimited Rulebook reference
architecture to reduce the costs of writing and maintaining
economy mechanics through knowledge reuse as well. Our
methodology followed the ProSA-RA process to guarantee
the efficacy of our reference architecture, which involved a
thorough analysis of architectural requirements and existing
solutions and empirical evaluations of our architecture.

We found that many practices and architectural patterns
are already used, especially in economy-centered games such
as role-playing games, roguelikes, strategy games, and card
games. Patterns like the Game Loop, MVC, and State help
understand the role of economy subsystems in game appli-
cations, while ECS, AOM, and predicate dispatching provide
flexibility and extensibility for economy mechanics to grow
while reducing development costs. We used all these state-of-
the-art and state-of-the-practice techniques in the design of the
Unlimited Rulebook architecture.

Though our empirical evaluations are still incomplete, our
preliminary results show that the URB architecture reduces the
amount of changes needed to extend the economy mechanics
of games. Our proofs-of-concept evaluations demonstrate how
the architecture simplifies the implementation of complex
interaction between economy mechanics, such as mechanics
that change dynamically at runtime. By focusing on dynamic
rules that isolate specific game interactions from other as-
pects of the economy, our proposal streamlines how changes
are made and minimizes the impact they have on previous
changes. The URB architecture changes the way developers
and architects think about the implementation of economy
mechanics, making it an innovative reference architecture that
aims at making economy-centered games more flexible, more
scalable, and cheaper to develop and maintain.

ACKNOWLEDGMENT

This research is supported by the São Paulo Research
Foundation, FAPESP proc. 2017/18359-6.

REFERENCES

[1] R. Hunicke, M. LeBlanc, and R. Zubek, “MDA: A formal approach to
game design and game research,” in Proc. of the AAAI Workshop on
Challenges in Games AI, San Jose, CA, Jul. 2004, p. 1722.

[2] J. Schell, The Art of Game Design: a Book of Lenses, 2nd Edition. Boca
Raton, FL: CRC Press, 2014.

[3] E. Adams and J. Dormans, Game Mechanics: Advanced Game Design.
Berkeley, CA: New Riders Games, 2012.

[4] J. Dormans, “Engineering emergence – applied theory for game
design,” Ph.D. dissertation, Univ. of Amsterdam, Amstardam,
Jan. 2012. [Online]. Available: https://dare.uva.nl/search?identifier=
40b1a42a-4291-48a3-80a1-c85dfe927f50

[5] J. Gregory, Game Engine Architecture. Boca Raton, FL: CRC Press,
2014.

[6] W. K. Mizutani and F. Kon, “Toward a reference architecture for econ-
omy mechanics in digital games,” in Proc. of the Brazilian Symposium
on Games and Digital Entertainment (SBGames 2019), Rio de Janeiro,
Brazil, 2019.

[7] M. Torgersen, “The expression problem revisited,” in European Confer-
ence on Object-Oriented Programming (ECOOP2 2004), M. Odersky,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 123–146.

[8] A. I. Wang and N. Nordmark, “Software Architectures and the Cre-
ative Processes in Game Development,” in International Conference on
Entertainment Computing, Trondheim, Norway, Dec. 2015.

[9] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Vancouver, Canada: Addison Wesley, 2003.

[10] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a process for the design, representation,
and evaluation of reference architecture,” in Proc. of Working IEEE/IFIP
Conference on Software Architecture (WICSA 2014), Sydney, Australia,
Apr. 2014.

[11] W. K. Mizutani, V. K. Daros, and F. Kon, “Software architecture for
digital game mechanics: Systematic literature review,” unpublished.

[12] L. B. Morelli and E. Y. Nakagawa, “A panorama of software architec-
tures in game development,” in Proceedings of the 23rd International
Conference on Software Engineering & Knowledge Engineering, ser.
SEKE’2011, Eden Roc Renaissance, Miami Beach, USA, July 2011.

[13] A. Ampatzoglou and I. Stamelos, “Software engineering research for
computer games: A systematic review,” Information and Software
Technology, vol. 52, no. 9, pp. 888–901, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2010.05.004

[14] W. Scacchi, “Practices and Technologies in Computer Game Software
Engineering,” IEEE Software, vol. 34, no. 1, pp. 110—-116, 2017.

[15] M. Zhu, A. I. Wang, and H. Guo, “From 101 to nnn: A review and
a classification of computer game architectures,” Multimedia Systems,
vol. 19, no. 3, pp. 183–197, Jun. 2013.

[16] M. Zhu, “Model-driven game development addressing architectural
diversity and game engine-integration,” Ph.D. dissertation, Norwegian
University of Science and Technology, Trondheim, Norway,
Mar. 2014. [Online]. Available: https://pdfs.semanticscholar.org/195e/
55c90fd109642116ee51f7205c106f341111.pdf

[17] A. BinSubaih, S. Maddock, and D. Romano, “A survey of ’game’
portability,” University of Sheffield, Sheffield, UK, Tech. Rep. CS-07-05,
May 2007.

[18] G. E. Krasner and S. T. Pope, “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system,” Journal
of object oriented programming, vol. 1, no. 3, pp. 26–49, 1988.

[19] T. Olsson, D. Toll, A. Wingkvist, and M. Ericsson, “Evolution and
evaluation of the model-view-controller architecture in games,” in Proc.
of the International ACM/IEEE Workshop on Games and Software
Engineering (GAS 15), Florence, Italy, May 2015.

[20] V.Sarinho, G. D. Azevedo, and F. Boaventura, “AsKME: A feature-
based approach to develop multiplatform quiz games,” in Proc. of the
Brazilian Symposium on Games and Digital Entertainment (SBGames
2018), Foz do Iguaçu, Brazil, 2018.

[21] S. Rabin, The Magic of Data-Driven Design. Newton, MA: Charles
River Media, 2000, ch. 1.

[22] R. Nystrom, Game Programming Patterns. Genever Benning, 2014.
[23] ——. (2018) Is there more to game architecture than ECS? Event talk.

Roguelike Celebration 2018. San Francisco, CA. [Online]. Available:
https://www.youtube.com/watch?v=JxI3Eu5DPwE

[24] D. Llansó, M. A. Gómez-Martín, P. P. Gómez-Martín, and P. A.
González-Calero, “Explicit domain modelling in video games,” Proceed-
ings of the 6th International Conference on the Foundations of Digital
Games, FDG 2011, pp. 99–106, 2011.

[25] A. Plotkin. (2009) Rule-based programming in interactive fiction. Event
talk. [Online]. Available: https://eblong.com/zarf/essays/rule-based-if/

[26] M. Zamith, L. Valente, B. Feijo, and E. Clua, “Game loop model
properties and characteristics on multi-core CPU and GPU games,” pp.
100–109, 2016.

[27] C. West. (2018) Using rust for game development. Event talk. RustConf
2018. Portlan, OR. [Online]. Available: https://kyren.github.io/2018/09/
14/rustconf-talk.html

[28] E. Gamma, J. Vlissides, R. Helm, and R. Johnson, Design patterns:
elements of reusable object-oriented software. Boston, MA: Addison-
Wesley, 1995.

[29] J. W. Yoder and R. Johnson, “The Adaptive Object-Model Architectural
Style,” in Working Conference on Software Architecture (WICSA 2002),
Montreal, Canada, Aug. 2002, pp. 3–27.

[30] M. Ernst, C. Kaplan, and C. Chambers, “Predicate dispatching: A
unified theory of dispatch,” in European Conference on Object-Oriented
Programming (ECOOP 98), Jul. 1998, pp. 186–211.

[31] D. T. Campbell and J. C. Stanley, Handbook of research on teaching,
1963, ch. Experimental and Quasi-Experimental Designs for Research,
pp. 1–76.

