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Abstract. Scientific workflows have become mainstream for conducting large-
scale scientific research. The execution of these applications can be very costly
in terms of computational resources. Therefore, optimizing their resource uti-
lization and efficiency is highly desirable, even in computational environments
where the processing resources are plentiful, such as clouds. In this work, we
study the case of exploring shared multiprocessors within a single virtual ma-
chine. Using a public cloud provider and real-world applications, we show that
the use of dedicated processors can lead to sub-optimal performance of scien-
tific workflows. This is a first step towards the creation of a self-aware resource
management system inline with the state-of-the-art multitenant platforms.

1. Introduction
Modern scientific experiments are automatized by means of workflows systems. Work-
flow systems have received increased attention from the research community since their
first appearance in the 1980s. Scientific workflows have become mainstream for conduct-
ing large-scale scientific research [Taylor et al. 2007]. Workflows can be seen as “process
networks that are typically used as ‘data analysis pipelines’ or for comparing observed
and predicted data, and that can include a wide range of components, e.g. for query-
ing databases, for data transformation and data mining steps, for execution of simulation
codes on high-performance computers, etc.” [Ludäscher et al. 2006].

According to [Callaghan et al. 2011], scientific workflow applications may in-
clude both high-performance computing (HPC) and high-throughput computing (HTC)
tasks. While HPC couples high-speed networks with high-performance computers to pro-
vide specialized collections of resources to applications, HTC is characterized by the use
of many computing resources over long periods of time to accomplish a computational
task. In the past decade, HPC and HTC techniques have been used to probe vast amounts
of raw scientific data. The processing of such data is very costly in terms of compu-
tational resources. Therefore, it is highly desirable that scientific applications maximize
resource utilization and thereby efficiency, even in computational environments where the
processing resources are plentiful, such as in multiprocessor computers, grids, and clouds.

Scientific workflow management systems (SWfMSs) are a class of tools created
to ease the development, management, and execution of complex workflows. SWfMSs



allow scientists to execute their HPC and HTC applications (expressed as workflows)
seamlessly on a range of distributed platforms. In order to support a large variety of
scientific applications, SWfMSs must make assumptions about the tasks they will execute
and the underlying execution environment. Notably, most SWfMSs assume that each task
requires a fully dedicated processor for execution.

The one-task-per-processor assumption is mainly justified by software require-
ments related to the execution on clusters and grids. In these platforms, users often have
exclusive access to the computational resources. However, with the large use of virtual
machines (VMs) on multitenant platforms, where cloud computing is the most prominent
example, similar assumptions may no longer be reasonable. A single physical machine
can multiplex the execution of several VMs, without the user being aware of this.

In this work, we study the case of exploring shared multiprocessors within a single
VM. Using a public cloud computing provider and well-studied scientific applications, we
show that the use of dedicated processors can lead to sub-optimal execution performance
of scientific workflows. This work is a first step towards the creation of a multipurpose,
self-aware resource management system inline with the state-of-the-art multitenant plat-
forms.

2. Scientific Workflows
Scientific workflows allow researchers to express multi-step computational tasks, for ex-
ample: retrieve data from an instrument or a database, reformat the data, run analyses, and
post-process results. A scientific workflow is basically composed of data processing tasks
and the connections existing among these tasks. A workflow model is an abstract repre-
sentation of a workflow that defines the tasks that must be performed and their (partial)
execution order. A task is an atomic unit of work in the workflow model. The execution
order of the tasks can be defined in terms of the dependency relationships that may exist
among them, or in function of their data transfers (i.e., data flow). Therefore, a workflow
model is often represented as a graph in a formal framework or in a workflow specifi-
cation language. A workflow instance is a specific execution of a workflow, i.e. is an
instantiation of a workflow model with its own input data and configuration parameters.

In this work, a scientific workflow is modeled as a Directed Acyclic Graph (DAG),
where nodes represent individual computational tasks and the edges represent data and
control dependencies between tasks. Figure 2 shows an example of workflows modeled
as DAGs. Despite their simplicity, DAGs enable the representation of the most common
data flow patterns used to model scientific workflows, such as pipeline, data distribution
(data parallelism), and data aggregation (data synchronization)—all of them illustrated in
the workflow model of Figure 2a.

2.1. Execution on Cloud Computing Platforms

Several works [Hoffa et al. 2008, Juve et al. 2009, Deelman et al. 2008] have shown that
clouds are a viable computing platform for the execution of scientific applications. They
can provide a large amount of on-demand, elastic resources at lower costs than those in-
volved in acquiring and maintaining a high-performance cluster or supercomputer. Public
cloud computing platforms offer virtualized resources that can be provisioned and re-
leased at any time. As a result, one can adapt the set of computational resources to the



specific resource requirements of workflow instances, even when the requirements vary
during the instances execution [Deelman et al. 2012].

Due to virtualization, scheduling techniques similar to the classic ones used to
execute scientific workflows in grids can be extended to clouds. These techniques are de-
signed to optimize specific performance goals such as total completion time (makespan)
and average completion time of tasks. In addition, there is a clear tradeoff between perfor-
mance and cost. Performance can be improved by provisioning additional resources at the
expense of high costs. Finding a solution that satisfies both criteria (multi-objective prob-
lem) is known to be an NP-hard problem, thus several heuristics have been developed to
tackle this problem [Malawski et al. 2012, Fard et al. 2012]. In this context, optimizing
the use o computational resources (e.g., by using resource sharing) is a feasible approach
to reduce costs with minimal impact on the overall workflow execution performance.

2.2. Scientific Workflow Management System (SWfMS)

A scientific workflow management system (SWfMS) is a software tool that supports
the modeling, instantiation, execution, monitoring, and analysis of scientific workflows.
Several SWfMSs [Wolstencroft et al. 2013, Ludäscher et al. 2006, Giardine et al. 2005,
Deelman et al. 2015] have been developed to allow scientists to: (i) describe their appli-
cations as high-level abstractions decoupled from the specifics of workflow execution;
and (ii) execute these applications seamlessly on possibly complex, multi-site distributed
platforms that can accommodate large-scale executions.

Taverna [Wolstencroft et al. 2013], Kepler [Ludäscher et al. 2006],
Galaxy [Giardine et al. 2005], and Pegasus [Deelman et al. 2015] are examples of
open-source, general-purpose SWfMSs that have been largely used by the scientific
community. Although these systems implement different automation approaches, most
of them share common architectural components: (i) Execution environment—represents
the target execution infrastructure; (ii) Task Manager—abstracts the complexity of the
physical platform and provides mechanisms to execute workflow tasks in a scalable,
efficient, and robust manner; (iii) Workflow Engine—manages and monitors the state
of the workflow execution; and (iv) Workflow Planner—maps high-level workflow
descriptions onto distributed resources. In this work, we have particular interest in the
resource manager (execution environment), which controls the software and hardware
components used in the workflow execution.

2.2.1. The Pegasus SWfMS

We used the Pegasus SWfMS [Deelman et al. 2015] as a case study and a driver for this
work. Pegasus bridges the scientific domain and the execution environment by auto-
matically mapping high-level abstract workflows descriptions onto distributed resources.
It manages data on behalf of the user, infers the required data transfers, registers data
into catalogs, and captures performance information while maintaining a common user
interface for workflow submission. In Pegasus, workflows are described abstractly as
DAGs, where nodes represent individual computational tasks and the edges represent data
and control dependencies between tasks, without any information regarding physical re-
sources or physical locations of data and executables. The abstract workflow description



is represented as a DAX (DAG in XML), describing all tasks, their dependencies, their
required inputs, their expected outputs, and their invocation arguments.

Workflow Mapper

Abstract Workflow

Executable Workflow

Workflow Planning

Replica
Catalog

Tranformation
Catalog

Site
Catalog

Local Execution

Engine and Scheduler

Shell-based Engine

serial order

HTCondor DAGMan HTCondor Schedd

Execution Enviroment

Test Environment

Pegasus Cluster

PegasusLite

PMC

Vanilla Universe

HTCondor Pool

Local HTC

Cloud HPC

Grid Universe

Remote Execution

HPC HTC

Configuration Options

Figure 1. Overview of the Pegasus
SWfMS architecture.

Figure 1 shows an overview of
the Pegasus architecture. The Work-
flow Mapper component of Pegasus is in
charge of planning the workflow execu-
tion. During execution, Pegasus trans-
lates the abstract workflow into an ex-
ecutable workflow, determining the ex-
ecutables, data, and computational re-
sources required for the execution. Pega-
sus maps executables to their installation
paths or to a repository of stageable bi-
naries defined in a Transformation Cata-
log. Workflow execution with Pegasus in-
cludes data management, monitoring, and
failure handling, and is managed by DAG-
Man [Frey 2002]. Individual workflow
tasks are managed by a task scheduler
(HTCondor [Thain et al. 2005]), which supervises their execution on local and remote
resources. HTCondor supports a number of different execution layouts. The mapping of
abstract workflow tasks to executable workflow jobs depends on the underlying execution
infrastructure. In this work, we target execution platforms where jobs are executed in a
non-shared file system environment.

3. Experimental Settings

Most SWfMSs assume that activities must be executed isolated, one per available CPU
or core. The multitenant architecture of cloud computing platforms does not provide the
same level of isolation expected by HPC applications: the same physical machine can
host more that one virtual machine without the user knowledge. We argue that on those
platforms a moderate use of shared multiprocessors can actually improve the performance
and decrease the cost of the execution. In the remaining of the text we will evaluate the
execution of two real-world scientific applications in a public cloud computing platform.

3.1. Resource Management

Within Pegasus, HTCondor manages the available resources through slots of execution,
in which tasks can be scheduled to perform their computation. Typically, HTCondor
creates one slot per CPU-core. For example, in a platform composed of eight single-
core execution nodes, the resource manage will advertise eight slots of execution when
using the default configuration. For this experiment, we configured HTCondor to create
multiple slots from a single core. As a result, tasks can be mapped into slots within the
same core, i.e. task executions will share the same CPU core. Memory and disk partitions
can also be configured among the slots, however the analysis of the performance impact
of disk and memory requirements is out of the scope of this work. Thus, we rely in the
default configuration, which distributes them equally.



3.2. Scientific Applications

Montage (Figure 2a): A workflow created by the NASA Infrared Processing and Anal-
ysis Center as an open-source toolkit to generate custom mosaics of astronomical im-
ages [Jacob et al. 2009]. In the workflow, the geometry of the output mosaic is calculated
from the input images. The inputs are then re-projected to have the same spatial scale
and rotation, the level of background emissions in all images is uniformed, and the re-
projected, corrected images are co-added to form the output mosaic. The size of the
workflow depends on the number of input images of the mosaic.

Epigenomics (Figure 2b): A workflow that automates the execution of genome sequenc-
ing operations developed at the USC Epigenome Center [epi 2015] to map the epigenetic
state of human cells on a genome-wide scale. The workflow processes multiple sets of
genome sequences in parallel. These sequences are split into subsets (chunks), that are
posteriorly filtered to remove noisy and contaminating sequences, reformatted, and then
mapped to a reference genome. The mapped sequences are finally merged and indexed
for later analysis. The size of the workflow depends on the chunking factor used on the
input data.

(a) Montage (b) Epigenomics

Figure 2. Examples of instances of the workflows used in the experiments.

3.3. Experiment Conditions

Workflows were executed on the Google Compute Engine (GCE), the Infrastructure as
a Service (IaaS) component of Google Cloud Platform [goo 2015]. For each workflow
run, we deployed a HTCondor pool of VMs by using PRECIP [Azarnoosh et al. 2013],
an experiment management tool that automates resource provisioning of cloud resources.

In this experiment, we used n1-standard-1 instance type. In an n1 series, a virtual
CPU is implemented as a single hardware hyper-thread on a 2.6GHz Intel Xeon E5 (Sandy
Bridge), 2.5GHz Intel Xeon E5 v2 (Ivy Bridge), or 2.3GHz Intel Xeon E5 v3 (Haswell).



An n1-standard-1 machine is composed of one virtual CPU of 2.75 GCEUs (Google
Compute Engine Units) and 3.75GB of memory. The image used to instantiate the VMs
operates over Ubuntu 15.04 and uses Pegasus 4.5.0 as the SWfMS, and HTCondor 8.3.5
as the resource manager. We deployed 9 instances of the n1-standard-1 machine, where
one was used as a central node (submit node), and the remaining instances as execution
nodes.

Runs of each workflow instance were performed with different datasets or input
parameter options. For the Montage workflow, a single dataset was used, and the degree
input parameter was set to 0.1, 0.5, 1.0, 2.0, and 4.0 degrees, which leverages its size (in
terms of number of tasks). Table 1 shows the number of tasks per type for the Montage
workflow. Two different input datasets (TAQ and HEP) were used for the Epigenomics
workflow, which the number of tasks per task type are shown in Table 2.

Task 0.1 0.5 1 2.0 4.0
mAdd 1 1 1 1 5
mBackground 8 32 84 300 603
mBgModel 1 1 1 1 1
mConcatFit 1 1 1 1 1
mDiffFit 13 73 213 836 2316
mImgtbl 1 1 1 1 5
mJPEG 1 1 1 1 1
mProjectPP 8 32 84 300 802
mShrink 1 1 1 1 4

Table 1. Number of tasks per task type for the Montage workflow for different
values of the degree parameter.

Task TAQ HEP
chr21 1 1
fast2bfq 729 1360
fastqSplit 2 7
filterContams 729 1360
map 729 1360
mapMerge 3 8
pileup 1 1
sol2sanger 729 1360

Table 2. Number of tasks per task type for the Epigenomics workflow for the TAQ
and HEP datasets.

In each execution of a workflow instance, each core of the execution nodes was
partitioned into 1, 2, 4, or 8 slots. Therefore, each workflow run had 8 cores and between
8 to 64 total slots (i.e., 8 × n slots, where n denotes the number of partitions). Table 3
summarizes the experimental settings.

We characterize execution profiles for the scientific workflows described in the
previous section by using the Kickstart [Vockler et al. 2006, Juve et al. 2015] profiling
tool from Pegasus. Kickstart monitors and records information about the execution of
individual workflow tasks. It captures fine-grained profiling data such as process I/O,
runtime, memory usage, and CPU utilization. Workflow profiles are then used to support
the analyses of the experiment results.



Workflow Case Partitions Total Input Size Number of Executions
Montage 0.1 2, 4, 8 12.41 MB 18
Montage 0.5 2, 4, 8 49.79 MB 18
Montage 1.0 2, 4, 8 130.43 MB 18
Montage 2.0 2, 4, 8 489.75 MB 18
Montage 4.0 2, 4, 8 1.81 GB 18
Epigenomics TAQ 2, 4, 8 1.01 GB 18
Epigenomics HEP 2, 4, 8 1.79 GB 18

Table 3. Experimental settings. The number of partitions denote the number of
slots advertised by the resources.

4. Results and Discussion

In this section, we evaluate the impact of CPU-core partitioning on the overall perfor-
mance of the workflow executions. We also investigate the performance gain of individual
workflow tasks. Experiment results for 1 partition (i.e., no resource sharing) are used as
the baseline for comparison.

Figure 3 shows the average walltime for both workflows. The walltime represents
the turnaround time to execute all workflow tasks, which includes the execution of all
computing jobs, and the extra jobs added by Pegasus for data management (e.g., data stag-
ing, cleanup tasks, and directory management). For the Montage workflow, the perfor-
mance gain/loss is negligible for small degree instances (0.1, 0.5, and 1.0) due to the very
low number of tasks, and thus very low degree of parallelism (see Table 1 and Figure 2a),
to the short duration of its tasks (see Figure 4), and the overhead inherent to the workflow
management system, e.g. timespan to release next task [Chen and Deelman 2011]. For
higher degrees (2.0 and 4.0), the performance of the workflow execution is improved up
to 9% as shown in Table 4. Figure 4 displays the average task runtime per task type and
degree for the Montage workflow. Although the use of partitioned slots slightly impacts
the runtime of individual tasks, the parallelism gain overcomes this loss.
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Figure 3. Workflow makespan evaluation for different partition sizes.

For the Epigenomics workflow, an overall performance gain up to 6% is ob-
served for partitions of size 2. Epigenomics execution is mostly dominated by the
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Figure 4. Average task runtime per task type and different degree values for the
Montage workflow.

map task (Figure 5), which process a significant amount of data and is also CPU-
intensive [Juve et al. 2013, Ferreira da Silva et al. 2013]. A very large partitioning size
significantly impacts the runtime of map tasks and consequently slows down the work-
flow execution.
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Figure 5. Average task runtime per task type and different degree values for the
Epigenomics workflow.

The slowdown experienced by individual tasks is mainly due to the decrease of
the CPU utilization. For each experiment case, we measured the average CPU usage rate
F̄ for each task type T , defined as follows:

F̄ (T ) =
1

|T |
×
∑
t∈T

(
CPU timet
runtimet

)
(1)

where T is the set of all tasks of type T within a workflow instance. The higher the
value of F̄ the higher is the CPU utilization (at most 1, which means 100%). Fig-
ure 6 shows the average CPU utilization rate for the Montage (top) and Epigenomics
(bottom) workflows. Note that for the Montage workflow only measurements for 2.0
and 4.0 degrees are shown since they yield noticeable performance gain. Overall, the
Epigenomics workflow is CPU-intensive, while Montage workflow is predominantly I/O-
intensive [Juve et al. 2013]. This result suggests that resource sharing optimizations for
Epigenomics is limited to a small number of partitions as shown in Figure 5. Map tasks
present an exponential decrease of CPU utilization as the number of partitions increase,
which significantly affects the task runtime, and thereby slows down the workflow execu-
tion. On the other hand, linear CPU usage decreases (e.g., mBackground, mDiffFit,
and mProjectPP for the Montage workflow), at the expense of slightly slowing down
task executions, yield fair performance gains.

Table 4 summarizes the experimental results to evaluate the impact of shared mul-
tiprocessor (partitions) when running scientific workflows on cloud resources. The table
highlights the average workflow makespan (walltime), and the average performance gains
(+) or losses (−) for different partition sizes.

5. Concluding Remarks
Cloud computing platforms are known by their performance unpredictability. Virtual
machines allow cloud providers to make a more clever use of the physical resources, at
the expense of hiding details about the physical machines from users.
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Figure 6. Average CPU utilization for the Montage (top) and Epigenomics (bot-
tom) workflows per task type.

Workflow Case Baseline 2 Partitions 4 Partitions 8 Partitions
Walltime Gain Walltime Gain Walltime Gain Walltime Gain

Montage 0.1 334.3 0% 336.5 −1% 336.9 −1% 343.1 −3%
0.5 511.6 0% 550.8 −7% 573.4 −11% 526.2 −3%
1.0 892.4 0% 893.6 0% 870.6 +3% 877.5 +2%
2.0 2825.3 0% 2627.9 +8% 2589.4 +9% 2627.8 +8%
4.0 6730.0 0% 6420.0 +5% 6443.3 +4% 6390.0 +5%

Epigenomics TAQ 6310.0 0% 6010.0 +5% 6416.0 −2% 7356.7 −14%
HEP 11493.3 0% 10840.0 +6% 11683.3 −2% 13020.0 −12%

Table 4. Summary of performance gains for different partition sizes. The baseline
is defined as runs with CPU-cores partitioned into a single slot, i.e. no resource
sharing.

We have studied the indirect impact of this unpredictability on scientific applica-
tions, generally designed for HPC platforms. Using two real-world scientific workflows
and a well-known public cloud provider, we have analyzed the consequences of executing
multiple workflow tasks concurrently in a same core.



In summary, shared multiprocessors within a single virtual machine can improve
the execution of scientific workflows, however they should be sparingly used. Experi-
mental results show that larger workflows benefit more from resource sharing. On public
clouds, reducing the execution time also implies in lower costs due to lower lease times.

As expected, CPU intensive jobs are likely to suffer performance degradation.
Thus, even if the workflow execution time can be improved, ideally the use of resource
sharing must be considered in a case-by-case basis for each task.

As future work we are developing an automatic slot partitioning scheme. Using
tasks profiling, a specialized scheduling can group low CPU tasks to take advantage of
resource sharing. Also, dynamic allocation and configuration of resources can be mixed
to attend specific needs of an ongoing workflow execution.
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