Business Process Management Using Process Algebra and Relational Database Model

Kelly Rosa Braghetto (kellyrb@ime.usp.br)
João Eduardo Ferreira (jef@ime.usp.br)
Calton Pu (calton@cc.gatech.edu)

1 Department of Computer Science
Institute of Mathematics and Statistics (IME)
University of São Paulo (USP)

2 College of Computing
Georgia Institute of Technology
Introduction

Navigation Plan Definition Language

NavigationPlanTool

Conclusion

Agenda

1. Introduction
 - Context
 - Our work

2. Navigation Plan Definition Language
 - Presentation
 - Example

3. NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4. Conclusion
Agenda

1. Introduction
 - Context
 - Our work

2. Navigation Plan Definition Language
 - Presentation
 - Example

3. NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4. Conclusion
Agenda

1. Introduction
 - Context
 - Our work

2. Navigation Plan Definition Language
 - Presentation
 - Example

3. NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4. Conclusion
Introduction

Context

Our work

Navigation Plan Definition Language

Presentation

Example

NavigationPlanTool

Presentation

Service 1 – NPDL Interpreter

Service 2 – Process Instantiation

Service 3 – Process Instance Execution Monitor

Conclusion
1 Introduction
 - Context
 - Our work

2 Navigation Plan Definition Language
 - Presentation
 - Example

3 NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4 Conclusion
BPM involves methods, techniques and tools to support the entire business process life cycle:
- project;
- execution and management;
- operational analysis.

⇒ Associating **formal frameworks** to the project phase is valuable since:
- they provide non-ambiguous models;
- they improve the diagnosis capability;
- they enable a reliable execution control of the processes.
Formal Specification of Processes

Well-known examples of frameworks for formal reasoning about processes:

- Petri Nets (Place/Transitions-Nets, Coloured Petri Nets, Workflow Nets, ...);
- Process Algebras (Algebra of Communicating Processes, π-Calculus, LOTOS, ...).

⇒ There are tools based on formal frameworks for the management of workflows and business processes, but integrating these tools with other applications is not an easy task.
1 Introduction
 - Context
 - Our work

2 Navigation Plan Definition Language
 - Presentation
 - Example

3 NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4 Conclusion
Our work

NavigationPlanTool (NPTool)

A tool that supports the design, instantiation and execution control of business processes supported by the process algebra formalism.

⇒ It uses *Navigation Plan Definition Language* and a relational database to specify the processes and to control their instantiations and executions.
1 Introduction
 • Context
 • Our work

2 Navigation Plan Definition Language
 • Presentation
 • Example

3 NavigationPlanTool
 • Presentation
 • Service 1 – NPDL Interpreter
 • Service 2 – Process Instantiation
 • Service 3 – Process Instance Execution Monitor

4 Conclusion
NPDL is a business process specification language based on Algebra of Communicating Processes operators that applies the concept of Navigation Plan, that belongs to RiverFish architecture.

⇒ NPTool implements NPDL as an extension of SQL language.
Navigation Plan Definition Language (NPDL)

Main Features

- Specifies processes by algebraic expressions (operators and atomic actions);
- Contains basic operators (from process algebra): $+, \cdot$ and $||$
- Contains additional operators (only in NPDL): $\%, \%!, |\ast, \&$, \land and $?$
- Facilitates the representation of control-flow patterns and compensates for some limitations of process algebras and Petri Nets.

Kelly Rosa Braghetto (kellyrb@ime.usp.br)
1. Introduction
 - Context
 - Our work

2. Navigation Plan Definition Language
 - Presentation
 - Example

3. NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4. Conclusion
Navigation Plan Definition Language (NPDL)

Example

A simple calculation process

CREATE ACTION A1 'ReadFirstValue';
CREATE ACTION A2 'ReadSecondValue';
CREATE ACTION A3 'CalculateSum';
CREATE ACTION A4 'CalculateProduct';
CREATE ACTION A5 'ShowResult';
CREATE PROCESS P1 'CalculationProcessAux';
CREATE PROCESS P2 'CalculationProcess';
SET P1 = (A1 || A2).(A3 + A4).A5;
SET P2 = P1.P2 + P1;
Navigation Plan Definition Language (NPDL)

Other Commands

CREATE RULE [RULE NAME];
CREATE FUNCTION [FUNCTION NAME];
DROP PROCESS [PROCESS NAME];
DROP ACTION [ACTION NAME];
DROP RULE [RULE NAME];
DROP FUNCTION [FUNCTION NAME];
SELECT ACTIONS;
SELECT PROCESSES;
SELECT RULES;
SELECT FUNCTIONS;
...

Kelly Rosa Braghetto (kellyrb@ime.usp.br)
NavigationPlanTool (NPTool)

NPTool is a library of functions implemented in Java that offers three important services:

1. NPDL Interpreter
2. Process Instantiation Service
3. Process Instance Execution Monitor
NavigationPlanTool (NPTool)

Presentation
Service 1 – NPDL Interpreter
Service 2 – Process Instantiation
Service 3 – Process Instance Execution Monitor

Introduction
Navigation Plan Definition Language
NavigationPlanTool
Conclusion

Services

Service 1 – NPDL Interpreter
Service 2 – Process Instantiation
Service 3 – Process Instance Execution Monitor

NPDL Commands
CREATE ACTION a1 'VerifyOrderData.exe';
...
CREATE ACTION a9 'CancelOrder.exe';
CREATE PROCESS PA 'Purchase Process';
CREATE PROCESS P1 'Auxiliary Process';
SET PA = a8 + a1 . P1 . (a8 + P2);
SET P1 = a2 . (a8 + a3 . P3);
...

 Kelly Rosa Braghetto (kellyrb@ime.usp.br)

BPM Using Process Algebra and Relational Database Model
1 Introduction
 - Context
 - Our work

2 Navigation Plan Definition Language
 - Presentation
 - Example

3 NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4 Conclusion
NPDL Interpreter

Operations:

1. Creation of relational data structures (tables) to store processes, actions and instances data;
2. Lexical, syntactic and semantical analysis of NPDL commands;
3. Translation of NPDL commands to “pure” SQL commands.
NPDL Interpreter
Relational Database Model

- Service 1 – NPDL Interpreter
- Service 2 – Process Instantiation
- Service 3 – Process Instance Execution Monitor
1. Introduction
 - Context
 - Our work

2. Navigation Plan Definition Language
 - Presentation
 - Example

3. NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4. Conclusion
Process Instantiation

Following the concept of *navigation plan instantiation* of *Riverfish* architecture, this service offers functions for the creation of *process instances*.

⇒ A process instance represents a request to a specific process.

⇒ All the instance data, as well as process definition data associated with the instance, are stored in the database.
1. Introduction
 - Context
 - Our work

2. Navigation Plan Definition Language
 - Presentation
 - Example

3. NavigationPlanTool
 - Presentation
 - Service 1 – NPDL Interpreter
 - Service 2 – Process Instantiation
 - Service 3 – Process Instance Execution Monitor

4. Conclusion
This service is responsible for linking a process instance to its execution data. It contains the functions that control the execution of a process instance.

The service is supported by database structures to store and recover the execution state of the instance and main-memory structures to control the execution flow.

⇒ Expression tree of the process + execution state of an instance = navigation tree of the instance.
Navigation Trees
Treatment of basic operators: alternative composition $a + b$
Navigation Trees
Treatment of basic operators: sequence composition $a \cdot b$
Navigation Trees

Treatment of basic operators: parallel composition $a \parallel b$
Navigation Trees

Treatment of additional operators:
- unlimited repetition \(a?* \)
- conditional execution \(\%r_1 a + \%!r_1 b \)
Example of Execution Control

Acquisition of items in a library collection (simplified version)

- \(r_1 \) checks the completeness of data from acquisition order and the availability of the budget for purchasing;
- \(a_1 \) sorts the order items according to some priority;
- \(a_2 \) gathers the prices of the order items;
- \(a_3 \) liberates the order for purchasing;
- \(a_4 \) registers the purchase receiving;
- \(a_5 \) registers a problem with the purchase.

\[
\text{SET } P1 = a1 \parallel a2 + (a1 \parallel a2).P1; \\
\text{SET } P = %r1 P1 . a3 . (a4 + a5?* . a4);
\]
Navigation tree of an instance of acquisition process

Initial state
Navigation tree of an instance of acquisition process

After the execution of r_1 - check the completeness of order data
Navigation tree of an instance of acquisition process

After the substitution of P_1 - the subprocess for sort and gather the prices of order items
Navigation tree of an instance of acquisition process

After the execution of a_2 - gather the prices of other items
Navigation tree of an instance of acquisition process

After the execution of a_1 - sort the order prices according to some priority
Navigation tree of an instance of acquisition process

After the execution of a_3 - liberates the order for purchasing
Navigation tree of an instance of acquisition process

After the removal of inaccessible branches
Navigation tree of an instance of acquisition process
After mapping operator ?*
Navigation tree of an instance of acquisition process

After the execution of a_5 - register a problem with the purchase
Navigation tree of an instance of acquisition process

After the execution of a_4 - register the purchase receiving
Using process algebra as formal basis supported:

- the creation of a simple but flexible relational database model to represent processes data and a language to manipulate these data - the NPDL;
- the development of a reliable engine that uses the process algebra axioms and operational semantics to implement a execution control of business processes.
The database can be viewed as a common repository of processes.

- This approach allows us to share processes definitions between different applications that use the NPTool.
- The compositional characteristic of process algebra makes possible the composition of great processes from smaller ones.
Conclusion

Work in Progress

- Automated generation of NPDL expressions from graphical representations.
- NPDL extension to represent process data flow.
- Process mining based on statistical approach.