
VORPAL: An Extensible and Flexible
Middleware for Real-Time Soundtracks

in Digital Games

Wilson Kazuo Mizutani and Fabio Kon

Department of Computer Science
University of Sao Paulo
{kazuo,kon}@ime.usp.br

http://compmus.ime.usp.br/en/vorpal

Abstract. Real-time soundtracks in games have always faced design re-
strictions due to technological limitations. The predominant solutions of
hoarding prerecorded audio assets and then assigning a tweak or two each
time their playback is triggered from game code leaves away the potential
of real-time symbolic representation manipulation and DSP audio syn-
thesis. In this paper, we take a first step towards a more robust, generic,
and flexible approach to game audio and musical composition in the form
of a generic middleware based on the Pure Data programming language.
We describe here the middleware architecture and implementation and
part of its validation via two game experiments.

Keywords: game audio, game music, real-time soundtrack, computer
music, middleware

1 Introduction

Digital games, as a form of audiovisual entertainment, have specific challenges
regarding soundtrack composition and design [10]. Since the player’s experi-
ence is the game designer’s main concern, as defended by Schell [13], a game
soundtrack may compromise the final product quality as much as its graphical
performance. In that regard, there is one game soundtrack aspect that is indeed
commonly neglected or oversimplified: its potential as a real-time, procedurally
manipulated media, as pointed out by Farnell [3].

Even though there is a lot in common between game soundtracks and other
more “traditional” audiovisual entertainment media soundtracks (such as The-
ater and Cinema), Collins [2] argues that there are also unquestionable differ-
ences among them, of either technological, historical, or cultural origins. The
one Collins points as the most important difference is the deeply nonlinear and
interactive structure of games, which make them “largely unpredictable in terms
of the directions the player may take, and the timings involved”. Because of this,
many game sounds and music tracks cannot be merely exposed through com-
mon playback (as happens with prerecorded media): they also need some form

fabio.kon
Typewritten Text

fabio.kon
Typewritten Text
Published at CMMR'2016: Bridging People and Sound pp. 219-228. LNCS 10525

fabio.kon
Typewritten Text
Also available at https://link.springer.com/chapter/10.1007/978-3-319-67738-5_13



of procedural control to be tightly knit together with the ongoing narrative of
the game. However, this is seldom fully explored. Except in a few remarkable
cases, most game musical soundtracks tend to have little real-time connections
between what is happening in the game and what is going on with the music,
for instance.

The ways with which real-time soundtracks are typically dealt with are poor
and do not scale well. Basically, the development team needs to find a common
ground for musicians, sound designers, and programmers where they can reach
an agreement on how to introduce real-time behaviour into the game source code
modules related to audio reproduction and sound assets management. Farnell [3]
explains that the common approach is to produce as many assets as needed and
then list all event hooks that must go into the game code to timely play the
corresponding sounds and music (perhaps with one or two filters applied to
the output). This is not only a waste of memory and a disproportional amount
of effort, but also a very limited way of designing a game soundtrack. Farnell
goes as far as to say that even advanced and automated proprietary middleware
systems fail to provide a satisfactory solution, since they “are presently audio
delivery frameworks for prerecorded data rather than real ‘sound engines’ capable
of computing sources from coherent models”.

In our research, we provide an alternative to such excessively asset-driven
solutions by empowering the musicians and sound designers with a tool able to
express procedurally how a game soundtrack is to be executed, and by embed-
ding it into a cross-platform programming library that can be easily integrated
into the development workflow of digital games. As such, we present, in this pa-
per, the Vorpal Open Real-time Procedural Audio Layer (VORPAL1), an open-
source, extensible, and flexible middleware system for the development of real-
time soundtracks in digital games as the result of our research. The middleware
implementation is available at https://github.com/vorpal-project/vorpal

under the MPL 2.0 open source license.

2 Soundtrack Implementations in Digital Games

Matos [9] states that soundtracks are essentially the union of all sound effects,
voices, and music that are played along with a visual presentation. In the tradi-
tional asset-driven approach, each audio element from these soundtrack parts is
implemented in the game code by specifying a playback trigger consisting mainly
of [3]:

1. Which sample assets are to be played.
2. How they are to be played (that is, what filters should be applied).
3. When they are to be played.

As an example of this pattern, consider a gunshot sound effect. Using a
prerecorded gunpowder explosion sound, one could produce different firearms

1 A recursive acronym.



sounds by applying multiple filters to it and then mapping the corresponding
configuration whenever a weapon is shot. This way, when the player’s character
wields a specific type of pistol, its respective sound effect is triggered.

Being able to synchronize an audio element playback achieves an initial level
of real-time behaviour on its own. It is often further expanded by allowing the
other two parameters (the which and the how) to change according to the game
state. In the game Faster Than Light (Subset Games, 2012), every musical piece
in the soundtrack has two versions – one for exploration and one for combat – and
they are cross-faded between each other whenever the game situation changes
from exploration to combat and vice-versa. This consists of both a modification
in the sample used (the which) and a real-time control over the filters, responsible
for fading out the previous version of the music while fading in the next one (the
how).

However, since this method specifies only whole samples to be played, it ex-
cludes from the sound design space other forms of audio construction, notably
symbolic representation (e.g., MIDI) and Digital Signal Processing (DSP) audio
synthesis. The IMuse system [8] was an example of how to use symbolic represen-
tation to allow music changes in real-time. Essentially, it provided if-then-jump
commands among the other typical music score based messages, bringing sym-
bolic representation closer to a programming language of its own. Regarding DSP
audio synthesis, there are quite a few works on physically based real-time audio
synthesis [1, 4, 6], which could contribute to many unexplored ways of dealing
with sound effects in games using no sample files, but at a greater computational
cost.

3 Real-Time Restrictions in Game Implementation

To be considered a real-time application, digital games rely on the Game Loop
architectural pattern [5, 12]. It guarantees that the time difference between the
continuous input processing and output generation is so short that the user expe-
riences it as being instantaneous. This is accomplished by dividing the program
execution into very short steps between each input handling and output ren-
dering, then finely controlling the process rate of these cycles inside an endless
loop.

Nystrom [12] shows how the Game Loop frequency is related to the Frames
Per Second ratio (FPS) of the game, i.e., the ratio of how many graphical frame
buffers are fully rendered per second. Ideally the FPS should be greater than
or equal to the Game Loop frequency, which means that its visual output may
change and adapt at least as often as changes are made to the game state.
On the other hand, conventional asset-driven audio implementations in games
provide a slower feedback mechanism, since they load as many audio samples as
possible from the assets to the computer sound card (where they can no longer
be promptly accessed) in each game cycle. The samples are transferred in chunks
that are typically too big, causing effects applied to the game soundtrack to come



with a perceptible delay, thus not satisfying the desirable real-time requirements.
Essentially, it incurs in too much latency.

For instance, in the LÖVE game framework2, the default audio stream buffer
contains 4096 samples, which, with an audio sample rate of 44100 Hz, leads to
soundtrack changes being able to occur only every 93 milliseconds, approxi-
mately. The simple solution to this is to reduce the size of the audio buffers
sent to the sound card, which actually means processing less audio in each game
cycle. If a game is to be executed at 60 FPS and its audio is sampled at 44100
Hz, then each game cycle must provide only 44100/60 = 735 audio samples. In
the more general case, one cycle may actually have a variable time length. If we
let faudio be the audio sample rate (in Hertz) and ∆t be the time difference (in
seconds) between the current game cycle and the last, then the number N of
maximum audio samples allowed for the current cycle would be:

N = faudio ·∆t (1)

As a matter of fact, the DSP graphical programming language Pure Data3 has
a standard cycle buffer size of merely 64 samples. That would be precise enough
for a game running at approximately 689 FPS. The drawback of reducing the
audio buffer size is that if the computations needed to fill it actually last long
enough to make a perceptible time gap between each buffer update, then the
sound might come out chopped by the sudden lack of samples to play. There
is also an increased overhead in having a larger number of smaller data copies
sent to the sound card. Thus, even though reducing the buffer size is important
to decrease latency, a point of equilibrium must be found or the audio quality
may be compromised [7]. This depends on how much computation time the Game
Loop has available for handling audio processing and on the technical capabilities
of the sound hardware at our disposal. Weiner [15] proposes a possible audio
pipeline that based on lazy evaluation, for instance.

4 Proposed Architecture

The main purpose of the VORPAL middleware is to bridge soundtracks and
game engines. As such, we understand that its main user is the sound designer,
although the programmers that bind the game code to the middleware must also
be taken into consideration. This is commonplace for game audio middleware,
requiring the division of the tool into two separate but complementary inter-
faces4. The first is a “soundtrack editor” – a visual application through which
sound designers author audio content that can be later exported to the game.

2 love2d.org
3 puredata.info
4 See Firelight ’s FMOD Studio (www.fmod.org), Audiokinetic’s Wwise

(www.audiokinetic.com/products/wwise), and Elias Software’s Elias
(www.eliassoftware.com)



The second is a programming library exposed through an Application Program-
ming Interface (API) that is capable of loading the media exported by the editor
and playing it during the game execution (see Figure 1).

Game

Application

Sound Designer

Soundtrack

Editor

Player

Programmer

Audio

Engine

Audio

Data & Metadata

Game Audio Middleware

Fig. 1. Standard overview architecture for game audio middleware.

VORPAL follows this general architecture. However, instead of focusing the
soundtrack editor in audio assets management, we chose to develop a procedure-
oriented tool. We designed a collection of high-level abstractions in the Pure
Data programming language, called the Soundtrack Creation Kit, that sound
designers can use to produce Pure Data patches as part of a game soundtrack
specification. The game engine can then link to VORPAL’s Audio Engine
(a programming library) to load and execute the soundtrack patches authored
this way. Our intention is to focus on giving sound designers full control over the
sonic behaviour instead of just rigid sonic scheduling, since they can program the
soundtrack themselves with an accessible, community-approved language such as
Pure Data.

4.1 Pure Data Integration

Pure Data originally comes as a stand-alone application capable of creating, edit-
ing, and executing patches by itself, promptly serving as our soundtrack editor.
However, even though it is capable of communicating with other applications
through sockets or MIDI channels, ideally one would not want to have multiple
applications launched when playing a digital game. The solution would be to
run Pure Data’s DSP from inside the game. There is a community developed
programming library called libpd5 that provides access to Pure Data’s core im-
plementation, allowing its host program to load and execute Pure Data patches
without the Pure Data application.

5 libpd.cc



However, when using libpd, there is no audio output handling. The host
application is only given the processed signal and is responsible for sending it to
the sound card or doing whatever it wants with it. Additionally, the processed
signal is provided in blocks of 64 stereo samples, as mentioned before. Our audio
engine must synchronize the retrieval of these blocks with the game run-time
flow as in Equation (1). For that, the engine API routines demand precise timing
information from the game execution and properly synchronized evocation, since
time management is controlled by the game code.

The communication between the sound designer patches and our Audio En-
gine consists of two main types of data transfer. The first, which we just de-
scribed, results from libpd’s audio signal computation happening every frame.
The other transfer occurs when our middleware must inform the designer’s patch
of a relevant change within the game state. Based on this communication, the
patch may do whatever it deems necessary for the soundtrack to follow up the
game narrative. The overall architecture of our engine can be seen in Figure 2.

Game

Application

Sound Card

A
P

I

Synchronization

Mechanism

VORPAL Audio Engine

Invokes

Transfers 

Audio

Provides 

Game Time 

Data

libpd

Sends Pd 

Messages

Transfers 

Audio

Executes

Pure Data

Patches

Fig. 2. VORPAL Audio Engine’s architecture.

4.2 Middleware Abstractions

Finding a good model that links soundtrack elements to game elements depends
mostly on how the latter are designed. But, aside from the Game Loop pattern,
there is not much one can assume about the software architecture of a game
without losing compatibility or discouraging users by imposing unwanted con-
ventions. Thus, in this work we choose a rather weak assumption that within the



code base of a game there is the concept of game objects, ideally implemented
through Object-Oriented Programming. Game objects range from obvious can-
didates such as the player’s avatar, the items lying on the floor, or a blazing
fireball falling from the skies, to implicit or merely bureaucratic elements like
the camera, a monster spawning spot, or an inventory interface button. The
job assigned to the VORPAL middleware is, then, to map real-time soundtrack
events to each game object – even a music track, which could be traced to an
invisible auxiliary game object called “Player’s Headphone”.

This is done through the Soundtrack Event abstraction we introduce with
the VORPAL middleware. Each Pure Data Patch the sound designer creates
using the Soundtrack Creation Kit describes a Soundtrack Event type (like a
class in Object-Oriented programming languages). When the programmer loads
these patches through the Audio Engine API, he or she can create Soundtrack
Event instances. Soundtrack Events are supposed to roughly present a one-to-
one mapping with game objects. A character avatar could have a Soundtrack
Event assigned to it to play its voice and dialogue, just as a door could carry a
Soundtrack Event for when it creaks due to a player opening it.

The real usefulness of this abstraction lies in the concept of messages from
Object-Oriented Programming. When a piece of code invokes a method on an
object, we say that it is sending that object a message. Analogously, since our
abstraction is based off on Object-Oriented Programming, Soundtrack Events
can be sent Commands, which trigger real-time effects in them. For instance,
the Soundtrack Event we previously assigned to a character avatar could respond
to the Commands “shout”, “speak dialogue line 322”, “step in mud”, etc. Each of
these would then be sent to the Pure Data patch that implements the Soundtrack
Event type, where it could be used to perform the corresponding real-time DSP
effect the sound designer defined. An example for music themes would be a
Soundtrack Event that responds to Commands like “play”, “increase tension”,
“roll dramatic transtion”, “finish up in at most 8 seconds”, etc.

5 Implementation Decisions

For the sake of game engine compatibility and performance [5, 12], we chose to
develop our middleware in C++, except for the parts that must be made in Pure
Data. The Audio Engine uses OpenAL6 for cross-platform open-source-friendly
access to the sound card, enabling us to produce proper playback of the desired
audio. It also comes with convenient spatialization features that are explored by
the system.

5.1 Audio Engine

To satisfy the real-time restrictions described in Section 3, the VORPAL Audio
Engine strongly relies on OpenAL’s buffer queueing mechanism. It enables the

6 See www.openal.org and kcat.strangesoft.net/openal.html



allocation of multiple buffers whose purpose is to send audio data to the sound
card in First-In-First-Out order. Each buffer can have arbitrary sizes, but we fit
them to Pure Data’s cycle block size (64 samples). Then, OpenAL automatically
switches the current buffer to the next one when it has finished playing. That
way, even when the game cycles do not match Pure Data’s cycles, we can schedule
the next block. Doing so increases latency, but since the block is very small the
difference is minimal and allows us to reduce the previously discussed overhead.

The actual audio transfer from a patch to the engine uses the Pure Data
array API instead of its standard output, since this simplifies the use of multiple
simultaneous audio buses. The engine recognizes the audio buses thanks to a
naming convention. The Soundtrack Creation Kit then wraps it, hiding this and
other implementation details needed to properly synchronize the filling of the
arrays with the engine cycles.

Still on the engine side, we implemented the Command abstraction as follows.
It relies on the messaging mechanism from Pure Data, accessed via libpd. With
a single routine call, a message is sent to the sound designer’s patch containing as
much information as desired, so long as it can be represented by a list of numbers
and character strings (Pure Data symbols). Besides, each patch is represented
by a C++ class designed after the Soundtrack Event abstraction. That is, each
instance of that class is a Soundtrack Event instance, and it provides the API
for sending Commands to the corresponding Pure Data patches.

5.2 Soundtrack Creation Kit

For a Pure Data patch made by the sound designer to actually work properly
with the VORPAL middleware, it must contain at least one specific object from
the Soundtrack Creation Kit. We developed an abstraction patch called Audio
Bus, which captures a signal produced inside Pure Data and sends it to the cor-
responding Soundtrack Event instance in the Audio Engine. Each patch is then
responsible for sending to its Audio Buses the corresponding sound signal. The
captured signals are managed and mixed by the Audio Engine, then played when
the game application demands so. Besides the Audio Bus, there other auxiliary
abstraction patches the Soundtrack Creation Kit provides. Their intention is to
guide the sound designer’s workflow when using the middleware, but they can
be ignored if one wishes to work directly with the low level mechanisms of the
Pure Data language.

6 Results

To validate our proposal, we used our middleware to create soundtracks for two
very different games. First, we forked the open-source game Mari0 7 and replaced
its default soundtrack for one entirely produced by our middleware. The game
is a parody of two other famous games: Super Mario Bros. (Nintendo, 1985)

7 stabyourself.net/mari0



and Portal (Valve, 2007). The focus was the music track, and we experimented
only with Koji Kondo’s “Overworld Main Theme”, the music track for the first
stage of the game. By dividing the music in its three voices – melody, bass and
percussion – and the score bars into a few sections, we were able to add the
following real-time behaviours to the game soundtrack:

1. The music advances through the bars as the player progresses through the
stage, so that each of its parts has a particular music segment associated.

2. Mario’s size directly influences the bass voice. The stronger he gets, the
louder the bass line becomes.

3. The quantity of enemies nearby also increases the percussion volume, in an
attempt to suggest that the situation became more action-intensive.

The second validation is a soundtrack for an original title we created in
partnership with a professional sound designer. The game developed was called
Sound Wanderer, and has been accepted as a demonstration in an international
conference on computer music [11]. We also evaluated the tool’s usage by poten-
tial users during that process. The source code of both games is available under
an open source license at http://compmus.ime.usp.br/en/vorpal/games.

7 Conclusion

There are many details regarding our research that we had to skip over here.
A detailed account of our findings and a throughout description of the VOR-
PAL middleware can be found in the first author Masters Thesis available at the
VORPAL web site. But we can say that there are many interesting challenges
in this research area. First, as widespread as Pure Data is, it lacks a simple user
interface that would be appealing to sound designers and composers with no
programming experience. Second, with a new soundtrack composition workflow
comes a whole new skill set for sound designers and composers to reach out to
– an unavoidable cost of breaking well established paradigms [14]. Our expecta-
tions are that, with this work, we will at least open the way for new methods of
producing soundtracks for digital games that actually try to exploit the dynamic
and interactive nature of the medium, avoiding further waste of this game design
space.

References

1. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., James, D.: Fast modal
sounds with scalable frequency-domain synthesis. ACM Trans. Graph. 27(3), 24:1–
24:9 (Aug 2008), http://doi.acm.org/10.1145/1360612.1360623

2. Collins, K.: Game Sound: An Introduction to the History, Theory, and Practice of
Video Game Music and Sound Design. The MIT Press (2008)

3. Farnell, A.: An introduction to procedural audio and its application in
computer games (2007), http://cs.au.dk/~dsound/DigitalAudio.dir/Papers/

proceduralAudio.pdf



4. Farnell, A.: Designing Sound. The MIT Press (2010)
5. Gregory, J.: Game Engine Architecture. A. K. Peters/CRC Press (2014)
6. James, D.L., Barbič, J., Pai, D.K.: Precomputed acoustic transfer: Output-

sensitive, accurate sound generation for geometrically complex vibration sources.
In: ACM SIGGRAPH 2006 Papers. pp. 987–995. SIGGRAPH ’06, ACM, New
York, NY, USA (2006), http://doi.acm.org/10.1145/1179352.1141983

7. Lago, N.P., Kon, F.: The quest for low latency. In: Proceedings of the International
Computer Music Conference. pp. 33–36 (2004)

8. LucasArts: Method and apparatus for dynamically composing music and sound ef-
fects using a computer entertainment system. United States Patent 5315057 (1994)

9. Matos, E.: A Arte de Compor Música para o Cinema. Senac, Braśılia, DF, Brasil
(2014)

10. Meneguette, L.C.: Situações Sonoras e Jogos Digitais. Simpório Brasileiro de
Games pp. 30–33 (2013)

11. Mizutani, W.K., Vicente, D., Kon, F.: Sound wanderer: An experimental game
exploring real-time soundtrack with openda. Demonstration at the 12th Interna-
tional Symposium on Computer Music Multidisciplinary Research, 2016, São Paulo
(2016)

12. Nystrom, R.: Game Programming Patterns. Genever Benning (2014)
13. Schell, J.: The Art of Game Design: A Book of Lenses, Second Edition. A. K.

Peters/CRC Press (2014)
14. Scott, N.: Music to middleware: The growing challenges of the game music com-

poser. In: Proceedings of the 2014 Conference on Interactive Entertainment. pp.
34:1–34:3. IE2014, ACM, New York, NY, USA (2014), http://doi.acm.org/10.
1145/2677758.2677792

15. Weiner, K., Ltd., D.: Interactive processing pipeline for digital audio. In: DeLoura,
M. (ed.) Game Programming Gems II, pp. 529–538. Charles River Media (2001)




