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ABSTRACT: 

 
In ever-changing business environments, organizations continuously refine their processes to 

benefit from and meet the constraints of new technology, new business rules, and new market 

requirements. Workflow management systems (WFMSs) support organizations in evolving their 

processes by providing them with technological mechanisms to design, enact, and monitor 

workflows. However, workflows repositories often grow and start to encompass a variety of 

interdependent workflows. Without appropriate tool support, keeping track of such 

interdependencies and staying aware of the impact of a change in a workflow schema becomes 

hard. Workflow designers are often blindsided by changes that end up inducing side- and ripple-

effects. This poses threats to the reliability of the workflows and ultimately hampers the 

evolvability of the workflow repository as a whole. In this paper, we introduce a change impact 

analysis approach based on metrics and visualizations to support the evolution of workflow 

repositories. We implemented the approach and later integrated it as a module in the HP 

Operations Orchestration (HP OO) WFMS. We conducted an exploratory study in which we 

thoroughly analyzed the workflow repositories of 8 HP OO customers. We characterized the 

customer repositories from a change impact perspective and compared them against each other. 

We were able to spot the workflows with high change impact among thousands of workflows in 

each repository. We also found that while the out-of-the-box repository included in HP OO had 

10 workflows with high change impact, customer repositories included 11 (+10%) to 35 (+250%) 

workflows with this same characteristic. This result indicates the extent to which customers 

should put additional effort in evolving their repositories. Our approach contributes to the body of 

knowledge on static workflow evolution and complements existing dynamic workflow evolution 

approaches. Our techniques also aim to help organizations build more flexible and reliable 

workflow repositories. 
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INTRODUCTION 

Large-scale workflow repositories, which may encompass thousands of workflows in real world 

settings, are intrinsically complex. Workflows in these repositories frequently link to each other, 

forming a complex network of dependencies. As workflows evolve, their number of elements and 

interconnections tend to increase. Furthermore, organizations often heavily rely on some of the 

out-of-the-box (OOTB) workflows provided by vendors. This means that modifying or replacing 

these core workflows can affect the large amount of other workflows that depend on them. 

Therefore, evolving workflow repositories poses a challenging task. 

In this context, two problems may occur. First, workflow designers may become reluctant to 

apply changes to workflows. In this case, the repository becomes less flexible, since it neither 

leverages opportunities nor deals with the constraints of new technology, new market 

requirements, and new legislation (Casati, Ceri, Pernici, & Pozzi, 1998). Second, workflow 

designers may end up performing changes to workflows without knowing the associated impact, 

because it is too difficult to be aware of all interdependencies and evaluate how critical they are. 

In this case, the repository becomes less reliable, since inappropriate changes may induce side- 

and/or ripple-effects (Arnold, 1996). A side-effect is an error or other undesirable behavior that 

occurs as a result of a modification (Freedman & Weinberg, 1982). In turn, a ripple-effect occurs 

when a small change to a system affects many other parts of this same system (Stevens, Myers, & 

Constantine, 1974). In fact, previous research already showed that making software changes 

without visibility into their effects can lead to poor effort estimates, delays in release schedules, 

degraded software design, unreliable software products, and premature retirement of software 

systems (Mens & Demeyer, 2008; Souza & Redmiles, 2008; Swanson & Beath, 1989). In 

summary, by being less flexible and less reliable, the workflow repository also becomes less 

evolvable. 

This paper reports the results of joint efforts from researchers and engineers from the University 

of São Paulo, HP Labs, and HP software in seeking innovative workflow evolution solutions to 

be integrated into the HP Operations Orchestration (HP OO) product. HP OO is a professional 

industry Workflow Management System (WFMS) that provides an OOTB workflow repository 

targeted to help organizations automate common IT operations. Customers can also leverage this 

repository to build their own custom workflows. Table I depicts HP OO common usage scenarios. 
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Table I. Common HP Operations Orchestration Usage Scenarios1 

 

Driven by customers’ feedback, we decided to focus on enhancing HP OO’s change impact 

analysis features. Software change impact analysis concerns “identifying the potential 

consequences of a change, or estimating what needs to be modified to accomplish a change” 

(Arnold, 1996). The analysis aims to make the existing relationships among artifacts more 

explicit to humans, so that they can maintain and evolve software systems more easily. Change 

impact analysis information can then support planning changes, approving changes, 

accommodating certain types of changes, and tracing through the effects of changes (Arnold, 

1996). Naturally, mitigating side- and ripple-effects have also been two commons goals of change 

impact analysis (Kagdi & Maletic, 2006). 

Despite its benefits, change impact analysis has long been one of the most tedious and difficult 

parts of the software evolution process. According to Arnold (1996), tools frequently either 

provide limited analyses scopes or are too complex so that only specialists are able to deal with it. 

Moreover, manually inspecting artifacts to determine change impact is often labor intensive, ad-

hoc, and definitely does not scale for large systems. Building on our previous work on 

dependency management (Gustavo Ansaldi Oliva & Gerosa, 2012), we conceived a static 

interdependency-based change impact analysis approach to support workflow designers in 

evolving their workflow repositories. It is static because the analyses rely on the workflow 

schema (structure), which is the definition of the sequence in which activities are executed 

(Casati et al., 1998). In other words, we are tackling the problem at the workflow type level (and 

not at the instance level) (Dadam & Rinderle, 2009). It is interdependency-based because we 

determine change impact by detecting and analyzing the interdependencies (call relationships) 

among the workflows of a repository. We decided to focus on inter-workflow analysis, since most 

industrial tools already support intra-workflow change impact analysis. Therefore, our approach 

is applicable to any kind of WFMS containing workflows that call each other. This also means 

that the way workflow activities are actually implemented (e.g. Java applications, web services, 

or human intervention) is irrelevant to our approach. 

Our approach relies on two metrics (change scattering and impact) and two visualizations (call-

graphs and treemaps) to enable both low-level and high-level analyses. While the former focuses 

on the relationships of a certain workflow, the latter enables analyzing the repository as a whole. 

                                                 
1Extracted from HP OO Data sheet at http://h20195.www2.hp.com/V2/GetPDF.aspx/4AA1-5782ENW.pdf 
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In particular, the visualizations we implemented make relationships among workflows explicit 

and more easily understandable to humans, thus increasing their awareness about change impact 

levels. We also tried to make the visualizations as intuitive as possible, so that workflow 

designers would not have difficulties to interpret them. Driven by HP OO customers’ needs, the 

primary goals of the approach we conceived were to (i) identify workflows possibly impacted 

when a certain workflow is changed, (ii) determine the likelihood of impact for each of these 

workflows, and (iii) offer mechanisms to enable the analysis of the change impact levels of the 

repository as a whole.  

We implemented our approach and later integrated it into the HP Operations Orchestration (HP 

OO) product. In this paper, we describe the approach and an exploratory study we conducted. In 

such study, we characterized and analyzed 8 workflow repositories, each belonging to a different 

HP OO customer. The metrics and visualizations triggered a series of insights about each 

repository. For instance, we found that one customer developed most part of his workflows with 

high change impact. We also found that while the out-of-the-box repository had 10 workflows 

with high change impact, customer repositories included 11 (+10%) to 35 (+250%) workflows 

with this same characteristic. 

This paper is structured as follows. In the next section, we introduce and discuss related studies in 

the field of workflow evolution. After that, we describe our approach and its main features. 

Afterwards, we present the setup of the exploratory study. Next, we show and discuss the results 

and the limitations of such study. Finally, in the last section, we state our conclusions and plans 

for future work. This paper extends our previous work published in the proceedings of the IEEE 

20th International Conference of Web Services (ICWS 2013) (Gustavo A. Oliva, Gerosa, 

Milojicic, & Smith, 2013). 

RELATED WORK 

Business processes, which are often called workflows when implemented and automated within a 

WFMS, live in an environment that is typically highly dynamic (Dadam & Rinderle, 2009). As a 

consequence, workflows have to evolve in order to keep up with such an environment and remain 

useful. The challenges to evolve workflows have been investigated from different perspectives 

and several solutions have been proposed so far. 

Casati et al. (1998) focused on the problem of running workflow instances when their respective 

schema is modified, i.e. changing existing workflows while they are operational. They introduced 

formal criteria to determine which running instances can be transparently migrated to the new 

version. In fact, dealing with running instances when updating workflow schemas is a classic 

problem of workflow evolution (Dadam & Rinderle, 2009). Our proposed approach has a 

different focus. Instead of dealing with the runtime effects of changes, we take a step back and 

offer an approach to support workflow designers in both planning and evaluating the impact of 

changes in a static fashion during design time. In a certain sense, we want to increase the 

awareness of workflow designers regarding the levels of change impact for the whole repository. 

Therefore, these approaches can be seen as complimentary, as one supports the other. Indeed, the 

interplay between concurrently applied workflow schema and instance changes (e.g., discovering 

the degree with which they overlap) is a fruitful research topic (Dadam & Rinderle, 2009). 

Wang and Capretz (2011) conceived a change impact analysis approach targeted to Service-

Oriented Systems. Similarly to our proposal, their approach is also based on dependency analysis. 

However, they define the dependencies in terms of messages exchanged among services. Fig. 1 

depicts message exchanges (M1, M2, …, M7) among the services of a hypothetical order process. 
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Data relative to messages (D0, D1, …, D7), which they refer to as model elements, are also taken 

into account. The goal of their work is to estimate the impact of changing the dependencies 

network (e.g. by adding a new service that receives and sends new messages) and data elements 

correspondence (e.g. by removing a certain data element from a message) on services and on the 

entire system. The authors’ implied notion of service collaboration has been called by other 

researchers as a service choreography (Barker, Walton, & Robertson, 2009; Ben Hamida et al., 

2012; Issarny et al., 2011; Leite et al., 2013). 

 

Fig. 1. Service dependencies of a hypothetical Order Process (S. Wang & Capretz, 2011) 

The core of their approach is formed by metrics they conceived based on the concepts of 

information entropy (Shannon & Weaver, 1963) and link analysis (e.g., HITS algorithm 

(Kleinberg, 1999)). These metrics include: (model) element entropy, dependency entropy, service 

entropy, and system entropy. Based on such metrics, they defined change impact metrics, which 

include: service impact, system impact, and symmetrical effect. While their approach seems very 

promising, their evaluation was constrained to the calculation of such metrics to the example 

depicted in Fig. 1 and fictitious change tasks. Here we leverage the degree of realism of our 

evaluation, which was conducted with real customer repositories. 

In a previous study (S. Wang & Capretz, 2009), the same authors developed a change impact 

analysis model for web services evolution that relies on the extraction and analysis of service 

dependencies. Since they are dealing with lower level entities (web services), the way they 

capture dependencies is fundamentally different from ours. In general terms, the authors link web 

services according to the dependencies that exist among their respective elements (e.g., the output 

elements of a web service x are the input elements of a web service y). Furthermore, the authors 

also capture the existing relations among the inner elements of a web service (intra-dependency). 

Relying on these two kinds of dependencies, the authors provide (i) a metric to identify services 

that are difficult to modify and (ii) another metric to calculate the impact of changing a specific 

element of a web service. We also highlight the methodology they developed for automating 

changes to web services. A supporting tool was developed as part of Wang’s PhD thesis (S. 

Wang, 2010). In summary, our goals are quite similar to theirs, although we tackle the problem at 

a higher level of abstraction. Since our analysis relies only on call relationships among 

workflows, its implementation is simpler (especially with relation to the extraction of 

dependencies). Besides providing metrics to calculate change impact, we also leverage two 

visualizations that help workflow designers cope with the complexity of analyzing their workflow 

repositories as whole. 
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Wang et al. (Y. Wang, Yang, Zhao, & Su, 2012) conceived a comprehensive change impact 

analysis approach for service-based business process. While we treat the building blocks of 

workflows as black boxes and do not distinguish between the various kinds of workflow schema 

changes, their approach focuses on how service changes affect process and how process changes 

affect services. The authors define two layers: the process layer, which contains the internal 

processes of an organization, and the service layer, which consists of services that are each an 

external view of the internal process from the viewpoint of a specific business partner. In other 

words, they consider a model in which services expose observable behaviors (a.k.a. behavioral 

interfaces) in the form of a set of operations and invocation relations between these operations. In 

fact, previous studies have already discussed this modeling perspective (Zaha, Barros, Dumas, & 

Hofstede, 2006), and languages for describing it have been conceived (e.g., WSCI2). Wang and 

colleagues also present a taxonomy for service changes (Fig. 2) and processes changes (Fig. 3), as 

well as a derived set of change impact patterns (Fig. 4). In addition, they report a prototype tool 

that implements their approach. 

 

Fig. 2. Taxonomy for service changes (Y. Wang et al., 2012) 

                                                 
2 http://www.w3.org/TR/wsci 
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Fig. 3. Taxonomy for process changes (Y. Wang et 

al., 2012) 
 

Fig. 4. Change impact patterns (Y. Wang et al., 2012) 

Lins et al. (2008) analyzed workflow provenance (a.k.a. audit trail, lineage, pedigree) in order to 

extract information about workflow evolution. The authors conducted an initial case study and 

showed, for instance, that analyzing how much time is spent in workflow design can help in the 

understanding of how users interact with workflow systems. It also helps to discover the amount 

of effort spent to accomplish tasks, such as creating new workflows or modifying existing ones. 

This study thus exemplifies the potential of mining workflow evolution history. Other studies 

discuss the application of workflow evolution to specific areas. For instance, Chinthaka et al. 

(2011) state that scientists working on eScience environments frequently use workflows to carry 

out their experiments. Since workflows evolve as the research itself evolves, the authors analyze 

workflow evolution to track the evolution of the research itself. Regarding industry tools, we 

highlight that no other orchestration products (Microsoft Opalis, BMC Atrium, Cisco Tidal, etc.) 

provide the level of analysis and visualization offered by our approach. A summary of the related 

work is presented in Table II. 

Table II. Summary of Related Work 

Title Target Focus Contribution Evaluation Tool Ref. 

Workflow 

Evolution 
Workflows Schema changes 

Dynamic schema 

evolution approach 
Example No 

(Casati 

et al., 

1998) 

Dependency and 

Entropy Based 

Impact Analysis for 

Service-Oriented 

System Evolution 

Service-

Oriented 

Systems 

Service dependencies 

extracted from message 

exchanges 

Change impact analysis 

metrics 
Example No 

(S. 

Wang 

& 

Capretz, 

2011) 

A Dependency Service- Service dependencies Change Impact Analysis Example Yes (S. 
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Impact Analysis 

Model for Web 

Services Evolution 

Oriented 

Systems 

implemented 

with Web 

Services 

 

extracted from WSDL: 

- Output elements of x are 

the input elements of y 

- Semantic mapping or 

correspondence built 

between elements of x and y 

- Manually/automatically 

designed relations for 

elements of x and y 

Metrics and 

Methodology 

Wang 

& 

Capretz, 

2009) 

Change impact 

analysis in service-

based business 

processes 

Workflows 

and 

Implementing 

Services 

The way service changes 

affect business processes and 

vice-versa 

- Taxonomies for 

service and process 

changes 

- Change impact 

patterns 

- Change impact 

analysis algorithms 

Example Yes 

(Y. 

Wang et 

al., 

2012) 

Examining 

statistics of 

workflow evolution 

provenance:  

A first study 

Workflow 
Workflow evolution 

provenance (history) 

Analysis of workflow 

evolution provenance 

generated by 30 subjects 

who worked on 6 

distinct exploratory 

tasks (e.g., creating a 

visualization, mining a 

data set) over 4 months 

Preliminary 

Case Study 
Yes 

(Lins et 

al., 

2008) 

 

Other studies discuss change impact analysis in broader terms. Arnold (1996) extensively covered 

the foundations of change impact analysis in his classic book. He presents basic concepts, 

terminology, difficulties in applying change impact analysis in practice, different natures of 

change, etc. Lehnert (2011a) argues that although several impact analysis approaches have been 

developed over the years, there is no solid framework for classifying and comparing them. The 

author thus proposes a taxonomy for classifying change impact analysis approaches, taking into 

account aspects such as scope of analysis, used techniques, style of analysis, granularity of target 

entities, existence of tool support, supported languages, and asymptotical complexity of both time 

and space. The same author also produced a technical report with an extensive review of change 

impact analysis techniques (Lehnert, 2011b). Finally, for more information on the definition, 

historical background, foundations, and future directions of workflow evolution, we refer the 

reader to a book chapter written by Dadam and Rinderle (2009).  

THE WORKFLOW CHANGE IMPACT ANALYSIS APPROACH 

In this section, we introduce the change impact analysis approach we conceived to support the 

maintenance and evolution of workflow evolution issues. We focused our efforts on the following 

three main questions that arose from needs of HP OO customers:  

(RQ1) Which workflows are possibly impacted when a certain workflow is changed? By change 

to workflows, we mean any kind of change applied to their schema (structure). 

(RQ2) Given the list of workflows obtained from RQ1, then how different is the likelihood of 

impact for each of these workflows? Obtaining the list of possibly impacted workflows is 

necessary, but not sufficient. Workflow designers should know where to focus their maintenance 

efforts. Therefore, we also investigate the likelihood of impact for each of the possibly impacted 

workflows. 
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(RQ3) How can one evaluate the repository as a whole? Since workflow repositories are usually 

large and complex, analyzing the change impact caused by each individual workflow becomes 

infeasible. Therefore, we also support repository-wide analyses by means of visualization 

techniques. 

By answering those questions, we intend to provide a way to identify the potential effects of a 

change. We focus on inter-workflow change impact analysis, since intra-workflow change impact 

analysis is simpler and already covered by a variety of tools. Therefore, typical use cases would 

include using our approach to support workflow schema modification, workflow version 

upgrades, and the identification of core workflows (i.e., those that potentially affect a large 

portion of the repository). As key benefits, we highlight that our approach increases the awareness 

workflow maintainers, thus fostering more confident and responsible changes (as opposed to ad-

hoc changes). In the end, this should mitigate side- and ripple-effects of changes. Furthermore, 

since our approach is capable of quantifying the change impact of workflows, it helps 

organizations to estimate change effort. As a desirable consequence, it should reduce the 

occurrence of statements like “it was more complicated than I first thought,” which are often 

heard during software maintenance tasks. Moreover, our approach helps organizations target their 

testing routines, which should ultimately lead to more reliable and less buggy workflow 

repositories. Regarding the audience, our solutions is meant to be used primarily by workflow 

designers in their own environment, so that they can analyze and report on their workflow 

repositories. Finally, it should also help managers quickly track the overall change impact levels 

of workflows and compare repositories against each other.  

The remainder of this section is organized as follows. We first present the vocabulary we used 

and the assumptions we made for this work. Then, we present the internal analytical model we 

rely on. Next, we present the proposed metrics and visualizations. Finally, we provide some 

implementation details.  

Vocabulary and Assumptions 
We organized the vocabulary of our approach as a domain model (a.k.a. conceptual model) 

(Larman, 2004), which is depicted in Fig. 5. Domain models describe the main entities of a 

domain, as well as how these entities relate to each other. We employ the domain model to 

establish the assumptions we make regarding the kinds of workflow constructs we support.  

We assume the existence of a Repository, which contains a series of sections. Sections are pretty 

much like the folders of a file system, and workflow designers use them to organize workflows 

and operations according to some criteria. Workflows (or simply, flows) contain interconnected 

steps, each representing a certain activity. Subflow steps are those that invoke another workflow. 

Operation steps are those that invoke a standalone operation (e.g., function, script, or even a 

packaged application). Fork steps are those that split into two or more Lanes, which are executed 

in parallel. The Join step merges all lanes upon their ending. Elementary steps include the start 

step and the final steps. In particular, we assume that workflows have a single start and one or 

more final steps (just like State Machines). The set of concepts in our domain model covers all 

workflow modeling constructs available in the HP OO product. In particular, HP OO employs a 

proprietary process modeling language inspired by BPMN2.3 

                                                 
3 http://www.omg.org/spec/BPMN/2.0 
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Fig. 5. The domain model (represented as a UML class diagram) 

Internal Analytical Model 

Our solution heavily relies on static call-graphs. A static call-graph is a directed graph that 

represents calling relationships between subroutines in a computer program. In our context, we 

build flow static call-graphs to support change impact analysis. In our flow call-graph, each node 

represents a flow, and each directed edge (Fi, Fj) indicates that the flow Fi calls flow Fj (i.e., Fi has 

a subflow step that invokes Fj). We also say that Fi is a client of Fj, and that Fj is a subflow of Fi. 

 

Fig. 6. Call-graph of a hypothetical flow F12 

Since calculating a single call-graph for the whole workflow repository would likely result in a 

large and complicated structure, we calculate one call-graph per flow. This results in a much 

simpler and smaller structure to analyze. We start with the chosen flow and then discover its 

clients (i.e., all the other flows that can possibly call the chosen flow). We do it recursively until 

no more client flows are found. An example is shown in Fig. 6, which depicts the call-graph of a 
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hypothetical flow F12. In our implementation, we obtain this information by manipulating HP OO 

XML files that describe the schema of each workflow in the repository. These XML files can be 

seen as a complete serialization of the repository. 

Elementary Metrics: Change Scattering and Impact 
We assess change impact according to two main metrics: change scattering and impact. The 

former addresses RQ1 and the later addresses RQ2. In the following, we define such metrics and 

introduce the algorithms we use to compute them. 

Change Scattering. We define Scattering(Fi) as the quantity of flows that are possibly impacted 
when Fi is changed. We directly employ the analytical model to calculate this metric. Consider 
the example shown in Fig. 6, which depicts the call-graph of a hypothetical flow. In such case, 
the change scattering of F12 is equal to 8. We also say that these 8 flows are clients of F12. Finally, 
having identified the clients of F12, it becomes straightforward to determine which and how many 
sections are also possibly impacted. 

Impact. We define Impact(Fi,p) of a flow Fi as the quantity of flows that have a high chance of 

being impacted when Fi is changed, where “high chance” means any probability higher than or 

equal to p. Therefore, Impact(Fi,p) ≤ Scattering(Fi). The pseudo code for calculating impact is as 

follows. 
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Algorithm 1: calculateImpact(Fi,p) 

Input: Flow Fi and a probability p 

Output: The number of flows that have a high chance of being impacted by a change 

in Fi 

// A <Key, Value> map, where key is a client flow of Fi and value is the 

respective chances of it being impacted by a change in Fi 

01. chancesOfImpact ← createEmptyMap() 

02. chancesOfImpact.put(Fi,1) 

03. callgraph ← Fi.getCallGraph() 

04. topSort ← calcTopologicalSort(callGraph) 

05. topSort.removeFirst() 

06. for i from 0 to topSort.size do 

07.   Fj ← topSort[i] 

08.   chance ← calcChanceOfImpact(Fj, chancesOfImpact) 

09.   chancesOfImpact.put(Fj,chance) 

10. end for 

11. chancesOfImpact.remove(Fi) 

12. impact ← number of entries from chancesOfImpact with value >= p 

13. return impact; 

Algorithm 2: calcChanceOfImpact(Fj, chancesOfImpact) 

01. execPaths ← getExecutionPaths(Fj) 

02. sumPathImpact ← 0 

03. for each execPath in execPaths do 

04.   pathImpact ← calcPathImpact(execPath,chancesOfImpact) 

05.   sumPathImpact ← sumPathImpact + pathImpact 

06. end for 

07. avgPathImpact ← sumPathImpact / execPaths.size() 

08. chanceOfImpact ← avgPathImp 

09. return chanceOfImpact  

Algorithm 3: calcPathImpact(execPath, chancesOfImpact) 

01. maxStepImpact ← 0 

02. n ← execPath.numberOfSteps() 

03. for i from 0 to n-1 do 

04.   step ← execPath[i] 

05.   if (chancesOfImpact.containsKey(step.element)) then 

06.     positionCoef ← (n – 1 – i) / (n – 1) 

07.     chance ← chancesOfImpact.get(step.element) 

08.     stepImpact ← positionCoef * chance 

09.     if (stepImpact > maxStepImpact) then 

10.       maxStepImpact ← stepImpact 

11.     end if 

12.   end if 

13. end for  

14. pathImpact ← maxStepImpact 

15. return pathImpact 

 

To illustrate the rationale behind the metric, consider again the call-graph depicted in Fig. 6. If F12 

is called in every possible execution path of F3, then the likelihood of F3 being impacted by a 

change in F12 becomes high. However, if F12 is called in only one among many possible execution 

paths inside F3, then the likelihood of F3 being impacted becomes much lower. The chances of F6 

being impacted are then determined based on the results for F3 and so on. In summary, we 
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analyze the execution paths of all flows included in the call-graph of F12 to determine their 

likelihood of being impacted by a change in F12. For the sake of simplicity, hereafter we refer to 

such flows as client flows. 

The first step in algorithm I concerns creating an empty <Key,Value> map, where key is a flow 

and value is the respective chances of it being impact by a change in Fi. We initialize the map 

inserting the entry <Fi, 1.0>. Now we need to determine the order in which we will process each 

client flow of Fi. For instance, in order to calculate the chances of F5 being impacted, we need to 

first calculate the chances of F2 being impacted, because F5 calls F2. Therefore, the call-graph of 

Fi constraints the order in which the chances of impact need to be calculated. We solve this 

problem with a calculation of the topological order of the call-graph of Fi. One possible 

topological order for our example is: F12, F3, F6, F2, F5, F8, F1, F4, F7 (Fi is always the first vertex 

in the topological order). In lines 04 and 05, we calculate the topological order and remove the 

first item (Fi) respectively. In lines 06-10, we calculate the chances of every client flow being 

impacted by a change in Fi (in topological order). We invoke Algorithm II in line 08, which is 

responsible for determining the chances of a client Fj being impacted by a change in Fi. In line 12, 

we determine the number of map entries that have an impact likelihood larger than or equal to the 

constant p. In our previous study (Gustavo A. Oliva et al., 2013), we considered parallel lanes as 

anonymous inner workflows and included them in the map as well. In this new version, the 

chances of parallel lanes being impacted are attributed to the hosting workflow. In other words, 

only workflows from the call-graph of Fi are now included in the map. As a consequence, the 

calculation of Impact(Fi,p) is more precise and realistic. 

The first step in algorithm II concerns determining all possible execution paths of Fj. More 

precisely, if Fj has n steps, then one valid execution path Q of Fj is an ordered list of steps where 

Q[0] is a start step, Q[n-1] is an end step, and Q[i] is connected to Q[i+1] for 0 ≤ i < n-1. 

Obtaining all execution paths can be quite complicated in the cases where the flow’s schema 

includes cycles and parallel lanes (forks/joins). To deal with cycles, we build execution paths 

such that a certain cycle is not included twice in the same path. As for parallel lanes, we treat 

each as a separate workflow and only consider the one that has the highest chance of being 

impacted. After that, we determine the probability with which each execution path will result in a 

call (either directly or through other client flows) to Fi (line 02). We call this measure path 

impact. We then take the average path impact as a measure to represent the chances of Fj being 

impacted (line 08).  

In algorithm III, we show how we calculate path impact. We look at every step included in the 

path and discover whether it refers to a flow call. If the flow being called is included in the 

chancesOfImpact map (line 05), it means that such flow is either Fi or a client of Fi. In this case, 

the step impact measure is calculated by multiplying the value from the map by a coefficient. 

This coefficient is determined according to the position of the step in the execution path (line 06). 

Steps that occur early in the path receive a higher coefficient, while steps that occur late in the 

path receive a lower coefficient. We took this approach since we believe that the chances of a 

flow Fj being impacted by a flow Fi are greater when Fj calls Fi right in the beginning of its 

execution. For instance, if Fi happens to have a bug and return an incorrect value to Fj, then all 

subsequent steps of Fj will be susceptible to wrong behavior. In the extreme case, the first step in 

Fj would be invoking Fi. In this case, the position coefficient would be equal to 1. The algorithm 

then returns the maximum step impact found (line 14). 

Derived Metrics 
To support the analysis of large repositories, we use color schemes to classify flows and sections. 

The color scheme for flows is as follows. We say that a flow is red when both change scattering 
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and impact are high. We say that a flow is yellow when either value is high. Finally, we say that a 

flow is green when both values are low. We define “high” in a relative manner by doing a 

quartile analysis of the values and picking the extreme outliers. The extreme outliers in a quartile 

analysis are those higher than [Q3 + 3 * IQR], where Q3 stands for the third quartile and IQR 

stands for the interquartile range. Hence, the color of a flow can only be determined by analyzing 

the whole repository (i.e., both the change scattering and impact distributions are needed). If a 

certain value in a distribution is not high, then we just consider it low. 

In turn, we color sections according to the flows that they contain. If a section contains at least 

one red flow, it is colored red. Otherwise, if a section contains at least one yellow flow, then it is 

colored yellow. If a section has only green flows, then it is colored green. If a section has no 

flows (i.e., it has only subsections), then we color it gray. We also employ color shading to enable 

visual comparison of sections of the same color. For instance, a red section with 5 red flows will 

be darker than one with 2 red flows. The same applies to yellow sections. Table III summarizes 

the color schemes for flows and sections. 

Table III. Color Scheme for Flows and Sections 

Color Flow Section 

Red High Scattering AND High Impact Contains at least one red flow 

Yellow High Scattering XOR High Impact 
Contains at least one yellow flow  

(and no red flows) 

Green Low Scattering AND Low Impact Contains only green flows 

Gray [Not applicable] 
Contains no flows  

(empty section) 

 

Dispersion. When most part of yellow and red flows are concentrated in a single repository 

section, it implies that potentially problematic flows are collocated. This way, it becomes easier 

to spot which part of the repository should receive more attention. For instance, when red and 

yellow are dispersed, one needs to say that flow Fi from section Sa, flow Fj from section Sb, and 

flow Fk from section Sc need to undergo rigorous testing. On the other hand, when red and yellow 

flows are collocated, one simply can state that section Si needs more testing. Furthermore, 

different repository sections could be maintained by different teams. In this case, identifying how 

dispersed red and yellow flows are may reveal how many different teams should be involved in 

refactoring or testing activities. 

We measured the dispersion of red flows by calculating the ratio number of red sections / number 

red flows. If the number of red sections and red flows are the same, it means that each red flow 

lies in a different section. Hence, we say that the dispersion is 100% in this case. The other 

extreme is when all red flows lie in the same section. The dispersion of yellow flows is calculated 

analogously. 

Visualizations 
Our approach relies on two specific visualization techniques, namely call-graphs (Fig. 7) and 

treemaps (Fig. 8). While call-graphs help address research questions RQ1 and RQ2, treemaps 

help address research question RQ3. In both visualizations, we apply the color scheme presented 

in the previous section. In the following, we describe such visualization techniques. 

Graph visualization. In our approach, we use call-graphs to depict the change scattering of a 

specific flow. In other words, this visualization shows all the flows in the repository that call a 

specific one, either directly or indirectly (as exemplified in Fig. 6). This way, before changing a 
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specific flow, one can first check its change scattering and impact metric values and then 

investigate which specific flows depend on it. 

 

Fig. 7. Call-graph visualization of flow “[ApplicationService]” 

In our implementation, we made the visualization interactive, so that a user can move nodes 

around the screen, zoom in, zoom out, etc. 

TreeMap. Treemap is an efficient and compact visualization method that uses nested rectangles 

to display information with hierarchical characteristics (Shneiderman, 1992). We use treemaps as 

a means to visualize the color of each repository section. This enables workflow designers to 

quickly spot repository sections that require more attention. 
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Fig. 8. Treemap visualization of OOTB repository 

Given that workflow repositories can be quite large, we decided to use the squarified layout 

algorithm introduced by Bruls et al. (2000). This layout subdivides rectangular areas in a way 

such that the resulting subrectangles have a lower aspect ratio when compared to the results 

produced by the original treemap layout algorithm. Consequently, the squarified layout uses 

space more efficiently and produces rectangles that are easier both to point at in interactive 

environments and to estimate with respect to size. Finally, in our implementation, we made the 

treemap visualization interactive, so that one can discover which flows exist within a particular 

repository section. 

Implementation 
We implemented the approach as a Java 2 SE library and integrated it in HP OO, thus enhancing 

the tool’s change impact mechanisms. Our library relies on two important frameworks: 

Jung. The Java Universal Network/Graph Framework (JUNG) is a library that provides a 

common and extensible language for modeling, analyzing, and visualizing any kind of data that 

can be represented as a graph or network. We rely on Jung classes and interfaces to implement 

the graph data structure itself. Hence, the core domain entities of our implementation are built and 

manipulated using Jung types and algorithms. Furthermore, we relied on Jung’s visualization 

framework to implement the call-graph visualization. More information about Jung can be found 

at its website.4 

Prefuse. Prefuse is a Java-based toolkit for building interactive information visualization 

applications. Prefuse relies on the Java 2D graphics library and supports a rich set of features for 

data modeling, visualization, and interaction. We used Prefuse to build the interactive treemaps. 

More information about Prefuse can be found at its website.5 

EXPLORATORY STUDY 

We conducted an exploratory study to assess our proposed dependency-centric change impact 

analysis approach. In summary, we implemented the approach in Java and incorporated it in the 

HP Operations Orchestration tool, which is an industry tool that supports the authoring, 

execution, and management of workflows from the IT operations domain. Afterwards, driven by 

the research questions, we thoroughly analyzed eight workflow repositories, each belonging to an 

HP OO customer. We also highlighted insights and trends we identified while analyzing the 

results. 

In the following subsections, we present the setup of this study. In particular, we describe the HP 

Operations Orchestration tool, the way we implemented our approach, and the steps we followed 

to conduct the analysis of the customer repositories. 

HP Operations Orchestration 
HP Operations Orchestration is a professional industry tool for authoring, executing, and 

managing IT operations workflows. HP OO also provides a workflow repository out-of-the-box 

(OOTB) with standard flows and operations to automate common IT processes. HP OO has a 

broad range of international customers, including Turkcell6 and Evergreen7 companies. Fig. 9 is a 

                                                 
4 http://jung.sourceforge.net. 
5 http://prefuse.org 
6 http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA4-7594EEW.pdf 

http://prefuse.org/
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screenshot of HP OO Studio, which is the module used to author workflows. All out-of-the-box 

workflows are included below the “Accelerator Packs” folder in the left-hand side of the figure. 

Workflow categories include: database, network, virtualization, etc. On the right-hand side, the 

“Power on Virtual Machine” workflow is displayed. More information is available at the 

product’s website8. 

 

Fig. 9. HP Operation Orchestration: Power on Virtual Machine Workflow 

The Study 
We applied our approach to eight HP OO customer repositories, which were selected and 

provided by HP Software. We first characterized each repository by calculating change scattering 

and impact (p = 0.75) metrics for every flow and then by analyzing the distributions of these 

metrics using descriptive statistics. Afterwards, we calculated the number and percentage of red, 

yellow, and green flows of each repository. Analogously, we also calculated the number and 

percentage of red and yellow sections. Based on the results and insights we obtained, we explored 

specific repository sections in more detail to uncover which flows should deserve more attention 

because of their change impact. In the following, we present the results we obtained. 

Characterizing the Repositories 

To provide an overview of the customer flow repositories, we obtained their number of flows and 

calculated descriptive statistics for change scattering and impact metrics. We included the HP OO 

out-of-the-box workflow repository (OOTB) in our analysis, since it serves as a baseline to 

compare results with. We also highlight that every customer repository includes the out-of-the-

box content in its own repository. The results are shown in Table IV. 

                                                                                                                                                 
7 http://www.evergreensys.com/hp-operations-orchestration-case-study/ 
8 www8.hp.com/us/en/software-solutions/software.html?compURI=1170673 
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Table IV. Customer Repository Overview: Descriptive Statistics for Scattering and Impact 

  Change Scattering Impact 

Client 
Total 

Flows 
N N(%) Min. Max. Mean 

Std. 

Dev. 
Med. Skew. Kurt. N N (%) Min. Max. Mean 

Std. 

Dev. 
Med. Skew Kurt. 

OOTB 1687 434 25.7% 1 397 5.33 28.35 2 12.36 159.43 434 25.7% 0 124 1.31 6.81 0 14.88 251.66 

C1 1695 441 26.0% 1 397 5.27 28.13 2 12.46 162.03 441 26.0% 0 124 1.30 6.76 0 15.00 255.67 

C2 1712 449 26.2% 1 397 5.28 27.88 2 12.57 164.89 449 26.2% 0 124 1.29 6.70 0 15.12 260.12 

C3 1726 471 27.3% 1 397 5.15 27.22 2 12.88 173.21 471 27.3% 0 124 1.24 6.55 0 15.47 272.44 

C4 1780 471 26.5% 1 397 5.33 27.30 2 12.75 170.77 471 26.5% 0 124 1.33 6.67 0 14.71 252.49 

C5 1968 624 31.7% 1 397 7.23 24.92 2 12.57 181.73 624 31.7% 0 124 1.75 7.43 1 10.97 147.31 

C6 2016 497 24.7% 1 397 5.19 26.68 2 13.02 178.31 497 24.7% 0 124 1.20 6.47 0 15.45 273.63 

C7 2913 1171 40.2% 1 361 4.09 16.85 2 17.62 345.20 1171 40.2% 0 124 1.16 4.93 0 16.91 365.80 

C8 3769 994 26.4% 1 428 4.75 21.67 2 15.31 269.53 994 26.4% 0 130 1.07 5.38 0 16.85 356.38 
                    

 

Repository size, in terms of number of flows, ranged from 1687 (OOTB) to 3769 (C8). Hence, we 

notice that the C8 repository is more than twice as large as the OOTB repository. By looking at 

the N(%) column of either the change scattering or the impact portions of the table, we observe 

that C5 and C7 repositories have a distinct high percentage of flows that have at least one client. 

In other words, flows in these repositories are more interconnected. In turn, the largest change 

scattering is found in C8’s repository. Moreover, C8 also has the maximum impact value. In other 

words, C8 has at least one flow that is likely to affect 130 other flows when it is changed. 

Regarding change scattering, we notice that C5 repository has a distinct high mean value. 

Furthermore, its mean impact value is also the highest among all repositories. In fact, it is the 

only repository whose median value for impact is above zero. At the same time, standard 

deviation for impact in C5 is also the highest. This indicates that some specific flows might be 

responsible for the high average impact value. On the other hand, we see that the mean change 

scattering and impact values for C8 are lower when compared to others. This suggests that despite 

the high number of flows it has, change impact levels are somewhat controlled in such repository. 

The lower standard deviation values the metrics in this repository also support this conclusion. C7 

repository is in an interesting position. Although its mean change scattering is the lowest one, its 

mean impact is just a little lower than most of others. The standard deviation for impact is also 

the lowest among all repositories. This suggests that the impact statistical distribution is more 

uniform in this repository. 

Finally, we computed skewness and kurtosis to better understand the shape of the distributions. 

Qualitatively, a positive skew indicates that the tail on the right side is longer than the left side, 

the bulk of the values (possibly including the median) lie to the left of the mean, and there are 

relatively few high values. Change scattering and impact skewness are positive for every 

customer repository, being particularly high for C7 and C8. Interestingly, impact skewness is 

much lower for C5, thus providing some evidence that this repository has a larger amount of high 

values for impact when compared to other repositories. Qualitatively, positive kurtosis indicates 

that the distribution has a more acute peak around the mean and fatter tails. Change scattering 

and impact kurtosis are positive for every customer repository, being particularly high for C7 and 

C8 again. In addition, impact kurtosis is much lower for C5, thus providing more evidence that its 

impact distribution is different from the others. In summary, by inspecting the values in Table IV, 

we notice that OOTB, C1, C2, C3, C4, and C6 share similar distributions for both change 

scattering and impact. Analogously, C7 and C8 are similar to each other. Finally, C5 has 
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particular distributions for the metrics, showing symptoms that workflow coupling is just starting 

to become out of control. 

Workflows and their Colors 

In order to further investigate the repositories, we calculated their percentage of yellow and red 

flows. Differently from the previous characterization, the analysis of workflow colors puts the 

metrics together and thus provides a more general view of the repository. The results are depicted 

in Fig. 10. 

 

Fig. 10. Percentage of red and yellow flows for each repository 

Using p=0.75 for the impact metric calculation, we notice than no more than 4% of all flows were 

classified as either yellow or red in each customer repository. As we suspected, C7 and C5 have 

the larger ratios of red and yellow flows. Hence, these two repositories are in a more worrying 

situation when compared to the others. 

We also calculated the absolute number of red and yellow flows in each customer repository (Fig. 

11). Such number indicates the amount of effort required to maintain and evolve the repositories.  



International Journal of Web Services Research,   Vol.13, No.2, 2016 

 20 

 

Fig. 11. Absolute number of red and yellow flows for each repository 

In absolute measures, C7 has the larger amount of red and yellow flows, followed by C8 and C5. 

More precisely, C7 has 35 flows that have a high change impact (3.5x more than OOTB). 

Therefore, the team responsible for evolving the C7 repository should devote special attention to 

a larger number of flows. Interestingly, although C5 repository has almost half of the size of C8 

repository, its numbers of yellow and red flows are similar to those of C8. The remaining 

repositories have similar amounts of yellow and red flows. In particular, the number of yellow 

and red flows in C2, C1, and C3 are almost equal to that of OOTB. This shows that these 

particular customer repositories diverge very little in terms of change impact when compared to 

the baseline represented by OOTB. This is also due to their size, which is very similar to that of 

OOTB. 

Sections and their Colors 

In addition to analyzing the color of flows, we also quantitatively analyzed the color of sections. 

The goal is to understand how dispersed yellow and red flows are. Analogously to the previous 

analysis, we started by calculating the percentage of red and yellow sections for each customer 

repository. The results are given in Fig. 12. 
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Fig. 12. Percentage of red and yellow sections for each repository 

C7 have distinct large ratios of yellow and red sections. C5, in turn, has a high ratio of yellow 

sections. The other customer repositories have similar ratios of yellow and red sections. We also 

calculated the absolute number of red and yellow sections for each customer repository. This 

analysis indicates how many different sections in the repository deserve more attention in terms 

of change impact.  

 

Fig. 13. Absolute number of red and yellow sections for each repository 
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Interestingly enough, C7 not only has the highest ratios of yellow and red sections, but also has 

the largest absolute numbers of yellow and red sections. Following C7, we have C8 and C5. In 

particular, while C8 has more red sections than C5, it has less yellow sections. 

Analyzing the Dispersion of Flows among Sections 

Given the results of the previous subsection, we decided to further analyze how dispersed yellow 

and red flows are. The results for the flow dispersion metric are given in Table V. 

Table V. Flow Dispersion in Sections 

Client #Red  

sections 

#Red flows Red flows  

dispersion 

#Yellows 

sections 

#Yellow 

flows 

Yellow 

flows  

dispersion 

C5 14 22 63.6% 24 52 46.2% 

C8 19 26 73.1% 22 55 40.0% 

C7 30 35 85.7% 48 79 60.8% 

C6 10 11 90.9% 18 31 58.1% 

C4 12 12 100.0% 14 30 46.7% 

C2 10 10 100.0% 14 26 53.8% 

C1 10 10 100.0% 13 24 54.2% 

C3 10 10 100.0% 13 24 54.2% 

OOTB 10 10 100.0% 13 24 54.2% 
       

 

While C5 has a large ratio of red and yellow flows (Fig. 10), the results indicate that the 

dispersion is low for both yellow and red flows. This corroborates our findings from the analysis 

of Table IV. At the same time, while C7 also has a large ratio of red and yellow flows (Fig. 10), 

the results indicate the dispersion is much higher than that of C5. Such findings become even 

more evident when comparing the treemaps of C7 and C5 (Fig. 14). Clearly, yellow and red flows 

are less dispersed in the C5 customer repository. In the following subsection, we further 

investigate this repository. 
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Fig. 14. C7 repository treemap (top) and C5 repository treemap (bottom) 

Analyzing the Workflow Repository of C5 

According to our previous findings, C5 has a large number of red flows and they are quite 

concentrated into few repository sections. Taking a closer look at the C5 treemap (Fig. 14), we 

notice that most part of the red and yellow sections are included in an upper section in the 

hierarchy called CSA. This implies that most part of yellow and red flows were actually 

developed by the customer itself. In Fig. 15, we depict the treemap for the CSA section only. 

 

Fig. 15. Focus on the ‘CSA’ section of the C5 repository treemap 

The CSA section treemap reveals a particularly dark red subsection, denoting that such subsection 

hosts a large number of red flows. By means of the interactive mechanisms we implemented in 
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the treemap, we discovered that such subsection hosts 9 flows, 7 of which are red. We selected 

one of these red flows and analyzed it using the call-graph visualization (Fig. 16). 

 

Fig. 16. Call-graph of visualization of the “[ServiceComposite]” workflow 

The panel in the left-hand side shows interesting information. We can see that the flow’s change 

scattering and impact have the same value (36). This means that this particular flow is core to the 

system, as it has a high chance of impacting every flow included in its call-graph. Furthermore, 

36 is a very high value for the metrics of change scattering and impact, since the thresholds for 

being red in this repository are 17 and 4 respectively. 

Threats to Validity and Limitations 
 

Some factors may have influenced the validity of our study. In the following, we present the 

threats to the validity of this study, as well as general limitations: 

 

Assumption regarding workflow schema. Although we believe our domain model should be 

complete enough to represent and calculate change impact for most workflows, we acknowledge 

the missing support for some constructs, including BPMN’s Inclusive Gateways, Complex 

Gateways, and Events. However, we highlight that our approach does not depend on how 

workflows activities are implemented (e.g. Web Services, Java standalone applications, etc.), 

since it relies exclusively on the concepts depicted in the domain model we conceived. 

 

Analysis scope. The simplicity, straightforwardness, and flexibility of our approach comes at a 

cost. We do not take into account data dependencies that might exist in the contexts of intra- and 

inter-workflow analysis. We neither consider the case in which workflows compete for shared 

resources. 

 

Triangulation of results. We did not conduct a qualitative study with customers to collect their 

opinion and feedback about the results we obtained. This remains as a future work. 
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CONCLUSIONS AND FUTURE WORK 

Although workflow management systems have emerged as a technical solution that supports the 

development and control of complex workflows, several challenges still exist. In this paper, we 

discuss the problem of change impact in the context of workflow evolution. We introduced a 

static dependency-centric change impact analysis approach that provides metrics and 

visualizations to assist workflow developers. Furthermore, instead of creating something from 

scratch, we focused on porting tried-and-true impact analysis techniques from the Software 

Engineering domain to the area of workflow management. We conducted an exploratory study in 

which we applied our approach to eight different industrial workflow repositories. We followed a 

top-down strategy, starting from a repository-wide analysis to a client individual section. The 

mechanisms offered by our approach triggered a series of insights about the change impact health 

of each repository and allowed us to compare repositories with each other. We noticed that 

repositories substantially vary in size (from 1687 to 3769 workflows) and both in the number and 

percentage of flows with relevant change impact levels (from 34 to 114 workflows and from 

2.8% to 6.3% respectively). Repositories also considerably vary in terms of the dispersion of red 

flows among repository sections (from 63.6% to 100%). We also discovered that most of the 

yellow and red workflows from the HP OO customer C5 repository were developed by the 

customer itself. Its repository also had distinguishing high means for the metrics of change 

scattering (7.23) and impact (1.75), showing symptoms that workflow coupling is starting to get 

high. 

The results we obtained provided some evidence that our approach is both feasible and effective. 

Indeed, we achieved a level of workflow repository analysis and visualization that is not available 

in other industry products. At the same time, we acknowledge that a deeper validation of the 

approach should be conducted by collecting and reasoning about the feedback of the workflow 

repository owners. In summary, the approach itself and the results of the exploratory study should 

support researchers seeking lightweight ways to effectively manage large and complex workflow 

repositories. In practical terms, we think the use of our approach fosters planned changes (as 

opposed to ad-hoc changes) and ultimately improves the flexibility and reliability of workflow 

repositories. Finally, we believe our approach contributes to the body of knowledge on static 

workflow evolution. 

Other issues addressed by our implementation and that are not in the scope of this paper include 

identifying flows that share common steps. By common steps, we mean those that invoke the 

same flow or operation. Identifying these common patterns throughout the repository leverages 

opportunities for refactoring and encapsulation, thus increasing the maintainability of the 

workflow repository. To implement this feature, we relied on the SimPack package developed by 

Bernstein and Kiefer from the University of Zurich (http://www.ifi.uzh.ch/ddis/simpack.html). As 

future work, it should be possible to enhance our approach by discovering “zones” in the 

workflows that might be safe to change, even if it is a red flow. Other improvements could be 

accomplished by uncovering data dependencies (Kopp, Khalaf, & Leymann, 2008), as well as 

analyzing data produced during runtime. For instance, workflow execution logs could be mined 

to discover the number of times each execution path is run for each flow, which could then be 

used to calibrate the calculation of the impact metric. Finally, we think that combining our 

approach with existing mechanisms that transparently apply workflow schema changes during 

runtime would be a major step towards safer and more efficient workflow evolution. 
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