
Creating Families of Conceptual Database Schemas
Using Database Feature Diagrams (DBFDs)

Larissa Cristina Moraes, Kelly Rosa Braghetto

Institute of Mathematics and Statistics – University of São Paulo (USP) – SP, Brazil

{larissam,kellyrb}@ime.usp.br

Abstract. Conceptual database schemas can be used to create standard data
representations for an application domain. Despite the commonalities which
exist in data requirements of organizations of a same domain, some structural
variability is required to accommodate organizations’ specific needs. Current
database modeling techniques are not able to express structural data variability.
To address the problem, this paper introduces the Database Feature Diagrams
(DBFDs), a database modeling technique derived from the Software Product
Lines Engineering paradigm. A DBFD can be used to create an extensible
and reusable family of conceptual schemas, which in turn generates customized
databases for an application domain.

1. Introduction
Conceptual database schemas are commonly used to create standard data

representations for an application domain. Despite the commonalities which exist in
data requirements of organizations of a same application domain, some variability may
be required to accommodate the specific needs of each organization. The creation of
conceptual database schemas that are flexible enough to provide standard representations
for data with some level of variability in its structure is a challenge that still hinders data
sharing between organizations of a same application domain.

A recurrent example of this fact occurs in research projects which collect large
volumes of experimental data. A project of this type generally has several participating
laboratories, each one conducting specific types of experiments and storing its data on its
own local database. In this heterogeneous scenario, the research project must guarantee that:
(i) all essential information about experiments is being collected by all the participating
laboratories; and (ii) all data collected by these laboratories must be organized in a standard
structure, to enable data sharing between project members.

Traditional conceptual database modeling techniques (e.g. Entity-Relationship
Model) do not enable us to represent in a same diagram different schema variations for a
given application domain. Each possible variation must be defined in a separated diagram.
This makes it hard to maintain and evolve the conceptual database schemas of the domain,
mainly considering their common structures, which must be replicated in all diagrams.

In this paper, we introduce the Database Feature Diagrams (DBFDs), a modeling
technique designed to support the creation of families of conceptual database schemas.
A family of conceptual database schemas comprises all possible variations of conceptual
database schemas for a given application domain. In a DBFD, the data requirements
of a domain are modeled as relations between data modules. A data module is

30th SBBD – Posters – ISSN 2316-5170 October 13-16, 2015 – Petrópolis, RJ, Brazil

poster:06

45



a reusable artifact that models related data objects. Relations (and their associated
annotations) define how modules can be conceptually combined. The DBFDs are
an extension of the concept of feature diagrams used in Software Product Lines
Engineering [Van Der Linden and Pohl 2005].

A DBFD has core data modules, modeling data requirements that are common to
all users of the application domain, and optional or alternative data modules, representing
what can be combined in different ways to create customized conceptual schemas. These
customized schemas attend the specific needs of users or organizations at the same time as
they guarantee data standardization requirements of their application domain.

2. Families of Software Products and Feature Diagrams
The Software Product Line Engineering (SPLE) promotes the reuse of software

artifacts, such as requirements models, software components and plans of tests. A software
product line is a set of products, or a family of software products, with a high level of
similarity that suits specific needs of a set of users [Van Der Linden and Pohl 2005].

The SPLE manages the functionalities (features) of a family of software products
and divides the life cycle of development into two phases: Domain Engineering, where
common and variable functionalities are defined to build an infrastructure for the product
line, and Application Engineering, where the infrastructure created in the previous phase
is used to derive specific products [Chen and Babar 2011].

A feature diagram is commonly used in the Domain Analysis stage, that
belongs to the Domain Engineering phase, to capture commonalities and variabilities
between software applications and to bridge the gap between requirements and design
[Bontemps et al. 2004]. The original concept of feature diagram was introduced in
the Feature-Oriented Domain Analysis (FODA) method [Kang et al. 1990]. Another
method that uses feature diagrams is the FeatuRSEB, that is a combination of FODA and
Reuse-Driven Software Engineering Business (RSEB) [Jacobson et al. 1997] methods.

3. Database Feature Diagrams
In the same way feature diagrams support the creation of customized and extensible

software products, they can be used in database modeling to enable database designers to
create customizable database schemas which can be easily extended to suit specific needs.
However, to use feature diagrams in conceptual database design, we need to redefine the
concept of feature, relating it to conceptual data objects such as entity and relationship
types, and attributes.

In this paper, we introduce the Database Feature Diagrams (DBFDs) – an extension
of feature diagrams of FeatuRSEB method devoted to database conceptual modeling. A
DBFD is mainly composed of three kinds of elements: data modules, relations, and
annotations. A data module is the reusable artifact in a DBFD (similar to the concept
of feature in classical feature diagrams). It can be defined as a partition of a conceptual
database model, grouping data objects that are physically or semantically related. Relations
express the dependencies and constraints that exist among data modules. Annotations are a
special feature introduced in DBFDs to improve the expressive power of relations.

Figure 1 shows an example of DBFD created for a real-world domain: neuroscience
experimental data, collected in the Research, Innovation and Dissemination Center for

30th SBBD – Posters – ISSN 2316-5170 October 13-16, 2015 – Petrópolis, RJ, Brazil

46



Figure 1. Example of DBFD for neuroscience experimental data.

Neuromathematics (NeuroMat) 1. In the graphical notation, a data module is represented
as a rectangle with its name inside, while relations are labeled arcs linking the modules.
Since the label of a relation is its identifying name, each label must be unique in the DBFD.
Annotations are expressed textually, attached to the graphical diagram.

When a data module is selected in a DBFD, a set of conceptual data objects will
be created in the conceptual schema. If it does not happen, then the module is called
empty data module and is graphically represented similarly to others, but with its name
underlined (e.g. Public Database). A DBFD has also a special module, the root data
module, which refers to the complete family of conceptual database schemas modeled and
it is drawn at the top of the diagram (e.g. Database).

3.1. Relations in DBFDs
DBFDs can express the same types of relations found in classical feature diagrams,

that can be classified in: consists-of relations, which link parent modules to the children
modules used to compose them, and constraint relations, which define “cross-tree” links
between pairs of modules. There are four types of consists-of relations:

• Mandatory composition – denotes a child module that is required (e.g. Experiment
module).

• Optional composition – denotes a child module that is optional (e.g. Research
Project module).

• OR-composition – denotes that at least one of the children modules must be selected
(e.g. between Experimental Protocol module and its children).

• XOR-composition (or alternative) – denotes that one and only one of the children
modules must be selected (e.g. between Subject module and its children).
There are two types of constraint relations that can be defined from an origin data

module A to a destination data module B:
• Requires – denotes that if module A is selected, then module B must also be

selected (e.g. Research Project requires Experiment).
• Excludes – denotes that if module A is selected, then module B cannot be selected

(e.g. Non Human excludes Questionnaire).
1NeuroMat website: http://neuromat.numec.prp.usp.br/.

30th SBBD – Posters – ISSN 2316-5170 October 13-16, 2015 – Petrópolis, RJ, Brazil

47



3.2. Annotating relations

Annotations are an exclusive resource of DBFDs, i.e. they do not exist in classical
feature diagrams. Their purpose is to describe the schema modifications that must be
performed in the data modules involved in the relation to create customized conceptual
schemas. Each annotation denotes an atomic modification, i.e. the insertion, the update
or the deletion of a data object in the schema of a data module. Each relation can be
associated with several annotations, but an annotation belongs to only one relation.

In this work, we adopt the Enhanced Entity-Relationship (EER) model
[Elmasri and Navathe 2010] for the design of data module conceptual schemas. Therefore,
the object types that can be created or modified in data modules by annotations are: entity
and relationship types, attributes, specializations, and categorizations.

Annotations are textual statements that follow a well-specified format. As example,
some annotations associated with the relations in Figure 2 are shown below:

R3: ADD RELATIONSHIP is_composed_of BETWEEN (MODULE Group - ENTITY Group) AND

(MODULE Subject - ENTITY Subject) M:N TOTAL:TOTAL ATTR=consent_form;

R18: ALTER (MODULE ResearchLaboratory - ENTITY ResearchLaboratory)

DROP ATTRIBUTE name, address, phone, website;

R2: ADD SPECIALIZATION subject_type FROM SUPERCLASS (MODULE Subject - ENTITY Subject)

TO SUBCLASS (MODULE Human - ENTITY Human) DISJOINT;

Figure 2. Data modules for relations R2, R3 and R18.

4. Designing a Family of Conceptual Database Schemas

DBFDs can be used to model the variability of conceptual database schemasof a
same application domain. All possible variations of database conceptual schemas for a
given domain comprise a family of conceptual database schemas. Therefore, a DBFD
denotes a family of conceptual database schemas. Creating a family of conceptual database
schemas involves the following cyclic set of steps:

1. Gather data requirements reported by users of different organizations of the
application domain.

2. Generate data modules by grouping the data requirements according to the data
concepts they refer to.

3. Design an EER conceptual schema for each data module.

30th SBBD – Posters – ISSN 2316-5170 October 13-16, 2015 – Petrópolis, RJ, Brazil

48



4. Create a DBFD, identifying the dependencies between data modules and expressing
them by means of relations.

5. If necessary, introduce empty data modules in the DBFD.
6. Enrich the relations in the DBFD with annotations.

Some remarks must be made about these steps. First, since data modules are
partitions of a database schema, they cannot have intersections. Second, each core data
module (i.e., a module that is common to all conceptual schemas of the family) must
be a mandatory descendant of the DBFD root module. Third, the optional or alternative
compositions of modules are designed to represent what can be selected and combined
in different ways to create customized conceptual schemas. Fourth, empty data modules
should be used to express modifications that must be made over other non-empty modules
in order to satisfy requirements that do not generate new entity types in the conceptual
schema. Finally, it is important to notice that an initial family of data schemas can be easily
extended when a new data requirement appears in the application domain by connecting
new data modules to the preexisting ones using new relations and annotations.

5. Related Work
The software artifacts created in software product lines normally are requirements

models, software components and plans of tests. Although software products frequently
make intensive use of data, which are kept in databases, there are just few works dedicated
to propose methods and tools to deal with databases in software product lines.

Bartholdt et al. [Bartholdt et al. 2009] defined an approach to model and integrate
data in software product lines that uses Model Driven Software Development. Data is
modeled in diagrams using UML integrated to the feature modeling of the software product
line. In a related approach proposed by Zaid and Troyer [Abo Zaid and De Troyer 2011],
every data item is associated with a software feature.

Khedri and Khosravi presented an alternative approach based on Delta-Oriented
Programming Technique, where data is always described at the implementation level (as
data definition commands in SQL) [Khedri and Khosravi 2013]. The data model of a
software product is generated by adding to the core module a delta module for each one of
the features chosen for the product.

These works show the viability of extending and applying methods and tools of
SPLE in the development of database applications. However, differently from our proposal,
these other approaches do not have as main goal the creation of families of databases, but
the creation of families of software applications that make use of databases.

6. Concluding Remarks
To support the conceptual modeling of databases for domains where some

variability in the data requirements may exist, this paper has introduced an approach
for creating families of conceptual database schemas through the use of Database Feature
Diagrams (DBFDs). A DBFD represents data requirements emphasizing which data
structures are common and which ones are variable for applications of a given domain.

DBFDs enable database designers to represent the schema variants that may be
applied to a core conceptual schema in order to adapt it to some specific needs of users or

30th SBBD – Posters – ISSN 2316-5170 October 13-16, 2015 – Petrópolis, RJ, Brazil

49



organizations. At the same time, they ensure that conceptual schemas derived from them
will follow a standard format to represent data requirements of the application domain.
Furthermore, they make the evolution of existing database schemas easier, since every
modification made on a DBFD is defined in a modular way. This flexibility is not provided
by traditional methods of conceptual database modeling.

Our ongoing work focus on the development of software tools to support the
modeling of families of database schemas and also to automatically create or update the
logical and physical models of their derived databases. With these tools, we are willing to
facilitate the use of our approach by non IT specialists.

Acknowledgments
This work is supported by FAPESP (grant #2014/18216-2), and was produced

as part of the activities of FAPESP Research, Innovation and Dissemination Center for
Neuromathematics (grant #2013/ 07699-0, S.Paulo Research Foundation).

References
Abo Zaid, L. and De Troyer, O. (2011). Towards modeling data variability in software

product lines. In Enterprise, Business-Process and Information Systems Modeling,
volume 81 of LNBIP, pages 453–467. Springer Berlin Heidelberg.

Bartholdt, J., Oberhauser, R., and Rytina, A. (2009). Addressing data model variability
and data integration within software product lines. International Journal On Advances
in Software, pages 84–100.

Bontemps, Y., Heymans, P., Schobbens, P.-Y., and Trigaux, J.-C. (2004). Semantics of
FODA feature diagrams. In Workshop on Software Variability Management for Product
Derivation–Towards Tool Support (SPLC 2004), pages 48–58.

Chen, L. and Babar, M. A. (2011). A systematic review of evaluation of variability
management approaches in software product lines. Information and Software
Technology, pages 344–362.

Elmasri, R. and Navathe, S. (2010). Fundamentals of Database Systems. Addison-Wesley
Publishing Co., Inc., 6th edition.

Jacobson, I., Griss, M., and Jonsson, P. (1997). Software reuse architecture, process,
and organization for business success. In The Eighth Israeli Conference on Computer
Systems and Software Engineering (CBSE), pages 86–89.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990).
A feature-oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Pittsburgh, Pennsylvania.

Khedri, N. and Khosravi, R. (2013). Handling database schema variability in software
product lines. In The 20th Asia-Pacific Software Engineering Conference (APSEC
2013), pages 331–338.

Van Der Linden, F. and Pohl, K. (2005). Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer-Verlag New York, Inc.

30th SBBD – Posters – ISSN 2316-5170 October 13-16, 2015 – Petrópolis, RJ, Brazil

50


