
UNIVERSITY OF SÃO PAULO

INSTITUTE OF MATHEMATICS AND STATISTICS

DEPARTAMENT OF COMPUTER SCIENCE

Technical Report RT-MAC-2011-03

FROM BUSINESS PROCESS MODEL AND NOTATION
TO STOCHASTIC AUTOMATA NETWORK

Kelly Rosa Braghetto, João Eduardo Ferreira and Jean-Marc Vincent

March, 2011

From Business Process Model and Notation

to Stochastic Automata Network

Kelly Rosa Braghetto1 ⋆ ⋆⋆, João Eduardo Ferreira1, and Jean-Marc Vincent2

1 Department of Computer Science, University of São Paulo
Rua do Matão, 1010, Cidade Universitária, 05508-090, São Paulo, Brasil

{kellyrb,jef}@ime.usp.br
2 LIG Laboratory – INRIA MESCAL Project, Joseph Fourier University

51, avenue Jean Kuntzmann, F-38330, Montbonnot, France
Jean-Marc.Vincent@imag.fr

Abstract. The qualitative and quantitative analysis of operational pro-
cesses recently started to receive special attention with the business

process management systems. But the Business Process Model and Nota-

tion (BPMN), the standard representation of business processes, is not
appropriate to support the analysis phase. Most of the works proposing
mappings from BPMN to formal languages aim model verification, but
few are directed to quantitative analysis. In this work, we state that a
well-defined BPMN Process diagram can originate a Stochastic Automata

Network (SAN) – a compositionally built stochastic model. More than
support verification, SAN provides a numerical evaluation of processes’
performance. SAN attenuates the state-space explosion problem associ-
ated with other Markovian formalisms and is used to model large/complex
systems. The main contribution of this work is an algorithm that con-
verts BPMN diagrams to SAN. This conversion is the first step to build
complete performance evaluation models of business processes.

Keywords: Business Processes, BPMN, Performance Evaluation, Stochas-
tic Automata Network

1 Introduction

The business processes management (BPM) systems can be seen as a “natural
evolution” of the workflow management (WFM) systems. When the WFM
systems first appeared, in the 80’s, their main target was process automation.
But with the evolution of the specific-domain modeling languages and supporting
tools, the analysis (both qualitative and quantitative) of the operational processes
– almost unattended in the WFM systems – recently started to receive special
attention with the BPM systems.

Several efforts have been made to standardize modeling and execution lan-
guages, in order to improve the interoperability of tools developed to BPM. The

⋆ The student was supported by the Brazilian government (CAPES and FAPESP).
⋆⋆ Contact author. The order of authors is merely alphabetical.

2 From BPMN to Stochastic Automata Network

most important result of these efforts is the Business Process Model and Nota-
tion (BPMN) [12], a standard notation for graphical representation of business
processes. Despite being able to support business users in different phases of the
business process life cycle, BPMN models are not appropriate to support the
analysis phase. Since BPMN models have no formal semantics, they are not well
suited to qualitative analysis (validation and verification). Furthermore, BPMN
diagrams do not provide mechanisms to quantify the computational/human effort
required to perform the activities, nor the capacity of work of shared resources
and their access policies. This deficiency hinders the use of BPMN for perfor-
mance evaluation (i.e., quantitative analysis). In BPM domain, the objective of
performance analysis is to evaluate performance indicators – service time, waiting
time, queue size, and resource utilization – that enable us to improve the business
processes by identifying inefficiencies, such as bottlenecks and idle resources.

Several recent works proposed mappings from BPMN to formal languages,
in order to enable model verification. But few works regard business process
modeling aiming performance evaluation. The analytical modeling for performance
evaluation is generally made over stochastic models that have as underlying
formalism a Markov process. This kind of models are used to represent uncertainty
in systems that evolve dynamically in time. BPMN models are easily readable,
their syntax and semantics are intuitive even for non technical users. On the
other side, reading or designing stochastic models is far from being a trivial task,
it demands some statistical skill in addition to the familiarity with the formalism.

In this work, we state that a well-defined BPMN Process diagram can originate
a Stochastic Automata Network (SAN) [14]. More than support verification, SAN
models are able to provide a numerical performance analysis of business processes.
SAN is a structured Markovian formalism that enables us to build stochastic
models in a compositional approach. Created to attenuate the well-known state-
space explosion problem associated with the Markovian formalisms, SAN can be
applied in the modeling of large/complex systems. It is very efficient regarding
the memory consumption, in addition to provide the concept of functional rates –
that can facilitate the modeling and help to reduce the size of the state-space.

Our main contribution is an algorithm that automatically converts BPMN
diagrams to SAN models, by means of a set of mappings and simple operations
that we defined over the models. This conversion is the first step required to
build the performance evaluation model of a business process. After, the SAN
model generated by the conversion algorithm should be enriched with information
regarding the resource management associated with the modeled business process.
This complementary step generates a model that, when numerically analyzed,
provides variated performance indicators of the business process.

The paper’s remainder is organized as follows. Section 2 introduces the two
topics required to the understanding of this work: the SAN formalism and the
BPMN notation. Our algorithm for the conversion of BPMN models to SAN
models is presented and formalized by definitions in Section 3; the section also
provides a short example of conversion. Section 4 discusses some related works,
while the concluding remarks are made in Section 5.

From BPMN to Stochastic Automata Network 3

2 Fundamentals

Two topics are indispensable for the understanding of this work: the SAN
formalism and the main structures of the BPMN Process diagrams. We briefly
introduce them in this section.

2.1 Stochastic Automata Network

The Stochastic Automata Network (SAN) is a technique used to model systems
with large state spaces, introduced by Plateau in 1985 [14, 15]. SAN has been
successfully applied to model parallel and distributed systems that can be viewed
as collections of components that operate more or less independently, requiring
only infrequent interaction such as synchronizing their actions, or operating at
different rates depending on the state of parts of the overall system.

A system is described in SAN as a set of N subsystems modeled as a set of
stochastic automata A(i), 1 ≤ i ≤ N , each one containing ni local states and
transitions among them. The global state of a SAN is defined by the combinations
of the internal state of each automaton. A change in the state of a SAN is caused
by the occurrence of an event. Local events cause a state transition in only one
automaton (local transition), while synchronizing events cause simultaneous state
transitions in more than one automaton (synchronizing transitions). A transition
is labeled with the list of events that may trigger it.

All event transitions in the model are associated to rates, that indicates
the average frequency (or, in other words, the inverse of the average execution
time) in which the transitions occur. The rate of an event may be constant
(a nonnegative real number) or may depend upon the state in which it takes
place. In this last case, the rate is a function from the global state space to the
nonnegative real numbers and is called functional transition rate. This concept
of functional rate of SAN (where the rate can depend on the entire state of the
SAN model) is more general than the concept of state dependent service rate
existing in queuing networks (where the rate depends only on the state of the
queue itself). For example, one can use functional transition rate to model how
the execution time of an activity in the system is affected by the variation of
the workload, or to model dependency existent between the probability of the
execution of an activity and the current state of the process.

The expression of the infinitesimal generator (transition rate matrix) of the
underlying Markov chain of a well defined SAN is given by the generators on these
smaller spaces and by operators from the Generalized Tensor Algebra (GTA) [6],
an extension of the Classical Tensor Algebra (CTA). The tensor formula that
gives the infinitesimal generator of a SAN model is called Markovian Descriptor.

Each automaton A(i) of a SAN model is described by ni × ni square matrices.
In the case of SAN models with synchronizing events, the descriptor is expressed
in two parts: a local part (to group the local events), and a synchronizing part
(to group the synchronizing events). The local part is defined by the tensor sum

of Q
(i)
l – the infinitesimal generator matrices of the local transitions of each A(i).

4 From BPMN to Stochastic Automata Network

In the synchronizing part, each event corresponds to two tensor products: one

for the occurrence matrices Q
(i)
s+

(expressing the positive rates) and the other for

the adjusting matrices Q
(i)
s−

(expressing the negative rates). The descriptor is the
sum of the local and the synchronizing parts, expressed as:

Q =

N
⊕

g
i=1

Q
(i)
l +

∑

s∈ε





N
⊗

g
i=1

Q
(i)
s+

+

N
⊗

g
i=1

Q
(i)
s−



 (1)

where

{

N is the number of automata of the SAN model
ε is the set of identifiers of synchronizing events

.

The state-space explosion problem associated with Markov chain models is
attenuated by the fact that the state transition matrix is stored in a compact
form, since it is represented by smaller matrices. All relevant information can be
recovered from these matrices without explicitly build the global matrix.

The steady state analysis of a SAN model gives the stationary probability
distribution of the system – i.e., the long-run average time the system spends in
each one of its states. From this stationary distribution we are able to extract
performance indices such as average throughput of the system, average waiting
time, average queues size, utilization rate of resources, etc. Contrarily to the
steady state analysis that is interested in the long-run behavior, the transient
analysis investigates the transient behavior of the process, i.e., it is able to
determine the state of the process at the end of a time interval, the time until an
event occurs, the number of occurrences of an event during a time interval, etc.

A SAN model can be numerically solved using the PEPS tool [5]3. PEPS
includes several numerical iterative methods to solve SAN models and implements
strategies to improve the time/space trade-off in the computation of the solutions.
It supports both steady state analysis and transient analysis.

2.2 Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a standard maintained by
the Object Management Group (OMG). The BPMN’s main goal is to work as “a
standardized bridge for the gap between the business process design and process
implementation” [12]. The intention was to provide a common notation for the
business users involved in different phases of the life cycle of a business process.

Using BPMN, we are able to build three types of diagrams: Collaboration
diagrams, Process diagrams, and Choreography diagrams. Since the management
of resources can greatly vary from one type of diagram to other, in this work
we restricted ourselves to the Process diagrams. According to the specification
document of BPMN, “a process describes a sequence or flow of activities in an
organization with the objective of carrying out work”. A Process diagram is a

3 The PEPS tool and other details about it are available in http://www-id.imag.fr/

Logiciels/peps/index.html.

From BPMN to Stochastic Automata Network 5

graph of elements – activities, events, gateways, and sequence flows – that define
a finite execution semantics.

In this work we deal with a subclass of the models that can be represented as
a BPMN Process diagram – the well-defined ones (Section 3.1, Definition 5) – ,
in order to guarantee that the conversion of the diagram to a SAN model can be
made. Table 1 introduces the BPMN objects accepted as input by our conversion
algorithm. These objects are very important to process modeling and with them
we are able to express a rich class of business process models. In the following,
we briefly describe these graphical objects according to the definitions of the
specification document.

Start Event Exclusive Gateway Sequence Flow

End Event Parallel Gateway Association
[Activity Name] Atomic activity Inclusive Gateway

text

Annotation
Table 1. Basic flow and connecting objects of BPMN.

An event is something that happens during the course of a process and affects
the flow of the model. The start event indicates where a process will start, and
end event indicates where a process will end. An activity is a generic term for
work performed in the process; it can be atomic or compound. In this work,
the term activity refers to an atomic activity. A sequence flow is used to show
the order in which activities will be performed. A gateway is used to control
the divergence and convergence of sequence flows. Gateways can have several
behavior controls and each type of control affects both the incoming and outgoing
flow. In this work, we deals with the following gateway types:

– Exclusive Gateways. A diverging exclusive gateway (decision) is used to create
alternative paths within a process flow. For a given instance of the process,
only one of the paths can be taken. A converging exclusive gateway is used
to merge alternative paths. Each incoming control flow token is routed to
the outgoing sequence flow without synchronization;

– Parallel Gateways. A diverging parallel gateway creates parallel paths without
checking any conditions. The converging parallel gateway will wait for all
incoming flows before triggering the flow through its outgoing sequence flows;

– Inclusive Gateways. A diverging inclusive gateway can be used to create
alternative but also parallel paths within a process flow. Unlike the exclusive
gateway, all condition expressions are evaluated. All sequence flow with a true
evaluation will be taken. A converging inclusive gateway is used to merge a
combination of alternative and parallel paths; an arriving sequence flow may
be synchronized with some other sequence flows that arrive later.

In a parallel between BPMN objects and the workflow terminology, an exclu-
sive gateway corresponds to a XOR-split/join, a parallel gateway corresponds to
an AND-split/join, and an inclusive gateway corresponds to an OR-split/join.

6 From BPMN to Stochastic Automata Network

An association is used to link information with graphical elements. Text
annotations provide additional information for readers of the BPMN diagrams.

Other BPMN objects can be expressed in therms of the objects of Table 1.
For example, activity looping and multi-instances activities can be modeled using
atomic activities and exclusive/parallel gateways.

Process Instantiation and Completion. A process is instantiated when one
of its start events occurs. But, before introducing the notion of process completion,
we need to present the concept of token in BPMN.

A token is a theoretical concept that is used in the BPMN specification [12]
document as an aid to informally define the operational semantics of the BPMN
constructions. The behavior of process elements can be defined by describing
how they interact with the token as it traverses the structure of the process.

Each start event that occurs creates a token on its outgoing sequence flow,
which is followed as described by the semantics of the other process elements. For
example, the parallel gateway is activated if there is at least one token on each
incoming sequence flow; the parallel gateway consumes exactly one token from
each incoming sequence flow and produces exactly one token at each outgoing
sequence flow. Having this in mind, we can consider that a process instance is
completed if and only if the following two conditions hold: (i) there is no token
remaining within the process instance; (ii) no activity of the process is still active.

3 Conversion of BPMN Graphs to SAN Models

Section 3.1 introduces the structural properties of a BPMN graph that we consider
as a valid input for our conversion algorithm. In Section 3.2 we formally define
the structure of the SAN graph resulted from a conversion, and the operations
over SAN graphs that support the algorithm (described in Section 3.3).

3.1 BPMN Graph Definitions

As we briefly discussed in Section 2.2, a BPMN Process diagram is a directed
graph constituted of vertices of events, activities and gateways. In this work, we
restricted ourselves to a subclass of all process diagrams that can be formed from
BPMN objects. Definitions 1 to 5 formally describe this subclass.

Definition 1. BPMN Process Graph
A BPMN Process graph BG is a directed graph represented by the tuple

BG = (V,E, L, ℓ, p), with V = S ∪A ∪G ∪ F , where:

– S is a set of vertices representing the start events
– A is a set of vertices representing the atomic activities
– G is a set of vertices representing the gateways
– F is a set of vertices representing the end events
– E ⊆ (V × V) is a set of directed edges

From BPMN to Stochastic Automata Network 7

– L is a set of vertex labels
– ℓ : V −→ L is a labeling function of vertices
– p : E′ −→ [0, 1], where E′ ⊆ E, is a partial probability function that

associates edges with probability values

A directed edge in BG is a pair (v, w) – where v, w ∈ V , indicating that v is
an input vertex of w, and w is an output vertex of v. A label is used to denote
the name of the event or activity being modeled, but in the case of a gateway
vertex, it indicates the gateway type.

Definition 2. Path in a BPMN Process Graph
Let BG = (V,E, L, ℓ, p) be a BPMN Process graph and v1, vn ∈ V .
A path from v1 to vn (represented by v1 vn) is a sequence of vertices

v1, v2, · · · , vn (with vi ∈ V) such that, for 0 < i < n, (vi, vi+1) ∈ E.

Definition 3. Input Vertices and Output Vertices
Let BG = (V,E, L, ℓ, p) be a BPMN Process graph.
The functions inputs : V → 2V and outputs : V → 2V that give the input

vertices and the output vertices, respectively, of a vertex in BP are defined as

∀v ∈ V, inputs(v) = {u ∈ V | (u, v) ∈ E} and outputs(v) = {w ∈ V | (v, w) ∈ E}.

In order to minimize the semantic ambiguities that BPMN constructors can
introduce in the model and to guarantee some properties that a well-formed busi-
ness process model must respect, our conversion method makes some assumptions
about the BPMN model provided as input (formalized in Definition 4). These
assumptions facilitate the conversion and were already used (mainly the first 5
ones) in other related works such as, for example, in [16].

Definition 4. Well-Formed BPMN Process Graph
Let BG = (V,E, L, ℓ, p) be a BPMN Process graph, with V = S ∪A ∪G ∪ F .
BG is a well-formed BPMN Process graph if and only if:

– ∀v ∈ S, (| inputs(v)| = 0) ∧ (| outputs(v)| = 1)
– ∀v ∈ F , (| inputs(v)| = 1) ∧ (| outputs(v)| = 0)
– ∀v ∈ A, (| inputs(v)| = 1) ∧ (| outputs(v)| = 1)
– ∀v ∈ G, (ℓ(v) = “+”) ∨ (ℓ(v) = “©”) ∨ (ℓ(v) = “×”)
– ∀v ∈ G, ((| inputs(v)| > 1) ∧ (| outputs(v)| = 1)) ∨
((| inputs(v)| = 1) ∧ (| outputs(v)| > 1))

– ∀v ∈ A ∪G, ∃s ∈ S such that ∃ a path s v

– ∀v ∈ A ∪G, ∃f ∈ F such that ∃ a path v f

– ∀v ∈ G such as (ℓ(v) = “ ×”) ∨ (ℓ(v) = “©”), ∀w ∈ outputs(v), p((v, w))
must be defined

– ∀v ∈ G such as ℓ(v) = “×”
∑

w ∈ outputs(v)

p((v, w)) = 1

Therefore, a well-formed BPMN Process graph is a graph in which:

– a start event vertex can have only one output vertex and no input vertices;

8 From BPMN to Stochastic Automata Network

– an end event vertex can have only one input vertex and no output vertices;
– an activity vertex can have only one input vertex and only one output vertex;
– each gateway vertex has one of the following labels: “ + ”, for a parallel

gateway; “© ”, for an inclusive gateway; and “× ”, for an exclusive gateway;
– a gateway vertex can perform a role of divergence or a role of convergence (but

not the two roles at the same time). As a consequence, a gateway can have
only one input vertex and more output vertices (case of divergence), or can
have only one output vertex and more input vertices (case of convergence);

– for all vertex v of activity or gateway: (i) there exists a path from one start
event vertex to v, and (ii) there exists a path from v to one end event vertex;

– each output edge of an exclusive/inclusive gateway vertex must have an
associated probability value;

– the sum of the probabilities of the output edges of an exclusive gateway
vertex must be 1.

It is important to mention that the association of edges with probabilities
does not exist in the specification of BPMN. We introduced this feature in our
definition because the dynamic of a business process is probabilistic by essence
and probabilities are quantifications of the business process behavior.

The assumptions above are all related to syntactical properties of the BPMN
model, i.e. structural restrictions over the BPMN graph. But there exist also some
important semantical properties that we need to assume to have a well-defined
BPMN Process model (specified by Definition 5). In a well-defined BPMN Process
model, two important properties for a business process are granted: (i) it does
not contain unreachable activities, and (ii) it can always terminate.

Definition 5. Well-Defined BPMN Process Model
A well-defined BPMN Process model is a well-formed BPMN Process graph

in which:

– an exclusive gateway does not converge (join) parallel sequence flows;
– a parallel gateway does not converge (synchronize) alternative sequence flows;
– an inclusive gateway only converges (merges) sequence flows originated by

another inclusive gateway. In addition, there is an one-to-one correspondence
between the diverging and the converging inclusive gateways.

3.2 SAN Model Definitions

Definitions from 6 to 11 formally specify the structure of a SAN model and its
operations such as they are used in our conversion algorithm.

Definition 6. SAN Model and SAN Automaton
A SAN model S is a set S = {A1,A2, . . . ,An} of n SAN automata.
A SAN automaton A is given by a tuple A = (Q,E, T, L, ℓ, p), where:

– Q is a set of states
– E is a set of events

From BPMN to Stochastic Automata Network 9

– T ⊆ (Q×Q× E) is a set of state transitions labeled by events
– L is a set of state labels
– ℓ : Q −→ L is a labeling function of states
– p : T ′ −→ [0, 1], where T ′ ⊆ T , is a partial probability function that associates

a transition with a probability value

Definition 7. Input Transitions and Output Transitions
Let A = (Q,E, T, L, ℓ, p) be a SAN automaton.
The functions inputs : Q → 2T and outputs : Q → 2T that give the input

transitions and output transitions, respectively, of a state of A are defined as

∀q ∈ Q, inputs(q) = {(p, q, e) | (p, q, e) ∈ T} and
∀q ∈ Q, outputs(q) = {(q, r, e) | (q, r, e) ∈ T}.

Definition 8. Source State and Absorbing State
Let A = (Q,E, T, L, ℓ, p) be a SAN automaton and q ∈ Q a state of A.
If inputs(q) = ∅, then q is a source state.
If outputs(q) = ∅, then q is an absorbing state.

In this work, we propose an algorithm to automatically convert a well-defined
BPMN Process model (Definition 4) to a SAN model in the format of Definition 6.
This conversion starts with the individual mapping of the objects of the BPMN
graph into SAN objects, according with the illustrations in Table 2. In a general
way, we can say that the mapping of each vertex of the BPMN graph originates
in the SAN model at least one new automaton, with at least two states and a
transition between them (associated with a new event labeled with the identifier
of the BPMN vertex). Event, activity, and exclusive gateway vertices generate
only local events. Parallel gateways originates only synchronizing events. Inclusive
gateways (that must appears in pairs, delimiting closed blocks) generate both
local and synchronizing events.

Parallel sequence flows are mapped to sets of synchronized automata. A choice
is expressed by a state that has more than one output transition (remembering
that, in this case, each output transition must be weighted by a probability value).
An atomic activity a is mapped into a 3-state sequential automaton, where the
first state indicates that the activity is waiting for the availability of its required
resources, the second state indicates that it had already obtained the access to
the resources (by event ra), and the third state indicates that the execution of
the activity is finished (with the occurrence of event a).

In order to obtain the SAN model correspondent to a well-defined BPMN
Process model, we must compound the simple automata generated from the
mappings of Table 2. This composition is made by means of a set of simplification
operations applicable over SAN models, that we define in the following.

10 From BPMN to Stochastic Automata Network

BPMN Object1,2 SAN Mapping

Start event labeled s

A1

s

v1 v2s

v1 v2

Atomic activity labeled a

A1
ra a

v1 rv1 v2a

v1 v2

Exclusive gateway diverging 1 se-
quence flow in n

A1

(p1)

(pn)

v11

v1n

...v1

v2

vn+1v1

v2

(p1)

(pn) vn+1

...

Exclusive gateway converging n se-
quence flows in 1 A1

v1

v1 v2

v1
v2

...

Parallel gateway diverging 1 se-
quence flow in n A1

An

v1

v1

...

v1 v2

v1 vn+1
v1

v2

vn+1

...

Parallel gateway converging n se-
quence flows in 1 A1

An

v1

v1

...

v1 v2

v1 v2v1
v2

...

Inclusive gateway block diverg-
ing 1 sequence flow in n and re-
converging them in 1 again

A1

An

An+1

A2n

(p1)

(1− p1)

(pn)

(1− pn)

v1

v1

v11

v1¬1

v1n

v1¬n

vn+2

vn+2

...
...

v1 v11

v2

vn+2

v1 v1n

vn+1

vn+2

vn+2 vn+3

vn+2 vn+3

v1

v2

(p1)

(pn)
vn+1

vn+2
vn+3

...
...

. . .

. . .

Table 2. Mapping of the BPMN objects into SAN.

1 We are using the symbol to express any valid vertex of a well-defined BPMN
model (i.e., an atomic activity, or an end event, or a gateway).

2 It is important to notice that in this graphical representation of the BPMN graphs,
we included two textual annotations in the vertices: a label (appearing inside the
vertex), and an identifier vi (appearing at the bottom of the vertex).

From BPMN to Stochastic Automata Network 11

Definition 9. State Merging Operation (⊲)
Let A = (Q,E, T, L, ℓ,p) be a SAN automaton and q1, q2 ∈ Q be two states

of A.
The state merging of q1 and q2 in A (represented by A[q1 ⊲ q2]) results in a

SAN automaton AM = (QM , EM , TM , LM , ℓM , pM) such that:

– QM = Q \ {q2}
– EM = E

– TM = {(p, q, e) ∈ T | (p 6= q2) ∧ (q 6= q2)} ∪ {(p, q1, e) | (p, q2, e) ∈
T} ∪ {(q1, q, e) | (q2, q, e) ∈ T}

– LM = L

– ∀q ∈ QM , ℓM (q) = ℓ(q)

– ∀(p, q, e) ∈ TM , pM ((p, q, e)) =











p((p, q, e)), if (p, q, e) ∈ T

p((p, q2, e)), if (q = q1) ∧ ((p, q2, e) ∈ T)

p((q2, q, e)), if (p = q1) ∧ ((q2, q, e) ∈ T)

This operation eliminates q2 from A, transforming all the input/output tran-
sitions of q2 in input/output transitions of q1 (keeping the label of q1 unchanged).

Definition 10. State Suppression Operation (◮)
Let A = (Q,E, T, L, ℓ, p) be a SAN automaton and q ∈ Q be a state of A such

that | outputs(q)| = 1. Let to be the output transition of q and o be its output
state.

The state suppression of q in A (represented by A[q ◮]) results in a SAN
automaton AS = (QS , ES , TS , LS , ℓS , pS) such that:

– QS = Q \ {q}
– ES = {e ∈ E | (p, r, e) ∈ (T \ {to})}
– TS = {(p, r, e) ∈ T | (p 6= q) ∧ (r 6= q)} ∪ {(p, o, e) | (p, q, e) ∈ T};
– LS = {l ∈ L | ∃p ∈ Q, ((ℓ(p) = l) ∧ (p 6= q))}
– ∀q ∈ QS , ℓS(q) = ℓ(q)

– ∀(p, r, e) ∈ TS, pS((p, r, e)) =

{

p((p, r, e)), if (p, r, e) ∈ T

p((p, q, e)), in the other cases

This operation eliminates q and its output transition from A, transforming
all the input transitions of q in input transitions of its only output state o.

Definition 11. Automata Concatenation Operation (⊞)
Let A1 = (Q1, E1, T1, L1, ℓ1, p1) and A2 = (Q2, E2, T2, L2, ℓ2, p2) be two SAN

automata. Let q1 ∈ Q1 be an absorbing state and q2 ∈ Q2 be a source state.
The concatenation of A1 and A2 via the states q1 and q2 (represented by

A1

q1

⊞
q2
A2) is the SAN automaton AC = (QC , EC , TC , LC , ℓC , pC), where:

– QC = (Q1 ∪ Q2) \ {q2}
– EC = E1 ∪ E2

– TC = T1 ∪ {(q1, p, e) | (q2, p, e) ∈ T2} ∪ (T2 \ {(q2, p, e) | (q2, p, e) ∈ T2})

12 From BPMN to Stochastic Automata Network

– LC = L1 ∪ L2

– ∀q ∈ QC , ℓC(q) =

{

ℓ1(q), if q ∈ Q1

ℓ2(q), in the other cases

– ∀t = (p, q, e) ∈ TC , pC(t) =











p1(t), if t ∈ T1

p2((q2, q, e)), if (p = q1) ∧ ((q2, q, e) ∈ T2)

p2(t), in the other cases

3.3 The Conversion Algorithm

Algorithm 1 shows the main steps involved in the conversion of a well-defined
BPMN Process model to a SAN model. It first creates a SAN model composed
of all automata generated from the individual conversion of the vertices of the
input BPMN graph. This individual conversion, made by function “ConvertVer-
texInAutomata”4, is the implementation of the mappings described in Table 2.
In the sequence, this SAN model is reduced using Procedure 1, which applies the
operations defined in Section 3.2 to create the final SAN model.

The final number of automata in a SAN model generated by our conversion
method from a well-defined BPMN model BP is given by Formula 2.

numberOfAutomata(BP) = |SBP |+
∑

g ∈ G′

(| outputs(g)| − 1) ,

where G′ = {g ∈ GBP | (| outputs(g)| > 1) ∧ (ℓBP (g) ∈ {“× ”, “© ”})}

(2)

We can see each automaton as an independent sequence flow of the business
process. For that, we have at least as many automata as the number of start
events in BP (|SBP |). In addition, for each divergent parallel or inclusive gateway,
a new set of automata is required. The size of this set is given by the number of
branches (outputs) of the divergent gateway less 1 (because one of the branches
is treated as the continuation of the automaton that originates the divergence).

Algorithm 1 ConvertBPtoSAN(BP)

Input: BP – a well-formed BPMN graph that is also a well-defined Process model
Output: S – a SAN model
1: S ← ∅
2: V ← SBP ∪ABP ∪GBP ∪ FBP {All vertices of the BP graph}
3: for all v ∈ V do
4: S ← S ∪ ConvertVertexInAutomata(BP , vertex, S)
5: end for
6: ReduceSANModel(BP , S)
7: return S

4 We will not detail this function in an algorithmic form because of space restrictions.

From BPMN to Stochastic Automata Network 13

Procedure 1 ReduceSANModel(BP , S)

Input: BP – a well-formed BPMN graph
Input/Output: S – a SAN model
1: { Concatenate the “sequential” automata}
2: while there is an absorbing state q1 ∈ A1 and a source state q2 ∈ A2 (with
A1,A2 ∈ S) such that ℓA1

(q1) = ℓA2
(q2) do

3: AC ← A1

q1

⊞
q2
A2 {Concatenate the two automata}

4: {Merge the equivalent states correspondent to the converging exclusive gateways}
5: while ∃ q1, q2 ∈ QAC

such that ℓAC
(q1) = ℓAC

(q2) do
6: AC ← AC [q1 ⊲ q2]
7: end while
8: S ← (S \ {A1,A2}) ∪ AC

9: end while
10: for all A ∈ S do
11: { Remove the states created to link alternative sequence flows }
12: while ∃ q ∈ QA and ∃v ∈ GBP such that: (ℓA(q) = v ∧ ℓBP (v) = “ × ” ∧

| outputs(v)| = 1) do
13: A ← A[q ◮] { Suppress state q}
14: end while
15: { Merge the source state with the absorbing states}
16: while ∃q2 ∈ QA such that q2 is an absorbing state do
17: q1 ← the only source state of A
18: A ← A[q1 ⊲ q2] { Merge the states q1 and q2}
19: end while
20: end for

Two remarks must be made about our conversion algorithm. The first one is
that the SAN models generated by our algorithm are not the only ones possible
to represent the BPMN models provided as input. The second one is that the
order in which the pair of automata are selected to be concatenated (lines 2
and 3 of Procedure 1) impacts the final SAN models. Different orders may
generated structurally different SAN models that are equivalent in terms of
modeled behavior. These different models can also imply in different difficulty
levels to numerically solve the model.

The SAN model generated by our conversion algorithm reflects the behavior of
one instance of the business process, disregarding the resource usage. To analyze
the behavior of the system when several instances are being executed in parallel,
we need to replicate the automata of the SAN model – each replica represents an
instance of the process; SAN already counts on the concept of replicas [3].

Implementation The conversion method was implemented as part of a soft-
ware tool that is available at http://www.ime.usp.br/~kellyrb/bp2san. This
tool receives as input a BPMN model (textually described using the DOT lan-
guage [10]) and generates behaviorally equivalent SAN models corresponding to

14 From BPMN to Stochastic Automata Network

the given business process. The resulted SAN models are textually expressed
using the syntax accepted by the PEPS tool [5].

The automatically generated SAN models can be further annotated, for
example, with the information about the rates associated to the events or with
additional automata expressing resource constraints. This will allow a complete
numerical analysis of the model through the PEPS tool.

As one can imagine, to know the appropriate rate/probability to be associated
to each event of the stochastic model of a business process may not be a trivial task.
In some cases, the rates/probabilities can be defined by a business specialist, based
in his/her knowledge of the domain. In other cases, when the real system is already
implemented and in use, these values can be inspired by the times/frequencies
observed in the real system. However, it is important to emphasize that one of
the great advantages of the performance analysis via analytical modeling is the
predictive role it can assume. In this kind of analysis technique, it is easy to
change the parameters of the model to evaluate how the system will react to
different workloads or different resource availabilities. For this reason, even when
the exact rates/probabilities for the events are not known at the modeling time,
multiple analyses (made over the same model, but with different parameters) may
help in the tunning of the system, because they can indicate the characteristics
required for the system to meet the expected performance.

3.4 Example – A Simple Model with an Inclusive Choice

Verify Patient’s
 Coverage

(B) Evaluate Amount Refundable
by Private Insurance

(D)

Calculate
Final Cost

(E)

Evaluate Amount Refundable
by Public Insurance

(C)

medical
service

payment
order

Get the Service’s
Type and Cost

(A)

 73% of people

85% of people
are covered by public ins.

are covered by private ins.

Fig. 1. BPMN model of the french process to determine the cost of a medical service.

Fig. 1 shows a simple model in BPMN that recalls an example given in [4]. It
is a process existing in the french health-care system, to define the final cost of a
medical service to a patient. The health-care system in France involves a mix of
public and private financing. The public financing offers the coverage of basic
medical services. But the French may also buy supplemental insurance which
reduces their out-of-pocket costs and possibly covers extra expenses. The SAN
model generated from the conversion of the vertices in Fig. 1 is shown in Fig. 2.

After the conversion of the vertices, the generated SAN model is reduced
according the steps defined in the Procedure 1. Fig. 3 shows one of the possible

From BPMN to Stochastic Automata Network 15

v1 v2 v3

v4

v5

v6

v7

v8 v9

1 2 3 44
5

6

7

A B

C

D

ES T

(0.85)

(0.73)

)

A1

A2 A3

A4 A5

A6 A7

A8 A9 A10

v1

v2

v2

v3

v3

v4

v4

v4

v4

v4

v41

v41

v4
¬1

v42
v42

v4
¬2

v5

v5 v6

v6

v7 v7v7

v7

v7

v7

v7

v7

v8

v8v8

v9

rv2 rv3 rv5 rv6
rv8

s11

s12

s21

s22

s23

s31

s32

s33

s41

s42

s43
s44

s51

s52

s53
s54

s61

s62

s71

s72

s81

s82

s83

s91

s92

s93

s101

s102

s103

1 2 3 4 5 6 7

A B C D E

rA rB rC rD rE

S

(0.85) (0.73)(0.15) (0.27)

Fig. 2. SAN model obtained after the conversion of the BPMN vertices.

SAN models resulted from the reduction. This model can be originated by the
two following sequences of operations:

A′ = ((A1

s12
⊞
s21

A2

s23
⊞
s31

A3

s33
⊞
s41

A4

s44
⊞
s61

A6

s43
⊞
s81

A8)[s44 ⊲ s83]
s62
⊞

s101

A10)[s11 ⊲ s103]

A′′ = ((A5

s54
⊞
s71

A7

s53
⊞
s91

A9)[s54 ⊲ s93])[s51 ⊲ s72]

A
′′

A
′

v1 v2 v3 v4v4
v4v4

v41
v41

v4
¬1

v42 v42

v4
¬2

v5 v6

v7v7

v7v7

v8

rv2 rv3

rv5 rv6
rv8

A B

C DE

rA rB

rC rD

rE

S

(0.85) (0.73)

(0.15) (0.27)

Fig. 3. One of the SAN models that can be obtained from the reduction of Fig. 2.

Even in this simple example is possible to notice the reduction of memory
usage provided by SAN models. The model in Fig. 3 has an underlying Markov
chain with 24 states (the reachable states resulted from the cartesian product
of the sets of states of the two automata). The infinitesimal generator of this
Markov chain is a 24× 24 matrix (576 cells). However, with SAN this matrix is
not stored – only the infinitesimal generator of each automaton is stored (in the
case of the example, a 12× 12 and a 5× 5 matrices, totaling 169 cells).

16 From BPMN to Stochastic Automata Network

4 Related Works

Several works proposed mappings from business process models to formal lan-
guages [1, 8, 9, 18]. However, most part of these works concern non-stochastic
formalisms. In this section, we will restrict ourselves to the works related to the
stochastic modeling of business processes.

Reijers [17] presented two interesting analytical methods for performance
evaluation of Workflow Nets – a sub class of Petri Nets specially defined to
workflow modeling. His methods deal with resource management, but under the
assumption of an infinite amount of resources.

The work of Canevet et al. [7] proposed an automated mapping from the
Unified Modeling Language (UML) [13] state diagrams enhanced with perfor-
mance information to Performance Evaluation Process Algebra (PEPA) [11]. The
performance information they refer are probabilities attached to the states and
rates attached to the transitions of the UML state model. One important advan-
tage of the approach proposed by the authors is that the performance results
obtained from the solution of the PEPA model can be reflected back to the
UML level. However, the approach does not support functional rates, preventing
some important aspects related to performance from being contemplate in the
modeling.

The proposal of Prandi et al. [16] was a mapping from BPMN to Calculus
for Orchestration of Web Services (COWS), a process calculus inspired by the
Business Process Execution Language (BPEL). The authors made a briefly dis-
cussion about the use of a stochastic extension of COWS to support quantitative
analysis of business processes. Despite being based in a compositional formalism,
Stochastic COWS does not explore the advantage of the compositionality in
the analysis method, thus suffering of the same state-space explosion problem
that limits the use of other Markovian formalisms in the analysis of large-scale
systems.

Braghetto et al. [4] discussed the viability of applying three different stochastic
formalisms – the Generalized Stochastic Petri Nets (GSPN) [2], PEPA and SAN
–, in the modeling for numerical analysis of performance of business processes
initially modeled using BPMN. They verified that the three studied stochastic
formalisms are able to express with equivalent facilities basic business process
scenarios modeled in BPMN. However, more advanced scenarios evidenced the
pros et cons of each formalism. Since SAN and PEPA are intrinsically composi-
tional formalisms, they enable a structured analysis, in addition to the facility
to extend a model without impacting the previous modeled behavior. SAN and
GSPN have the explicit notion of state and the concept of functional rates, what
helps to model functional dependencies between the components of a process.

The study made in [4] was the first one considering the use of SAN to model
business processes. The SAN efficiency and expressiveness motivated us to extend
these first results, with the proposal of an automated method to map from BPMN
to SAN.

From BPMN to Stochastic Automata Network 17

5 Concluding Remarks

In this work, we proposed an algorithm to automatically convert a subclass of
the BPMN Process diagrams into SAN models. For this, we formally defined
the characteristics of a well-defined BPMN Process model, mappings of BPMN
objects into elementary SAN models, and a set of operations over SAN models (to
transform the elementary models in the final SAN model of the business process).
This conversion is the first step to build a complete performance evaluation model
of business processes. The second step is to enrich the resulted SAN model with
resource management information, to obtain the correct rates associated with
the events that represent the activities of the business process.

As seen in Section 2.1, SAN automata are constituted by states and transitions
between these states. Transitions are triggered by events; each event has an
associated rate (that indicates its frequency of occurrence in function of the time).
However, in the structure of the SAN models that we handled in Section 3, we
did not include rates. The definition of the correct rates for events generated
from a business process is intrinsically related to the resource management of
the process and it is a subject for further deeper studies.

Our ongoing work consists in: (i) the definition of annotations over BPMN
models to specify the resource requirements of each activity and how these re-
sources are shared between activities executed parallelly; and (ii) an automated
method to complement the SAN model of the business process with the informa-
tion of these annotations. With this, we will be able to automatically obtain SAN
models from business process models that will be able to provide performance
indicators that really approximate the results expected for the business process
in the real world.

References

1. van der Aalst, W.M.P.: Formalization and verification of event-driven process chains.
Information and Software Technology 41(10), 639 – 650 (1999)

2. Balbo, G.: Introduction to generalized stochastic Petri nets. In: SFM 2007: 7th In-
ternational School on Formal Methods for the Design of Computer, Communication,
and Software Systems. LNCS, vol. 4486, pp. 83–131. Springer (2007)

3. Benoit, A., Brenner, L., Fernandes, P., Plateau, B.: Aggregation of stochastic
automata networks with replicas. Linear Algebra and its Applications 386, 111 –
136 (2004)

4. Braghetto, K.R., Ferreira, J.a.E., Vincent, J.M.: Performance analysis modeling
applied to business processes. In: Proceedings of the 2010 Spring Simulation Multi-
conference. pp. 122:1–122:8. SpringSim ’10, ACM (2010)

5. Brenner, L., Fernandes, P., Plateau, B., Sbeity, I.: PEPS2007 – stochastic automata
networks software tool. In: Fourth International Conference on the Quantitative
Evaluation of Systems. pp. 163 –164. QEST 2007 (2007)

6. Brenner, L., Fernandes, P., Sales, A.: The need for and the advantages of generalized
tensor algebra for Kronecker structured representations. International Journal of
Simulation: Systems, Science & Technology 6(3-4), 52–60 (2005)

18 From BPMN to Stochastic Automata Network

7. Canevet, C., Gilmore, S., Hillston, J., Prowse, M., Stevens, P.: Performance mod-
elling with the unified modelling language and stochastic process algebras. Com-
puters and Digital Techniques, IEE Proceedings - 150(2), 107 – 120 (Mar 2003)

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12), 1281 – 1294 (2008)

9. Eshuis, H.: Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. Ph.D. thesis, Univ. of Twente (November 2002)

10. Gansner, E.R., North, S.C.: An open graph visualization system and its applications
to software engineering. Softw. Pract. Exper. 30, 1203–1233 (September 2000)

11. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, New York, NY, USA (1996)

12. OMG: Business process model and notation (BPMN), version 2.0 (2010)
13. OMG: Unified modeling language specification (UML), version 2.3 (2010)
14. Plateau, B.: On the stochastic structure of parallelism and synchronization models

for distributed algorithms. SIGMETRICS PER 13(2), 147–154 (1985)
15. Plateau, B., Atif, K.: Stochastic automata network for modeling parallel systems.

Software Engineering, IEEE Transactions on 17(10), 1093 –1108 (1991)
16. Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of BPMN via a translation

into COWS. In: Proceedings of COORDINATION’08. pp. 249–263. Springer (2008)
17. Reijers, H.A.: Design and control of workflow processes: business process manage-

ment for the service industry. Springer-Verlag, Berlin, Heidelberg (2003)
18. Wong, P.Y., Gibbons, J.: A process semantics for BPMN. In: Proceedings of the

10th International Conference on Formal Methods and Software Engineering. pp.
355–374. ICFEM ’08, Springer-Verlag (2008)

	From Business Process Model and Notation
	to Stochastic Automata Network
	March, 2011

