
VORPAL:
A Middleware for Real-Time
Soundtracks in Digital Games

Wilson Kazuo Mizutani

Thesis Submitted
to the

Institute of Mathematics and Statistics
of the

University of São Paulo
for the

Masters Degree in Computer Science

Program:
Computer Science

Advisor:
Prof. Fabio Kon

This research was supported by
CNPq, Brazil

São Paulo, January, 2017

VORPAL:
A Middleware for Real-Time
Soundtracks in Digital Games

This version of the thesis contains the corrections and modifications suggested by the
Examining Committee during the defense of the original work, performed on January

24th, 2017. A copy of the original version is available at the Instituto de Matemática e
Estatística from the University of São Paulo.

Examining Committee:

• Prof. Fabio Kon - IME-USP

• Prof. Ricardo Nakamura - POLI-USP

• Prof. Jônatas Manzolli - UNICAMP

Acknowledgements

I would like to thank all sound designers and musicians who helped me better understand their
work and how my research could help them. Among them, my greatest thanks goes to Dino
Vicente, who showed immense interest in my work and tagged along for a whole year, always
believing in the potential contributions it could bring to soundtracks in games and in general. If
not for him, the game we developed to validate the developed technology would be that much
less rich and actually representative of what a real sound designer needs.

I am also grateful for everyone at both the Systems and Computer Music research groups at
the Institute of Mathematics and Statistics of the University of São Paulo who helped me in the
many obstacles towards my Masters title. Special thanks go to Antonio Goulart, who showed me
the works of Farnell; to Pedro Bruel, who introduced me to libpd; and to Lucas Dario, who
chose to participate in my research for his final course monograph. Also, many thanks to my
advisor, Fabio Kon, and to professors Marcelo Queiroz and Alfredo Goldman, for their support
and insight.

i

ii

Abstract

Although soundtracks play an essential role in the experience delivered by digital games, there
are a number of design restrictions it suffers from due to technology limitations. This is spe-
cially true for real-time effects, a natural demand in the interactive media of games. Developers
may either implement their own solutions each time, rely on proprietary software, or neglect
the soundtrack altogether. Besides, even the best proprietary tools support only sample-based
audio, which is one of the main causes for the aforementioned design restrictions. Thus, this
thesis proposes VORPAL, a free software game audio middleware implementation that focuses
on procedural audio instead – while maintaining the possibility of sample-based audio – as a
more accessible and adequate tool for composing real-time soundtracks for digital games. The
middleware, inspired by its proprietary predecessors, is divided in two main pieces of software: an
audio engine and a soundtrack creation kit. The audio engine comprises a native C++ program-
ming library, which games and game engines can be linked to to play and control in real-time
soundtrack pieces created using the soundtrack creation kit, which consists of building blocks
provided as Pure Data abstractions. We have interviewed and partnered with professional sound
designers to validate our technology, and came to develop a proof of concept game called Sound
Wanderer, which showcases the possibilities and limitations of the VORPAL middleware.

Keywords: digital games, dynamic audio, adaptive music, real-time soundtrack, audio middle-
ware, game soundtrack.

iii

iv

Resumo

Muito embora trilhas sonoras desempenhem um papel essencial na experiência criada por jo-
gos digitais, elas sofrem de diversas restrições de projeto causadas por limitações tecnológicas.
Isso afeta principalmente efeitos em tempo real, que são uma demanda natural na mídia inter-
ativa dos jogos. Desenvolvedores precisam optar entre implementar uma solução própria caso a
caso, investir em software proprietário, ou simplesmente negligenciar a trilha sonora por falta
de opção melhor. Além disso, mesmo as melhores ferramentas comerciais trabalham apenas com
áudio baseado em amostras, o que é uma das principais causas das ditas restrições de projeto.
Portanto, esta dissertação propõe VORPAL, um middleware livre para áudio em jogos que foca
em áudio procedural – mas mantém compatibilidade com áudio baseado em amostras – como
uma ferramenta mais acessível e adequada para a composição de trilhas sonoras em tempo real
para jogos digitais. O middleware, inspirado em seus antecessores comerciais, é dividido em duas
principais componentes de software: um motor de áudio e um kit de criação de trilhas sonoras. O
primeiro é constituído por uma biblioteca de programação nativa em C++, com a qual jogos e mo-
tores de jogos podem se ligar para reproduzir e controlar, em tempo real, peças da trilha sonora
criadas usando a outro componente, que é um kit de blocos de construção providos como ab-
strações de Pure Data. Projetistas de som profissionais foram entrevistados e depois trabalharam
em parceria com os autores para validar a tecnologia proposta, o que levou ao desenvolvimento
de um jogo de prova conceitual chamado Sound Wanderer, que demonstra as possibilidades e
limitações do middleware VORPAL.

Palavras-chave: jogos digitais, áudio dinâmico, música adaptativa, trilhas sonoras em tempo
real, middleware de áudio, trilhas sonoras para jogos, games.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Related problems . 5
1.1.2 Available Solutions . 7
1.1.3 Challenges . 8

1.2 Objective . 10
1.2.1 Intermediate Goals . 11
1.2.2 Contributions . 12
1.2.3 Validation . 13

1.3 Text Organization . 13

2 Related Work 15
2.1 Game Audio in General . 15
2.2 Music Automation . 18
2.3 Physically Based Real-Time Synthesis . 21
2.4 Other Works . 22

3 Concepts and tools 23
3.1 Digital Audio . 23

3.1.1 Digital Signal Processing (DSP) . 25
3.1.2 Symbolic Representation . 27

3.2 Soundtracks . 28
3.2.1 Traditional Production Process . 30
3.2.2 Real-Time Soundtracks . 31

3.3 Digital Games . 32
3.3.1 Development Process . 33
3.3.2 Software Architecture . 35
3.3.3 Tool and Technologies . 38
3.3.4 Algorithms and Data Structures for Real-Time Audio in Games 42

3.4 Related Technologies . 47
3.4.1 iMuse . 47
3.4.2 Wwise . 50
3.4.3 FMOD Studio . 55
3.4.4 Elias . 60
3.4.5 Pure Data . 62
3.4.6 Comparison . 66

vii

viii CONTENTS

4 Proposed solution 67
4.1 Methodology . 67
4.2 System Requirements . 68

4.2.1 Rodolfo Santana . 69
4.2.2 Kaue Lemos . 70
4.2.3 Dino Vicente De Lucca . 71
4.2.4 Final List of System Requirements . 72

4.3 Digital Representation of Real-Time Soundtracks 74
4.3.1 Considered Formats and Comparison . 75
4.3.2 Chosen Format . 76

4.4 Architecture . 76
4.4.1 Audio Engine . 77
4.4.2 Soundtrack Creation Kit . 78
4.4.3 Components Integration . 79

5 Implementation 81
5.1 Prototype . 82
5.2 Audio Engine . 84

5.2.1 High-Level API . 84
5.2.2 Pure Data Patch Management . 88
5.2.3 Sound Playback . 91
5.2.4 Real-Time Soundtrack Processing . 93

5.3 Soundtrack Creation Kit . 94
5.3.1 Output Bus . 95
5.3.2 Commands . 96
5.3.3 Music Sequencing . 97
5.3.4 Samples . 97
5.3.5 Sound Synthesis . 98

5.4 Middleware Usage . 100
5.4.1 Distribution . 101
5.4.2 Programmer’s Workflow . 101
5.4.3 Sound Designer’s Workflow . 104
5.4.4 Game Engine Integration . 105
5.4.5 Examples . 107

6 Results 113
6.1 Sound Wanderer . 113
6.2 Advanced Features . 117
6.3 Usage Feedback . 121
6.4 Middleware Limitations . 122

7 Conclusion 125
7.1 Final Considerations . 125
7.2 Future Work . 127

7.2.1 Audio Engine Improvements . 127
7.2.2 Soundtrack Creation Kit Improvements 128
7.2.3 Beyond Pure Data . 129
7.2.4 Other Platforms . 129
7.2.5 Research Perspectives . 130

Bibliography 133

Chapter 1

Introduction

Digital games are computer programs fundamentally different from conventional applications.
The latter’s purpose is to produce a result for the user, like sending data through a network,
finding the optimal solution for a mathematical problem or even compiling a program source
code into object code. Games, on the other hand, produce no results. Their value lies in the
experience the user builds while interacting with the program execution, as defended by Schell
[Sch14]. This concept is relevant enough that there is a constant search for even more and more
innovative or unexplored ways of intensifying the player’s immersion in the narrative universe of
the game, as with, for instance, augmented reality [VN14]. Usually, the comprehension of what
happens within a game is mainly done through a visual representation, but – like in movies
and other audiovisual media – the accompanying sound plays an equally important role in the
desired description of the exposed content. Soundtracks can be used, for instance, to emphasize
an action scene or to suggest some character’s intentions without the need to state them explicitly
in the dialogue [Mat14]. These are all effects that stimulate a player’s immersion into the gaming
activity, contributing to the fulfillment of the experience.

However, the role of soundtracks in games is not the same as in movies, even with the
undeniable similarities, mainly because of the interactive nature of games [Men13, KC08]. In
other words, since the player is able to continuously influence the game narrative – by jumping,
escaping, or simply standing still – it is not possible to know beforehand which events will occur,
when they will occur or if they will occur. This means that whatever is to be presented – be it
visually or audibly – can usually only be determined instants before it actually happens. When
this time frame available for a computational response is small enough, we say that it comes in
real-time. For graphics, it is the pixel matrix displayed that must be rendered in real-time; for
the soundtrack, it is the sound wave, which we address in Chapter 3.

In this chapter, we introduce in general terms the problems and research challenges of real-
time soundtracks in digital games, as well as the role of our work inside this context. In Section
1.1, we describe how real-time behaviors are introduced in games throughout the industry in
order to point out the core issues we wish to tackle, besides giving a brief exposition of related
problems, currently available solutions, and inherent challenges of the area. Then, Section 1.2
formally states our objective and how we both approach and evaluate our proposed solution.

1

2 INTRODUCTION 1.1

1.1 Motivation

The development of digital games is a multidisciplinary process. Programmers, artists, composers,
game designers, interface designers, sound designers, scripters, producers, and analysts are only
a few commonly seen jobs in a game development team [Gre14, Sch14]. Typically, a project
starts with the definition of the core concept of the game (a unique mechanic, an instigating
narrative, or even just the continuation of a successful franchise) and how that will make it fun
and profitable. These and all subsequent decisions are kept organized in thorough documents or,
more commonly, in a single Game Design Document, which is the industry standard for recording
and communicating through text and concept arts the current state of the game project to keep
the whole team on the same page. During what is known as the pre-production phase, the key
features of the game are established through iterative testing and prototyping, and only then the
production phase properly begins, with each professional being assigned his or her responsibilities.
Depending on many factors, it might actually take months before the many pieces can be put
together into fully “playable” software.

For the composer and sound designer part, a contribution mainly in the form of cautiously
mastered sound files is traditionally expected. That, however, requires the precise definition
of when and how each file is supposed to be played during the game application execution.
Without any sort of specialized tool, any desired real-time behavior for the soundtrack can only
be implemented by the programmers, since they are the ones in control of the computational
capabilities of the game. Even with good communication among team members, the composers
and sound designers will seldom be able to directly manipulate how their own creation emerges
from the game.

Let us consider an example. The original Super Mario Bros. (Nintendo, 1985) – see Figure 1.1
– had a few very simple real-time mechanisms in its soundtrack. Besides the commonly present
sound effects – which must be timely triggered whenever the player gets hurt, or grabs an item,
or interacts in any way with the game world –, the background song also required real-time
manipulation under a few circumstances. One would be when the stage timer went from 400
units down to 100: a warning jingle would immediately interrupt the background song, followed
by the same song back again, but in an urgingly faster tempo. The other case was when a super
star item had been collected. After the usual sound effect, a very exciting song would substitute
the stage theme, rushing the player to make the most out of the temporary invincibility bonus.
Both of these event triggers can only be detected from within the game code, since it cannot
be known when they will occur until the corresponding interactions actually happen during
gameplay. The composer or sound designer in this case would only be able to provide the files
of the stage and invincibility songs (plus the fast tempo version of the stage song if it is not
possible to change this from the code) and describe for the programmer under what conditions
were they supposed to be played. Then they would have to wait for the programmer to implement
it (possibly restructuring many parts of the software architecture in order to fit the trigger routine
in) and only after that would they be able to check whether the result is satisfactory or not.

That would make for a rather easy case, because the sound effect and jingle interventions allow
the switching between songs to sound more natural than it would if one song suddenly started

1.1 MOTIVATION 3

Figure 1.1: An in-game screenshot [Nin85] of Super Mario Bros. (Nintendo, 1985). On the top-right
corner, the countdown for the stage is displayed – the player loses if it drops to zero and when it reaches
100 the background music starts playing in a faster tempo. To the left, the shiny star entity is a collectible
item which causes the player’s avatar to enter a temporary invincibility mode – it overrides the background
music with its own theme for the duration of the item’s effect.

playing over the other. A more smooth approach can be seen, for instance, starting from the
Nintendo 64 (Nintendo, 1996) generation of episodes from the Legend of Zelda franchise, where
the background ambiance cross-fades into more tense themes whenever the player’s character
engages an enemy [KC08, chapter 8]. That is, instead of imposing sudden exclamatory sounds to
disguise the change of musical content, the first song merely fades out while the next one fades
in, without a clear moment for when one ends and the other starts. Boss battles from Legend of
Zelda: Twilight Princess (Nintendo, 2006) even feature two or three separate musical moments in
their soundtrack, transitioning from one another either through a cross-fade or a silence period.
These effects require different levels of audio mixing, which, again, are only accessible through
game code, and in a more invasive way than the Mario example since it would require audio
control over multiple game frames instead of a single punctual trigger that requires no follow
ups in other parts of the code (the concept of game frames will be further explained in Section
3.3.2).

There are many other real-time behaviors a soundtrack can have besides song and ambiance
transitions. In real-time strategy (RTS) games such as Age of Empires II: The Age of Kings and
its expansions (Ensemble Studios, 1999) – see Figure 1.2 – many things happen at the same time
during gameplay. Castles are built, soldiers attack, villagers get lost, gold mines are depleted,
etc. Since sound effects are used to call the player’s attention to these events, it is possible
that so many sounds are being played at the same time that some of them are missed by the
listener. If an important one – like a “being attacked” warning – goes unnoticed, it could be quite
frustrating for the gaming experience. Thus, there is a need to enforce a priority order among

4 INTRODUCTION 1.1

these sounds, possibly dropping out the less relevant ones in some situations in order to guarantee
that the crucial ones will be properly heard. In 3D games, another commonly used effect is sound
spatialization, which uses audio manipulation to simulate how everything would sound in a real
three-dimensional space. To implement this, it is necessary to understand how sound propagates
and reverberates in different kinds of ambient, and then use the player’s position and movement
to calculate the resulting hearable audio effects.

Figure 1.2: An in-game screenshot [Stu99] of Age of Empires 2: Age of Kings (Ensemble Studios, 1999).
During a match, dozens of game events can occur at the same time and most come with an assigned sonic
signal to help the player keep track of them.

It is actually possible to take this discussion one step further. All the examples so far are
based on the development model we described where composers and sound designers deploy
their work in the form of sound sample files, which is the industry standard [WL01, Far07] (see
also Sections 3.4 and 4.2). If we let go of this restriction and consider that sound could also
be derived procedurally, many other possibilities arise [Far07, Far10, chapter 22] (see also
Sections 3.3.4 and 3.4.5) which are of particular interest to this work.

Most of these mechanisms are actually very commonplace for musicians and sound designers.
The difference in the production market of movies, for instance, is that they normally do have
control over how their media is to be exposed to their audience. Since the soundtrack is usually one
of the last parts of a film production [Mat14], it is natural to craft and master it around the fixed
visual progression of the recordings, establishing cross-fades and emphasizing the most relevant
sounds at will, as well as carefully applying spatialization according to the known spatial relations
between actors and sound sources. In the end, a single soundtrack sequence can be delivered for
synchronized playback with the video. As for digital games development, since many

1.1 MOTIVATION 5

decisive soundtrack factors can only be apprehended at run-time by the software
alone, real-time control is left at the mercy of the technological limitations of the
underlying platform, and, as we will explain during the rest of this section, it is at least
questionable whether the currently available methods and tools solve this issue in
the most efficient manner from a game production perspective.

1.1.1 Related problems

In the context of game development, this reality is not exclusive to soundtracks. It is a problem
directly related to what is known as data-driven design. When a game project does not rely on
a data-driven design, what happens is that every change to images, sounds, texts, stages, skins,
weapons, characters, and everything else in the game will require a source code intervention of
some sort, turning the programming process into a fatal bottleneck for the software production
[Rab00]. The solution presented by the data-driven approach is to allow non-programmers in a
game development team to input their work into the game through data files – hence data-driven
design. While somewhat obvious, the whole point of this idea is to really take it to the last
consequences and turn as much as possible from the game into data instead of leaving it as code.

We shall illustrate this concept through a problem analogous to the real-time soundtrack
problem (yet much simpler). In bi-dimensional games, one type of visual animation is the frame-
by-frame rendering of bitmap images. These images can represent characters, weapons, furniture,
and many other scenery and narrative-related elements. An image that represents a single object
or entity is commonly known as a sprite. By sequentially rendering different frames of the same
character in different poses, an illusion of movement can be achieved. The frames can be organized
in different files or in a single one composed of sub-images for each frame – a format also known
as a sprite sheet or a texture atlas, like in Figure 1.3. With that, producing an animation is a
matter of specifying the frame boundaries, the order in which they are to be rendered, the speed
of the animation, and then writing a very simple piece of code to manage the timing of the frame
changes.

Figure 1.3: A sprite sheet or texture atlas from the hero character Kha [USP10] in Horus Eye
(USPGameDev, 2010). By sequentially rendering parts of this image during the game execution, an
illusion of movement is created, and an animation is produced.

6 INTRODUCTION 1.1

The problem starts when this sort of asset inevitably needs to change. It can be the image
itself, the size of the frames, the amount of frames per second in the animation, their order, etc.
These are all relatively simple parameters that are easy to change in a well written software,
but the sheer amount of assets in a game can easily require that the game be recompiled too
often and end up jeopardizing the development process [Rab00, Gre14, Chapter 6]. The data-
driven solution would be to write these parameters into a separate (meta)data file, and have the
animation code read from it. With that, we have essentially provided the game with (graphical)
real-time behavior in the form of an input file that any artist can write. Notice how this method
combines the use of what one could call “static data” (the sprite sheet) with the use of “behavioral
data” (the parameter file).

This pattern shows up in practically every other asset type in a game. With 3D meshes, you
need parameter descriptions for material bindings, key frames, animations, orientation specifi-
cation, etc. For in-game text, a proper localization-aware schema is required. The same applies
for voice acting samples, which brings us back into the audio domain. As we saw in the previous
section, sound samples need to be properly labeled and to have their playback conditions known.
More often than not, some sort of filter must also be applied to them (be it a simple volume
control or a complex reverberation effect) and thus should be specified too for the game to exe-
cute them correctly. As a final example of the “behavior data” pattern, game development tools
usually feature a way to construct the stages or maps where the player will be able to navigate.
These game-specific data come particularly filled with behavior information: cut-scenes, traps,
collectible items, surprise attacks, triggers, puzzles, etc. We invite the reader to consider the fact
that, ideally, the soundtrack should be able to reflect all of these in-game activities.

However, some of these “asset description” files quickly become inappropriate for manual
editing. When it comes to this, the team might choose to use a specialized software tool for au-
thoring this kind of content. For instance, Aseprite1 is used for “pixel art” sprites and animations,
while Blender2 is directed at 3D modeling and animation. These tools are then responsible for
exporting all the data files that will be loaded from the game code later. This might demand the
use of external programming libraries that know how to interpret the exported files. Designing
an in-house format could save the project some extra dependencies – the trade-off analysis is
left to the team’s judgment. Some examples of this sort of library are libpng3, which is used
to process compressed image files, and Assimp4, a powerful library that can handle “various well
known 3D model formats in a uniform manner”.

As can be expected, not everything in a game can be described through sheer data. When
behavior specification requires a file format as complex as a fully fledged programming language,
game developers turn to scripting languages (for instance, Lua5 [Wik]) as a compromise between
computational capability and software integration flexibility. In Section 4.3, we will come back
to this design approach when discussing our solution to real-time soundtracks.

1 http://www.aseprite.org/
2 https://www.blender.org/
3 http://www.libpng.org/pub/png/libpng.html
4 http://www.assimp.org/
5 https://www.lua.org/

http://www.aseprite.org/
https://www.blender.org/
http://www.libpng.org/pub/png/libpng.html
http://www.assimp.org/
https://www.lua.org/

1.1 MOTIVATION 7

1.1.2 Available Solutions

Having said all that, it should be now clear what we meant with “real-time control is left at the
mercy of the technological limitations of the underlying platform”. How the game software will
support sound reproduction and its necessary behavior description data will directly affect the
possibilities and difficulties in implementing a real-time soundtrack. There is a wide spectrum of
features one might want for a game technology according to what kind of real-time behavior is
intended.

The most common feature available is sample playback. It is the bare minimum a tool can
offer for a digital game soundtrack. From the RPG Maker series6 to minimalist frameworks such
as LÖVE 7 and on to industry-standards such as Unity8, as simple as it is, with some creativity
and extra effort, there are numerous real-time behaviors one can do with this. For instance, the
independent (indie) game Faster Than Light (Subset Games, 2012)9 has a pair of sample files
for each of its in-game music pieces. These pairs are essentially two versions of the same song,
with one of them intended for “exploration” situations, and the other for “combat” situations. The
versions in a pair are the same except for a few extra instruments in the “combat” version, mostly
percussive instruments. This allows the game to cross-fade between them very naturally, making
it sound like a percussionist is really reacting to the game narrative. The obvious drawback is
that the game ends up using at least double the amount of disk storage for its music assets.

Figure 1.4: An in-game screenshot [Gam12] of Faster Than Light (Subset Games, 2012). The back-
ground music cross-fades between an “exploration” version and a “combat” version according to the game
narrative.

This is what we will call an ad hoc solution. By directly implementing the desired features on
top of a simpler tool, developers can take the first step towards real-time soundtracks. Depending
on the game scale and budget, this method will probably be enough, but will come at the sacrifice
of (1) allowing the sound designers to manipulate the soundtracks themselves (no data-driven
support) and (2) restricting the sound design to audio sample juggling, since that is all the
underlying technology permits.

6 http://www.rpgmakerweb.com/
7 https://love2d.org/
8 http://unity3d.com/
9 http://www.ftlgame.com/

http://www.rpgmakerweb.com/
https://love2d.org/
http://unity3d.com/
http://www.ftlgame.com/

8 INTRODUCTION 1.1

As such, solutions that are able to go beyond require more powerful technology. There are two
directions a development team can choose from this point. They can either build their own tool
for real-time soundtracks (possibly relying on the sample-oriented features described above) or
adopt a specialized audio middleware ready-for-use and pay the eventual monetary and learning
costs. For the purposes of this section, we are interested in the latter10.

First, given this whole discussion on the game development process and how the contents can
be easily shipped into the game software, it is important to understand how available middleware
solutions integrate with the development environment. We will properly present game develop-
ment tools in Section 3.3.3, and we will be describing in more detail the main audio technologies
for games in Section 3.4. But, for now, let us broadly understand how they work and in what
ways this research field can complement their capabilities.

In Section 1.1.1, we discussed how some assets in a game could be accompanied by a “behavior
data” file to specify how that asset should go into the game execution, including any real-time
effects it might demand. An easy application of this pattern to the ad hoc sample-based solution
explained above is to use these extra files to express sample playback as a more dynamic element
of the soundtrack. For instance, we could group various samples for gunshots and state on the
behavior file that whenever a gun of the appropriate type is shot, a sample from that group
is randomly chosen to be played (following a uniform probabilistic distribution). With this,
we would have made, at some level, an abstraction of how an individual sound effect behaves
within the game narrative in real-time. There are many other possibilities, and some are more
commonly used than others. What these middleware systems do is provide an interface that eases
the manipulation of these soundtrack abstractions (the soundtrack editor), and then provide a
mechanism (typically an audio engine) that imports them into the game software together with
the audio samples and enables their playback. The diagram in Figure 1.5 illustrates this workflow.

Of course, this is all still under the assumption that the main data format for audio is sample
oriented. This is true for most available tools, a fact that comes with an unavoidable fallback.
Since audio samples are generally treated as atomic units of data, there is a limit to how much
one can bend them for real-time behavior. This incurs in a non-trivial design restriction which, as
we will see, most of the game audio technologies fail to overcome. Farnell [Far07] speaks at length
about the disadvantages of sample-driven audio compared to procedural audio, for instance (we
will go back to this topic in Section 2.1). All in all this means that, as far as available solutions
go, there is much one can do with the technologies at our disposal (both proprietary and free
software) but there are some things that are just not feasible or practical to do with them. Delving
further into this technological gap is one of the intentions of this thesis, while also keeping in
mind the success of other tools given their use under appropriate conditions.

1.1.3 Challenges

While the last sections broadly approached the problem of interest in this thesis, here we will
briefly discuss some commonplace challenges inherent to this field of research. We have divided

10 Throughout this thesis the use of the term “audio middleware” (or just “middleware”) refers to software
systems that integrate the design of a game soundtrack with the corresponding game engines or applications.
This meaning may not match the usual meaning attributed to middleware in general, but is, nevertheless, the
convention used in the game audio industry – and we follow it to avoid confusion.

1.1 MOTIVATION 9

Game
Application

Sound Designer

Soundtrack
Editor

Player

Programmer

Audio
Engine

Audio
Data & Metadata

Game Audio Middleware

Figure 1.5: A diagram exposing the workflow of a typical game audio middleware. The sound designer
uses the soundtrack editor to provide audio data in the form of both samples and behavioral specifications,
while the programmer loads these assets into the game and plays them using the audio engine.

them in two groups: technical challenges and practical challenges. The first ones are those that
can be tackled from a Computer Science perspective by proposing algorithms and other com-
putational solutions. The second ones, though definitely not unrelated, lie somewhat beyond its
scope.

A first technical challenge is one we have already hinted at when we described Faster Than
Light ’s soundtrack implementation. When the sound design choices lean towards heavy use of
audio samples, specially for music, it is only natural to provide variability through the run-time
combination of different samples. One could expand on the approach from this game, having
an audio sample for each instrument in each tune of the game, and then mixing them during
gameplay according to a given set of rules (which could be arbitrarily complex). However, since
the storage size of an audio sample is proportional to its duration and not its instrumental
composition (more on that in Section 3.1), this method can easily multiply the game storage size
beyond acceptable limits depending on the target platform.

A second technical challenge is that naïve implementations and usage of real-time sound
applications often cause audible clicks when a change occurs to some ongoing sound. This happens
because the abrupt reshaping of a waveform produces a sonic artifact. The common solution is
to try as much as possible to transition between different “audio states” smoothly by relying
on techniques such as cross-fades (when there is enough memory for an extra buffer) or careful
handling of signal manipulation [E01]. To some extent, it is possible to embed this kind of
robustness into the audio middleware itself but, depending on how much control is given to the
sound designer, it might be impossible to work around all the misuses of the tool features.

Another technical challenge is that of the dynamic level of audio detail (LOAD) [Far07, Far10].
When too many sounds compete both for the player’s attention and the computer resources, a
good compromise to make is to decrease the quality of less relevant sounds as to reduce their toll

10 INTRODUCTION 1.2

on the machine performance, thus producing a more complete and efficient sonic landscape. This
technique is an industry standard in computer graphics, specially with the advent of geometry
shaders [DT07], and corresponds to an active research topic for audio processing [DPS+15]. The
main challenge here is in establishing the computational costs for each available option.

Regarding practical challenges, the first one is none other than the (un)predictability of
game soundtracks. No matter how well a game audio middleware deals with real-time behavior,
it cannot make any promises about how it will sound during actual gameplay because, again,
there is no way to predict all possible outcomes for even simple games. There are, however,
ways to mitigate this problem. One would be to provide an environment for experimenting with
the soundtrack “reactions”, by manually feeding it with data that would usually come from the
game execution. When the complexity of such interaction becomes impractical to simulate, a
more elaborate alternative is to support a run-time connection between the game application
and the soundtrack editor, allowing the sound designer to experiment with it while the game
is running. Even then, handling untested or unpredictable scenarios will depend entirely on the
sound designer’s skill to extrapolate the performance of his or her creation.

The next practical challenge is that, one way or another, each new game audio middleware
comes with yet another skill set the sound designers and programmers will have to acquire (more
so for the former). The choice of using one in a game project should take into consideration
not only the monetary costs, but also the learning costs of introducing a new technology to
the production pipeline. This issue brings to the table research areas such as user experience,
computer-human interaction and interface design, to mention a few. We will come back to this
topic in the next section.

Finally, a very important practical challenge is that when you design any kind of digital
content creation tool, the features and controls you leave at the user’s disposal cannot help
but influence the aesthetics of the final product, in some ways more than others. For instance,
composing a music with MuseScore11 naturally leads to a more traditional score-based content,
while using LMMS 12 will likely make it easier to produce themes closer to electronic music. One
may not exclude the other, but even then it is risky to state that the underlying technology does
not impose tendencies and limitations to the general aesthetic of the contents derived through
its use.

1.2 Objective

From what we have seen in the sections so far, producing real-time soundtracks in digital games is
not a far fetched proposition, but it does comes with many practical challenges. The gap between
programming and sound designing activities lead to slow validation cycles, and the limitations
of the technologies involved impose restrictions over possibilities and difficulties associated to
soundtracks. As such, it becomes clear that there are promising opportunities in the employ-
ment of computational solutions to simplify, automate, and expand the production of real-time
soundtracks in game applications. So far, we have shown the concern for both powerful real-time

11 https://musescore.com/
12 https://lmms.io/

https://musescore.com/
https://lmms.io/

1.2 OBJECTIVE 11

mechanisms and easier integration protocols between the software and sonic domains of game
development.

With that in mind, the objective of our research is to design, develop, and evaluate a game
audio middleware for real-time soundtracks with the purpose of empowering sound designers by
following (mainly) Farnell’s proposal for procedural audio [Far07]. All the source code of our
middleware and accompanying examples is available as open source software under the Mozilla
Public License Version 2.0 13 at https://github.com/vorpal-project. A more detailed description
of the middleware architecture is available in Section 4.4, and its most relevant implementation
details, in Chapter 5. For now, it suffices to say that, according to the general architecture in
Figure 1.5, the middleware consists of two core components:

1. A digital content creation tool for real-time soundtracks; and

2. An audio engine capable of playing such content from inside game applications.

1.2.1 Intermediate Goals

In order to achieve the main objective of this work, there are a series of intermediate goals we
need to achieve first, which we shall list and describe in this section.

Digital Soundtrack Representation

Digitally, a real-time soundtrack cannot be represented solely by audio sample files. Some other
kind of file format is needed to describe the dynamic behaviors of the soundtrack. Additionally,
this format not only has to be processable by the audio engine part of the middleware, but it
also has to be editable from the digital content creation tool. Thus, one of the sub-objectives of
this thesis is to choose or design a file format for digitally representing real-time soundtracks,
and develop the necessary features in the middleware to read from and write to this format.

For example, consider the sprite sheet animation case from Section 1.1. Aside from the sprite
sheet itself (which could be in PNG, JPG, or other texture formats), the game application may
need an additional file describing the animation frame sequences. It could start by listing all
frames in the sprite sheet, indicating their position, width and height inside the pixel matrix,
and then it would define each animation in the sheet by giving it a name and assigning a sequence
of frames (referenced by indices from the previous list) to it. Optionally, it might also specify
an animation speed (in Frames Per Second or FPS) for each animation entry. That would be a
“real-time animation” format, albeit very simple and not very interactive. There are also endlessly
possible syntaxes (for plain-text formats) and data layouts (for binary formats) that could be
used to express it. Regardless, it serves the purpose of illustrating what we mean by a “digital
soundtrack representation” format.

Soundtrack Authoring Interface

Along with the digital soundtrack representation format, we will also require an interface for
writing files in that format. Here, we use “interface” in a very broad sense. For instance, if we

13 https://www.mozilla.org/en-US/MPL/2.0/

https://github.com/vorpal-project
https://www.mozilla.org/en-US/MPL/2.0/

12 INTRODUCTION 1.2

decide for some plain-text format, any text editor could be used as the “front-end” for our digital
content creation mechanism. The idea is to find a convenient balance between usability and
implementation overhead, as well as good integration with the rest of the middleware.

Real-Time Audio Engine

The flip side to an authoring interface is the piece of software able to consume the digital content
it produces. In our case, the game audio engine mentioned in the main objective above fulfills
that role. Its purpose is to not only read files formatted according to the adopted digital content
representation, but also to execute the corresponding behaviors during application run-time –
which here means effectively playing the soundtrack. The reason we call this an “audio engine”
will be made clear in Chapter 3, when we study both game engines and digital audio.

Media Integration

Lastly, depending on how the other intermediate goals were accomplished, the middleware might
require different levels of media integration among its components. The two main points here
are the export-import protocol between the authoring interface and the audio engine – that is,
what steps the sound designers must take to make the soundtrack they created available for
the programmers to load into the game application – and the interface’s capability to play a
preview of the soundtrack in it – i.e. outside the game –, which might even require that it runs
an instance of the audio engine from within it. In other words, this sub-objective points out that
the interaction flow between the middleware components must be properly addressed at some
point during this work.

1.2.2 Contributions

This work provides two major contributions to the field of real-time soundtracks in digital games.
First, by making the game audio middleware into a research goal, and by publishing it with a
free software, open source license, we will be feeding the game development community with
an unprecedented implementation reference to this class of middleware, since all other ready-
to-use alternatives are commercially licensed or patent protected, besides being closed source.
Second, our solution follows Farnell’s proposition for procedural audio, which also has not been
done before in the form of a full-fledged game audio middleware – there are either ad-hoc im-
plementations for individual games, or generalized tools for non-game applications. As for minor
contributions, we present punctual solutions for the following implementation issues in game
audio middleware (which we explain and address in the corresponding sections):

1. Procedural soundtrack abstraction (Section 5.2.1);

2. DSP management (Sections 5.2.2 and 5.3.1);

3. DSP-playback mixing with 3D localized audio (Section 5.2.3); and

4. Real-time audio synchronization with a host engine (Section 5.2.4).

1.3 TEXT ORGANIZATION 13

1.2.3 Validation

This research is validated in three different forms:Basic Feature Support,Advanced Feature
Support, and Usability. The purpose of the first two validations is to verify that our main
objective is satisfied – the production of an effective real-time soundtrack middleware for digital
games. The third is used mainly as a study for future improvements or alternate implementations
to the approaches used here. Next, this section describes in greater detail each of these validation
methods.

Basic Feature Support

The bare minimum expected from our middleware is the possibility of developing an actual game
with a real-time soundtrack. As such, this first validation method consists of basically proposing
and developing such a game using our technology. To avoid an overly artificial or contrived design
in the game to showcase the capabilities of the middleware, we decided to establish a partnership
with a professional sound designer whose needs and opinions would direct the game contents and
features. The resulting title was Sound Wanderer, which we further explain in Section 6.1.

Advanced Feature Support

Since we could not possibly contemplate every feature a sound designer might need with a single
game, and it would not be practical to keep developing games until all of them were verified,
a different kind of validation was used in this work for what we are calling advanced feature
support. By contacting and interviewing other professional sound designers in local game studios,
we identified common needs in their workflow. We join those requirements with others from the
literature, thus composing a list of real-time variability approaches to game sound. We then use
them as a checklist for our middleware’s feature pool. The full list is presented in Section 4.2,
and their fulfillment is addressed in Section 6.2.

Usability

Finally, even if our solution did provide all the necessary features for real-time soundtracks
in any possible game, it would be for naught if no sound designer was able to understand its
user interface and workflow protocols. At the same time, we could not prioritize usability over
the core features of the middleware, since completing a working functional system to validate
our research comes first. As such, this last validation step was done solely for the purpose of
identifying improvements that can be done to the system in future works. The method itself was
of qualitative nature: we took notes of all impediments and advantages that came up during the
development of Sound Wanderer, specially from the sound designer’s point of view as a user, and
then critically analyzed them in Section 6.3.

1.3 Text Organization

In this chapter we have presented the context and motivation for our work, as well the main
challenges involved. Then we stated our primary and secondary objectives, pointing out where

14 INTRODUCTION 1.3

our contributions lie and how we intend to validate the developed middleware. Chapter 2 presents
other relevant research works that address similar problems. Next, in Chapter 3, we provide an
overview of many concepts and tools required to better understand this research field and to
guide the middleware implementation itself. Chapter 4 describes our computational solution
for real-time soundtracks by addressing many of the issues raised during this first and second
chapters. Then, in Chapter 5, we describe the implementation choices and details of the proposed
middleware, relying heavily on what Chapter 3 covered. Chapter 6 presents the results in the
form of the proposed middleware and how it meets our validation demands. Finally, Chapter
7 finishes this thesis by discussing our observations along the research and directing readers
towards future works.

Chapter 2

Related Work

Real-time soundtracks in digital games is no novelty. Both proprietary products and academic
works have already shown many ways to achieve that result using a variety of strategies. This
chapter intends to give a brief overview of these solutions (leaving more relevant and detailed
explanations to other chapters) in order to better understand what is already out there and verify
how they might help our work or how our work could improve on them. It will complement the
solutions we described in Section 1.1.2 and serve as a guideline for how we design our own solution
in Chapter 4.

To organize this discussion, we divide the related works based on how they approach our
research topic. Their interest might lie in the technique, in the critical evaluation of current
methods, in underexplored applications, besides other concerns. There are even a few cases we
chose to talk about that do not even really reach for the same problem we want to solve, yet
present a relevant intersection between their investigations and our needs. As such, Section 2.1
surveys works that regard audio in games broadly but which we will analyze with real-time
behavior in mind. Then, Sections 2.2 and 2.3 very briefly expose more in-depth works relating
to two powerful ways in which real-time soundtracks could improve game applications both
technically and aesthetically. The last part, Section 2.4, discusses those not-so-related works we
have mentioned.

2.1 Game Audio in General

Scott [Sco14] writes about the work of composers in game soundtracks, highlighting their role in
the promotion of the sonic engagement of players. He explains that composing music intended to
go along with visual media adds a whole new level of complexity to the already nontrivial task
of writing melodies. Particularly, one of the main challenges pointed out by Scott is dealing with
the nonlinearity of narratives in this audiovisual format. For instance, it is hard to avoid making
the player listen to the same melody for hours of interaction without it becoming monotonous
or repetitive. In that sense, he states that it is important that a soundtrack be dynamic,
serving as a support for the user’s activities and that even simple changes can help
achieve this. The evolution of technology and the technique of embedding audio in digital games
has increasingly worked towards suppressing this problem, but at the cost of demanding greater

15

16 RELATED WORK 2.1

digital dexterity from composers and sound designers. More and more of these professionals
seek tools like the ones described in Section 3.4, and Scott recognizes that understanding the
computational process behind the playback of audio in games is an important step to them.
Complementing this discussion about the cohesion between sound and technology in games,
Meneguette [Men13] says1:

Regarding the production of such [interactive] sonic situations, dependent on the
player’s nonlinear action, there is an interesting challenge for composers and re-
searchers of dynamic audio: how to describe the potential situations involving game
sonority, taking into consideration aesthetic and technological issues, relating them to
programmable parameters in the system, giving them a semantic nature and making
the sonority correspond to an emotional and rhythmic directing in the [game] scene,
suggesting a potential for the player’s action. It could be a question with no easy
solution, but it looks like a fruitful research path to be walked, taking care to keep
logical coherence at each cross-roads of the route.

As we can see, both these authors help reinforce the motivation in our reserach. Another
one we have already mentioned is Farnell [Far07], who actively defends that relying strictly on
sample-based audio is both aesthetically and technically restrictive. In his book, Designing Sound
[Far10], he proposes procedural audio as a more appropriate alternative, which the author defines
as “non-linear, often synthetic sound, created in real-time according to a set of programmatic
rules and live input”. This includes DSP, synthetic sound, generative sound, stochastic sound,
algorithmic sound, among others. Farnell offers a full collection of procedural audio solutions to
various sound effects that could be used in games. Some of the main advantages of procedural
audio he presents are:

1. Deferred form: since audio decisions are made at run-time, they can better adapt to the
in-game context than if the sound designer tried to “predict” how it would go. Mixing can
be specified by priorities, for instance, leading to a more flexible method of highlighting
different parts of the soundtrack.

2. Default forms: by interacting with the game physics, sound effects could use physically-
based sound synthesis as the default behavior (more on that in Section 2.3), while more
relevant sonic events are replaced by carefully crafted sounds. This way, there is a good
trade-off between quality and productiveness.

3. Variety: since procedural audio leans more naturally towards real-time behaviors, its re-
sults can easily vary according to the in-game context, avoiding Scott’s concern for the
soundtrack becoming monotonous or repetitive. This works for both sound effects and
music, but with different approaches to each (see following sections).

4. Variable cost and LOAD: as mentioned before, being able to manipulate the soundtrack
in real-time allows the game software to balance it out and save the computational resources

1 Author translation from Portuguese.

2.1 GAME AUDIO IN GENERAL 17

at its disposal (mainly CPU and memory). This could be combined with advantage 2 by
making default forms be parameterized according to resource restrictions, taking much of
the work out of the sound designers’ and programmers’ way.

Another particularly important work on game audio is Collins’s book, Game Sound: An In-
troduction to the History, Theory, and Practice of Video Game Music and Sound Design [KC08].
She carefully presents the evolution of game sound throughout the decades since their birth in
the second half of the twentieth century. There are two particularly remarkable parts in her text
which we bring to attention here. The first is that, curiously enough, game soundtracks were ac-
tually procedural in nature at first. In the industry origins, much as it is today, the sonic features
of digital games depended on the technology underneath them. The difference was that techno-
logical limitations back then were still clearly stuck at the hardware level. Computers could not
play long audio samples directly, and relying on analogue synthesizers was the standard solu-
tion. This meant that sound effects and music were programmed instead of recorded.
Naturally, this led to the first real-time, interactive soundtracks in game history. Then in the
1990s, when Compact Disc Digital Audio (CD-DA) came around, sample-based audio replaced
hardware synthesizers and remained prevalent since then.

The other part of Collins’ book we found most relevant to our work was the chapter on
Compositional Approaches to Dynamic Game Music. She brings up nonlinearity in games by
highlighting that “games are largely unpredictable in terms of the directions the player may
take, and the timings involved”. One of her focuses was on game narratives with tree branching
structures, where well defined decision points can cause the gameplay to diverge and how they
are particularly engaging moments of the experience. Collins states that “Planning to respond
emotionally to the visuals or narrative in terms of audio at these junctures, then, is incredibly
difficult, and yet incredibly important”. Lastly, the author enumerates ten approaches to vari-
ability in game music, mostly directed at symbolic representations of sound (more on that in
Section 3.1.2):

1. Variable Tempo: accelerate or decelerates the music tempo.

2. Variable Pitch: shift whole sequences of notes in the frequency domain. This was histor-
ically used as a way to provide musical variation while saving memory.

3. Variable Rhythm/Meter: change the rhythm of a music score (from 3/4 to 4/4, for
instance). The author did not find any practical examples of this technique, though.

4. Variable Volume/Dynamics: change the music volume, generally in order to highlight
it or to stop it from distracting the player from some other event more worthy of his or her
attention.

5. Variable DSP: change which and how filters are applied to music. As an example, some
action-intensive games use low-pass filters to indicate a distance in consciousness from the
player’s avatar, specially when it is hurt or disabled in some manner.

6. Variable Melody: algorithmic composition, which the author herself admits being “still
very much in its infancy”.

18 RELATED WORK 2.2

7. Variable Harmonic Content (Keys and Chords): change how the music harmony
interacts with the melody. Collins presents a couple of real-world examples of this technique.

8. Variable Mix: change which channels are mixed into the music and how they are so.
We’ve had the example from Faster Than Light, but the author also mentions Super Mario
World (Nintendo, 1990) and Super Mario 64 (Nintendo, 1996), to which we could further
complement with Banjo-Kazooie (Rare, 1998) and many others.

9. Variable (Open) Form: randomize the sequencing of the music. Somewhat challenging to
achieve while preserving aesthetic integrity, but brings advantages such as avoiding Scott’s
monotony and providing inexpensive (in terms of storage) variety.

10. Branching State-based Music and the Transition Matrix: assuming your sound-
track is divided in playback states (“indoors”, “escaping”, “dying”, “triumphant”, etc.), this
approach maps all possible musical transitions between them in a matrix such that the
transition between state A and B is written to the cell in row A, column B of the matrix.

As a last (non-academic) reference for game music, the YouTube channel ExtraCreditz 2 –
which publishes videos on game design in general from the perspective of a professional consultant
in the game industry – presents an interesting duality in their chapter on Video Game Music
[Ext]. They state that both “catchy”, memorable themes, and more abstract ambiances are equally
important to digital game soundtracks. The first ones help provide an identity for the game and
its characters, and makes the player remember them years after he or she has played it. But since
that can fall into Scott’s issue of being repetitive and eventually monotonous if not unpleasant,
this sort of strong melodic composition should not be applied carelessly (for instance, the stage
lengths of the game should be considered). The second kind, abstract ambiances, is particularly
appropriate for horror games, where the absence of musical structure can cause the necessary
(intended) discomfort in the player’s experience, and is also useful for activities in-game that are
too long or that require the player’s undivided attention.

The works of both Farnell and Collins provide explicit, punctual features a real-time sound-
track game technology should support. As such, we will come back to them in Section 4.1 to help
compose the specifications our middleware must meet, as explained by our validation criteria
described in Section 1.2.3. The basic idea is to either map these lists directly to middleware
features, or to make the middleware capable of producing an equivalent result through lower
level mechanisms provided to the user.

2.2 Music Automation

As we mentioned in Section 1.1, one of the main bottlenecks for real-time soundtracks in digital
games development is the necessity for inserting all the in-game cues to sound events into the
game code manually. This is specially difficult when conditions for the cues are not promptly
verifiable, or are even too subjective to write into explicit code. For instance, one could wish to
play a “sad” theme whenever a character is going through some narrative ordeal, or when the

2 https://www.youtube.com/channel/UCCODtTcd5M1JavPCOr_Uydg

https://www.youtube.com/channel/UCCODtTcd5M1JavPCOr_Uydg

2.2 MUSIC AUTOMATION 19

game and sound designers want to engage the player through the “sad” theme in key narrative
interactions. We have seen this in Faster Than Light (where the player is sonically instigated
during combat interactions), but since there are only two “emotional music states” and the cues
are straightforward, the implementation poses no major issue.

In search for ways to better escalate this method, some research lines explore ways to auto-
mate the translation of in-game narrative interactions into sound events taking into consideration
the relation between a desired musical aesthetic and the effects it has on the player’s experience.
Bearing in mind that any emotional interpretation of a music track depends on many cultural
factors [Mat14], these works propose solutions in the form of rule sets that dictate how cer-
tain “emotions” or “moods” should be reflected onto the soundtrack, and are thus able to offer
computational methods for automating the real-time process of applying such rules.

Livingstone et al. [LMBT10] proposes the Computational Music Emotion Rule System
(CMERS), which consumes MIDI3 files and modifies their musical parameters (such as tempo,
key, attack, brightness, etc.) in real-time as they are played for the user. To do that, CMERS
receives, as input, a stream of points from a bi-dimensional space which represents, in an obviously
oversimplified manner, the “emotion” intended to be conveyed through the music. In this space
known as the Two-Dimensional Emotion Space (2DES), one of the axis indicates whether it
is a positive or a negative sentiment – its valence – while the other axis indicates whether it is an
active or passive sentiment – its arousal. The system uses the octant in which the valence-arousal
points lie to determine what changes to apply onto the music track. These changes are the same
no matter which MIDI file the system is processing, they follow music-emotion patterns the
authors harvested from an extensive bibliographic collection. The mapping between the space
regions and the musical effects are shown in Figure 2.1.

A similar bi-dimensional representation is used by Eladhari et al. [ENF06], except it is used
to indicate the musical mood of game characters instead of the emotion to engage the player
with. In this version of the space, one axis reveals the character’s inner mood (that is, regarding
itself) and the other reveals its outer mood (regarding those around it). The way the points are
applied to the played music also differs from Livingstone et al.’s CMERS: the space assumes the
discrete form of a matrix – called Humor Matrix –, with each of its cells being associated with
a prerecorded variation of the character’s theme. The matrix can be seen in Figure 2.2. This
alternative solution has the audio fidelity advantage of working with samples instead of MIDI,
but on the other hand it demands the previous effort of composing all musical variations of each
humor cell. One interesting aspect of Eladhari et al.’s work is that the authors also propose a
method to automatically relate in-game interactions with mood matrix positions using spreading
activation networks, molding what they call the Mind Module.

While these proposals do lie somewhat outside the scope of our work – specially for dealing
with music and composition issues that go beyond the reach of computer science – they do show
the kind of musical manipulation a sound designer or composer might be interested in and thus
should be supported by a game audio middleware. They even describe effective implementations
of these features. With that, we see that having control over volume, pitch, timbre, tempo,
attack, and melody might be necessary to direct the musical intention in a game. Besides, some

3 https://www.midi.org/

https://www.midi.org/

20 RELATED WORK 2.2

Figure 2.1: 2DES: musical emotion space proposed by Livingstone et al. [LMBT10]

Figure 2.2: Mood Matrix proposed by Eladhari et al. [ENF06]

2.4 PHYSICALLY BASED REAL-TIME SYNTHESIS 21

of these were also mentioned by Collins, which reinforces their relevance. There is a trade-off
to consider here, though. Even though some musical parameters are promptly controllable by
post-processing filters – such as volume and timbre (to some extent) –, others are not if we keep
relying on prerecorded samples only. The music structure itself must change during playback if
one wishes to manipulate its melody, tempo or attack. Livingstone et al.’s CMERS achieved that
by using MIDI, while Eladhari et al.’s Mind Module chose to depend on prerecorded samples.
The former is more versatile, but comes with the typical MIDI drawbacks (which will see in the
next chapter), while the latter demands more work from the composer, even though it produces
audio with more fidelity [Mat14].

2.3 Physically Based Real-Time Synthesis

Following one of Farnell’s main ideas for procedural audio in games [Far07, Far10, part IV],
another line of research lies in the development of algorithms for physically-based real-time
synthesis and processing of sound effects. Essentially, works in this area try to simulate how a
sound behaves according to (a selected group of) laws of Physics that apply to it. They extract
geometry and material information from objects and the structure of virtual spaces in games
and derive the corresponding sound, reverberation and propagation effects, among others.

James et al. [JBP06] provides in his work a method for real-time synthesis of the sound
that comes from the vibrations in solid bodies with complex geometries by approximating their
shape modeled by multi-thousand vertices and triangles into a few dozen key points which would
produce an equivalent sound. Bonneel et al. [BDT+08] implements an optimization for modal
sounds (like the ones from James et al.’s work) by using their frequency domain representation
instead of the usual time domain implementations from previous works. These contributions
allow the user, upon interaction with a virtual scene, to hear perceptually adequate sounds when
a pile of boxes falls apart or when an explosion is triggered – all without the need to keep an
endless library of sound effect samples.

Once the sounds originating from game objects are at our disposal, the next expected feature
of physically-based audio is to simulate how that sound propagates and reverberates in a given
virtual space in-game. These techniques are analogue to physically-based ray-tracing in computer
graphics [PH10], in which a wave path (of light or sound) is computed by considering the geometry
of scene props and their respective diffuse and specular reflections, among other effects. Doing so
in real-time while keeping an adequate level of quality is one of the main concerns of ray-tracing
methods, due to the sheer amount of rays cast. Nevertheless, real-time propositions are available
in literature, such as the works from Taylor et al. [TCAM09] and Raghuvanshi et al. [RSM+10].

These techniques can be very expensive to implement and process, requiring deep under-
standing of other knowledge domains such as Physics, Acoustics, and Numerical Analysis. Nev-
ertheless, with the prevailing “realism” oriented aesthetic of digital games in the market, their
demand might keep increasing. In our research, we strive for a compromise in this regard by stat-
ing the middleware specifications in a way that make it possible to implement these algorithms,
but we leave them out of the core system features and allow their inclusion through extension
mechanisms.

22 RELATED WORK 2.4

2.4 Other Works

There is a multitude of works that focus on innovative ways to use sound in games but do not
necessarily cover our concerns for real-time interaction. For the sake of completeness, we will
briefly mention here some involved areas which help give an insight into further possibilities
for game audio middleware. One such line of research is that of games whose user interface is
composed of audio elements (also known as audio games), in particular games where the player
uses run-time audio input to act inside the game narrative [PH07, PH08]. An interesting work
from Nelson and Wünsche [NW07] points out three other unusual approaches to game audio. The
first is using pre-processed sonic input for generating game content or controlling its mechanisms
such as dictating the speed of enemy attacks based on the music rhythm or what kind of actions
the player can do based on the currently playing instruments. Another approach is making in-
game player actions produce individual sounds that, together, may compose a musical piece of
its own – that is, turning the games into instruments themselves. There is a similar work in this
vein by Furlanete et al. [FMM08]. The third approach is about how DJing techniques could be
applied to game soundtracks, since one of the main skills needed for a DJ is to mix a song with
the following one seamlessly.

Among these, using audio as a form of input (be it off-line or on-line) does not contribute to
our research discussion, since we are mainly interested in improving how the audio is presented
to the player, which means manipulating how it is played in the game output. On the other hand,
the ideas of

1. using game elements and mechanics as a form of music creation, and of

2. applying DJing techniques to music transitions

are both relevant in our context. The first hints at the division of the soundtrack into more gran-
ular elements in a way that makes their combinations produce an interactive music composition
that follows no conventional form in particular. The second provides a whole music manipu-
lation domain from which one could draw transition methods and possibly bring them into a
computational formulation, which could greatly simplify Collins’ transition matrix method, for
instance.

Many of the basic concepts and tools we mentioned along this chapter are discussed in the
next chapter. Having provided a better understanding of ongoing research in this area, we can
now focus on building the foundations we need to justify and implement our proposed solution
in later chapters.

Chapter 3

Concepts and tools

There are three main knowledge domains involved in this research. The first of them is that
of digital signal processing (DSP) for audio. In order to familiarize ourselves with the kind of
algorithms and data structures we will be using, we need to understand how sound is represented,
manipulated and played by computers. The next domain is that of the soundtrack production
process, which we will study with the intention of finding the gaps that our middleware is
supposed to fill in for. This means that we will not concern ourselves with how to make an
appropriate soundtrack, but how to computationally help those capable of doing so. The third
and last domain is that of digital games itself. It is important to understand the technological
restrictions associated with the development of this kind of software application, specially to
know where and when audio features come into play. All of these domains will be brought
together when we propose our middleware solution in Chapter 4 and when we present its key
implementation aspects in Chapter 5.

The first part of this chapter will present each of these domains in Sections 3.1, 3.2, and 3.3,
respectively. The second part, consisting of Section 3.4, will regard currently available or histori-
cally relevant game audio middleware and also Pure Data1, which is a more general purpose DSP
tool we will refer to in all following chapters. By analyzing what we consider the main solutions
for real-time soundtrack in games so far, this chapter will have established the groundwork upon
which we will build our own middleware. Finally, as a disclaimer for the content in the rest of
this chapter, we clarify that by no means does it intend to provide an exhaustive reference for
the approached subjects. When adequate, we will indicate proper bibliographic material for the
reader to deepen his or her understanding of individual topics.

3.1 Digital Audio

For something to be manipulated by computer programs, it is necessary to represent it digitally,
even if such representation ends up not being exact. That is, we must reduce that something to
numbers stored in machine memory. Some representations are based on the real characteristics
of the phenomena, while other are more artificial but likely easier for computational analysis or
synthesis. With digital audio, the representation of sound is closer to the former. In very simple

1 http://puredata.info/

23

http://puredata.info/

24 CONCEPTS AND TOOLS 3.1

terms, our ears perceive sound by sensing very small variations in air pressure. If we consider
this air pressure variation a function over time – which we call a signal –, we can use the
language of mathematics to talk about it and take a first step towards a more machine-friendly
representation. In this case, it would be an R+ → R function – known as an analogue signal
–, which can be converted into real air pressure variations with proper equipment (i.e. the sound
card of any modern computer). However, computers cannot store real numbers nor represent
arbitrary continuous functions, so instead we represent sound as a sequence of numerical values
indexed by instants in the time domain, which neatly comes down to an array of integers or
floating point numbers in memory. We call this a digital signal, hence digital audio.

Each individual number in this format is called a sample, but this term may also refer to
whole sequences of audio signal. The degree of fidelity from data stored this way depends on the
resolution used for slicing the time domain and the precision used to store the values related to
air pressure in bytes. The resolution basically states how many values are needed to represent a
second’s worth of audio signal, thus constituting its sample rate (usually measured in Hertz).
Audio precision is derived from how much memory space is dedicated to the storage of each
individual sample – the larger the space, the larger the set of possible values is and thus the
greater the precision is –, and whether it uses a fixed or floating point representation – which
influences how the precision varies between smaller and greater sample values. These and other
concepts are extensively explained in great references such as Roads’ book, The Computer Music
Tutorial [Roa96], so here we will limit ourselves to what is of immediate interest to our research.
Also, Figure 3.1a illustrates the sampling process from an analogue signal into a digital one.

Carrying on with the basic terminology introduction (which is used by many tools and pro-
gramming interfaces), there are certain qualities of sound related to musical aesthetics that can
be derived from its signal representations. The frequency with which patterns repeat themselves
in a signal over time is directly related to the pitch we recognize in the corresponding sound,
being possibly identified as musical notes or more complex harmony compositions. Alternatively,
one may refer to the wavelength of a signal, since it is the inverse of the frequency. The maxi-
mum local variation in sample values inside a continuous patch of the signal determines how loud
we hear the corresponding sound – that is, it determines its volume –, and is usually named
the signal’s amplitude. Figure 3.1b indicates each of these measures in the graphics of a sound
wave signal.

Computationally speaking, as we have seen, one uses continuous memory spaces to store and
represent a sound signal, with each memory unit corresponding to a sample, and their positions,
to the temporal progression. When we need more than one channel (to obtain stereo sound, for
instance), you can either interleave the samples from each channel over the memory or write one
channel until the end before starting the next. Then, in order to play audio represented this way,
all we need is to specify the whole format details we used to write the signal with in the first
place: sample formats (memory size, fixed or floating point and signed or unsigned numbers),
sample rate, size of signal sequence and channel quantity (and whether they are interleaved or
not). We then send this data along with the signal to the computer sound card, and it will
be capable of converting the digital signal into an interpolated analogue signal and play them
through loudspeakers or earphones. In order to access this feature from the device, programmers

3.1 DIGITAL AUDIO 25

(a) Digital audio sampled at a 4-bit preci-
sion (blue points) from an analogue signal
(red line) [Aqu13].

(b) Basic properties of sound waves:
frequency, wavelength and amplitude.
[KC08].

Figure 3.1: Basic terminology regarding digital audio and sound waves.

use specialized programming libraries, which in turn depends on the available drivers to send
and receive information from and to the sound card. As we explain in Chapter 5, our middleware
uses the OpenAL2 Application Programming Interface (API) for this.

An immediate consequence of this digital audio representation is that storing it in the file
system can be very straightforward. We can just transcribe the signal from RAM to a binary file,
add a header with format specifications, and later load it back to memory to play it. However, this
kind of storage has the disadvantage of having a very high space cost: a stereo audio sequence of
five minutes sampled at 44100Hz occupies 26.46 megabytes, so any simple playlist of a hundred
songs would not fit into a typical two-gigabyte pen drive. In order to avoid this, many compression
methods have been developed, which may come with or without data loss. For example, the WAV
format stores the signal as-is, i.e. without any compression (and thus suffers no data loss), while
the Vorbis OGG format3 uses lossy compression.

3.1.1 Digital Signal Processing (DSP)

Nonetheless, these file formats are exactly what we referred to as “sample-based” audio back in
Chapter 1: they are linear, atomic structures which may hinder the interactive nature of games.
One way to use them in a more procedural way (refer to Section 2.1) is to produce (synthesize)
or manipulate (filter) the signal sample array from inside the software application (as opposed
to doing it in a separate digital content creation tool). This is called DSP, a method we have
also already mentioned in Chapters 1 and 2. Here we will briefly explain in general terms how
these two facets of DSP (synthesis and filtering) can be implemented and used to achieve a few
illustrative sounds and effects.

Once we know the relations between the signal structure and the corresponding sound, we
can reproduce or invent a variety of timbres of interest, and then use them as sound effects or
compose them into more musical forms. We can even imitate human speech4. Audio synthesis is

2 https://www.openal.org/
3 https://xiph.org/vorbis/
4 Vocaloids are an example of this. See https://en.wikipedia.org/wiki/Vocaloid.

https://www.openal.org/
https://xiph.org/vorbis/
https://en.wikipedia.org/wiki/Vocaloid

26 CONCEPTS AND TOOLS 3.1

this process of artificially creating a sound. The most classic example is the sinusoidal synthesizer.
Since a signal frequency is related to its pitch and a sine wave has only one fundamental frequency,
writing it to the sample array with a frequency within humans’ audible spectra and then playing
it results in a “clean” pitch sound. Following a similar logic, there are many synthesis techniques
available. To name a few: additive synthesis, AM/FM synthesis, granular synthesis, etc.

The other side of DSP are filters. Their idea is to process one or more input signals – which
may come from sampled sources or outputs of other DSP functions – by numerically manipulating
them to produce an output signal with a desired effect. The simplest example is to multiply all
the samples in a signal by a fixed number. This effectively reduces or increases the original
sound volume, since it scales its overall amplitude. When we ponder a collection of input signals
added together using an amplitude filter for each, we are doing a process called mixing. As with
synthesizers, there are endless possibilities for what you can do with filters. A few examples are:
low/high-pass filters, band-pass filters, cropping filters, noise removal filters, etc. More often than
not, synthesizers and filters complement each other in a way that makes distinguishing them a
blurry and questionable process.

This quick introduction promptly points to some advantages we get when we bring DSP to
table together with real-time soundtracks. Since synthesizers and filters are computer procedures,
they can be fed with real-time data, which gives us real-time control over sound. Going back
to our overused example, we can now see that the crossover effect from Faster Than Light is a
combination of two sampled themes with a mixing filter that receives the amplitude factor in
real-time from the time management mechanism of the game (which we will explain in Section
3.3).

Since there are a lot of common pitfalls in handling a raw signal, developers and sound design-
ers usually rely on dedicated tools as much as possible for DSP features. There are many options
available, each with its own approach and advantages. Some of them come as applications with
well polished user interfaces and a typical digital content creation workflow, such as Audacity5.
Others come in the form of programming languages, providing nearly unlimited freedom at the
cost of a harsher learning curve and narrower accessibility, like CSound6, SuperCollider,7 and
FAUST 8. Max/MSP9 and Pure Data are two particularly interesting examples that try to find
a balance between these two extremes. They are both applications that work each with its own
visual programming language specialized for DSP, with Max/MSP being proprietary and Pure
Data, free software. By relying on the data flow programming paradigm, these languages allow
sound designers to more easily develop filters and synthesizers to meet their needs. Each “pro-
gram” or “module” written on these environments are commonly referred to as patches. Section
3.4.5 provides a more in-depth description of Pure Data, since it is particularly relevant to our
research.

5 http://www.audacityteam.org/
6 http://csound.github.io/
7 http://supercollider.github.io/
8 http://faust.grame.fr/
9 https://cycling74.com/products/max/

http://www.audacityteam.org/
http://csound.github.io/
http://supercollider.github.io/
http://faust.grame.fr/
https://cycling74.com/products/max/

3.1 DIGITAL AUDIO 27

3.1.2 Symbolic Representation

We have mentioned that computational representations have two qualities: how close they are to
the original phenomena, and how convenient they are to manipulate. We also said that digital
audio is a computational representation that tries to come as close as possible to the original
physical phenomena of sound since it literally models a sound wave as a sequence of bytes. Then
we presented the concept of DSP, which allows us to mathematically control digital audio. Now,
as powerful and useful as that is, there are a few use cases where seeing sound as a signal makes
it harder than it is worth it. Notably, it is hard to represent score-based musical compositions
using digital audio and DSP. In order to play a single piano note, we might need a synthesizer,
a filter to shape the note onset, a chronometer to synchronize the tempo, a separate timer to
sustain the note and possibly many other structures. It is far from ideal to have to implement
this patterns every time one needs a music routine. If, instead, we encapsulate it in a tool that
needs only be fed with notes in their own representation (say, a pitch and duration pair) to play
them, it would be much simpler and more productive to write songs (at least score-based ones).
That is the general idea behind what is called symbolic representation in computer music.

Symbolic representation has a very important historical role in computer music, thanks in
great part to an industry standard called MIDI (which we already referred to in Section 2.2), a dig-
ital communication protocol used to integrate instruments, digital audio workstations (DAWs),
computers and more. In general terms, the MIDI protocol specifies a series of parameterized
commands (and their binary representation) for controlling musical devices, from inputting indi-
vidual notes to mixing different instrument channels. One of the issues with MIDI is that, since
it consists of nothing but symbols, it entirely depends on how the target platform is able to gen-
erate audio from the commands it receives. For instance, if a MIDI command asks for a certain
sax note to start playing, there is no way for it to specify exactly what kind of sax timbre is to
be used. It could be a synthesized one or a sampled one, and in each case even more unspecified
parameters arise (which synthesizer to use, which brand of sax to sample from, etc.). There are
standards that try to mitigate this though – like General MIDI 10.

Curiously, although its hardware use is intrinsically manifest in real-time, in the software level
one of the most common applications of MIDI is as a sort of music score file format where one-
way sequences of MIDI commands are listed. Nonetheless, that does not mean it cannot be used
for real-time applications, as we have seen from Livingstone et al.’s work [LMBT10]. In fact, it
actually supports real-time behavior better than sample-based approaches, since its atomic units
(MIDI commands) are more granular than sample sequences and its symbolic nature is likely
more expressive to humans than raw byte arrays or function graphs, making them easier to reason
with in terms of dynamic behavior. As an example, it is trivial to pitch-shift a MIDI sequence
in real-time: simply add a fixed number to the pitch parameter of all incoming note commands.
On the other hand, pitch-shifting a sample requires some effort to avoid time-stretching it too,
even for off-line applications. One could take a step even further and propose that a music
be composed algorithmically by picking the note pitches on the fly following a computational
process influenced by the in-game context. This approach potentially provides an endless source

10 https://www.midi.org/specifications/item/gm-level-1-sound-set

https://www.midi.org/specifications/item/gm-level-1-sound-set

28 CONCEPTS AND TOOLS 3.2

of soundtrack material, albeit at the cost of unavoidable aesthetic limitations.
Finally, there are also many tools available for creating digital MIDI content, two of which

we have already brought up in Section 1.1.3. MuseScore is a What-You-See-Is-What-You-Get
(WYSIWYG) digital content creation application based on classic score notation. It can load
MIDI files and export projects in sample formats, and one of its strong points are the keyboard
shortcuts that make composing quick and relatively comfortable. The LMMS application (men-
tioned in Section 1.1.3), on the othe hand, comes with a DAW-like interface and a piano-roll
control for composition. Its main advantage are its numerous sound design features and powerful
synthesizers. Both tools are free software. Section 3.4.1 describes one of the first game audio
middleware systems that supported real-time soundtrack by relying on a MIDI-like internal rep-
resentation.

3.2 Soundtracks

It is not always possible to apply traditional soundtrack concepts to games, mainly because such
notions derive mostly from the study of linear audiovisual media. Notwithstanding, undermining
these concepts would be a mistake. Not only do games often rely on conventional linear scenes
(where there is no reason not to follow industry standards for the soundtrack), more often than
not the role of sound is the same independently of the (non)linear nature of the narrative [KC08].
For that, we present in this section some basic concepts regarding soundtracks, with a focus on
terminology and relevant practices that will help us discuss the issues our middleware tackles. We
note, however, that understanding what determines the aesthetic quality of a real-time soundtrack
is beyond the scope of this work. Our concern lies in the computational challenges involved in
empowering the sound designers to do what they believe is best for the game – and for that, we
need to comprehend a bare minimum of their language and workflow.

Matos [Mat14] defines “soundtrack” as being the sum of all sound effects, voice and music
insertions that are to be played along with a visual representation of a narrative. Each of these
soundtrack dimensions have a different function in the media. Sound effects are there mainly to
make the image more “real” (whether they are accurate reproductions of real sounds might as
well be irrelevant), while conversely tracing a subjective “point-of-listening” [Bas15]. In games,
though, sound effects have an additional role: to improve user interface feedback. They can be
used to point out noteworthy events, like an enemy being spotted, even if the equivalent event in
real-life had no inherent sound; or simply to make some control interactions feel more pleasant,
like the sound of a button being pressed inside the game menu when you click on it. This last
case is directly related to the concept of juiciness, which is not limited to sound feedback but to a
limitless set of possible audiovisual experience enhancements in game design [Sch14]. Figures 3.2a
and 3.2b show screen captures of games that employ both visual and sound juiciness in their user
interfaces. Back to soundtracks, voice is composed of the characters’ speeches, and as such it is
obviously desired that they be clearly audible at all times - leading to some technical implications
regarding real-time audio mixing such as overall volume control and sound prioritization. For
instance, another famous game in the same line as Age of Empires II (refer to Section 1.1) isWorld
of Warcraft III (Blizzard Entertainment, 2002), where the real-time sound alerts are mostly done

3.2 SOUNDTRACKS 29

by voice-overs. In order to properly listen to and make out the alert message words, there cannot
be too many other concurrent sounds. Lastly, music insertions traditionally serve the purpose
of filling out the narrative by showing what the image cannot show by itself: the scene mood, a
character’s intention, a commentary on story events, among other functions [Bas15, Mat14]. In
games, music can also be used to (try to) regulate the player’s attention: intense themes may
cause a sense of urgency, while calm themes may help the player focus on a puzzle.

(a) Main menu in-game screenshot
[Ent14] from Hearthstone (Blizzard Enter-
tainment, 2014).

(b) An in-game screenshot of a menu
[Atl08] from Shin Megami Tensei: Per-
sona 4 (Atlus, 2008).

Figure 3.2: Hearthstone and Persona 4 are good examples of games that demonstrate the concept of
juiciness in their user interfaces.

Aside from this division of the soundtrack by roles, we can classify its individual elements
regarding whether they belong to the diegesis or not, that is, whether they com from inside our
outside the narrative universe. For example, when a character plays a song with a flute or even
during dialogues, the space where the sound conceptually comes from is “within” the narrative.
This characterizes diegetic soundtrack elements. On the other hand, a song that is played only
for the audience to hear (a background music) or the narrator’s speech (sometimes) come from
“outside” the narrative itself (they are actually the means by which the narrative is presented).
We say, then, that they are extra-diegetic soundtrack elements. In practice, this separation is
not always clear, specially in digital games, where trans-diegetic uses are common – like when
a character speaks directly to the player to explain UI commands, extrapolating the narrative
universe or “breaking the fourth wall” [MP11].

As we can see, some sound events in a game are related to diegetic phenomena, which are, in
turn, directly or indirectly under the player’s control. This effectively makes game soundtracks
dynamic in nature. In this sense, we can also classify to which degree this dynamic behavior is
present in a soundtrack. It is called interactive when it responds to immediate actions from
the player, such as when he or she presses a button on the gamepad. On the other hand, when
sonic changes occur due to the internal mechanisms of the game – like a warning jingle when a
stronger enemy appears or when the theme cross-fades into another during transition between
stages – we consider it an adaptive behavior [KC08]. Thus, it is common for sound effects to be
regarded as interactive audio, while responsive melodic progressions tend to be seen as adaptive
audio, and both fit into the broader category of dynamic audio.

30 CONCEPTS AND TOOLS 3.2

3.2.1 Traditional Production Process

Having presented some initial concepts regarding soundtracks for audiovisual media, here we will
point out some common steps in the production line of a traditional soundtrack for movies, serial
shows and animations, while keeping an eye out for the technologies used. Let us start by fitting
the soundtrack into the bigger picture of audiovisual production. Matos [Mat14] states that the
most common practice is to leave it as one of the last steps, and this is reaffirmed by some
of the interviewed sound designers (see Section 4.2). This means that the composer’s or sound
designer’s work is usually based upon a (mostly) complete version of the movie or animation.
His or her job is to compose, record, synthesize, and master all the necessary music and sounds,
and then manually synchronize them with each cue in the video. Here we already have a crucial
contrast to games development: even if the soundtrack is left to the end of the process, the sound
designer does not have the leeway of seeking through gameplay to synchronize the samples with
the cues, since, as we have seen, not all possible interactions can be foreseen beforehand.

Although we have been restricting our discussion to the point of view of sound designers and
sometimes composers, there can be a plethora of other professionals involved. For sound effects,
Foley artists and sound effect recordists must provide the necessary samples, carefully molded
and recorded in the appropriate studios and with proper equipment. In animated media where
there are no “physical” actors in the footage, the production needs to hire voice actors to record
the character speeches from. For music, it mostly depends on the targeted aesthetic. The team
may opt from synthesis and music bands to whole orchestras. Then the music samples must be
recorded, edited, and mixed before being handed together with the other samples to the sound
designer or sound editor, whoever is responsible for putting the pieces together onto the final
soundtrack for the movie.

As for the technologies deployed, there are far too many to go over in this work, particularly
on the hardware side of the process: microphones, recorders, amplifiers, etc. Instead, we will
briefly talk about the software tools used for editing and synchronizing sound, since they are
the closest to game audio middleware (or rather, game audio middleware are inspired on them).
These tools are the Digital Working Stations (or DAWs) we mentioned in Section 3.1.2, and they
have two main interfaces: a mixing table and a timeline editor. Mixing tables are used to route the
playback of different audio signals to one or more channels. A simple example would be to route
the playback of a sample to the loudspeakers of the studio to hear it. Channels can lead to other
equipment (like reverberators, amplifiers and other filters) or to specific modules in the DAW
(for DSP-based effects). Then, each of the resulting signals can be fed back to the table through
another channel, and we can mix them into the final resulting sound. The purpose of the timeline
editor, on the other hand, is to provide control over the synchronization of the soundtrack. It can
come in a variety of forms, but in one way or another it must display a timeline where the user
can drop, drag, seek, cut, copy, and paste audio samples, among a myriad of other basic or more
advanced operations. Once the sound designer is satisfied with the state of an audio timeline, he
or she can then export the resulting audio file in the usual sample-based formats (WAV, OGG,
etc.). Two known examples of DAW software tools are Pro Tools11 (proprietary) and Audacity

11 http://www.avid.com/pro-tools

http://www.avid.com/pro-tools

3.2 SOUNDTRACKS 31

(free software).
To devise the relevant cues in a video clip, the sound designer and the director (or any

other authoritative figure in the production) must discuss it together and write down all of
them for future reference. Matos presents a few examples of this kind of document, which are
mostly crafted in tables that map each sample to a video clip, a timestamp and a cue, among
other details [Mat14]. Based on this, the sound designer can estimate the costs for the required
resources and professionals, then start his or her work. When it is done, it is usually delivered as
a single audio file to be played together with the video. When this step is reached, there might
be a need for some last-minute synchronization adjustments caused by extra tweaking to the
recordings, until the movie is ready with its final soundtrack.

3.2.2 Real-Time Soundtracks

Now that we have seen how traditional linear soundtracks are produced, this section will discuss
real-time soundtracks in general. Aside from digital games, there are a few other cases where we
can say a soundtrack falls into this category. Essentially, whenever one wishes to have a sonic form
intentionally paired with a live visual performance – be it on a screen, on a stage, on the streets
or wherever – real-time behaviors are bound to arise. The key factor here is that it has to be a live
performance, because otherwise the best alternative is to follow the traditional process from the
previous section (after all, both professionals and technological tools have already accumulated
decades of experience in it). In a sense, games can be considered live performances where the
player is the performer, except there usually is no audience12.

The real-time behaviors in these performances may come in many forms. For instance, they
could happen as planned improvisational interventions, like a solo or an act that depends on
the audience’s participation. Sometimes, the whole performance itself is designed in a free-form
session, depending on what the artists and performers decide to do in the spur of the moment.
De Lucca, one of the interviewed sound designers, has many works like this (see Section 4.2.3).
Even if a performance is supposed to follow a linear script, human error and other unexpected
mishaps can occur which require on-the-fly adjustments and adaptation. A few merely illustrative
examples are:

• Excessive repetition: specially for soundtracks intended to accompany activities or to
include waiting periods. Having a few extra songs or effects can help mitigate this without
having to rely on improvisation.

• Transitions: as we have seen, simply switching from one song to the next instantly is
usually avoided by using cross-fades or silent intermissions. Handling these transitions is
one of the common skills required from DJs (see Section 2.4).

• Polyphony: when there are multiple sounds being played, like a background music and
a person giving a speech, the most relevant at each moment must be prioritized over the
others dynamically.

12 A reality less and less prevalent due to the still growing culture of game streaming on Internet video channels,
which might curiously have their own soundtracks played over the ones from the game being played.

32 CONCEPTS AND TOOLS 3.3

Thus, when working in this new paradigm, the production process must adequate itself. There
might be a need for rehearsals to experiment with the sound and the music, or even a prerecorded
footage to serve as a general guideline. But, most important of all, it can no longer be delivered
as single monolithic audio sample. It must be provided as a set of isolated pieces, which must
then be put together during the actual performance. For example, consider the soundtrack for
the opening ceremony of an event. With all the variables involved, the professional responsible
for this orchestration, while in possession of all necessary samples and proper equipment, has to
follow each of the pre-established cues to start, stop, and mix each sound in time, improvising
when necessary. In order to remember all the cues, they must be discussed and documented
beforehand – possibly similarly to the one done in the traditional production process. Here, the
main difference between usual live performances and digital games is that in live performances
the one responsible for real-time control is a sound professional, while in digital games that job is
historically left to the programmer, since he or she is the only one who has sufficient access to the
game source code, which in turn is the digital equivalent to the performance equipment except
for the fact that it must be programmed beforehand and not controlled during the execution.

3.3 Digital Games

Games, in their digital form, are technically soft real-time interactive agent-based computer sim-
ulations [Gre14, Chapter 1]. The “interactive” part implies that the user does not provide all the
necessary input beforehand, nor does he or she need to wait until the process execution finishes
obtaining a complete output. Whenever the user receives a stimulus from the game, he or she
makes a decision based on it and informs the program of that decision, typically through the use
of dedicated controllers (like joysticks or gamepads) or common peripherals (like the mouse and
the keyboard). Then, the game processes the consequences of that action along with its inter-
nal mechanics, characterizing the “computer simulation” part, which mostly regards interactions
between virtual entities of the game world, hence “agent-based” simulation. After updating the
simulation to the next stable state, the game generates the corresponding stimulus to be pre-
sented back to the player, thus starting the interaction cycle anew. This data exchange between
game and player repeats itself continuously during the application execution, generally with a
rate of 30 to 60 Hz, and hence the “real-time” part. “Soft” here refers to the fact that games are
not strictly real-time systems, in the sense that they are not critical systems where a failure to
meet the real-time requirements may lead to physical harm to human beings13.

The game interaction cycle goes on until an end condition is met, like the user closing the
application window. In multiplayer on-line games, the generalized structure we just described
may be more complicated internally, but the overall flow of interaction remains the same. The
resulting output in games is usually a mixture of images being shown in screen monitors and
sound being played from loudspeakers or earphones. In other words, sound is one of the means
through which the player can understand what is happening in the virtual universe he or she has
engaged with. For a more in-depth discussion on what a game is on a more conceptual level and

13 Nevertheless, the quality standards of the game industry still demand high and consistent performance speeds
for a title to be considered a professional product.

3.3 DIGITAL GAMES 33

independently of its (non)physical form, we highly recommend Schell’s book, The Art of Game
Design: a Book of Lenses, Second Edition [Sch14].

Section 3.3.1 details some aspects of the game development process in the same way we have
detailed the traditional soundtrack production workflow back in Section 3.2.1. Then, in Section
3.3.2, we delve into the software architecture of digital games, which will be complemented
in Section 3.3.3 by a discussion of the main technologies involved in the development process.
Finally, Section 3.3.4 will bridge computer games implementation and real-time soundtracks,
pointing out key algorithms and data structures involved in making the features we want a
reality in digital games.

3.3.1 Development Process

There are many ways to start a game development process, which are, in turn, influenced by
the motivations behind it. Typically, we are talking about a company or studio who wants to
sell a new product. This means there is a target audience with a particular need that the game
is supposed to satisfy. There are many entertainment aesthetics a game can provide through its
mechanics and dynamics [HLZ04] to meet that need, all of which support the overall theme of
the game [Sch14]. Once all of this basic parameters are set, the team designed for the project can
start brainstorming concepts and ideas for the game. They must experiment with them until an
acceptable projection for the game is found, and then the team focuses on turning that vision
a reality. The brainstorming and prototyping part of the process is known as the preproduction
stage, and the implementation focused part, production stage. Finding the most appropriate time
to shift development from one stage to the other is one of the great challenges in this industry. As
the project comes close to a game capable of offering a mostly bug-free and complete experience,
development moves to the release stage, where the team must put everything together into a
single distributable package. After the release, the project may still go on by launching periodic
patches for fixes or even new features that could not go into the initial version of the product.

Even if all these stages macroscopically resemble a waterfall-like development process [Roy70],
in the sense that it is a one-way production pipeline, each stage can and should [Sch14, Chap-
ter 8] be done via iterative development14. Thus, the preproduction stage can iterate over the
game concepts and features, using prototypes to evaluate the resulting experience; while the pro-
duction and release stage can iterate over the implementation using commonplace agile methods
[BGM+01]. In all stages, each iteration prioritizes tasks that will mitigate product risks the most.
Validating this in games means being able to verify whether a certain feature or mechanism im-
plemented at a given point in production is really aligned with the intended game experience.
There is no way to know if a certain soundtrack piece is matching gameplay without play-testing
it, for instance. On that regard, it is important that composers and sound designers be able to
experiment with their created content from inside the game as much as possible.

The professionals involved in the development of a digital game can be grouped into four
great fields, each of which we present minimal representatives for15:

14 Some teams actually do go back from production to preproduction, leading to some infamous game projects
that last ten or more years to be released – some indeed worth the wait.

15 In practice, specially in small teams, professionals share multiple roles in the development process.

34 CONCEPTS AND TOOLS 3.3

• Programming – computer scientists, software engineers;

• Art – graphic artists, sound artists, writers;

• Design – designers, scripters, quality assurance; and

• Production – producers, directors, product owners.

Our main interest here lies in the “sound artist” type of professionals together with the “program-
ming” field, since they both are the intended user groups of our middleware. We will address the
workflow of sound artists for the rest of this section, and programmers in the following ones.

A game soundtrack can involve from a single sound designer to whole teams of professionals
with a diversity of specializations. For the musical pieces, the team might employ composers;
for sound effects, a Foley artist, etc. Performers and orchestras can contribute recorded songs,
and voice actors might provide the material for in-game dialogues. At some point, most of these
assets must pass through the sound designer, responsible for distributing and mixing them into
the final samples the game software will load and play.

That final step is the one we are most interested in. Compared to other software applications,
games are very peculiar when it comes to shipping the binary executable for user consumption.
All the 3D models, textures, sprites, sound, music, text, voices, and even stages, items, and other
game-specific content must be provided as separate loadable assets and packaged together with
the program (because of the need for data-driven design – see Section 1.1.1). To keep track of
all these files, some studios go as far as to employ specialized resource management databases
[Gre14, Chapter 6]. From the game code, each of the assets is referred to using some sort of
identification (like the path string to its location in the file system), then loaded at run-time as
needed and eventually released to make the memory space it occupied available again. During
the time it is loaded and in use by the game, the code may apply a series of operations over
that resource. For instance, we might request a specific walking movement from an animated 3D
mesh of a character. Some resources may even be programs themselves, like shaders and scripts.
In this regard, when the soundtrack is stored solely in the form of sample files, the programming
interfaces normally available for operations over them are those of simple DSP effects: volume
control, band-pass filters, pitch shifting, etc.

Going back to the sound designer’s work, if the sound resources are all sample-based, this
professional must either leave them as close as possible to their final intended playback – since
the available run-time operations are limited – or talk it over with the programmers to figure
out what effects can be applied via code – and then the result will no longer be under his or
her full control. What game audio middleware applications do (as we will see in Section 3.4) is
provide a new representation for audio assets, one that comes with “choreographic data”, much
like a sprite sheet or 3D mesh animation, to give back control to sound designers. They do so
by providing both the interface for creating and editing these resources and the computational
means to properly load and execute them from the game application without further dependency
on programmers. Middleware systems like this effectively extend the set of supported formats of
the resource management module in the game software, which allows all related professionals in
the team to pour new kinds of assets into the project.

3.3 DIGITAL GAMES 35

3.3.2 Software Architecture

Since all digital games are bound by the cyclic behavior described in Section 3.3, their compu-
tational implementation must abide to this paradigm as well. This is done with an endless loop
that can only be stopped from the inside. It serves as the basic structure for all the execution
flow of the application. Not only that, but it is also responsible for guaranteeing the real-time
expectations of the media. In game programming, this architectural pattern is known as the
Game Loop, a universal solution to the player-game interactive cycle [Gre14, Nys14]. Each
iteration or frame of the loop is commonly divided in three phases:

1. Poll input events;

2. Update the game simulation to the next stable state; and

3. Present the current state through graphics and sound.

This organization makes explicit the input and output parts of the game code, a fact we
will take advantage of when explaining our middleware implementation in Chapter 5. Figure
3.3 illustrates a simple and effective implementation of this variation of the pattern where a
synchronization mechanism aligns the simulation steps with “real world” time to protect the
game from hardware-specific processing speeds. However, in a more general scenario, there could
be many other sub-systems that make the game work as a whole. For instance, there could be
artificial intelligence, physics, networking, and video streaming sub-systems, some of which make
the concepts of input and output blurry at best.

Figure 3.3: A flow diagram of a simplified fixed-frame game loop as proposed by Nystrom [Nys14].

Every iteration, then, the Game Loop requests the services of these sub-systems in order,
each with their own demand for real-time scheduling and performance care16. In that regard,
we can broadly divide the sub-systems of a digital game in two groups according to how they
synchronize with the Game Loop.

16 Multithreaded implementations can either feature parallel Game Loops, each responsible for a different set
of sub-systems, or be used to improve the performance of individual frames – for instance, using the Graphics
Processing Unit (GPU) of the platform to perform large-scale physics simulation.

36 CONCEPTS AND TOOLS 3.3

1. Idle-frame synchronization. The sub-system should be serviced as often as possible,
that is, whenever the process is “idle” and can spare the CPU time for it. Depending on
what the sub-system function is, it might require information about how much time has
passed since its last service. An example is graphics rendering, which produces better effects
the faster it updates the output, as long as it matches the refresh rate of the display device.

2. Fixed-frame synchronization. The sub-system should be serviced between uniform time
intervals to remain robust. To achieve this, the Game Loop must wait or skip this service
step whenever the time is not right to execute it. A typical example is the physics sub-
system, which becomes more robust towards floating point precision issues when the time
intervals used vary the least.

Figure 3.4: A UML sequence dia-
gram of what could happen in the Game
Loop from Figure 3.3. The synchroniza-
tion mechanism must ensure that fixed-
frame processing steps occur between sim-
ilar time intervals.

In the simplified example from Figure 3.3, the “Pro-
cess Input” and the “Render” steps use idle-frame syn-
chronization, while the “Update Game” step uses fixed-
frame synchronization. We illustrate this in Figure 3.4,
where the diagram shows how the “Process Input” and
“Render” steps occur more often than the “Update
Game” step. This is the case when the game applica-
tions does not demand too much CPU time: rendering
is fast and may happen most of the time, while game
state updates must retain their synchronization consis-
tency.

In very practical terms, this essentially means that
each game sub-system comes with a corresponding rou-
tine (or method, in Object-Oriented Programming) for
requesting its service in the current Game Loop itera-
tion. When the sub-system is idle-frame synchronized,
this routine requires a parameter through which the pro-
grammer must inform the time since its last execution,
since it is the Game Loop that dictates time progression
for the software. On the other hand, if the sub-system is
fixed-frame synchronized, the routine requires no such
information. To illustrate this in explicit code17, an ex-
ample of an idle-frame synchronized service would be

void GraphicsSubSystem::render (double dt);

while an example of a fixed-frame synchronized one
would be

void PhysicsSubSystem::simulation_tick ();

17 We use C++ for code examples in this thesis. The reason is explained in the next section, Section 3.3.3.

3.3 DIGITAL GAMES 37

As such, a typical game architecture consists of a core engine, where the Game Loop re-
sides, and a set of sub-systems that must be managed across game frames. Each sub-system, in
turn, may have its own internal organization to handle its tasks. A graphics sub-system likely
comes with an internal data structure of a tree to represent affine transformations between 3D
meshes, for instance. In Object-Oriented Programming, the game architecture could be directly
translated into a series of classes, one for each sub-system, and a centralizing Engine class to
aggregate them all. There are, of course, many other classes that might be needed in the game
implementation, specially to provide interactions between each sub-system. For more informa-
tion on these game programming patterns, we recommend the “Game Loop” and “Component”
chapters from Nystrom’s Game Programming Patterns book [Nys14].

Here we can also see how digital games differ from other interactive applications that rely
on endless loops in the base of their architecture too. Since games are soft real-time simulations,
as much as they are not critically time-bound, the demand for fluid interactive experiences
directly impacts the underlying architecture requirements. If the frame frequency is not high
enough, the user will not be able to perceive an appropriate feedback of his or her input, or
incongruencies between the simulation state and the rendered effects will become all too evident,
likely compromising the game experience.

From all this discussion, we can see that the part in a game architecture responsible for audio
playback should be a dedicated sub-system like all others. Every time its service is requested, it
should compute all relevant audio samples and send them to the device sound card. Gregory’s
Game Engine Architecture, 2nd Edition has a chapter entirely dedicated to audio implementation
in digital games [Gre14, Chapter 13]. Taking all this into consideration, it is our belief that a real-
time soundtrack sub-system should be idle-framed synchronized. In fact, if it is not, then there
is a risk that its service is not requested often enough, causing time gaps in the game execution
where there are no audio samples to be played. This either causes abrupt silence surrounded
by crackling artifacts, or the endless repetition of the last provided samples, both of which are
usually regarded as not very acceptable gaming experiences. Thus, by knowing how much time
has passed since the last request, a game audio sub-system can calculate how many samples
are needed to compensate for that time difference, process them, and then properly play them
through the sound card.

However, a few issues arise when we talk about real-time game audio. For instance, a common
optimization in sample-based audio is to eagerly pre-compute all the samples in a given sound
file and have them all sent to the sound card as soon as possible. This has the advantage of
eliminating any chance of the samples not being ready when the time to play them arrives. On
the other hand, if some in-game event happens that is supposed to affect the soundtrack and
change what is going to be played, then either we wait for the queued samples to end – which
incurs in latency for the player – or we throw away the pre-computed samples and send new
ones, assuming that is possible – and we waste the resources spent on processing the samples
earlier. Because of this, real-time soundtracks benefit more from lazy approaches, such as the
one proposed by Weiner [WL01]. The key question is how many samples should one compute in
advance for the audio that will be played until the next game frame. In previous work [MK16], we
have observed that the LÖVE framework (previously mentioned in Section 1.1.2) restricts data

38 CONCEPTS AND TOOLS 3.3

transfers to the sound card to blocks of 4098 (potentially stereo) samples, and that this causes
a latency of approximately 93 milliseconds at a sample rate of 44100 Hz. If we are talking about
sound effects, that is well within the perceptible threshold of a regular player. When implementing
the audio sub-system for a game using idle-frame synchronization, one should remain aware of
these latency issues [LK04].

3.3.3 Tool and Technologies

Since the main aspects of the general structure of games and the types of digital assets involved
(like textures, music, and 3D meshes) are mostly the same across titles, it is to be expected that
a number of development tools have been released during the last decades to simplify the process
of making this sort of entertainment software. Some of them are on-line18 tools, in the sense
that they work alongside the game application, that is, they are part of the game executable
(possibly thanks to one or more dynamically linked libraries). Others are off-line tools, meaning
that they are part of the game production pipeline, but not part of the final product. There
are also tools that are on-line and off-line at the same time. The most important examples of
on-line tools are game engines (or game frameworks19), which we will discuss soon. Many
programming libraries that provide access to lower-level resources of the computer are another
common example of on-line tools (like the already mentioned libpng). As for off-line tools, we
have already mentioned a few:

• Blender – 3D modeling and animation

• Aseprite – pixel art painter

• MuseScore – WYSIWYG music score composer (Figure 3.5)

• LMMS – DAW-like electronic music composer (Figure 3.6)

These are tools used to produce game assets, which is one of the parts of the game pro-
duction pipeline. Other off-line tools whose byproduct are not assets include code versioning
systems (such as Git20), team management helpers (like Trello21), continuous integration sys-
tems (such as Travis-CI 22), among many others. Aside from the programming oriented ones,
off-line tools in game development are there to allow non-programmers to input their work into
the game application without having to touch the code, and thus these tools require intuitive
and polished graphical user interfaces, in contrast to the Command Line Interfaces (CLI) and
APIs programmers are used to (and in fact often work more efficiently with).

Game engines have a particularly important role in the game industry, since they not only
accelerate the production of new titles, the effectively provide the possibility of game making
to those who otherwise would never be able to. In very simple terms, a game engine is an

18 Not to be confused with the concept of being connected to some remote application through the Internet.
19 It might be debatable whether these two terms really mean the same thing, but in this thesis we treat them

so.
20 https://git-scm.com/
21 https://trello.com/
22 https://travis-ci.org/

https://git-scm.com/
https://trello.com/
https://travis-ci.org/

3.3 DIGITAL GAMES 39

Figure 3.5: A screen capture of the user interface from MuseScore, a WYSIWYG music score composing
tool.

intentionally decoupled part of a game software that you can reuse to develop different titles,
typically of a similar genre, simply by switching only the “missing”, title-specific part. The more
we leave in the engine, the less effort we need to make other games with it, but the more specific
the engine becomes. The title-specific part could be composed by either extensions to the source
code – like inheriting a class and implementing methods to dictate how the game uses the engine
features – or the consumption of other domain specific file formats – like descriptions of game
stages, items, and cut-scenes. Engines that work by extending the code are closer to Johnson’s
definition of a software framework [Joh97], while the ones that expect the game to be provided
as a data input conform to Gregory’s proposal that “arguably a data-driven design is what
differentiates a game engine from a piece of software that is a game but not an engine” [Gre14].

Generally, data-driven engines belong to the hybrid group of game development tools we
mentioned, providing an off-line visual interface for building game content in addition to its
on-line features. Unity (which we already mentioned on Section 1.1.2) is a famous example of
this, but in the last year we have seen a growing community around a free software alternative,
Godot23. This kind of game engine is the main reason so many indie studios are able to publish
titles even if they lack the programming expertise present in larger, older studios. Figure 3.7
shows the off-line interface of Godot. An extensive list of game engines, both proprietary and free
software, can be found on-line at Wikipedia24. There are some specialized game engines that do
not to provide all the backbone necessary to develop a game, but rather are designed to perform

23 http://www.godotengine.org/
24 https://en.wikipedia.org/wiki/List_of_game_engines

http://www.godotengine.org/
https://en.wikipedia.org/wiki/List_of_game_engines

40 CONCEPTS AND TOOLS 3.3

Figure 3.6: A screen capture of the user interface from LMMS, a DAW-like electronic music composing
tool.

a very specific task very well. A classic example is the Open Graphics Render Engine (OGRE)25

– as its name suggests, it deals only with the graphical rendering part of a game engine.
However, engines alone cannot make all kinds of games by themselves. For instance, if we

need a 3D model of a character, we are most likely to rely on more specialized tools such as the
already mentioned Blender. Then, we have to import that model into the game project through
the engine interface (be it off-line or on-line). In the case of 3D models in particular, each tool
has its own format (e.g. Blender writes models to .blend files). Unless the tools can export
the models to a widespread format – such as Wavefront ’s OBJ 26 or Khronos’ COLLADA27 –
the engine might require additional plug-ins to be able to import meshes from each kind of 3D
model file format. When there is one or more prevalent formats for a type of media (like WAV for
lossless uncompressed audio sample files) it is much easier for the developers to include support
for importing them in the engine.

When the asset formats are too specific, the team might prefer to use specialized programming
libraries that are already able to load from and save to these formats. This could, evidently,
demand the licensing of third-party software. Sometimes, the digital content creation tool is
already distributed with the necessary binaries to load their exported files into other programs.
Such is the case of some game audio middleware systems we will analyze in Section 3.4.

On that matter, one of the key features of game audio middleware is their hybrid off-line and
on-line nature. This is directly related to what we discussed back in Section 1.1. In the traditional,

25 http://www.ogre3d.org/
26 http://www.martinreddy.net/gfx/3d/OBJ.spec
27 https://www.khronos.org/collada/

http://www.ogre3d.org/
http://www.martinreddy.net/gfx/3d/OBJ.spec
https://www.khronos.org/collada/

3.3 DIGITAL GAMES 41

Figure 3.7: A screen capture of the user interface from the Godot engine. The game being worked on is
Sound Wanderer, a prototype we developed for our research. Read more about it in Section 6.1.

sample oriented approach, there is a disconnection from the off-line and on-line tools used. One
would use, for instance, LMMS to produce a certain music track for the game. While inside
LMMS, the composer or sound designer has full control over how the music sounds. But then
he or she has to export it into a common format, say, OGG. Then, an on-line tool combination
like libogg28 plus OpenAL could import that music file into the game. This means that all
real-time effects available are limited by what the on-line tools can do, and not the original
off-line tool which the music was created with, besides the already mentioned problem that now
only programmers can control how the music is played. When we use a middleware, since its off-
line and on-line interfaces are integrated, the same effects the sound designer has access to will
be present during game execution, and both importation and exportation can be done without
losing information from the original content, since we do not need to convert it into a third-
party format. All of this, however, would not be a problem if there was a widespread real-time
interactive sound format (an issue we will address in Section 4.3).

One problem we have not discussed yet regarding the vast set of available game development
tools is platform support. Starting with game engines, there has been a historical predominance
of restrict support to Windows PC. This has changed in recent years, a phenomenon generally
attributed to Valve’s adherence to Linux support (remarkably their release of SteamOS 29) and
the growth of the mobile market under the Android platform. Even then, there are still numerous
limitations. The Unity game engine, which is arguably the most widespread engine in the market
as of this writing, has on-line support for all relevant game platforms, but no off-line support

28 https://xiph.org/ogg/
29 http://store.steampowered.com/steamos/

https://xiph.org/ogg/
http://store.steampowered.com/steamos/

42 CONCEPTS AND TOOLS 3.3

for Linux. That is, you can develop Unity games for Linux, but not in Linux. Something similar
occurs with other off-line tools, like 3D Studio Max 30. Examples that go against this tendency
include the already mentioned Blender, Aseprite, OGRE, Godot , LMMS, MuseScore and many
others. It is possible to say that Linux -based development of games is completely feasible nowa-
days, even if there are still lingering discrepancies. Lastly, one very important fact in terms of
technology compatibility when developing games is that the prevalent programming language in
the industry is C++ [Gre14, Nys14].

3.3.4 Algorithms and Data Structures for Real-Time Audio in Games

In the early days of computer games, sound hardware was very limited. There was not enough
memory to store big enough samples, so most sound cards provided support only for pro-
grammable synthesizers [KC08]. This caused incongruencies between the audio played for the
same game in different machines, since each card had its own set of available timbres. On the
other hand, the only way to insert music and sound effects into games was to write them as
procedures – there was no way around procedural audio. Alas, the limitations upon the aesthetic
and fidelity qualities of possible sounds drove the industry towards improving their hardware.

Audio Driver

CPU

Sound Card

Sample position Sample length

1: write sample

CPU Memory

Sound Card Memory

2: send pointer

4a: transfer sample from memory...

3: allocate buffer

4b: … to a buffer in the sound card

5: request
playback

6: play buffer

Figure 3.8: A typical process of playing a given audio sample in the sound card with the help of the
corresponding driver.

Modern sound cards are now practically restricted to the playback of digital audio in sample
form. With enough memory to store audio data, all sound can be produced via software (or even
through the GPU) then sent to the sound card, whose sole function is to play it accordingly. As

30 http://www.autodesk.com/products/3ds-max/overview

http://www.autodesk.com/products/3ds-max/overview

3.3 DIGITAL GAMES 43

we explained in Section 3.1, this is done by specifying the sample format used, then passing the
sample sequence itself. In more concrete terms, this means providing a pointer to the position
in memory where the sample array we want to play is. Once sent, the sound driver is supposed
to copy these bytes to buffers in the memory of the card. There, their playback can be further
manipulated if the hardware has support for additional audio controls (generally only volume)
as long as the driver or low-level programming library used exposes such features. Figure 3.8
illustrates this protocol. Using OpenAL, the actual code would look like Listing 3.1.

1 // let us skip OpenAL initialization for now

2 int16_t sample[1024];

3 loadSample(sample); // load from file or synthesize

4 // create a buffer on the sound card -- memory has not been allocated yet!

5 ALuint buffer;

6 alGenBuffers(1, &buffer);

7 // create a sound source -- this is OpenAL-specific

8 ALuint source;

9 alGenSources(1, &source);

10 // send sample to buffer and bind to source -- this allocates the buffer

11 alBufferData(

12 buffer, // which buffer

13 AL_FORMAT_MONO16, // sample format

14 static_cast<const ALvoid*>(sample), // pointer to sample

15 1024 * sizeof(int16_t), // sample size (in bytes)

16 44100 // sample rate (in Hertz)

17);

18 // request playback

19 alSourcei(source, AL_BUFFER, buffer);

20 alSourcePlay(source);

Listing 3.1: Sending audio to the sound card.

As we discussed in Section 3.3.2, to achieve real-time responsiveness, games need to have a
finer control of how often and how many samples are sent to the sound card. Now that we know
how this data transfer really happens, we can better explain how to do that. Since the card works
by allocating buffers and playing them on demand, there are two questions an audio engine must
answer when striving for real-time sound:

1. the size of the buffers, that is, how many samples to send each time; and

2. when to send them, because, once sent, the samples can no longer be changed by what
happens in the game, and sending them too late is not good either.

In Section 5.2.4, we present our own choices regarding this issue in the implementation of the
audio engine for the middleware. It is important to note that it is possible to queue buffers to be
played on the sound card once the current one is done. This buffer queue is very useful, since it
dismisses precise synchronization with the playback of the samples. That is, we do not need to
know exactly when a sample will end being played to then play the next. We can just schedule it
to be played after the current one. One may even queue multiple buffers this way. The original

44 CONCEPTS AND TOOLS 3.3

motivation for this was for streaming compressed audio, since decoding it is often slow, and
with this mechanism the programmer could send chunks of audio constantly instead of having to
wait until the entire file is decoded. But the buffer queue can also be used to help us deal with
real-time control of the buffers being played on the sound card.

All of this works for a single sound. When we wish for multiple, concurrent sounds to be
played, we require a way to send samples to independent tracks in the sound card. That means
that, when we send a sample buffer, we must also specify which track it is bound to. Then we
might even control, say, the volume of each track separately. In OpenAL, this is done through
the concept of sources. The library models a 3D sound scene abstraction where there is a listener
point and as many source points as the programmer demands. Then, previously sent buffers can
be bound to a source point, which is itself the only possible target of playback requests in the
OpenAL API. We showed this in Listing 3.1, but we repeat it in Listing 3.2 with the relevant
parts commented.

1 ALuint source;

2 alGenSources(1, &source);

3 // *snip*
4 alSourcei(source, AL_BUFFER, buffer); // <-- bind the buffer to the source

5 alSourcePlay(source); // <-- request playback at source point

Listing 3.2: Using OpenAL Sources.

This multi-track sample playback is commonly referred to as polyphony. It comes with an
important caveat: even if one is able to play hundreds of sounds at the same time, most humans
are not able to discern that many. Thus, one of the challenges of polyphony is to regulate how
many sounds are present in a given moment of gameplay, ensuring that the most relevant ones
are properly audible to the player. This is one of the many reasons why audio tools need mixers.

1 // Everything is global for illustration sake

2 int16_t *music_track_explore_version;

3 int16_t *music_track_combat_version;

4 size_t current_sample_pos;

5 double mix = 1.0;

Listing 3.3: Declarating two variations of the same music track.

With that, we have all the basic tools to start audio programming for games. The next topic
is how to use them to produce real-time soundtracks. In the code examples so far, we abstracted
away how the sound signal was obtained (code lines 2 and 3 from Listing 3.1). The first step
towards real-time sound is to support “nonlinear” signals. That is, to not follow an unchangeable
specification of what should be written to the sound card buffers. In that sense, using prerecorded,
sample-based audio is “linear” because the samples are predetermined. To be able to modify the
samples and achieve variability, we require DSP. Let us simulate the effect in Faster Than Light
as a very simple example. Suppose we have only one music track with two variations as in Listing
3.3. Then, we could implement loadSample as in Listing 3.4. Somewhere in the Game Loop,

3.3 DIGITAL GAMES 45

we would have to update the value of mix across multiple frames whenever the player switches
between exploration and combat, guaranteeing the cross-fade effect.

1 void loadSample(int16_t *sample) {

2 for (size_t t = current_sample_pos; t < current_sample_pos + 1024; ++t) {

3 sample[t] = music_track_explore_version[t]*mix +

4 music_track_combat_version[t]*(1.0 - mix);

5 }

6 current_sample_pos += 1024;

7 // Let us skip verification of the track lengths

8 }

Listing 3.4: Loading sample as a mix of two samples.

This illustrates a hard-coded implementation of a hypothetical real-time soundtrack, but it
shows well how a sample-based approach would work. The system needs to keep track of all
relevant samples, their seek position31, and a number of complementary data regarding how each
one is supposed to be played. In the example, there was only one such data: the mix coefficient.
We could have per-sample volume, pitch-shifting, band-pass filter parameters, etc. The other part
of the implementation is making all such variables be affected by the game state and regulated
by the appropriate time flow in the application.

If, on the other hand, we want to rely on procedural audio, the implementation becomes much
more complex. After all, in order to support procedures that generate audio signals, we might as
well implement a Turing-complete engine. In fact, that is what MAX/MSP and Pure Data do:
they are programming languages specialized in real-time DSP applications. That is one of the
main reasons why we consider these languages to be of great importance to our research, as we
will discuss in Section 4.3. As for their design as a language, they follow a data flow paradigm,
which closely resembles functional programming. The programmer works by instanciating logic
blocks and connecting the outputs of one to the inputs of another, forming a directed graph
where each node typically represents a DSP operation. Then, the audio signal “flows” through
the graph, being transformed at each node, until it reaches special nodes that convert it into
an analogue signal and play it through the computer speakers or earphones. Not all connections
represent signals, though. They can also represent other data types and structures used to control
how the DSP operations work. Additionally, many of the logic blocks available have an embedded
clock counter to properly handle signal manipulation across the time domain. The general flow of
the audio signal is then synchronized with the ticks from these clocks. How this is done depends
on the tool itself – we will explain how Pure Data does it in Section 3.4.5.

As an example of a DSP-based soundtrack structure, let us consider a very simple scenario.
We want a background music track that keeps playing a note at a fixed tempo but whose pitch
varies according to the player character’s health. We will use a sinusoidal wave for the timbre.
Assume we have the following logic blocks available:

• Sinusoidal Oscillator (DSP block): Generates a sinusoidal signal according to the
frequency it receives as input;

31 In the example we used one for both samples, but in practice each one might require its own counter.

46 CONCEPTS AND TOOLS 3.3

• Square Pulse (DSP block): Generates a single square pulse when triggered, outputs
zero the rest of the time;

• Multiplier (DSP block): Multiplies its two input signals into the output;

• Digital-Analogue Converter Output (DSP block): Sends the input signal to the
computer speakers or earphones;

• Chronometer (Control block): Sends a trigger command to its output at a fixed tempo;

• Player Health Input (Control block): Sends the player character’s health as a numeric
value whenever it changes; and

• Transform to Frequency (Control block): Transforms any number it receives as input
into valid frequency values.

We can then achieve our intended soundtrack structure by following the layout shown in Figure
3.9. By combining the Square Pulse block with the Chronometer block, we are able to produce
a rudimentary sequencer. Then, we use the Player Health Input block to obtain the relevant
data from the game state and map it into note pitches using the Transform to Frequency block.
The transformation it actually does could be something as trivial as using the player’s health
as MIDI values and directly converting them to frequency in Hertz, which is then used by the
Sinusoidal Oscillator block to produce the desired sound wave. The resulting soundtrack is likely
unpleasant at most, but serves the purpose of illustrating the elementary possibilities of DSP
data flow structures.

Sinusoidal
Oscillator

Square Pulse

X

Chronometer

DAC outputPlayer
Health Input

Transform to
Frequency

Control data flow Signal data flow

Figure 3.9: An example of a real-time soundtrack made using a hypothetical DSP data flow language.

Notwithstanding, asking the users to program everything they need from scratch is not a
viable option. Even if a real-time soundtrack tool supports procedural audio through a full-
fledged DSP language, not all sound designers can afford to understand the lower-level details
of how digital audio and DSP works, even if what they do learn becomes a very valuable asset

3.4 RELATED TECHNOLOGIES 47

in their skill set [Sco14]. As such, it is important to have higher-level interfaces for designing
the soundtrack of a game. For example, if the music tracks were to be played by synthesizers,
a possible structure to facilitate that would be a MIDI sequencer. It abstracts the generation of
synthesized note pulses into musical events listed in a timeline, and could come with the ability
to jump from one point of the music track to another, or even determine the notes themselves
on the fly, composing the theme algorithmically or following some stochastic process.

This bring us to one of the dilemmas in this research area. Even when using procedural
audio, we can still rely on samples to many degrees. That is good because sound designers can
provide these samples utilizing the sample-based traditional tools they are used to. Besides, as
we mentioned before, juggling a few samples is often enough to make very adequate real-time
soundtracks. But when we do need to go beyond, specially with music tracks, it becomes harder
and harder to avoid using some sort of symbolic representation, like MIDI. The problem is that
either it relies on synthesized sounds (which is a severe aesthetic limitation) or instrument sample
libraries, which could be quite expensive to acquire if one wishes for higher fidelity sounds. There
is also no widespread tool for composing real-time MIDI music. Worse, there is no established
file format for exporting and importing this kind of media, whereas there are many excellent
format options for prerecorded samples.

3.4 Related Technologies

Having discussed all the basic concepts we need for our research, we dedicate this section to
the exposition of currently available or historically important real-time audio middleware for
digital games. Again, this is not supposed to be an exhaustive list. We will use this analysis in
Chapter 4 as a referential basis for our own middleware design, and later in Chapter 5 when we
base our implementation decisions on what has been done in similar technologies. The first tool
we analyze is iMuse32 [Luc94], one of the first middleware for real-time soundtrack in games,
very different from all modern systems. Next, we analyze three modern proprietary middleware
systems: Wwise33, FMOD Studio34, and Elias35. The last tool we analyze is Pure Data itself,
which is not a middleware but is a very important reference for our research, as will be discussed
in Section 4.3. At the end of this chapter, in Section 3.4.6, we include a table comparing the five
studied technologies.

3.4.1 iMuse

iMuse [Luc94] is a patented in-house software system developed by LucasArts in the early 1990s.
It was “a computer-based music and sound effects system in which music and sound effects are
composed dynamically in response to the action of a directing system”. LucasArts’ motivation
for developing iMuse was the frustration that came out of the difficulties encountered during the
production of the soundtrack of one of its game titles, The Secret of Monkey Island (LucasArts,
1990) [Moj08]. One of the studio’s composer, Michael Land, took the lead in the project, which

32 https://en.wikipedia.org/wiki/IMUSE
33 https://www.audiokinetic.com/products/wwise/
34 http://www.fmod.org/
35 https://www.eliassoftware.com/

https://en.wikipedia.org/wiki/IMUSE
https://www.audiokinetic.com/products/wwise/
http://www.fmod.org/
https://www.eliassoftware.com/

48 CONCEPTS AND TOOLS 3.4

evidently guided the tool towards a musician-centric design. It is one of the first real-time game
audio middleware in the industry, having been used in all subsequent adventure games from
LucasArts. However, since the system was patented, LucasArts’ games were the only ones to
ever use iMuse.

Figure 3.10: A screen capture from Monkey Island 2: LeChuck’s Revenge (LucasArts, 1991) [Luc91],
the first game to ever use the iMuse system.

System Description

The software architecture of iMuse is divided in two parts: a Sound Driver and a Directing
System. Besides these two components, iMuse also requires a Composition Database from
which to draw the sonic contents of the game. All of it works thanks to a specific media format
they invented, or rather, derived from the MIDI standard. General interaction between these
components goes as follows. The Composition Database stores all composition sequences for the
game using their extended MIDI format, while the Sound Driver is able to retrieve and process
these sequences, forwarding the appropriate events to the available synthesizers (hardware-based
ones at the time). The Directing System was responsible for sending commands to the driver
according to the game context, and the driver, in turn, changes something about how it is playing
the composition sequences from the Database. These changes include volume and instrument
channel control, but the most important change was to jump between positions in the current
composition sequence. Figure 3.11 illustrates this architecture in a diagram.

Essentially, they used two of the reserved “system exclusive” MIDI commands available in
the protocol to provide time branching features to the format. They were named Hook and
Marker commands. Both require an identification number parameter, which serves as a flag
name. Whenever the Sound Driver process one such command, it checks if the flag name is marked
as active inside the Directing System. If it is, the corresponding action happens. Otherwise, the
commands are ignored altogether. Hook commands have several types, each of which causes a
different effect. A few examples are changing the volume of a particular instrument or of the whole
sequence, turning instrument channels on or off, transposing the pitch of a particular instrument
or of the whole sequence, and jumping to a different location in the sequence. Markers, on the

3.4 RELATED TECHNOLOGIES 49

Sound Driver

Synthesizer

Directing
System

Game
Application

A
PI

Composition
Database Request

playback

Send
commands

Check flags

Retrieve
and

process
Play a
sound

Figure 3.11: The architecture of the iMuse system.

other hand, have no type. Their flag name must be referenced in a different structure within the
Directing System to make anything happen when the driver processes them. All the composition
sequences must be stored in the Composition Database to be accessible to the Sound Driver and,
thus, to the system as a whole.

The Directing System is the high-level module for controlling the soundtrack. It can issue
commands to the Sound Driver, causing it to play the corresponding composition sequences at
the right times, with the appropriate effects. It comes with an API through which the game pro-
grammer is able to request these operations. The Directing System is also responsible for keeping
track of the currently activated flags, which can be manipulated through the API. Whenever the
Sound Driver encounters a Hook or Marker command, it consults the Directing System to know
how to proceed, as we explained above. One of the responsibilities of the Directing System is
to also manage Command Queues. Once registered, each of these has a trigger mapped to a
sound and a flag name, besides the queue of commands itself. The commands can be any of the
already available ones in the API. As can be expected, this sequence of commands is executed
whenever the sound driver reports a Marker command whose flag name corresponds to the one
in the queue trigger and the sound sequence being played is also the one specified there. This
mechanism works much like a callback function being scheduled for execution whenever a certain
sound-flag pair is detected in the composition sequences, except it is more limited since only API
commands can be used.

Critical Analysis

Being arguably the first of its kind, iMuse is an important milestone in the area of game sound-
tracks in general, and particularly revolutionary at the time for its effective approach to real-time
sound and the way it instigated game development to properly face the sonic engagement of play-
ers. Nevertheless, it was designed to fit into the technological reality of the end of the last century.
MIDI is no longer the preferred choice of game sound designers, and hardware-based synthesizers
have no place in modern personal computers. The fact that the technology is patented obviously

50 CONCEPTS AND TOOLS 3.4

poses as a severe limitation to the use of iMuse as well.
There are many design decisions we can learn from, though. Even if digital audio has almost

entirely substituted MIDI in games, maybe the idea of using a symbolic representation to in-
troduce real-time operations in composition sequences should not be entirely discarded. After
all, the Hook and Marker commands used by iMuse came out of Michael Land’s demand as
a composer for more control over the dynamic behaviors of his creations inside the game. The
Command Queues also point to Farnell’s proposition on procedural audio, since they are essen-
tially a data structure that stores a procedure to be executed under an audio-oriented instruction
set, making them a more flexible and powerful solution than modern ad hoc implementations of
sample-based real-time soundtrack effects.

As a reference work for our research, iMuse provides an example of an effective middleware
architecture. It is a specially useful design to handle musical sequences, which comes naturally
from using a MIDI-based format. But that is also a limitation, since making more abstractly
structured compositions becomes more difficult. So is the dependency on synthesizers, which
further restricts aesthetic possibilities. Even though we have seen that sample-based designs are
too rigid, that does not mean that samples are to be abandoned altogether. It would be rather
interesting to see how to conciliate iMuse’s ideas with the rich possibilities of sample audio we
have in the present day.

3.4.2 Wwise

Figure 3.12: AudioKinetic’s Wwise logo [Aud16a].

Developed by AudioKinetic, Wwise is one of the main game audio middleware systems in the
industry currently. Published for the first time in 2006, this tool can be embedded onto all modern
game platforms, and many well known games in the market have used it in their development
process [Aud15a]. A few examples are the Assassin’s Creed (Ubisoft) and Borderlands (Gearbox
Software) series, League of Legends (Riot Games, 2009), and Overwatch (Blizzard, 2016). Wwise
provides an off-line digital content creation interface and an on-line SDK for the Windows and
Mac OS X operational systems.

The digital content creation interface is an extensive framework for sound designers to work
with. By relying on a number of sound object abstractions organized in a versatile hierarchy, its
users acquire deep control over the game audio. Essentially, Audiokinetic has used an exhaustive
interface design: for each possible need in game audio creation, real-time bound or not, there
exists an object type in the Wwise hierarchy that provides the desired solution. We will describe
what those object types are, and how they fit together to make the game soundtrack. The general
division between digital content creation interface and SDK follows the architectural pattern we
discussed in Section 1.1.2 and illustrated in Figure 1.5.

3.4 RELATED TECHNOLOGIES 51

System Description

Wwise is a project-oriented tool: for every game the user wants to create a soundtrack for, a new
Wwise project must be started and worked on. Inside a project, there are three great hierarchies:
the Actor-Mixer Hierarchy, the Interactive Music Hierarchy, and the Master-Mixer
Hierarchy. In each hierarchy, we create and manipulate logical trees whose nodes represent
different abstractions in the game soundtrack, and the general flow of data starts at the roots,
descends all the way to the leaves carrying control directives, then goes back to the roots bringing
the audio itself. The Actor-Mixer Hierarchy allows us to create and manipulate Sound Ob-
jects, Motion Effects Objects, Containers, and Game Syncs. Sound Objects work like symbolic
links to audio samples, so essentially they are the leaves in the hierarchy tree, being the source of
the base sounds used to compose the soundtrack. Motion Effects Objects are mostly the same,
except they provide signals to be used in motion feedback of game controllers instead of audio
signal. Containers simply group many object nodes as a single sound, allowing localization of
game titles across different languages. Game Syncs are the most interesting: they are the inner
nodes of the tree, and define the behavior of their children. We will describe them in more detail
soon. The Interactive Music Hierarchy works much like the Actor-Mixer Hierarchy. The main
difference is that the leaf nodes are Music Track objects, which can be grouped as children of
Music Segment nodes to make a “layered” composition. Aside from that, the Game Sync nodes
are still there, being the most relevant structure for real-time effects.

Figure 3.13: Screen capture of a piece of the Wwise interface. It shows the Hierarchy explorer, as well
as a part of the property editor of the selected node, a Sound Object [Aud16b].

The Master-Mixer Hierarchy, on the other hand, is very different from the other two. It
controls the flow of audio and motion signals that come from the other hierarchies, forwarding
them up the tree until they reach the root – which is the audio master bus of the middleware. The
roots from each of the other hierarchies are linked to leaf nodes in the Master-Mixer Hierarchy,

52 CONCEPTS AND TOOLS 3.4

allowing the sound designer to specify how each sound is supposed to be played. Figure 3.14
illustrates an example of how all three hierarchies could be connected.

Figure 3.14: Example of object hierarchy in a Wwise project [Aud15b].

However, these hierarchies represent only the structure of the soundtrack. To actually execute
them to obtain playback, the user needs to specify a series of behaviors, possibly with real-time
constraints. For that, there are three main features Wwise supports: Events, Game Objects,
and the already mentioned Game Syncs. Events are basically named hooks triggered by the
programmers through the Wwise SDK from within the game code. On the sound designer’s
side, the user can specify two kinds of Events: Action Events or Dialogue Events. Action Events
contain a list of commands much like the command queues from iMuse. Each command can play,
stop or change a property in one or many sound objects across the project hierarchy. Figure
3.15 illustrates an Action Event being executed. Dialogue Events can only play sound objects,
but on the other hand they provide a conditional branching mechanism. They map a series of
state names to specific sound objects. When the Event is triggered by code, the actual value of
the state in that context is checked to know which conditional path to follow in the Dialogue
Event list. As the name suggests, this feature was originally intended to support dialogues with
multiple voice samples from which to choose from, like when a character responds differently to
the player according to a choice he or she made. Figure 3.16 illustrates how Dialogue Events
could be used to implement a play-by-play voice in a sports game.

Game Objects are an abstraction within the Wwise digital content interface that the sound

3.4 RELATED TECHNOLOGIES 53

Figure 3.15: Example of an Action Event in Wwise. [Aud15b].

designers use to reference possible virtual actors from inside the game. They could be the charac-
ters themselves, objects that produce sounds, environment noises, or even User Interface elements
with feedback sounds. Game Objects come with properties like volume, pitch, position, ori-
entation, and Game Sync information. They must be registered, managed and unregistered by
the game code. Many key API functions, like AK::SoundEngine::PostEvent(), require or
optionally accept a Game Object as a parameter. This makes all the consequent effects of that
function call be executed from the context of that Game Object. For instance, it makes any
sounds played use binaural effects to simulate the 3D spatialization of the corresponding actor
in-game.

Lastly, Game Syncs are intermediate nodes in the Actor-Mixer and Interactive Music Hi-
erarchy trees. When “played”, each of one them follows a specific, real-time behavior, using its
child nodes as building blocks. When evoked with a Game Object as a parameter, they use the
Game Sync information it carries as input to the behavior that will be used in that case. The
available Game Sync nodes are the following.

• States. They can be assigned a number of property presets (volume, etc.), each with
a specific name. The State can only have one activated preset at a time. By activating

54 CONCEPTS AND TOOLS 3.4

Figure 3.16: Example of a Dialogue Event in Wwise. [Aud15b].

one from code, all of its property values override the current values in the corresponding
properties of child nodes.

• Switches. They are assigned a set of possible state values, each mapping to a different
child node. When played, Switches check their current state and forward execution only to
the matching child node.

• Real-Time Parameter Controls (RTPCs). As their name implies, they provide a real-
time mechanism to control property values in nodes from the hierarchy trees. They do
so by being assigned a transformation curve, which is used to map input values obtained

3.4 RELATED TECHNOLOGIES 55

from API calls into the actual property values. This could make a RTPC for the player’s
character health possibly correspond to a logarithmic increase in, say, the volume property
of the affected nodes.

• Triggers. They are similar to Events in the sense that they must be posted from game
code and require a Game Object to define their playback scope. The difference is that they
belong in the Hierarchy tree, and the only action they do is play their immediate children,
which can cascade into further behaviors and effects down the Actor-Mixer or Interactive
Music Hierarchies.

Once all the desired objects are put into the project hierarchies, they can be exported as
Sound Banks to different target platforms and languages. This Sound Banks are then loaded
into the game through the API of the Wwise SDK. The programmers can reference the structures
imported either through their name, using character strings, or through their auto-assigned
identification numbers.

Critical Analysis

Wwise is a solid alternative for game audio middleware at present, and this is backed by the
many respected titles in the industry that have relied on it. Its design approach is very different
from usual DAWs musicians are used to. Notably, the notion of time is not clear at first when
learning through the first steps of the tool. Even if the user can create a sound object and play
with it as much as he or she likes, it is not evident how that is tied to the gameplay. At the
same time, this tree-based architecture is powerful and versatile. As long as the user masters
the interactions between the sound objects and the game, there are endless possibilities to the
combinations and behaviors that can be achieved. Nonetheless, this middleware is ultimately
sample-based. It does provide support for custom plug-ins, which allows for lower level DSP-
generated audio, but its standard feature set still restricts the sound design of the game to
samples and combinations thereof. Besides, it is a proprietary product. Its license permits use
free of charge for non-commercial projects and a limited use for commercial projects. Anything
else beyond that requires payment.

In terms of what we can learn from this technology, the “building blocks” approach we saw
in Wwise and its success in the industry might suggest that more abstract interfaces, in con-
trast to the traditional timeline based DAWs and composing tools, are also welcome by sound
professionals. The types of Game Syncs and the Event system provide a good reference for what
AudioKinetic considers important features for a game audio middleware after ten years of expe-
rience in this market. It is important that our own middleware considers the benefits of providing
similar tools or, at least, the means for the user to achieve equivalent effects.

3.4.3 FMOD Studio

Another proprietary tool that has gained renown in current years is FMOD Studio from Firelight
Technologies. Among the games that have used it, notable titles are Diablo 3 (Blizzard, 2012),
Transistor (Supergiant Games, 2014) [Fre], and Guild Wars 2 (ArenaNet, 2012). Actually, FMOD

56 CONCEPTS AND TOOLS 3.4

Figure 3.17: Firelight Technologies’s FMOD Studio logo [Aud16a].

Studio is the name of the off-line digital content creation interface, which is supported only in
Windows and Mac OS X operational systems. There is another part, called FMOD Studio
Programmer’s API 36, used on-line by the game application to load and play the soundtrack the
way the sound designer intended it to. This also follows the architecture depicted in Figure 1.5.

The design approach from FMOD Studio leans more towards DAW-like tools. As will be
explained ahead, its main creation structure is based on a timeline interface where sounds can
be positioned to be played following a clear sequence. It also provides a series of filters and
effects whose “look and feel” closely resemble that of sliders and mixing tables present in physical
devices sound designers are used to. The interface also focuses on cleaner layouts, darker shades
and more colorful widgets.

System Description

FMOD Studio offers a single structure to work with, named Event37. The user workflow is cen-
tered on creating and manipulating Events through the FMOD Studio interface, then exporting
them as Event Banks, a binary format the FMOD Studio Programmer’s API will later load
into the game. This format is platform independent, making it possible to export it in the sound
designer’s machine then import it in the game application running on the programmer’s com-
puter without any problems. Every Event possesses a timeline that can be layered in multiple
tracks, one of which is the Master track and is always there by default. It is possible to place
Sound Modules (composed of one or more sample audio files) on the tracks and, when we
play the Event, each Sound Module is played when the time counter reaches them along the
timeline. Since the tracks exist in parallel over the timeline, multiple sounds can be played at
the same time. Besides, each track comes with an effects pipeline of its own, allowing individual
effects to be selectively applied to them. In the end, the signal from all tracks is sent through
the effects pipeline of the Master track, and the result is forwarded to the FMOD general mixer
(which can be set up separately). This internal structure of Events is depicted in Figure 3.18a,
while Figure 3.18b shows how that structure fits into the greater picture of the signal flow inside
FMOD Studio.

So far, this interface design works much like traditional DAWs, indeed. As can be expected,
individual Events can be evoked from game code through the FMOD Studio Programmer’s API.
That essentially brings us back to how sample-based audio works in games, except the export-
import protocol is much more stable and user-friendly. Now we need to address how FMOD
approaches real-time soundtracks. There are two complementary mechanisms it uses for this
purpose: Parameters and the Logic Track. Parameters are the only entry point for real-
time control given to the programmers besides evoking Events themselves. Each Event can be
assigned any number of Parameters; each of them has a name, a value range, and an initial value.

36 It is further divided into a separate Low Level Programmer’s API. for specific use cases
37 Similarities aside, it clearly has a different meaning than the Event from Wwise.

3.4 RELATED TECHNOLOGIES 57

An Event

Track 1
Track 2

M
aster Track

A
udio S

ignal
(a) The structure of an Event.

Sound Module

Audio Track

Master Track

General Mixer

Event

(b) The standard flow of audio signal.

Figure 3.18: Workflow overview of FMOD Studio.

Then, from the API, programmers can change the current value of that parameter anytime from
instanced Event references.

Inside the Event, every Parameter can influence its playback in two manners. The first is
through the Automation feature. Any property of an Event can be automated by a Parameter,
which means the value assigned to that property is determined by the current value of the
Parameter, following a curve that can be constructed through the interface. The most common
property is volume, but every effect present in the pipelines of each track count as automatable
properties too, including low-pass filter cut-off frequencies, reverb settings, etc. As an example,
we could implement Faster Than Light ’s soundtrack transition using FMOD Studio as follows:

1. Create an Event for a given music theme;

2. Add two tracks to that Event – one for the main instruments, another for the drums and
other sounds that only play during combat;

3. Place the corresponding samples in each track;

4. Add a Parameter “Game-Mode” ranging from zero to one and an initial value of zero;

5. Assume a zero value in the Parameter indicates “Exploration Mode”, while a value of one
means “Combat Mode”;

6. Add Automation to the second track volume; and

7. Draw a curve to that Automation from the “Game-Mode” Parameter, making the volume
start at silence and increase to its default level as the Parameter goes from zero to one.

Now, whenever the programmer changes the value of the “Game-Mode” Parameter in the game
code from zero to one, the drums part starts playing, while doing the opposite causes it to become
silent.

58 CONCEPTS AND TOOLS 3.4

The other way with which Parameters can influence the soundtrack is related to how they
interact with the Logic Track we mentioned before. As its names implies, one could treat the
Logic Track as an additional, special track in the Event timeline. However, instead of storing
Sound Modules, it stores logical markers that resemble the Hooks and Markers from the iMuse
composition sequence format. The main available logical markers and their corresponding func-
tions are as follows, with Figure 3.19 illustrating an example.

• Marker. The simplest of logical markers, used to literally mark or tag specific points in the
Event timeline. Other logical markers may reference Markers to achieve their objectives.

• Tempo Marker. This logical marker indicates that from this point onward the Event
timeline follows the given tempo. It divides the timeline in bars according to that tempo,
making the placement of other logical markers and Sound Modules snap to the closest bar.

• Loop Region. A logical marker that makes a certain continuous sequence of the timeline
be repeatedly played, unless an explicitly associated Parameter value is outside a user
specified range when the time counter passes the end of the Loop Region.

• Transition. A logical marker of this type always references a Marker. When the time
counter reaches this Transition, if an explicitly associated Parameter value is inside a user
specified range, the time counter jumps to the referenced Marker.

• Transition Region. Works exactly like a Transition, except it may trigger the transition
at any moment as long as the time counter is inside the specified region. Alternatively, the
region may be divided in sub-regions, each of which checks the jump condition at its end.

Figure 3.19: An example of an Event construction using the Logic Track [Tec16a]. Here, there are two
Loop Regions (in blue), which can be left only when the value of the “Intensity” Parameter (seen as a
tab) is within certain ranges. We can also see a Marker and three Transitions which help reinforce this
structure.

Thus, each Parameter can be additionally used to control which parts of an Event are being
played. A very simple example that relies on this feature set would be to design a game stage
whose background music is divided in sequential parts, each corresponding to a region in that
stage. Then, we could make the stage progression of the player character map to a Parameter

3.4 RELATED TECHNOLOGIES 59

in FMOD. Using Loop Regions, Markers and Transitions, we could make the background music
jump from and to each of its parts according to where the player character currently is in the
stage. If the music was composed to account for such transitions, we would have achieved an
adaptive music real-time soundtrack for that game. This might not be as simple as it seems,
since unpredictable transitions can easily compromise the music integrity. FMOD helps mitigate
this problem by providing a Transition Timeline feature. By double-clicking Transitions and
Transition Regions, the sound designer is shown a special interface to create and populate a
separate timeline that exists only between the transition point and its destination Marker. This
gives the sound designer more control over how each transition is going to play out. Figure
3.20 shows an example of a Transition Timeline and how the FMOD Studio interface cleverly
represents this in an intuitive and convenient way.

Figure 3.20: An example of Transition Timeline construction in the Logic Track [Tec16b]. Notice how
the Transtion Timeline appears to be “hidden underneath” the main timeline, allowing the sound designer
to place Sound Modules in it without polluting the rest of the Event with scattered structures.

Critical Analysis

FMOD Studio presents a design approach very different from Wwise, leaning more towards the
design from iMuse. It tries to appeal to sound designers by using widgets familiar to those already
skilled in conventional DAWs and by basing the structure of the soundtrack on timelines. This
arguably makes it more user-friendly than Wwise. FMOD ’s versatility, however, demands that
the user keeps his or her Event timelines organized so that more complex soundtrack structures
can be achieved in projects of larger scale. Using a linear design to produce nonlinear content
can only go so far in terms of usability. This does not limit FMOD ’s ability to produce very
elaborate soundtracks though [Sch15a, Sch15b]. It does share a common issue with Wwise, the
issue being that it is sample-based too. While its Logic Track brings the technology closer to
conditional jumps in programming languages (as happened with iMuse), is still cannot help the

60 CONCEPTS AND TOOLS 3.4

fact that its atomic building blocks cannot be divided further than whole sample sequences. Like
with Wwise, the FMOD Studio license permits use free of charge for non-commercial projects
and a limited use for commercial projects. Payment is required for anything else beyond that.

Regarding our research, this tool serves as an example that game audio middleware has many
possibilities in terms of architecture design. It uses one single abstraction to provide all the
features Firelight Technologies believes the users will need. Also, as we already said, it reinforces
the idea of relying on sequencers we observed in iMuse. Then again, since it still focuses on a
sample-based mindset, we are left with the challenge of projecting how the Event structure could
work with synthesizers, for instance. Lastly, it is yet another case where the tool did not shy
away from using programming features in its interface, essentially giving a “goto”-like tool to
sound designers.

3.4.4 Elias

Figure 3.21: Elias Software’s logo [Sof16a].

Elias – which stands for Elastic Lightweight Integrated Audio System – from Elias Software
is a more recent addition to the game audio middleware industry. The corporation was founded
in 2014, and released the first commercial version of Elias in 2015. Like its two predecessors,
Elias comes in two parts: Elias Studio and Elias SDK. Elias Studio is the off-line audio content
creation interface, and Elias SDK is the on-line API for embedding the technology into games.
The Elias approach to game soundtracks is directed more exclusively at composers than at sound
design in general, with adaptive game music being its core feature. Being a newer technology
in the industry, there are fewer titles known for deploying it, the most relevant being the 2014
remake of Gauntlet (Arrowhead Game Studios, 2014).

System Description

Since Elias focuses on adaptive game music and composer users, its design is very straightforward
and optimized for the pertinent use cases. As with FMOD, there is a single structure to work
with, namely Themes. They represent a music composition that is to be played during the game,
delimited by a looping sequence of bars, which are in turn dictated by a user-specified tempo. As
with other modern middleware, it is sample-based. What will be actually played during each bar
is determined in real-time, and the middleware uses the knowledge of their sizes and tempo to
produce seamless transitions between each possible playback. Every Elias project can have any
number of Themes, and each Theme has a set of Loop Tracks and Stinger Tracks. Both these
sub-structures are responsible for describing the many adaptive music possibilities in the Theme,
and are detailed further ahead. Themes also have a state value, called Level. It is represented
by a single integer number, ranging from 1 to a per-Theme user defined maximum. This Level

3.4 RELATED TECHNOLOGIES 61

abstracts the narrative “intensity” of a game at a given time, and allows the soundtrack to escalate
accordingly. Most of the composer’s work in Elias Studio is to adjust and fine-tune how Themes
react to Level changes.

Loop Tracks behave like tracks in conventional DAWs with the caveats that they are enclosed
in a looped, fixed length bar sequence and can be assigned content on a per-Level basis. For
instance, assume a composer made three variations of the strings section in a particular music
piece for the game. To work with Elias, each of these variations must be of similar length (or
combinable into same-length sequences) and each of them must be placed in a corresponding
Track Level. Let us say this particular theme has a Level range of twenty. The composer could
assign the less intense variation to Level 1 of the strings Loop Track, the mildly intense variation
to Level 8 of the same track, and the most intense variation to Level 14 of that track. Then, as the
Theme Level varies during gameplay, the Elias music engine will cross-fade between the variations
accordingly, and the overall loop of the Theme will retain its integrity. When a change to a Theme
Level causes Loop Tracks to switch the sample being played, Elias recognizes and names it as
a Transition. Figures 3.22a and 3.22b display the Loop Track interface in Elias Studio at two
different Theme Levels. Notice how the currently active Track Levels are highlighted.

(a) Screen capture at Theme Level 6. (b) Screen capture at Theme Level 20

Figure 3.22: Elias Studio interface showing active Track Levels [Sof16b].

Stinger Tracks, at a first glance, look very similar to Loop Tracks. They can be assigned
tempo-aligned samples at different Theme Levels. The difference is that Stingers must be explic-
itly triggered for playback. When a composer does so, he or she must specify which Stinger Track
is to be played as well. The idea is that Stingers are music pieces that can be played at any time
during gameplay, generally with the intention of matching a significant event in the narrative,
like a new enemy appearing or the player falling into a trap. They are played over the current
Loop Tracks using the sample assigned to the appropriate Theme Level. There are two ways in
which a Stinger can be triggered: manually or through a Transition. The manual way, as can be
expected, is achieved by pressing the “play” button in Elias Studio or calling a single routine in
the Elias SDK. The other way – Triggering a Stinger though a Transition – is possible because
Elias can register named Transition Presets in a Theme, each of which specifies a number of
parameters indicating how Transitions between Theme Levels should occur and, in particular,

62 CONCEPTS AND TOOLS 3.4

whether a Stinger should be played during that Transition.
Elias also provides an automation feature called Action Preset. It is a very simple structure

that allows the composer to specify certain soundtrack behaviors a priori. For instance, they can
create an Action Preset called “Enter the fortress” which increases the current Theme Level
to a certain value using a certain Transition Preset. That way, the tool dismisses the need for
programmers to know exactly how each event in the game should affect the soundtrack. It is
enough for them to know the names of the Action Presets instead, and properly invoke them
from the API at the appropriate moments.

Lastly, contrary to what Wwise and FMOD do, the Elias SDK is not capable of sound
playback. It merely provides the resulting signal array to callback routines registered by the
programmer. The host application is the one responsible for doing whatever it needs to make
this data produce the corresponding sound.

Critical Analysis

Elias brings a very different middleware proposal to the table. The developers chose to focus
on a single demand instead of embracing all of soundtrack creation facets. This allowed them
to produce a very optimized workflow that solves that one problem very well. As long as the
composer is working on a musical theme driven by the intensity of the game narrative, Elias is,
indeed, the most proficient tool one can use right now to achieve that. However, for game music in
general, it still imposes many restrictions. This is related to the discussion in Section 1.1.3 about
how every technology comes with some sort of aesthetic restriction, one way or another. In the
case of Elias, this is reflected in many of its design choices, like using sample-based composition,
structuring Themes as loops and forcing adaptive behavior control down to a single parameter
(the Theme Level). Nonetheless, that does not compromise the validity of the tool. If there is a
present demand for this specific kind of game music composition, then Elias is a technology the
industry needs if it desires to improve real-time soundtracks in games.

In that regard, there are a number of ideas our middleware project could draw from here. For
instance, sometimes the most practical choice is to embrace loop music in a game, like in puzzle
games where usually the player might spend dozens of minutes in the same stage. In theses cases,
having a loop engine ready to swap in and out different variations of the theme can save the
development team a considerable amount of time and effort. Tempo-aligned stingers is also a
promising idea. Additionally, Elias shows us that there are aesthetic effects one cannot achieve
but by relying on well crafted and composed samples. As much as we understand the benefits
of procedural audio, this is yet another evidence that there is no reason to neglect sample-based
audio entirely.

3.4.5 Pure Data

As we have mentioned, Pure Data is not a game audio middleware, although it has been used for
game audio [Pau03]. It is a visual programming language which follows the data flow paradigm
and is intended for developing real-time DSP and multimedia applications. It was developed
by Miller Puckette in the 1990s as an open source version of the Max programming language,

3.4 RELATED TECHNOLOGIES 63

Figure 3.23: Pure Data’s logo [Puc16].

which was later derived into the Max/MSP language. Pure Data has many uses, among which
interactive music stands out. It has an active community of programmers and musicians alike,
even though its uses are usually more common in experimental music and academic research
than in popular commercial music. Since Puckette’s original release, there have been a number
of different distributions of Pure Data. The versions distributed by Puckette himself are normally
referred to as Pure Data “vanilla”. Examples of other distributions are Pure Data Extended38 and
Pd-L2Ork39. In this thesis, we will always refer to Pure Data “vanilla”.

Pure Data is provided as a stand-alone application whose interface allows the creation of
DSP programs called Patches. These Patches are interpreted by the Pure Data application
itself, being possibly executed in real-time and on-the-fly as the programmer or sound designer
“writes” the Patch. Since this is the intended workflow of the tool, it was not developed to be
embedded in other applications, and thus its use on games is rather limited. Thanks to libpd40,
there are a few less known titles in the market that do use Pure Data for the game soundtrack. An
example of that is the iOS gameWave Trip (Lucky Frame, 2013) [Lib16]. Here we give a very brief
description of the core Pure Data features along with some others that are particularly pertinent
to our research. There are, however, other more adequate reference materials for those who wish
to deepen their knowledge in the language. The Pure Data manual is one such alternative, but we
also recommend a selection of chapters from Farnell’s Designing Sound [Far10, Chapters 8-14].

System Description

Every Patch in Pure Data consists of a bi-dimensional Canvas where Objects can be placed at
any integer position and thenConnections can be traced between them. Objects are represented
by a filled rectangle (with slight visual variations) and can be treated as programming functions.
Each Object has a name, a list of creation arguments, a set of zero or more Inlets and a set
of zero or more Outlets, all of which are visible in the rectangle representation. The Object
name determines the Object type, which in turn determines how it uses its creation arguments
and how many Inlets and Outlets it has. Inlets stay on the top edge of the Object, and work
as the input gate for the Object function. Outlets stay on the bottom edge and work as the
output gate. Connections can only be made from an Outlet to an Inlet, and the receiving Inlet
must be compatible with the Connection Type. There are two Connection Types: Message

38 https://puredata.info/downloads/pd-extended
39 https://puredata.info/downloads/Pd-L2Ork
40 http://libpd.cc/

https://puredata.info/downloads/pd-extended
https://puredata.info/downloads/Pd-L2Ork
http://libpd.cc/

64 CONCEPTS AND TOOLS 3.4

Connections (thin lines) and Signal Connections (thick lines)41. The Outlet determines the
Connection Type, since the user always starts a Connection by clicking on the Outlet of an
Object, then dragging the other Connection end to an adequate Inlet. Figure 3.24 illustrates a
classic “Hello World” patch in Pure Data, where a sinusoidal wave is played.

Figure 3.24: A simple Pure Data Patch that connects the sinusoidal oscillator object [osc~] to a
digital-to-analog converter [dac~] through a Signal Connection. This effectively produces the sound of
a sine wave at 440 Hz.

The Connection Types determine how and when data flows between the Objects in a Pure
Data patch. Message Connections must be triggered by the Object whose Outlet it connects.
When this happens, the results of the parent object are sent through the Connection to the
corresponding Inlet in the child object. This might, in turn, trigger other messages to be sent
through the Connections in the child Object. This process behaves in a depth-first manner. Some
Objects can trigger their Message Connections “spontaneously”, by being clicked by the user (like
the [bng] Object), by receiving a packet from the network, etc. There is also a special kind of
Object called Message. It has a single Outlet, no Inlets, and can be assigned a character string.
Whenever it is pressed, a Message Object sends its content to its Outlet, possibly starting a
whole chain of Messages down the Patch. Figure 3.25 shows an example of a Message Object
and a Message Connection. A special kind of Message, simply containing the string “bang”, is
often used to trigger effects in child Objects without really sending any real information.

Figure 3.25: A Message Object connected to the [print] Object. Clicking the Message sends the
string “This is a message” to the child Object, which prints it in the Pure Data console.

All basic arithmetic and logic operations are already provided as native Objects in Pure Data,
as well as an extensive collection of DSP Objects such as [noise~] (white noise generator),
[lop~] (low-pass filter), [hip~] (high-pass filter), [bp~] (band-pass filter), among many
others. Users can define additional Objects with three different methods, described as follows.

• Abstractions. When an Object name does not correspond to any known type, Pure Data
treats it as an Abstraction. It searches a number of predetermined paths for a *.pd file
whose name matches the one written in the Object. Creation arguments are accessible
inside it, and the [inlet], [inlet~], [outlet], and [outlet~] Objects can be
used to add Inlets and Outlets to the Sub-Patch. Abstractions can be instanced multiple
times. To differentiate each, a special symbol $0 can be used – it expands to a unique
identifier as long as it is within the right Patch. We call this the Zero Dollar of the Patch.

41 The Pure Data manual calls them “Audio Connections”, but we believe that “Signal Connections” is more
appropriate since not every signal represents a sound.

3.4 RELATED TECHNOLOGIES 65

• Sub-Patches. When a [pd <name>] Object is created, a new Canvas is associated to it,
and the user can populate it as he or she sees fit. It then loads that Patch as the Object.
Creation arguments, Inlets and Outlets can be added the same way as with Abstractions.
However, Sub-Patches share the same Zero Dollar as their parent Patch.

• Externals. These work like Abstractions, except the loaded files must be a dynamically
linked library containing the Object behavior implemented in C. This is used to allow more
efficient implementations of heavy algorithms and data structures.

Another important type of Object is the Array type. It comes with a single Inlet that can
be sent a few key Messages, but most of Array manipulation is actually done with the help of
auxiliary Objects such as [array get] and [array set]. Every Array has a unique name,
and the user must provide it to the auxiliary Objects for them to work. Arrays can be used to
store signals, being the most direct method of storing and playing samples in Pure
Data .

Pure Data, being designed for real-time DSP, provides per-Patch settings that determines the
sample rate used and how many samples it processes per Tick. The default Tick size for Pure
Data is 64 samples long. Every Tick, the DSP engine iterates over all Signal Connections following
a deterministic order, and transfers the corresponding amount of samples for that Tick, unless
an Object outputs a different number of samples. This means even silent Signal Connections –
that is, Connections that are carrying constant-value signals – still demand processing, costing
CPU time for the Patch execution. Note how this differs from Message Connections, which are
triggered only per demand.

Lastly, as we mentioned in the beginning of this section, libpd provides a way to embed
Pure Data Patches into other applications. Essentially, this library links the host application to
the Pure Data engine and exposes its key features in a C API (with bindings to a number of other
programming languages also available). Besides opening and loading Patches, libpd can also
send and receive Messages to and from the loaded Patches, read and write to available Arrays
and, most importantly, request DSP ticks and inspect the resulting output signals. That means
it does not provide sound playback like Pure Data does. The host application is responsible for
forwarding the obtained audio signal to the appropriate low-level routines that ultimately lead
it to the sound card.

Critical Analysis

Being a full-fledged programming language, Pure Data provides endless possibilities for real-time
soundtracks. Both sample-based and procedural audio approaches are possible. One can even
emulate old-school MIDI synthesizers and program algorithmic or stochastic melodies. Besides,
the tools has a community with a long history, which means an active support for eventual issues
the user may face. The downside of all this is the very fact that it is a programming language.
Programming is not easy, and sound designers might even take it as an abuse if it is demanded of
them. Among all the tools presented here, Pure Data has definitely the steepest learning curve.

Another problem is that, being a free software mostly maintained by a single developer, its
usability issues stand out as much as its potential, specially when compared to the other propri-

66 CONCEPTS AND TOOLS 3.4

etary, high-budget projects we have discussed. The situation is even more aggravating for its use
in games, since it was not designed to be used as an embedded library, but as a stand-alone ap-
plication. Even though libpd circumvents that restriction, the internal implementation of Pure
Data still leaks a number of difficulties through the wrapper libpd provides. For example, all of
its internal states are kept in global scope. This immediately poses a hurdle for the development
of games, since it demands some sort of mediatory code to allow safe multi-thread programming.

Nonetheless, it is the technology that comes closest to our research interests, for many reasons.
It is the only free software among the studied tools, which aligns with our own middleware license.
Pure Data is specifically designed for real-time DSP, thus consisting of a solid implementation
reference. It also has a respectable user base, which indicates us that, despite the problems we
have listed, Pure Data is rather good at what it does, or it is the only reasonable alternative
available at the moment. Lastly, the data flow paradigm present in the language offers us yet
another way to achieve a procedural mechanism for the user, where the other tools have preferred
approaches closer to structured programming.

3.4.6 Comparison

Here we finish this chapter by presenting Table 3.1, where we compare the main aspects of the
studied middleware systems. We focused the comparison mainly on how the tool abstracts the
soundtrack design process to the user – if it uses sample-based or procedural audio, for instance
– and how the technology is licensed for use. It is easy to see how Pure Data stands out, followed
by iMuse (which is understandable since it was developed in a very different context from the
other systems). It is also interesting to see that FMOD Studio actually resembles iMuse the
most.

Tecnology License Sound Representation Work Abstraction
iMuse Patented MIDI-based Sequences + conditional jumps
Wwise Commercial Sample-based Tree structure
FMOD Studio Commercial Sample-based Time-lines + conditional jumps
Elias Commercial Sample-based Layered track loops
Pure Data Modified BSD Procedural Data flow programming

Table 3.1: Comparison between the studied sound technologies.

Chapter 4

Proposed solution

In Chapter 1, we stated the problem we want to solve in our research in Section 1.1, the problem
being the inherent difficulties in making real-time soundtracks in games due to their interactive
and unpredictable nature, and we focused on the roles technology plays to aggravate or improve
that situation. Then, in Section 1.2, we presented how we intend to solve that problem, which is
through a real-time game audio middleware of our own. Chapters 2 and 3 built the knowledge
base we need to achieve that. Now, this chapter takes the first concrete step towards our research
objective. Here, we will discuss what we have learned and bring forth the solution we reached
for the stated problem. We named the proposed middleware VORPAL, a recursive acronym
for Vorpal Open Real-time Procedural Audio Layer1. Chapter 5 will then describe in more detail
how that solution was implemented, and Chapter 6 will discuss how that meets our validation
requirements.

Section 4.1 will present the methodology we used to build our proposed solution, using the
intermediate objectives from Section 1.2.1 and the validation requirements from Section 1.2.3 as a
starting point. Next, Section 4.2, as part of the methodology process, gathers system requirements
for the proposed game audio middleware from both the literature and interviewed professionals
in the area. In Section 4.3, we address one of the core design decisions of the middleware: how
to digitally represent real-time soundtracks. Based on that, Section 4.4 finishes this chapter by
presenting the full software architecture we designed for the proposed game audio middleware.

4.1 Methodology

Every (useful) technology serves a human need. In this thesis, we have shown that in digital games
development there is a need for giving sound designers more control over the real-time soundtracks
they create. We have described the ways with which game studios can deal with that need with
the techniques and technologies currently available in the industry and the community. Through
all this research, we have come to highlight a number of particular aspects of the problem at
hand and, sometimes, how others have been able to solve them. Thus, to reach our own objective
of designing and developing a game audio middleware to satisfy that need, we will explicitly list
all of these individual aspects of the problem, then propose a middleware architecture that is

1 “Vorpal” is a word invented by Lewis Carrol in “Through the Looking-Glass”, and is often used in games to
refer to particularly deadly blades, as in “vorpal sword”.

67

68 PROPOSED SOLUTION 4.2

intended to satisfy each and every one of those aspects. We refer to these aspects as the System
Requirements of our middleware. Our design decisions are based on them in the sense that the
resulting technology should enable the users to overcome each listed aspect of the problem. For
instance, if a System Requirement is “the tool should be able to provide sample playback during
game execution”, and if there is at least one way for the user to achieve that through the present
features of our middleware, then we consider that this Requirement has been met.

This method allows us to clearly validate our research with the first two criteria established
back in Section 1.2.3, namely the Basic Feature Support and the Advanced Feature Support
validations. The first can be validated by including an initial subset of System Requirements
that essentially demand that the middleware be compatible with an actual game. The second
validation, on the other hand, involves gathering a more comprehensive list of features from
both literature and professionals working with game soundtracks. To keep the scope of this
process manageable, we limited ourselves to Collins’ work for the former and three interviewed
professionals for the latter. The choice of author is due to her work being the only one in
our bibliographic spectrum that has systematically enumerated the possibilities of real-time
soundtracks in games, thus providing a solid foundation for more complex requirements. As for
the sound professionals, the three we elected were the only ones that agreed to an interview
among studios we managed to reach out to in our local community.

The first ten months of our research were spent contacting other research groups and local
game studios, as well as reading through the gathered bibliographic material to understand and
build our list of System Requirements. At the same time, we experimented with the available
technologies and developed prototypes to verify how each of them could help us achieve the in-
tended feature set of our middleware. From the sixth month of research, we started development
of the system itself. We based our implementation process on agile software development prin-
ciples, which prioritize having a minimal, usable product as early as possible [BGM+01, BA04].
For that, we developed a small test suite where we could promptly verify whether the System
Requirements were being met. Besides, starting from the second year of our research, we joined
efforts with one of the interviewed professionals to develop a proof of concept game together as
a way to explicitly achieve the Basic Feature Support validation. The resulting title was Sound
Wanderer, which we describe in greater detail in Section 6.1. A beta version of the game was
released six months later [MVK16].

4.2 System Requirements

As explained in Section 4.1, here we gathered the System Requirements for our game audio mid-
dleware as part of our research methodology. We used Collins’ list of dynamic music variabilities
from Section 2.1 as a starting point. Even though it is evidently based on the traditional notion
of score-oriented sequential music, we opted for this model because it is the most comprehensive
in the current literature, which gives us a solid base to build on top off. After establishing this, we
analyzed the interviews we made with active sound designers in the industry to complete the list
as needed. This was particularly convenient since Collins’ list is mostly limited to game music,
lacking feature descriptions for sound effects and voice, a gap the sound designers’ experience

4.2 SYSTEM REQUIREMENTS 69

promptly filled in. We will not present Collins’ list here again to avoid being repetitive, but we
will show the full System Requirements list in Section 4.2.4 when we have finished gathering all
the remaining requirements. For that, Sections 4.2.1, 4.2.2, and 4.2.3 will address each of the
interviewed professionals, highlighting the System Requirements we can derive from the report
on their experiences in bold.

4.2.1 Rodolfo Santana

Rodolfo Santana is a sound designer from Tapps Games2 studio in São Paulo, Brazil. He has
worked there since 2014, but his experiences with game sound predates that. Until very recently,
the Tapps Games’ development pipeline was very aggressive and “waterfall” oriented [Roy70].
That allowed them to produce over two hundred titles in only a few years (although a number
of them are merely reskins3). With Santana being one of the few sound designers at the studio
(when we interviewed him there was only one more person helping him), that can attest to how
much experience he accumulated over his career at the studio.

Tapps Games works exclusively for the mobile market, and this reflects on the daily challenges
Santana faces. For instance, there is an enforced limit to how much memory space the sound
assets he delivers can occupy. “I have [...] a megabyte and a half for music, and there is about
three megabytes for [sound] effects”, he says. He believes that real-time sound synthesis would be
a good solution, specially because the main game engine they use (Corona4) has some issues with
sample playback synchronization: “[...] it is not that easy to synchronize things, because since it
[Corona] has to read the sample, [...] if the device takes a little longer to load one of them, on that
run it will be played outside the tempo. [...] With synthesis, this would not happen”. Much of the
difficulties he deals with when working with samples coincide with Farnell’s criticism [Far07]. He
says that “It is very toilsome to build transition cells” when working on music transitions, and that
when he needs small variations of the same song, he has no choice but to deliver multiple sample
files, each processed with a different effect, instead of just doing so from inside the game code.
That leads us to our first interview-derived System Requirement: real-time sound synthesis
as an alternative to sample-based sounds, because it consumes much less memory space
and it enables many real-time manipulations that would otherwise be impossible to achieve –
“That is, from what I imagine, the maximum dynamism one can achieve”, says Santana.

Santana also mentions many of the music variabilities on Collins’ list, like variable volume,
mix, tempo, pitch, and DSP (specifically filters in this case). An additional feature he defends
is sound physics, such as 3D spatialization, through attenuation and binaural effects, and
reverberations based on the virtual space geometry. He states that this enhances music as much
as it enhances character voice and sound effects. We discussed a few available solutions to sound
physics back in Section 2.3 which we can use as reference.

Lastly, Santana had some previous experience with FMOD Studio and we asked him about
his impressions on game audio middleware. It was a technology he could not use at Tapps Games
due to the lack of compatibility with Corona. He found its licensing price unaffordable, and its

2 http://tappsgames.com/
3 A game title with the same code base as another but with different assets, mainly graphics related ones.
4 https://coronalabs.com/corona-sdk/

http://tappsgames.com/
https://coronalabs.com/corona-sdk/

70 PROPOSED SOLUTION 4.2

sample-based approach limiting, even though he admits that there had been people who managed
to circumvent that by using small sets of very short samples and building the soundtrack by
combining them instead of recording more samples. Notwithstanding these issues, he ultimately
“sees it more as a way for the sound designer not to depend on the programmer ”, which he
thinks is an excellent quality of game audio middleware. As such, we will add one last System
Requirement from this interview: the less the sound designer depends on programmers,
the better.

4.2.2 Kaue Lemos

Kaue Lemos is the audio director at Insane Games5 studio and 7Sounds Game Audio Solutions
company, both from São Paulo, Brazil too. The studio has a wider spectrum of target platforms,
including desktop computers, social networks, and mobile. They are currently developing a Mas-
sive Multiplayer On-line Role Playing Game and have at least one title published on Steam6 in
early access. In his work, Lemos uses FMOD Studio extensively, and shared his experience with
game audio middleware during the interview.

When asked about what he believes are key features this kind of technology should offer, he
highlighted sample playback randomization and per-sample polyphony control, among
other requirements we have already discussed such as pitch and volume variability. In the case of
polyphony, he uses an example to explain the motivation behind it, and defends that the main
purpose of the feature is to “ limit the number of times this [spaceship shooting] sound can be
played simultaneously”. He mentions that, in FMOD, there are two polyphony policies: Quietest
and Oldest. Whenever there are too many copies of the same sound being played, the first policy
drops the copy that has the least volume, while the second drops the ones which have been
playing longer.

A concern he showed when describing his workflow with FMOD was guaranteeing there would
not be any leaking resources in the soundtrack. That is, ensuring unused or mostly silent samples
and Events had been freed from memory, recovering not only memory space but also CPU time
to work on more relevant parts of the soundtrack. The polyphony control was one of the ways he
pointed to solve this. One other way was to explicitly bring the volume level of specific sounds
down to zero when they were no longer needed, since FMOD employs an optimization mechanism
to clear these resources from memory in this case. With this, we have the System Requirement of
allowing resource usage optimization by the sound designer. Besides this, Lemos also stated
that “everything I have said can be done without a middleware – the purpose of the middleware
above all else is to facilitate all this”. He did not have problems working with sample-based
audio, but agreed that he expected the technology to give him more independence to shape the
soundtrack as he thought was best.

5 https://www.insanegames.com.br/
6 http://store.steampowered.com/

https://www.insanegames.com.br/
http://store.steampowered.com/

4.2 SYSTEM REQUIREMENTS 71

4.2.3 Dino Vicente De Lucca

Dino Vicente De Lucca does not work in the game industry. He is a musician and sound designer
with his own studio, DVMúsica7 (also from São Paulo), who works in a variety of sound projects.
He has composed soundtracks for movies, commercials, and documentaries alike, but has also
designed and presented a number of interactive performances. One of them was a gamified ex-
position, and another used the language of games and a live boxing performance to manipulate
an experimental music show in real-time using Max/MSP8. He specializes on sound synthesis,
with a personal inclination towards old-school analogue synthesizers. De Lucca believes that most
multimedia productions neglect sound and he has been a witness (and “victim”) to the traditional
process of leaving the soundtrack for last in audiovisual projects, as we discussed in Section 3.2.1.
He defends that sound should be designed since the beginning of development, because it is as
important (or even more important) than the visual part of a production. De Lucca is also our
partner in the Sound Wanderer project, the proof of concept game we developed to validate
VORPAL.

One of the features De Lucca asked for the most was binaural audio. He defends that having
an appropriate distribution of sound among the output devices (earphones, speaker sets, etc.) is
one of the key factors in creating immersive experiences. This means not only being able to send
multi-channel signals to the sound card, but also being able to map spatialization and sound
physics effects to the corresponding channels. On that matter, De Lucca also wished for stereo
sample playback support, which would normally be a very reasonable feature request, but we
found that it is actually not very clear how to make it coexist naturally with spatialized binaural
audio. The reason is that spatialized sounds work like in real life: people hear only a single sound
coming from each source, even if it is stereo sound. That is why the cinema, live performances,
and home theaters use multiple speakers in different positions to provide multi-channel sound.
Thus, to play a stereo sample in a spatialized binaural environment, we could either simulate
two “virtual earphones” on both sides of the listener, or use a separate environment exclusively
for stereo samples.

When working on some real-time music themes for Sound Wanderer, De Lucca suggested we
based our soundtrack on a sequencer-like structure. He defends that linear structures like
sequencers and timelines are easier to work with, even if a tree-based structure (like the one
used by Wwise) might be more powerful. The sequencer we used essentially consisted of a tempo
matched chronometer over a two bar loop, in which we could assign sounds to each beat. This
is marginally similar to using a timeline in a DAW or on FMOD, except you cannot really place
sounds in any moment of the timeline, only on beat positions. Next, to produce the timbres we
wanted for the music notes, we decided to use synthesized sound. De Lucca asked for an interface
that mimicked analogue synthesizers, since that way he would be able to work with the
tools he is already used to. This imposes certain limitations on the range of possible timbres, but,
on the other hand, it eases the workflow for the sound designer by bringing the features closer to
a language he or she definitely understands. Such approach reflects one of De Lucca’s opinions
regarding audio tools in general: more powerful technology may give the sound designers more

7 http://dvmusica.wixsite.com/dvmusicaapresentacao
8 https://www.youtube.com/watch?v=uicFemu89T0

http://dvmusica.wixsite.com/dvmusicaapresentacao
https://www.youtube.com/watch?v=uicFemu89T0

72 PROPOSED SOLUTION 4.2

control, but at the same time if shifts the responsibility and burden of more technical aspects
from programmers to sound designers as well. This is aggravated by the fact that such increasing
skill demands are not always properly converted into an appropriate remuneration increase (if
any). This is related to the discussion brought by Scott’s work [Sco14] we presented in Section
2.1: at the same time that game sound requires new technological horizons to achieve better
soundtracks, the professionals behind these soundtracks need to invest more and more resources
to catch up with the new production paradigms, which is not always a rewarding task.

4.2.4 Final List of System Requirements

Having taken into consideration the experience and reports of professional sound designers, each
with his own context and needs, we can now merge Collins’ variabilities list with the System
Requirements we have highlighted from the interviews. We also use this opportunity to formulate
a minimal list that meets our Basic Feature Support validation. However, many of the System
Requirements we have seen can be joined into more concise features. In this section, to do that,
we will make a step-by-step description of how we massaged the list until it reached a more
objective set of System Requirements. First, let us consider Collins’ requirements:

1. Variable Tempo

2. Variable Pitch

3. Variable Rhythm

4. Variable Volume

5. Variable DSP (frequency filters)

6. Variable Melody

7. Variable Harmony

8. Variable Mix

9. Variable (Open) Form

10. Variable (Branching Parameter-Based Music) Form

In terms of implementation, Requirements 4 and 8 are very much alike: both are done by
controlling the volume of different audio channels – the difference is that Requirement 4 does so
only to a single channel. We can merge them into the same Requirement. Also, Requirements 6,
7, and 9 are all about real-time changes to the sequencing of a music, be it in its melody or be
it in its harmony. We shall also join them. Requirement 10 is more about transitions than the
sequencing itself, and as such we will keep it a separate feature. The resulting list is:

1. Variable Tempo

2. Variable Pitch

4.2 SYSTEM REQUIREMENTS 73

3. Variable Rhythm

4. Variable Mix (was 4 and 8)

5. Variable Frequency Filter (was 5)

6. Variable Music Sequence (was 6, 7, and 9)

7. Music Transitions (was 10)

Now, let us consider the System Requirements needed to achieve the Basic Feature Support
validation, which states that our middleware should be compatible with actual game applica-
tions. Since the validation of this Requirement is very straightforward (we need only develop a
reasonable game that works with the middleware) we will also keep it simple here. Even though
we call it a Basic Feature, it really is the minimum expected if our middleware is to be considered
a viable technology, and for that we consider it a fundamental Requirement. As such, we will
number it the zeroth System Requirement:

0. Compatibility with Game Applications

Next, we add the Requirements gathered from the interviews.

8. Sound Synthesis (Santana)

9. Sound Physics (Santana)

10. Independence from Programmers (Santana)

11. Playback Randomization (Lemos)

12. Polyphony Control (Lemos)

13. Resource Usage Optimization (Lemos)

14. Binaural Audio (De Lucca)

15. Stereo Sample Playback (De Lucca)

16. Sequencer Structure (De Lucca)

17. Industry Standard Synthesizer Interface (De Lucca)

There are many Requirements that work together or complement each other now. With the
intention of keeping the final list lean, we will merge a few more features. Requirement 8 is very
generic, but it becomes manageable if we put it together with Requirement 17. Requirement 2
is usually implemented as a synthesizer parameter, so we will include it together with 8 and
17 too. Sound Physics, on the other hand, embraces too many possibilities, like the works of
James et al., Bonneel et al., Taylor et al., and Raghuvanshi et al. we discussed in Section 2.3
[JBP06, BDT+08, TCAM09, RSM+10]. For the purposes of demonstrating the potential of real-
time audio physics, we will bundle Requirement 9 together with Requirements 14 and 15 as “3D

74 PROPOSED SOLUTION 4.3

Audio Spatialization”. Since rhythm and tempo are both parameters of music sequencers, we can
now join Requirements 1, 3, 6, and 16 as “Real-Time Controlled Music Sequencing”. Thus, the
resulting list of System Requirements our middleware will support is:

0. Compatibility with Game Applications

1. Independence from Programmers

2. Real-Time Controlled Music Sequencing

3. Real-Time Controlled Synthesis

4. Music Transitions

5. Variable Mix

6. Variable Frequency Filter

7. 3D Audio Spatialization

8. Playback Randomization

9. Polyphony Control

10. Resource Usage Optimization

Having established these System Requirements, there are now a number of key design deci-
sions we need to address and base the middleware architecture and implementation on. That is
what the rest of this chapter will do. The most important of these decisions – given the need for
data-driven design in games and what we learned from other game audio middleware – is what
kind of data format we will use to represent a real-time soundtrack. This will be discussed in
Section 4.3. Then, we must build the architecture and its components around that format, given
its central role in enabling our proposed technology. This is done in Section 4.4.

4.3 Digital Representation of Real-Time Soundtracks

If we go back to Figure 1.5 and inspect the middleware systems analyzed in Section 3.4 through
it, it is easy to see why the data format used to represent real-time soundtracks is a fundamental
design decision in this kind of tool. Game audio middleware always comes with two interacting
software components: a digital content creation interface and a real-time audio engine. The
soundtrack production pipeline consists of using the digital content creation interface to make
the sound elements of the game, then exporting them as a set of files which the real-time audio
engine is able to process and reproduce the originally intended soundtrack from. The gap between
sound designers and programmers is closed by the employment of an intermediate representation,
which is neither the exact playback the sound designer may have heard or the precise code the
programmer would write to derive the necessary interactive and dynamic behaviors. It is, instead,
a format that has a little from both worlds. Among the studied proprietary middleware systems,
the only one we had the opportunity to inspect more closely was the MIDI-based format used in

4.3 DIGITAL REPRESENTATION OF REAL-TIME SOUNDTRACKS 75

iMuse, but it is not hard to extrapolate what kind of information the exported files from Wwise,
FMOD Studio, and Elias Studio carry. In this section, we will describe the main possibilities
we have found, compare their advantages and disadvantages, and elect the one we find most
appropriate based on the System Requirements raised in Section 4.2.4.

4.3.1 Considered Formats and Comparison

The first format we will consider is the one used by iMuse. Since it was based on MIDI, it is
very interesting for score-based music compositions. On the other hand, it completely leaves out
the possibility of using more complex samples, which was actually part of its design since the
technology at the time did not support sample-based audio well enough. This makes it all the
more evident that the format used by iMuse was developed in a very different context and with
very different needs than modern middleware systems. As such, we find that this kind of format is
not flexible enough to handle soundtrack quality demands currently valued in the game industry.
In this sense, one could say that the format used by FMOD is an evolution of Lucas Arts’
breakthrough. The timeline present in the Event structure is no different to timestamped MIDI
commands, with the exception that it supports sample insertions along with the Logic Track,
making it as dynamic as the original iMuse system, yet more compatible with sample-based
audio. The problem is that it represents a new extreme in and of itself, since it is not possible
anymore to synthesize real-time sounds like iMuse did – not without some unnatural sample
juggling at least. A good balance between these two formats might be a promising compromise
though, specially if we could use the Command Queue from iMuse.

Which brings us to Wwise and its Event structures. Both them and the Command Queues
allow the sound designer to specify a routine to be executed over the soundtrack. The main
difference is that Events in Wwise are triggered directly by game code, while Command Queues
in iMuse are executed when a corresponding Marker is processed in a composition sequence.
The important aspect both have, though, is that they give the sound designer control over
a programming-like interface, and this is what allows them to dismiss the intervention of a
programmer to create a desired real-time behavior in the game soundtrack, as dictates System
Requirement 1. Wwise’s tree structure is also less linear than the structures of iMuse and FMOD,
allowing it to avoid using a logic jump mechanism like them since its soundtrack layout naturally
provides a branching function. In terms of how that reflects in the format, there are a number of
approaches one could use to represent a tree. The downside of the design of Wwise also lies in its
tree-based structure: it makes Wwise the only middleware with an interface layout and workflow
completely different from traditional DAWs and other composing software. Even if we strive for
real-time soundtracks, which are mostly nonlinear, it still feels more natural for a sound designer
to have some linearity to work on top of, as we saw from De Lucca’s report in Section 4.2.3.

As for Elias, as much as it provides a very efficient path for producing adaptive music in
games, it is not enough to make the whole soundtrack. We can, however, learn from their suc-
cess in building an intuitive workflow for that specific purpose, specially if we consider System
Requirement 2, “Real-time Controlled Music Sequencing”. Besides that, the format used by Elias
is mostly concerned with storing the matrix of Track Levels, something we ought to consider if
we face a similar need in our own format.

76 PROPOSED SOLUTION 4.4

Lastly, there is Pure Data. Even though it does not follow the pattern in Figure 1.5, it does
have a very important interaction between the format it uses and how the language works. Since
a Pure Data Patch is nothing but a directed graph written in a plain-text format, we were
able to explicitly investigate it. It is a very simple representation: every Object is listed with
their corresponding creation arguments, then every Connection is listed indicating which Object
Outlet and Object Inlet it connects. Since Pure Data is actually a programming language, this
format is enough to express the structures needed to write any Patch because it is the Object
themselves that provide the relevant features used to program the Patch behavior. In fact, it is
even possible to replicate most of the capabilities from the other middleware systems, with the
benefits that

1. Pure Data comes with dozens of useful DSP functions;

2. Signal data is naturally treated as procedural audio;

3. The sound designers can effectively program the soundtrack on their own (Requirement 1);

4. There is an active community of both artists and researchers around the language; and

5. It is free software.

Given our time constraints and the challenging scale of developing a game audio middleware
[Gre14, Chapter 13], we see here an opportunity to take the most out of a well established
technology by having VORPAL built on top of it.

4.3.2 Chosen Format

By using the Pure Data language format we can provide an intermediate API, in the form of
Abstractions and possibly Externals, through which the sound designer can author the game
soundtrack. Since mastering Pure Data as a whole might not be practical, this API will serve as
a dialect, a subset of the language made more accessible and efficient for end users to work with.
Then, thanks to a community effort such as libpd, we can promptly embed Pure Data Patches
as soundtrack units in a digital game application. For the purposes of advocating procedural
audio and opening potential future paths for real-time soundtrack research in games, we find
the advantages of using Pure Data Patches as our base format very appealing, even with the
caveats we discussed in Section 3.4.5 (such as Pure Data not being designed for embedded use).
As such, our real-time soundtrack format will consist of a Pure Data dialect tuned
to satisfy the System Requirements exposed previously in this chapter. We analyze the
benefits and issues this design decision brought to our research in Section 6.4.

4.4 Architecture

Being a game audio middleware, VORPAL abides by the standard and time tested general
architecture we described in Figure 1.5, centered around the soundtrack format we chose in
Section 4.3. There are two main components composing the system: the Audio Engine and

4.4 ARCHITECTURE 77

the Soundtrack Creation Kit, much like the FMOD Studio Programmer’s API and FMOD
Studio pair, respectively. In our case, the Audio Engine is implemented as a programming library,
presented in Section 4.4.1, and the Soundtrack Creation Kit consists of the Pure Data application
itself plus a set of soundtrack creation Patches, as we will discuss in Section 4.4.2. Section 4.4.3
closes this chapter by describing how our architecture integrates this two components into the
middleware as a whole. In these Sections we only explain the general idea behind each part of
the architecture, since the details of how they are actually implemented and used in practice are
discussed at length in Chapter 5.

4.4.1 Audio Engine

This is the on-line part of the VORPAL middleware: a programming library written in C++

(because of Requirement 0) implementing the Audio Engine the game application needs to play
the real-time soundtrack Patches made by sound designers with the Soundtrack Creation Kit.
The library comes with an API the programmer can use to load, play, and interact with the
imported Patches. Since every game engine has its own time management peculiarities, we use
an idle-frame synchronized service interface (see Section 3.3.2) through which the programmer
can keep the Audio Engine and the Game Loop correctly synchronized. Patch embedding is
achieved with libpd, and Pure Data Messages are used to control the loaded Patches. The
resulting audio signal must be properly synchronized with the time data obtained from the game
application, and then finally sent to the sound card for playback. This internal organization of
the VORPAL Audio Engine is illustrated by Figure 4.1.

Figure 4.1: An overview of the main components and their interactions inside the VORPAL Audio
Engine at game execution time.

78 PROPOSED SOLUTION 4.4

The Audio Engine API essentially exposes two main C++ classes to the programmer: the
vorpal::Engine class and the vorpal::SoundtrackEvent class. vorpal::Engine is a
singleton that serves both as an entry point for the API and as a game sub-system which must
be serviced every game frame using idle-frame synchronization. vorpal::SoundtrackEvent
is the API representation of a loaded Pure Data Patch, assigned to a 3D position (for Require-
ment 7) and to a corresponding audio channel. We say it represents a Soundtrack Event
inside the VORPAL middleware. This design uses an Object-Oriented Programming approach
to the soundtrack, treating Patches as objects that can receive Commands (method invocation)
through Pure Data Messages. The available Commands in each vorpal::SoundtrackEvent
instance mostly depend on the Patch the sound designer made. Figure 4.2 contains a UML class
diagram of this two classes. We describe the actual API, along with a number of implementation
details, in Section 5.2.

Figure 4.2: The two main classes in the VORPAL Audio Engine API exposed to the programmer.

4.4.2 Soundtrack Creation Kit

Since we chose Pure Data Patches as the base for our soundtrack file format, we need no more
than the Pure Data application itself as a soundtrack content creation interface. Through it, the
sound designer can create Objects from a set of Abstraction and Externals we provide and build
the intended soundtrack for the game. In programming terms, this component of the middleware
works as a “game soundtrack SDK” for Pure Data. This means that part of the VORPAL package
consists of a number of Pure Data Patches and binary Externals which need to be installed in
the user’s machine together with Pure Data itself. The Objects available in this Soundtrack
Creation Kit are designed to cover most of the System Requirements we gathered in Section 4.2;
the ones they do not are directly supported by the Audio Engine in some other way (like System
Requirement 7, “3D Audio Spatialization”).

One of the advantages of using Pure Data like this is that System Requirement 1, “Indepen-
dence from Programmers”, is promptly achieved (albeit at the cost of a steeper learning curve),
while Requirements 5, 6, 8, and 9 are indirectly satisfied through basic Pure Data constructions.

4.4 ARCHITECTURE 79

For instance, Requirement 8, “Playback Randomization”, can be achieved by simply using the
[rand] Object, which comes with Pure Data by default. Requirements 2 and 3, on the other
hand, require more specialized Objects: a Sequencer and a Synthesizer, respectively. These
two Abstractions are the main elements of the Soundtrack Creation Kit. The specific way with
which they are combined in a soundtrack is able to achieve System Requirement 3, “Real-time
Controlled Synthesis”, a fact we properly demonstrate in our proof of concept game, Sound Wan-
derer, in Chapter 6. Lastly, this kit also comes with a custom sound output Object type called
Output Bus to better organize audio channels and the mixing thereof, improving support on
Requirement 5, “Variable Mix”. Bus Objects, together with Command Objects, are important
in the integration between the Soundtrack Creation Kit and the Audio Engine, as we will explain
in Section 4.4.3. Lastly, the Kit also comes with Sample Objects to load sample-based audio.
The specifically supported formats depend on some implementation aspects of the Kit, so we
will address them later when we discuss the implementation details of the VORPAL Soundtrack
Creation Kit in Section 5.3, where we also show in detail how these Objects look like. Usage
examples are shown Section 5.4.5 too. Thus, the full list of Abstractions and Externals that
compose the Kit consists of the following Object types:

• Sequencers;

• Synthesizers;

• Output Buses;

• Commands; and

• Samples.

4.4.3 Components Integration

As explained in the description of the Audio Engine in Section 4.4.1, VORPAL fits Pure Data
Patches made through the Soundtrack Creation Kit into the Object-Oriented Programming
paradigm, by expressing them through the vorpal::SoundtrackEvent class in the Au-
dio Engine. To do this, the Kit provides the Command Objects. They have a creation argu-
ment indicating the name of the Command. When the programmer pushes a Command to
a vorpal::SoundtrackEvent instance, he or she must specify the Command name and
parameters. The Engine then maps the Pure Data Message to the Command Object carry-
ing the same name in the associated Patch and sends the given parameters to it. For in-
stance, a soundtrack Patch could have a Command Object with creation argument “play”, and
when the programmers pushes the “play” Command with no parameters to the corresponding
vorpal::SoundtrackEvent instance, the Command Object outputs a simple “bang” mes-
sage (since no parameters were given) in the Patch, and this could be used to actually start
playing something in it. Likewise, the Output Bus Object provided in the Kit goes the other
way around. It receives audio signals generated inside the Patch (be it from samples or syn-
thesis) and sends them back to the matching vorpal::SoundtrackEvent in the Engine.
Then, when the Audio Engine is serviced during the Game Loop, all audio signal captured by

80 PROPOSED SOLUTION 4.4

instances of vorpal::SoundtrackEvent are properly transferred to the sound card for play-
back. Since Pure Data works in Ticks of 64 samples, the Engine can control how much signal
is processed every frame to guarantee that the soundtrack is played inside real-time constraints.
Again, note that all of these concepts explained here are detailed in Chapter 5, where we discuss
the implementation and usage of each of the architecture parts.

Chapter 5

Implementation

Chapter 4 defined the architecture of the VORPAL middleware and the soundtrack format it
uses based on the System Requirements raised and the concepts explained in previous chapters.
The next step is to delve into the implementation of the core aspects of the middleware, which
is the role of this chapter. Here, we discuss how we achieve the proposed architecture and which
technologies, data structures, algorithms, and conventions we utilized to do so. We also address
the resulting workflow of our tool, that is, how users should proceed to actually make use of it. As
stated in Section 4.1, we developed the system following agile principles. One of the consequences
of this is that, before arriving on the current design of the middleware, we had already iterated
over it a number of times. Here, we omit all the intermediate steps the development process took,
but we will briefly discuss one of the prototypes we built, since it was the first to present relevant
results in terms of real-time soundtrack support.

From the middleware specifications in Sections 4.3 and 4.4, we know that VORPAL is im-
plemented using a mixture of C++ and Pure Data. Pure Data has its own means of producing
sound playback, but the same could not be said of the parts written in C++ – namely, the VOR-
PAL Audio Engine. For that purpose, we chose to use OpenAL, which is a cross-platform free
software programming library for sound playback. We have already shown some of it in the code
examples of Section 3.3.4. Besides the reasons we just mentioned, we also decided to use Ope-
nAL because it supports 3D spatialized audio out-of-the-box, which brings us closer to meeting
System Requirement 7 (“3D Audio Spatialization”). Since we preferred to avoid too many de-
pendencies on our system, there are no other libraries VORPAL needs aside from OpenAL and
libpd. It does require support for the C++11 standard, since most modern compilers provide it
and it relieves us of further dependencies for multi-threading and time synchronization features.
Outside of the system itself, it is worth noting that we use Git for source code version control
(hosted at https://github.com/vorpal-project) and CMake1 as our building framework. These
are dependencies only developers need, not the end users. Besides, all C++ code written for the
middleware, including the examples and excerpts found in this thesis, follow a slight variation of
the Google C++ Style Guide2.

Section 5.1 presents the first real-time soundtrack prototype we developed using a more
1 https://cmake.org/
2 https://google.github.io/styleguide/cppguide.html

81

https://github.com/vorpal-project
https://cmake.org/
https://google.github.io/styleguide/cppguide.html

82 IMPLEMENTATION 5.1

unstable integration with Pure Data. Next, Sections 5.2 and 5.3 address the implementations of
the VORPALAudio Engine and Soundtrack Creation Kit, respectively. In Section 5.4, we describe
in details: the workflow programmers and sound designers must follow to use our middleware;
game engine support for VORPAL, demonstrating how it works by exposing implementations of
this support made for two free software engines; and two usage examples that show the VORPAL
middleware in action.

5.1 Prototype

In the early process of designing VORPAL, when we were pondering the choice of soundtrack
format, we decided to develop a quick prototype to validate whether Pure Data could work as
a language that expresses real-time soundtracks. To avoid spending time in the development of
a brand new game for the sole purpose of this prototype, we searched for an open source title
we could modify and insert the new soundtrack into. Our middleware did not have a single line
of code at this moment, and we wanted to be able to show people what our research was about
without having to actually implement the whole system beforehand. Since our methodology
involved gathering feedback from musicians and sound designers, having a demonstration of
what we meant by “real-time soundtrack in games” was paramount.

For the game itself, we decided on modifying Mari0 (Stabyourself, 2012)3, distributed under
the Creative Commons BY-NC-SA 3.0 4 license. It is a parody game that reconstructs the classic
Super Mario Bros. (Nintendo, 1985) but mixes in the portal mechanics from Portal (Valve, 2007).
The fact that it resembles a relatively famous game helps get the point across when showcasing the
prototype, but that was not the only reason that made us choose Mari0. The other reason is that
it was developed using the LÖVE framework, which we have extensive experience working with
due to previous projects we participated in at USPGameDev5, a student group from University
of São Paulo that researches game development. That saved us the time of learning a new
development tool just to change a few dozen lines of code to add the new soundtrack. Figure 5.1
shows a screen capture of the game.

The next step was to determine how we would embed a Pure Data Patch into the game. We
were aware of libpd, but since we wanted the fastest way to achieve a real-time time soundtrack,
we took a different approach. We wanted an alternative where we did not have to implement
sound playback, since that required time and more software dependencies (in fact, we did add
the OpenAL dependency for this part later). Thus, inspired by one of the features from FMOD
where the sound designer could tweak the soundtrack while playing the game at the same time,
we chose to play everything from the Pure Data application itself, while receiving real-time data
from the game through a direct socket connection. Since both programs would be running on
the same machine, we could assume there would be no issues such as packet loss, significant
delays, etc. But, to do that, we needed to define a communication protocol. Again, as to not
waste too much time on a relatively lesser detail of a prototype, we searched for something we
could use out-of-the-box. The sufficiently good alternative we found was the Open Sound Control

3 http://stabyourself.net/mari0/
4 https://creativecommons.org/licenses/by-nc-sa/3.0/
5 https://uspgamedev.org/

http://stabyourself.net/mari0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://uspgamedev.org/

5.1 PROTOTYPE 83

Figure 5.1: An in-game screenshot of Mari0 (Stabyourself, 2012) [Sta12]. In this parody game, Mario
can shoot portals and use them to traverse the classic challenges of the original title from Nintendo.

(OSC) protocol6, for which we promptly arrived at an accessible and lightweight implementation,
liblo7. On the Pure Data side, we ended up temporarily moving to Pure Data Extended (refer
to Section 3.4.5) to find Externals that could decode OSC messages. After that, all we had to do
was write a Lua8 binding for liblo (another task we already had experience with [Miz]) and
use it in Mari0 to send messages containing relevant real-time data from gameplay, which, in
turn, we used to control the soundtrack inside Pure Data.

For the actual soundtrack, we focused on the first stage of the game and started by sim-
ply playing a shortened version of its original theme, “Overworld Theme” by Koji Kondo. We
implemented it in Pure Data using simple synthesized timbres and a custom sequencer. Then,
we added two real-time effects to it. The first was inspired by the battle theme variations from
Faster Than Light : the percussion track of the theme was removed, and we added a new one
with hits that played according to the quantity of enemies nearby. The more enemies there were
around Mario, the more hits the percussion track would play. There was a total of four levels
of percussion intensity. Notice how we would have needed at least five different sound samples
(the melody plus the four percussion variations) if we had not implemented it through a pro-
cedural sequencer. The other real-time effect we added to the soundtrack was a modulation in
the melody. When the player managed to grab the Fire Flower item in the game (which makes
Mario much stronger than normal), the theme key would rise a whole tone. If he got hurt and
lost the Fire Flower bonus, the melody would go back to normal. Again, this would have been
much harder to do with a sample-based implementation without incurring in a time-stretch of
the sample (or using a second sample). Thus, both these effects served the purpose of not only
illustrating what we envisioned as a real-time soundtrack, but also explicitly highlighting the
advantages of procedural audio over sample-based audio.

The first “released” version of the prototype was finished around the middle of 20159. Later,
after the VORPAL middleware achieved its own initial release, we ported most of the prototype
to the new system, dropping OSC and liblo in the process. The revised prototype was used

6 http://opensoundcontrol.org/
7 http://liblo.sourceforge.net/
8 Lua is a Brazillian scripting language used worldwide by the community of game developers, being the

language of choice of many game engines, such as LÖVE.
9 https://github.com/vorpal-project/mari0/releases/tag/prototype/zero

http://opensoundcontrol.org/
http://liblo.sourceforge.net/
https://github.com/vorpal-project/mari0/releases/tag/prototype/zero

84 IMPLEMENTATION 5.2

to verify the other side of the coin: we composed our own arrangement of “Overworld Theme”
using the LMMS tool and inserted it into the game using a sample-based approach. Due to the
restrictions of this choice, we reduced the real-time effects in the new version of the soundtrack
to a variable mixing (System Requirement 5) effect. Now, the percussion track merely increases
in volume when enemies are close, and the bass track increases in volume according to Mario’s
size (that is, how many “power ups” he currently has in effect).

The original prototype served as a solid indication of the possibilities brought by procedural
audio and confirmed that using Pure Data as a soundtrack creation interface was a viable option.
It was an important first step in our research on top of which we based the current middleware
implementation. At the same time, we learned that using Pure Data Extended could become a
burden to the sound designer, since it came with a considerable number of dependencies and had
actually not been updated for a while. The agile approach allowed us to detect this issue and
move back to Pure Data “Vanilla”, at the same time that it showed us that supporting real-time
soundtracks in games was an achievable and fruitful goal.

The following sections present a more in-depth description of the implementation details and
usage protocols of the middleware. Readers more interested in a broader view of this work may
skip directly to Chapter 6.

5.2 Audio Engine

The VORPAL Audio Engine is the part of the middleware responsible for processing the Patches
provided by the sound designer, and producing the correct and synchronized playback that was
intended for them. It is also the part the game programmer has contact with. These interactions
have already been presented in Figure 4.1. As such, there are four main topics of interest we need
to address to properly explain the workings of the Engine. The first is discussed in Section 5.2.1:
the main classes and interfaces exposed to the programmer that enable the use of the Engine
features. Section 5.2.2 presents the second topic, which explains how we manage the loading and
processing of Pure Data Patches through libpd. In Section 5.2.3, we discuss the method we
used to produce sound playback by integrating OpenAL into the Engine, including its binaural
audio support. Then, Section 5.2.4 addresses how we achieve real-time synchronization with the
Game Loop of the host game application, the fourth and last topic.

5.2.1 High-Level API

Following the good principles of encapsulation and cohesion from Object-Oriented Program-
ming, the VORPAL Audio Engine exposes only the strictly required operations to the pro-
grammers, divided in classes so that each has only a single responsibility. This led us to im-
plement two such classes: vorpal::Engine and vorpal::SoundtrackEvent, which we
mentioned in Section 4.4.1. While vorpal::Engine represents the Audio Engine as a whole,
vorpal::SoundtrackEvent represents individual Soundtrack Events. vorpal::Engine
manages vorpal::SoundtrackEvent instances and provides the programmer with meth-
ods to load a single Soundtrack Event or synchronize all current Soundtrack Events, while the
vorpal::SoundtrackEvent abstracts Soundtrack Events as 3D sound sources with real-time

5.2 AUDIO ENGINE 85

behavior that respond to Commands much like objects respond to method invocations in Object-
Oriented Programming. Their position is always relative to the virtual listener, or rather, the
simulated listener is always at the origin of this 3D space.

System Requirement 10, “Resource Usage Optimization”, among other aspects, demands that
no longer used resources in the VORPAL middleware be freed from memory and process time.
Since vorpal::Engine is a singleton, the only class the game programmer could leak around is
vorpal::SoundtrackEvent, which might have numerous instances during game execution,
many of which might not be needed all the time. The simplest way to solve this is using some
form of garbage collecting mechanism: unused references to Soundtrack Events are automatically
deleted. To do this in C++, smart pointers are typically used [GHJV94]. In particular, the C++11
standard comes with the std::shared_ptr template class which promptly gives us a reference-
counting garbage collection feature10 by wrapping the actual pointer of an object but allowing
the programmer to use the wrapper as if it was the pointer itself (this is the main characteristic
of smart pointers in C++). Additionally, we also used the Null Object design pattern [Woo98] to
relieve the programmer from having to check for null vorpal::SoundtrackEvent pointers
all the time.

That brings us to a sensitive matter in terms of API design. When the programmer requests
the Audio Engine to load a Soundtrack Event, there must be a well defined behavior for when
the Engine fails to do so (maybe because the corresponding Pure Data Patch file does not exist,
for instance). C++ exceptions would be the first option, since they can be used to accurately
pinpoint error causes and they usually avoid backtracking code when errors cascade through
the call stack. Notwithstanding, they are not a viable choice in practice, mainly because using
exceptions forces the host application to use them too. There are many reasonable motivations
for not using exceptions [Mey05], and we should not impose our own programming preferences on
our users (specially if we want them to really choose our solution over others). The next simplest
alternative would be to just return a Null Object instance and let the programmer check it,
but that prevents us from providing further information regarding the cause of the error. The
same is true if we just return a boolean value. Thus, we decided to use the following convention.
Methods in the API that should return a meaningful object but may cause errors are to return
an instance from a special class we implemented for this specific purpose, the vorpal::Status
class. When no error occurs, the object is to be returned through an output parameter, that is, a
parameter that receives a valid pointer to the object type, writing the actual result to it instead
of returning it. When an error does occur, nothing is written to the output parameter, and a
vorpal::Status instance is returned containing information regarding the error. With that
in mind, we now describe the API of vorpal::Engine and vorpal::SoundtrackEvent

classes.

vorpal::Engine Class

As explained before, the vorpal::Engine uses the Singleton design pattern [GHJV94]. How-
ever, it does so in a very unorthodox way, thanks to the fact that Pure Data (and consequently
libpd) stores all of its state globally. To avoid making unnecessary dynamic allocations while

10 http://en.cppreference.com/w/cpp/memory/shared_ptr

http://en.cppreference.com/w/cpp/memory/shared_ptr

86 IMPLEMENTATION 5.2

vorpal::Engine engine;
engine.start();

Listing 5.1: Initializing the Engine.

not degenerating to a static-only class, we implemented the vorpal::Engine as follows: at
any moment in code, the programmer can declare an instance of vorpal::Engine and it will
always refer to the same global and unique engine state. That means that even though the class
can be instanced multiple times, all instances are actually the same, thus conforming to the
Singleton pattern. For instance, to globally initialize the engine, we could write as in Listing
5.1, and then, when we want to load a Soundtrack Event later, we do as in Listing 5.2. Both
instances are the same and only engine. In the rest of this section, we briefly describe the main
parts of the vorpal::Engine API. All function signatures are exposed as if they were inside
the vorpal namespace.

vorpal::Engine engine;

std::shared_ptr<vorpal::SoundtrackEvent> event;

engine.instanceEvent("event-name", &event);

Listing 5.2: Instancing an Event.

• Engine::start

Status Engine::start(const std::vector<std::string>& event_paths = {});

This method is responsible for initializing the Audio Engine as a whole. The returned
vorpal::Status instance contains detailed information in case an error occurs, and
the name of the sound device found for playback otherwise. The optional parameter
event_paths is a list of paths where the engine should look for Pure Data patches
to load as Soundtrack Events. See also Section 5.2.2.

• Engine::started

bool Engine::started() const;

A simple method that checks whether the global engine state has already been initialized.

• Engine::registerPath

void Engine::registerPath(const std::string& path);

Registers a path to look for events in. See also Section 5.2.2.

• Engine::finish

void Engine::finish();

5.2 AUDIO ENGINE 87

Clears the global engine state, freeing all used resources. There cannot be any Soundtrack
Event references left in the application before invoking this method. Their destuctors will
try to free their resources, which will already have been released by this method.

• Engine::tick

void Engine::tick(double dt);

This is the real-time servicing method through which the Audio Engine simulates the
soundtrack. It uses idle-frame synchronization, as was justified in Section 3.3.2. That means
that the parameter it receives should contain the amount of time that has passed in the
last frame of the Game Loop. In our case, this parameter is expected to be in seconds.

• Engine::eventInstance

Status Engine::eventInstance(const std::string& event_name,

std::shared_ptr<SoundtrackEvent> *event_out);

Lastly, this method loads the specified Soundtrack Event and writes it to the provided
smart pointer. There is no need for a method that unloads Soundtrack Events, since the
std::shared_ptr class already handles reference-counted garbage collection for us. The
code example we used earlier in this section illustrates how to use this method, but more
complete examples will be presented in Section 5.4.5.

vorpal::SoundtrackEvent Class

Every Pure Data Patch the sound designer makes for the soundtrack of the game is loaded by the
Audio Engine as a vorpal::SoundtrackEvent instance. It represents a sound object – with
its own individual audio channel – inside a 3D virtual space (which can be treated as a 2D space
too). This means that, internally, Soundtrack Events bridge two parts of the middleware: Pure
Data Patches and OpenAL sources. This is done by two separate classes that we do not expose to
the programmer: vorpal::DSPUnit and vorpal::AudioUnit, respectively. Such division
allows us to connect a single Patch to multiple sound sources, or many Patches to the same sound
source, among other possibilities that optimize resource usage. The rest of this section describes
the main methods the programmers uses from the vorpal::SoundtrackEvent API, still
assuming that the signatures lie within the scope of the vorpal namespace.

• SoundtrackEvent::setAudioSource

void SoundtrackEvent::setAudioSource(float x, float y, float z);

This method sets the 3D position of the sound source assigned to this Soundtrack Event.
Remember that all positions are relative to the virtual listener, who is always at the origin
of space.

88 IMPLEMENTATION 5.2

• SoundtrackEvent::pushCommand

void SoundtrackEvent::pushCommand(const std::string &name,

const std::vector<Parameter> ¶meters);

template <typename... Args>

void SoundtrackEvent::pushCommand(const std::string &name, Args... args);

This method has two available signatures. Both do the same, but each has its own conve-
niences. Their role is to invoke a method in the Soundtrack Event as if it were an object
within the Object-Oriented Programming paradigm, except we call it a Command as ex-
plained in Section 4.4.1. The Command name and parameters are passed as arguments to
pushCommand. We use a special type vorpal::Parameter to wrap parameter values
because they can be either numbers (float) or Pure Data symbols (std::string). In
both signatures, the name is just a string. However, while in the first signature the param-
eters are passed in an array, in the second they can be passed directly – they do not even
need to be wrapped in a vorpal::Parameter instance, thanks to the variadic templates
feature in the C++11 standard11. Again, examples are provided in Section 5.4.5 to better
illustrate how to use this API.

5.2.2 Pure Data Patch Management

Since we decided to use Pure Data Patches as the soundtrack format for the VORPALmiddleware
(see Section 4.3), we require a means to embed such Patches into the game application. libpd
does just that. It has many available API bindings for different languages, the core one being its
C API. We used, however, its C++ API, since it is compatible with the C++ Template Standard
Library, thus saving us the effort of adapting the API ourselves. But, independently of which
language binding we use, the same feature set is provided by libpd: DSP Tick requests, Patch
loading, etc. In the specific case of C++, most of these are laid out in a class called pd::PdBase.
It can initialize and clear the global Pure Data state, load and unload Patches, enable and process
DSP Ticks, send and receive Messages (containing only numbers and symbols), read from and
write to Arrays and register Patch search paths. Patches are loaded as instances of pd::Patch,
with its most important feature being that it can tell what the Zero Dollar of that Patch instance
is. DSP Ticks are applied to all currently loaded Patches, and may receive arrays as input and
output signals, corresponding to the [adc~] and [dac~] Objects respectively.

The fact that we can specify how many Ticks we want processed at a time is of great conve-
nience to our implementation, specially because the Pure Data default Tick size is of 64 samples.
This is small enough for acceptable latency but not small enough to make a bottleneck out of
the data transfer to the sound card. The problem is that, since we want per-Patch 3D spatialized
audio later on, we cannot have all Patches output their signal into the same universal audio
bus (which is the output signal provided in the DSP Tick methods of pd::PdBase), because
we would lose the capability of treating their spatial effects separately. To circumvent this is-
sue, we decided to use Pure Data Arrays instead: every soundtrack Patch the sound designers

11 http://en.cppreference.com/w/cpp/language/parameter_pack

http://en.cppreference.com/w/cpp/language/parameter_pack

5.2 AUDIO ENGINE 89

make should send its resulting sound to a specific Array, not the standard signal output (unless
the sound designer wishes to hear a playback preview from Pure Data itself, which is perfectly
acceptable). Then, to find these Arrays, we just tag them with the corresponding Dollar Zero
from the Patch it lies in. With this, we know which sound each Patch produces, and we can
assign them to their own virtual spatial sources. Sending Messages as Commands to them is
done the same way: Command Objects are tagged with the appropriate Dollar Zero, allowing
the middleware to know where to send the Commands to. We also need to register search paths
in pd:PdBase for it to know where to look for the Patches.

All this we implemented in two internal VORPAL classes called vorpal::DSPServer and
vorpal::DSPUnit. vorpal::DSPServer is also a Singleton class like vorpal::Engine,
responsible for handling DSP Ticks and interacting with loaded Patches, thus called the DSP
Server of the middleware. vorpal::DSPUnit is a reference-counted class that abstracts indi-
vidual Pure Data Patches following the Object-Oriented Programming flavor of providing a
Command interface as if each Patch was an object that responds to method invocations –
and we call them DSP Units. Every DSP Unit has its own audio bus, and may transfer its
content to an Audio Unit, which we explain in Section 5.2.3. Each Pure Data Tick the DSP
Server executes and fills the corresponding audio buses in every DSP Unit instance. The rest
of this section describes the main methods from both these classes. It is worth remembering
that they are internal to the middleware, and the programmer should use them directly only at
their own risk. The proper “public” API of the system is limited to the vorpal::Engine and
vorpal::SoundtrackEvent classes. Like in Section 5.2.1, all signatures are assumed to be
inside the vorpal namespace.

vorpal::DSPServer Class

• DSPServer::start

Status DSPServer::start(const std::vector<std::string> &search_paths);

This method initializes the global Pure Data state, and is automatically called by the
method Engine::start. The search paths are fed to pd:PdBase so it can properly
locate and load Pure Data Patches.

• DSPServer::finish

void DSPServer::finish();

Clears all global Pure Data state. Called by Engine::finish.

• DSPServer::loadUnit

std::shared_ptr<DSPUnit> DSPServer::loadUnit(const std::string &name);

Returns a reference-counted DSP Unit instance of the associated Patch with the given
name, or a Null Object implementation of DSP Unit in case no such Patch exists in the
registered paths.

90 IMPLEMENTATION 5.2

• DSPServer::handleCommands

void DSPServer::handleCommands();

A method responsible for flushing Soundtrack Event Commands to the corresponding Mes-
sages in loaded Pure Data Patches. It uses the Dollar Zero obtained from pd::Patch to
do this.

• DSPServer::processTick

void DSPServer::processTick();

This method executes exactly one Pure Data DSP Tick, which computes the next 64
samples of real-time audio coming from all loaded Patches and storing those signals in
the buses of the corresponding DSP Units. This mapping from Patches to DSP Units is
possible due to the tagging of the Patches using their own Dollar Zeroes.

• DSPServer::cleanUp

void DSPServer::cleanUp();

Calling this method unloads all Patches that have no more DSP Unit referencing them. It
is called every Engine::tick.

vorpal::DSPUnit Class

• DSPUnit::transferSignal

Status DSPUnit::transferSignal(std::shared_ptr<AudioUnit> audio_unit));

Responsible for transferring the audio signal stored in the bus of a DSP Unit to an Audio
Unit. This is what later causes the playback of the sound produced by the Pure Data Patch
associated with this DSP Unit.

• DSPServer::pushCommand

void DSPUnit::pushCommand(const std::string &name,

const std::vector<Parameter> ¶meters);

Lastly, this method is used to send Commands to the loaded Patches as if they were
method invocations in objects from Object-Oriented Programming. As can be inferred
from the similar signatures, this is called by SoundtrackEvent::pushCommand. The
difference is that here there is only the std::vector-compatible version of the signature,
since the variadic template version was provided only for usability reasons, and this class
should not be used directly by the programmer.

5.2 AUDIO ENGINE 91

5.2.3 Sound Playback

As we explained in the beginning of this chapter, the VORPAL middleware uses OpenAL for
a number of reasons. Besides providing the system with the indispensable sound playback sup-
port, it is free software, it is capable of streaming real-time audio, and it implements 3D sound
spatialization for us. The OpenAL API was designed to follow the OpenGL standard, which
means it is provided as a C API where all routines have an al prefix and mostly work as a
state machine, aside from some other naming conventions to specify parameter types. OpenAL
lets us open Devices, which correspond to sound card drivers available in the platform, then
create Contexts to each Device. Every Context applies only to a single Device. Each Context
has a 3D virtual space with exactly one Listener and zero or more Sources, all of which have
a 3D position. Each Device has a hardware-bound pool of Buffers available for storing audio
data too. Buffers can be fed to Sources, causing the stored sound to be played in the Device to
which the Context of that Source belongs (recall Figure 3.8), and the adequate 3D spatialization
effects will be applied. There are two ways in which a Buffer can be fed to a Source: statically
or through streaming. The first method is commonly used when the programmer has the whole
sound signal ready to be played. The second, as expected, is used when the whole signal is not
immediately available, but is otherwise obtained in sequential chunks of data from time to time.
This second method uses a per-Source Buffer Queue, to which we can feed Buffers at different
times, and it is guaranteed that their playback will happen following a First-In-First-Out order.
The API offers a routine that checks for which Buffers in a Queue have already been processed
and can be unqueued for other uses.

The DSP Server and DSP Units we discussed in Section 5.2.2 are responsible for keeping
a set of real-time processed audio buses synchronized with their Pure Data counterparts. To
actually play those sounds, the middleware needs to systematically forward the content of those
buses to OpenAL. From what we have just explained, this means transferring the contents from
these buses to Buffers, then assigning them to properly spatialized Sources. For that, we need to
instantiate both a Device and a Context through the OpenAL API, then keep track of Buffers
and Sources to make sure every sound is played in its proper place and time. We use the Buffer
Queue since it fits perfectly our real-time restraints, even if its original purpose was to deal with
encoded audio streaming.

As with DSP management, we implemented sound playback by defining two abstractions: the
Audio Server and the Audio Unit. The first, corresponding to the vorpal::AudioServer
class, is another singleton, this time responsible for interacting with the OpenAL API as a whole.
The second, implemented by vorpal::AudioUnit, is used to encapsulate the behavior of a
single Source inside the virtual 3D space of the OpenAL Context used inside the Audio Server,
much like a DSP Unit individualizes a Pure Data Patch inside the DSP Server. Each Audio Unit
is reference-counted and has two main features: streaming a sample array (of arbitrary length)
to be played at the corresponding Source, and changing the actual 3D point in space where the
corresponding Source is currently placed at. The role of the Audio Server, on the other hand,
is to manage available resources in the sound card – Sources and Buffers, specifically –, to map
each Audio Unit to the associated Source, and to keep the Buffer Queues of each Source in check
– which means unqueueing Buffers that have already been processed so they can be used again

92 IMPLEMENTATION 5.2

in future playback requests. As before, the rest of this section is dedicated to address the main
methods of the classes discussed, assuming that all signatures are declared within the vorpal
namespace.

vorpal::AudioServer Class

• AudioServer::loadUnit

std::shared_ptr<AudioUnit> AudioServer::loadUnit();

When invoked, this method provides a reference-counted Audio Unit instance. If no more
Sources are available, it returns a Null Object implementation of Audio Unit.

• AudioServer::availableBuffers

size_t AudioServer::availableBuffers() const;

This method tells how many Buffers are currently available in the Audio Server. We explain
in Section 5.2.4 how we use this to implement the real-time soundtrack synchronization of
the VORPAL Audio Engine.

• AudioServer::update

void AudioServer::update() const;

Invoking this method causes the Audio Server to check the Buffer Queues of all Sources,
unqueueing already processed Buffers back to the Buffer pool.

vorpal::AudioUnit Class

• AudioUnit::stream

void AudioUnit::stream(const std::vector<float> &signal);

Transfers the given sample array to a Buffer (if there is any available), then queues it in
the corresponding Source for playback. This is called by DSPUnit::transferSignal

whenever the assigned DSP Unit (see Section 5.2.4) receives its signal from its Pure Data
Patch.

• AudioUnit::setPosition

void AudioUnit::setPosition(float x, float y, float z);

This method effectively changes the 3D spatial position of the associated Source inside the
OpenAL Context. Called by SoundtrackEvent::setPosition.

5.2 AUDIO ENGINE 93

5.2.4 Real-Time Soundtrack Processing

In Sections 5.2.1, 5.2.2, and 5.2.3, we introduced all the relevant classes inside the implemen-
tation of the VORPAL Audio Engine. Here, we will discuss how they are all tied together to
produce the main subject of our interest in this research: real-time soundtracks. It is very clear
that we have divided the Engine internal organization in two big parts: the DSP related classes
and the audio related classes. The DSP classes capture the results of Pure Data Patches and
keeps them in DSP Units. The audio classes must eventually receive these results in the Audio
Units, distributing the obtained signals to the corresponding OpenAL Sources, thus achieving
playback of the sound originally produced by the sound designer in the VORPAL Soundtrack
Creation Kit. Since each Patch is abstracted as a Soundtrack Event to the programmer in the
most external interface of the Engine (even though inside we know that is the role of a DSP Unit),
it means that vorpal::SoundtrackEvent essentially bridges DSP Units to Audio Units. In
fact, it is practically a thin interface that holds an instance of each, and maps its method invo-
cations directly to the corresponding methods in each Unit. This is evident from the signatures
exposed in the previous sections. vorpal::SoundtrackEvent is implemented as a convenient
wrapper for the game programmer, but its abstraction as a soundtrack “object” still holds. The
most important connection between DSP and Audio Units is the DSPUnit::transferSignal
method, which, as we have explained, is responsible for bringing the sound from the Pure Data
domain to the OpenAL domain through the DSP-Audio Unit pair.

However, being able to transfer the signal from one side to the other is far from enough. The
key problems in developing a real-time soundtrack engine are: knowing how much signal to play
and when to play it. We pointed this out back in Section 3.3.4, and we now must address this
design decision. Given that Pure Data processes signal in Ticks of 64 samples and that OpenAL
can send Buffers of arbitrary length to the sound card, our limiting factor is Pure Data. We
established that the standard frequency of the system is 44100 Hz, which means that a Pure
Data Tick stands for 1.45 milliseconds of audio, approximately. That is short enough to avoid
a perceptible latency (in fact, Pure Data would lose most of its usefulness if it did not support
immediate sound feedback). After some empiric tests, we also noted that 64 samples is long
enough to not overload the data transfer to the sound card. Thus, flushing all DSP Units to their
respective Audio Units every 1.45 milliseconds is our first attempt at real-time synchronization
in the Audio Engine.

Notwithstanding, there is another problem we must deal with. As we explained a number
of times before, the sound card has only a limited memory. There can only be so many Buffers
allocated at a given time. When there are no Buffers available, we cannot process any more audio.
In fact, if there are fewer Buffers than Soundtrack Events, then there are not enough resources
for a full soundtrack Tick to be processed, as every Soundtrack Event would require exactly one
Buffer to be queued in its Audio Unit to produce enough sound for the current 1.45 milliseconds
of soundtrack time. Consequently, our soundtrack synchronization mechanism must keep track of
available Buffers (which is done through the AudioServer::availableBuffers method),
and hold back soundtrack playback if necessary.

Having discussed all that, we now present the final algorithm used to synchronize the game
soundtrack, that is, the implementation of the Engine::tick method. Since it is an idle-frame

94 IMPLEMENTATION 5.3

synchronized sub-system service for the host application, it receives a parameter containing the
amount of time elapsed since the last frame in the Game Loop. It is also called at potentially
irregular intervals, but that are somewhat guaranteed to be as often as possible by the game
application. Since we only process the soundtrack following Pure Data Ticks of 64 samples, we
cannot execute these Ticks every time the Engine::tick is called. Not only that, but if it is
called after too long an interval, we need to compensate for that by processing multiple Ticks.
For that, we keep track of how much time has passed since the last Tick, a value we call the lag
of the Audio Engine. If it is smaller than the Tick period (1.45 milliseconds), then we should
not process any Ticks at the moment. If it is larger, then we have to process as many Ticks as
possible such that the sum of the time intervals they correspond to comes as close as possible
to the accumulated lag. At the same time, we should cancel Ticks if there are no more Buffers
available. The resulting code is shown in Listing 5.3 in a simplified version that omits some C++
nuances and implementation details such as logging.

// A Tick size in seconds, approximately 1.45 milliseconds

const double TICK = 64.0/44100.0;

void Engine::tick(double dt) {

// Variables ending in __ are static

lag__ += dt;

// Update Audio Server to unqueue finished buffers from sources

audioserver.update();

// Close unreferenced Patches

dspserver.cleanUp();

// Flush Command Messages to Patches

dspserver.handleCommands();

// Process Ticks according to current lag and Buffer availability

while (lag__ >= TICK && audioserver.availableBuffers() >= events__.size()) {

// Process one Tick

dspserver.processTick();

// Transfer audio from DSP Unit buses to Audio Unit Buffers

for (shared_ptr<SoundtrackEvent> event : events__)

event->processAudio();

// Update lag

lag__ -= TICK;

}

}

Listing 5.3: Simplified Engine Tick implementation.

5.3 Soundtrack Creation Kit

While the Audio Engine is responsible for the real-time playback of soundtracks from inside the
game application, it is the role of the Soundtrack Creation Kit to provide an authoring interface
for the sound designer to make the soundtrack in the first place. In Section 4.4.2, we explained
that this Kit is provided as a set of Pure Data Abstractions and Externals that build a soundtrack
control interface on top of the Pure Data language and application. In this section, we describe

5.3 SOUNDTRACK CREATION KIT 95

in more detail how each of those Abstractions and Externals work, and how they are integrated
into the middleware as a whole.

5.3.1 Output Bus

As discussed in Section 5.2.3, we cannot use the standard Pure Data audio output because it
sums all incoming signals, making it practically impossible for us to apply a 3D spatialization
effect later in the Audio Engine when we do have access to game object positions. Instead, the
adopted solution was to use Pure Data Arrays as per-Patch individual output buses. As such, the
first and most important Abstraction we provide in the Soundtrack Creation Kit is the Output
Bus, in the form of the [vorpal_bus] Object. It should be used just like a [dac~] Object,
except it only accepts one Signal Connection (mono sound) instead of two (stereo) sound. This
is due to one of the problems we addressed on De Lucca’s interview back in Section 4.2.3. You
cannot have – or rather, there is no point in having – stereo playback together with spatialized
audio, because the binaural effect will just play both stereo channels as if they came from the
same source position. We chose to offer the alternative of using two separate Audio Units to
achieve the effect of stereo audio instead.

Section 5.2.3 also explained that Arrays are tagged with the Dollar Zero of the Patch that
contains them, and the vorpal::DSPServer in the Audio Engine uses the pd::Patch class
to obtain the Zero Dollar of loaded Patches, thus allowing it to track the Output Buses of
the Patches made by the sound designer. More specifically, given a loaded Patch instance, the
vorpal::DSPServer searches it for an Array with name "vorpal-bus-X", where X must
be the Dollar Zero of that specific Patch instance. It is important to remember that different
instances loaded from the same Patch have different Dollar Zeroes, which makes their Output
Buses completely independent from one another. For instance, if there is a certain monster species
in a game, and its specimens all like to gnarl and roar, the sound designer would only need to
make exactly one Patch for their sound, and the programmer would instantiate it for every
monster specimen, giving each of them their own voice to threaten the player with.

Since each Output Bus has its own Array, we made use of this to also align its implementation
with System Requirement 5, “Variable Mix”. Every [vorpal_bus] has two Inlets: one for the
output signal that Patch wants to send to the Audio Engine, and one for setting the volume
of that Output Bus. It receives a number from zero to one, which simply directly multiplies
the output signal. When creating a [vorpal_bus] Object, the sound designer must pass the
Dollar Zero as the only creation argument. That is, it should always be created as [vorpal_bus
$0]. Internally, the Dollar Zero value is captured by the $1 directive, and is used to name the
Array where the received signal is stored. The Array itself is created with a capacity for 64
samples, being completely overwritten every Pure Data Tick (thanks to the [bang~] Object).
Additionally, the Abstraction has a feature that allows the sound designer to hear a preview of
the resulting sound of that Patch. We explain this in Section 5.4.3. Figure 5.2 shows the Output
Bus Abstraction implementation. The blue part is how the [vorpal_bus] looks when created
in a parent Patch.

96 IMPLEMENTATION 5.3

Figure 5.2: The implementation of the Output Bus Abstraction in the Soundtrack Creation Kit.

5.3.2 Commands

Following our abstraction that soundtrack Patches should behave like objects from Object-
Oriented Programming, we explained in Section 4.4.3 that Command Objects are provided in
the Soundtrack Creation Kit for the purpose of receiving the “method invocations” that come
from the game application through the Audio Engine. On that side, the programmer calls the
vorpal::SoundtrackEvent::pushCommand method, passing the Command name and an
arbitrary quantity of numbers and symbols as parameters. On this side, the sound designer’s
Patch must create a Command Object with the exact same name, and after that, whenever the
game pushes the specified Command, a Message will be sent out from the Command Object
containing the list of given parameters.

Again, the VORPAL middleware relies on the Zero Dollar feature of Pure Data to map
C++ class instances to Pure Data Objects. Command Objects, implemented as the Abstractions
[vorpal_command], require two creation arguments: the Zero Dollar of the soundtrack Patch
(like with Output Buses), and the Command name. The first argument is used to create a
[receive] Object, which is the Pure Data Object for receiving Messages from anywhere,
including through the libpd API. Next, we use the [route] Object to filter the incoming
Messages, letting only the ones starting with the given Command name pass. Lastly, we simply
forward the rest of the Message – which contains the parameters provided by the game code –
and send them through the Outlet of the Command object. This implementation can be seen in
Figure 5.3. The gray part is what the Abstraction exposes to the sound designer.

Figure 5.3: The implementation of the Command Abstraction in the Soundtrack Creation Kit. The
place with a zero changes to the Command name when it is created on a sound designer’s Patch.

5.3 SOUNDTRACK CREATION KIT 97

5.3.3 Music Sequencing

As explained in Section 4.4.2, some key Abstractions distributed in the VORPAL Soundtrack
Creation Kit are associated with a Sequencer feature, with System Requirement 2 in mind.
There are many possible ways one could sequence a music or some other sonic piece. By suggestion
from the interviewed sound designers, we opted for something simple as a starting point. The
Sequencer in VORPAL is designed to trigger events following a looping and fixed 16-slot grid with
variable Tempo. That is, when the sound designer creates a Sequencer in the soundtrack, he or she
must also specify an initial BPM rate, then possibly assign behavior triggers to each slot among
the 16 available ones. A behavior trigger could range from playing a single synthesized note to
cross-fading a whole set of ambiance samples organized in a greater loop sequence. Additionally,
each individual slot can be either activated or deactivated, muting the corresponding trigger.

Differently from previous Soundtrack Creation Kit Abstractions, this one comes as a set of
two Objects: [vorpal_metro] and [vorpal_seq16]. The first implements a metronome
with variable BPM and time signature, and can be turned on and off at any time. It simply
outputs a number Message from zero to the time signature count minus one at double the given
tempo. By itself, the [vorpal_metro] Object is already capable of providing a sequencing
mechanism: the sound designer needs only match the beat numbers to the corresponding sonic
behaviors. The [vorpal_seq16] is where the timed numbers from the metronome are treated
and organized in a fixed 16-slot grid structure, and also where the slots may be blocked or
activated for a finer control of what is supposed to be played in the sequence. It has two Outlets:
one for the current slot position in the Sequencer (as sent by the metronome), and one that just
sends a “bang” whenever a full loop cycle has been played. To combine these two Abstractions
together, the Outlet from the metronome (with time signature set to 16) must be connected to
the left Inlet of the [vorpal_seq16], then the actual slots must be toggled (through the right
Inlet) to enable their corresponding outputs. The actual implementation of [vorpal_seq16]
looks rather confusing, but it is only a repetition of sixteen [spigot] Objects, which basically
control whether the matching number from the metronome should pass or not. Both Abstractions
are shown in figures 5.4 and 5.5, respectively, with the gray parts being the interface displayed
to the sound designer.

5.3.4 Samples

There is still much that can be done with sample-based audio, and as such the VORPAL Sound-
track Creation Kit also supports it through its own Sample Abstractions. There is one Abstrac-
tion for each type of sound encoding, which are actually only two: WAV and OGG. WAV is
the most straightforward format for audio, and Pure Data provides native Objects to handle it.
OGG is an open format for compressed audio, which made it possible for us to find a commu-
nity implementation for OGG decoding in Pure Data. Thus, the two Sample Abstractions are
[vorpal_sample] and [vorpal_ogg]. The first makes use of the native [soundfiler]
Object to read WAV files and store it in an Array, which we then read on demand. The
[vorpal_ogg] is implemented similarly, except it uses the [oggread~] External. For the
sake of brevity, we only illustrate [vorpal_sample] in Figure 5.6. Again, the blue part is the

98 IMPLEMENTATION 5.3

Figure 5.4: The implementation of the metronome Abstraction in the Soundtrack Creation Kit, part of
the Sequencer feature.

interface exposed to the sound designer.

5.3.5 Sound Synthesis

From Chapter 1 to Chapter 4 we have advocated the use of procedural audio over sample-based
audio. The only way to obtain a sound signal without reading it from a pre-established sample
is to synthesize it at run-time. There are many kinds of sounds that can be synthesized this way,
be it sound effects, voices, or music. Pure Data opens many possibilities in that regard. However,
we found it necessary to provide some higher-level tools for sound synthesis in the Soundtrack
Creation Kit, specially due to Santana and De Luccas’s statements (Sections 4.2.1 and 4.2.3,
respectively). Thus, we chose to implement some form of simple synthesis designed with music
sequencing in mind. That is, the Sound Synthesis feature of the VORPAL Soundtrack Creation
Kit is intended to provide a straightforward way of playing synthesized melodic notes to be
composed together in greater musical structures, possibly with the help of the Sequencer feature.
This is also in accordance with System Requirement 3 (“Real-Time Controlled Synthesis”).

Still, there are many reasonable synthesizer implementations. We followed a suggestion from
the interviewed sound designers and based our synthesizer on a commercial analogue synthesizer,
more specifically the Minimoog model from Moog Music12. That is, we implemented our own
synthesizer using the Minimoog features and design as reference. The choice of model itself
is arbitrary, since the point is only to provide some way of meeting System Requirement 3.
Minimoog is a synthesizer that looks like the keyboard instrument, with the sound played by
its keys being synthesized according to its settings. It has three oscillators, a noise generator, a

12 https://www.moogmusic.com/products/Minimoog

https://www.moogmusic.com/products/Minimoog

5.3 SOUNDTRACK CREATION KIT 99

Figure 5.5: The (partial) implementation of the 16-slot grid Abstraction in the Soundtrack Creation
Kit, part of the Sequencer feature. The omitted part is just for cleaning up the grid.

frequency filter, two envelope controllers (one for the oscillators and one for the filter contour),
and a number of switches that route the signal across the device, specially with the purpose
of using an oscillator to modulate some other control. Figure 5.7 presents a photograph of the
Minimoog synthesizer.

Following the design of the Minimoog, we broke down the Sound Synthesis feature of the
Soundtrack Creation Kit in three Abstractions: an oscillator ([vorpal_osc]), a frequency
filter ([vorpal_filter]) and an envelope controller ([vorpal_env]). The idea is that one
may reproduce the effects of the Minimoog by properly combining Objects of these Abstractions,
but the sound designer is free to connect them in different ways too. The [vorpal_osc]

Object supports five different waveform types: sinusoidal waves, phasor waves, triangle waves,
square waves, and short rectangular waves. Besides the waveform, the sound designer can also
set the tonal range, the pitch shift, and the amplitude of the generated signal. The left Inlet
may also be used to modulate the frequency of the oscillator. The [vorpal_filter] has two
main controllers, one for the cutoff frequency, and one for the emphasis factor. It operates as
a Voltage Controlled Filter (VCF), for which there already is a Pure Data primitive object,
[vcf~]. Our Abstraction simply provides a more user-friendly interface to it, in addition to
Inlets for frequency modulation and contour envelope control. Lastly, the [vorpal_env] Object

100 IMPLEMENTATION 5.4

Figure 5.6: The implementation of the WAV Sample Abstraction in the Soundtrack Creation Kit. The
zero is replaced by the path to the sample file when the sound designer creates an Object from this
Abstraction.

Figure 5.7: The Minimoog synthesizer [Har09].

implements a typical Attack-Delay-Sustain-Release (ADSR) envelope, which can be toggled on
or off to emulate pressing, holding, and releasing a keyboard key. Its Outlet outputs the envelope
signal to be used with [vorpal_osc] and [vorpal_filter] Objects. Figure 5.8 presents
the interfaces of these Objects when created in the sound designer’s Patch.

5.4 Middleware Usage

Having explained the main aspects of the VORPAL middleware inner workings, we now discuss
what the users actually see and use when they interact with the system. This includes everything
from the process of obtaining a copy of the middleware and setting it up in a development
environment (Section 5.4.1), to actually implementing Audio Engine integration in the game
code (Section 5.4.2) and creating Soundtrack Events with the Soundtrack Creation Kit (Section

5.4 MIDDLEWARE USAGE 101

Figure 5.8: The interfaces of the Sound Synthesis Objects from the Soundtrack Creation Kit. From
left to right: the oscillator ([vorpal_osc]), the VCF ([vorpal_filter]), and the ADSR envelope
([vorpal_env]).

5.4.3). However, more often than not developers rely on a game engine to make their games,
and thus an important issue to address with game audio middleware is how to integrate it with
third party systems like game engines of the most diverse types (Section 5.4.4). Lastly, we find
that presenting some concrete examples of the middleware usage VORPAL was designed for is
paramount to understanding its contributions, possibilities, and limitations (Section 5.4.5).

5.4.1 Distribution

As we mentioned in Section 1.2, the VORPAL middleware is available as free, open source soft-
ware (Mozilla Public License 2.0) at a repository hosted in https://github.com/vorpal-project.
The current means of distribution consists of publishing two downloadable archives, both based
on a specific stable version of the repository. One of the archives contains the source and build
files needed to compile the Audio Engine, while the other carries the Pure Data Patches the
Soundtrack Creation Kit comprises. We do not provide any pre-compiled binary versions of the
Audio Engine for now, but since the system has very few dependencies (practically OpenAL
only), compiling from scratch is very straightforward. All that is necessary is a minimally recent
version of CMake and a C++11 conforming compiler. On the other hand, the sound designer
only needs the Soundtrack Creation Kit and Pure Data itself. The two following sections explain
how programmers and sound designers make use of the middleware upon acquiring each of these
archives, respectively.

5.4.2 Programmer’s Workflow

The distributed Audio Engine archive bundles all that is needed to compile the VORPAL Audio
Engine, except for OpenAL, which must be installed in the user’s system separately. We bundle
the libpd source code together with the Audio Engine as a Git Submodule13, so there is no
need to install it separately. After building the Audio Engine with CMake, the programmer may
choose to install it wherever he or she prefers. Then, it is only a matter of including the headers

13 https://git-scm.com/docs/git-submodule

https://github.com/vorpal-project
https://git-scm.com/docs/git-submodule

102 IMPLEMENTATION 5.4

and linking the game code to the Audio Engine, since it presents itself as a usual programming
library does. The only header that needs to be included is shown in Listing 5.4.

#include <vorpal/vorpal.h>

Listing 5.4: Including middleware headers.

Once that is done, the next step is to initialize the vorpal::Engine Singleton, then create
instances of vorpal::SoundtrackEvent. To do that, it is important to register the paths
where the Patches are to be loaded from (using vorpal::Engine::registerPath) – this
includes the Patches from the Soundtrack Creation Kit! Everything should be put into folders
the game application has access to. Since libpd uses its own code to open and read those
files, this might not be that simple on certain platforms (like mobile phones). Aside from that,
vorpal::SoundtrackEvent instances should be kept to ensure that their reference-counting
garbage collection does not prematurely free them from memory. For instance, each game entity
(players, monsters, items, etc.) could carry its own Soundtrack Event object with them. Entities
of the same type would use instances diverged from the same Soundtrack Event, so that every
dragon sounds about the same (and yet each with its own independent sound instance) but
a fireball sounds very differently from a singing bard. A simple way to do this is to name the
Soundtrack Events after the type of entity they represent. The resulting code could be something
to the effect of what is presented on Listing 5.5.

vorpal::Engine engine;

vorpal::Status status;

// Try to initialize the engine

if (!(status = engine.start()).ok()) {

std::cout << "Error: " << status.description() << std::endl;

exit(-1);

}

// Register path to Patches

engine.registerPath("path/to/patches");

// Load an Event for each game entity. Assume a fictional entity list.

for (GameEntity *entity : entities_list()) {

std::shared_ptr<vorpal::SoundtrackEvent> event;

if (!(status = engine.eventInstance(entity->get_type(), &event)).ok()) {

std::cout << "Error: " << status.description() << std::endl;

exit(-1);

}

entity->set_soundtrack_event(event);

}

Listing 5.5: Mapping Events to game entities.

Once the Soundtrack Events are instantiated, all that is left is to keep the Audio Engine
synchronized with the Game Loop by invoking vorpal::Engine::tick at the appropriate
times and to update information about the game state through the corresponding invocation
of vorpal::SoundtrackEvent::pushCommand. The Game Loop synchronization could be

5.4 MIDDLEWARE USAGE 103

done through a code roughly like Listing 5.614.

vorpal::Engine engine;

double previous = getCurrentTime(); // in milliseconds

double lag = 0.0;

while (true) // Game Loop

{

double current = getCurrentTime();

double elapsed = current - previous;

previous = current;

lag += elapsed;

processInput();

while (lag >= MS_PER_UPDATE)

{

update(); // game simulation step

lag -= MS_PER_UPDATE;

}

render(lag / MS_PER_UPDATE);

engine.tick(elapsed / 1000.0); // convert to seconds

}

Listing 5.6: Possible Game Loop.

To keep game state information up-to-date inside the Audio Engine, the programmer needs
to report any relevant changes and triggers inside the simulation to the appropriate instances
of vorpal::SoundtrackEvent. Following our example where every game entity has one
Soundtrack Event, assume now that we want to inform the Audio Engine of their 3D positions
and health status. The code could be like Listing 5.7.

void GameEntity::set_position(Vector3 new_position) {

this->soundtrack_event.setAudioSource(new_position.x, new_position.y,

new_position.z);

this->position = new_position;

}

void GameEntity::takeDamage(uint32_t amount) {

this->health = max(this->health - amount, 0u);

this->soundtrack_event.pushCommand("health", this->health);

}

Listing 5.7: Possible game entity methods.

In summary, the game programmer must find all soundtrack sensitive parts in the code and push
the adequate Commands, which are the only way in which the soundtrack (that is, the set of
Patches provided by the sound designer) can know what, when and how everything is supposed
to be played.

14 This Game Loop code is based on the suggested implementation from Nystrom [Nys14].

104 IMPLEMENTATION 5.4

5.4.3 Sound Designer’s Workflow

For the sound designer, the first step is to install Pure Data, preferably the latest version (also
remember that we use Pure Data “Vanilla”). Next, he or she should acquire the VORPAL Sound-
track Creation Kit from the corresponding archive, extracting the Patches into a folder pertaining
to the search paths of Pure Data (which can be set up through the application interface). Then,
the sound designer must define a directory where all soundtrack Patches of the game will be
stored in together. This directory is what should be delivered to the programming team so they
can embed the Patches into the game using the Audio Engine. If there are any other Abstractions
or Externals the soundtrack demands, they should be placed in that directory too15. Lastly, it is
important to take notice of the Patch names. When loading them as Soundtrack Events inside
the game, the programmer will refer to them by name, which is the part of the Patch file name
that comes before its extension (.pd). Thus, the naming convention used should be agreed upon
between the sound and programming teams.

Once the working environment is set up, the sound designer may begin creating the Patches
that the game soundtrack will comprise. First of all, every Soundtrack Event Patch requires
at least one Output Bus Object to work with the middleware. To correctly create an Output
Bus Object, the Patch Dollar Zero must be provided, as in [vorpal_bus $0]. It is worth
remembering that this Abstraction has two Inlets. The left one receives the output signal from
that Patch, and the right one receives a volume control value to set to that bus. To listen to what
that output sounds like, we developed a special, optional Patch in the Soundtrack Creation Kit
called the Panel. Differently from the rest of the Soundtrack Creation Kit, it must be opened as
a separate Patch together with the Patches the sound designer is working on. Then, they must
activate the Output Bus by clicking on the empty circle present in its interface (refer to Figure
5.2). Now, when DSP is turned on in Pure Data, the signal going through that Output Bus will
be sent to the Panel, where it will be played for the user to hear. However, if the sound designer
prefers, he or she may just use a [dac~] Object to directly capture and play the sound that
goes into the Output Bus Object. That is why the Panel is only optional. Figure 5.9 shows a
very simple example of how to use the Output Bus Abstraction.

Figure 5.9: A very simple Patch using the Output Bus Abstraction. In this example, a sinusoidal
soundwave is sent to the Output Bus at a frequency of 440 Hz.

Having the Output Bus Object set up allows sound to be sent from the Patch to the Audio
Engine. To do the opposite – receive information from the Audio Engine – the sound designer uses
the Command Abstraction. Each [vorpal_command] Object, created with the right Dollar
Zero and Command name, will output a Message containing the Command parameters whenever
the method vorpal::SoundtrackEvent::pushCommand is invoked from the game code.

15 Depending on the case, the programmer might need different versions of the Externals, since their format is
platform dependent.

5.4 MIDDLEWARE USAGE 105

This behavior can be easily simulated using native Pure Data Messages Objects. Figure 5.10
shows how the parameters sent with a Command “hero-jump” could be used inside a Patch.

Figure 5.10: A very simple Patch using the Command Abstraction. The parameters from Command
“hero-jump” are sent to the [print] Object.

By combining these two main Abstractions with the other tools provided in the Soundtrack
Creation Kit (Sequencer, Synthesizer, etc.), the sound designer can compose the game soundtrack
with all the control he or she wants. Commands could trigger from individual notes to whole
automated mixing movements, transitioning from different ambiances or narrative moments.
Both sample-based and procedural audio can work together to achieve yet unexplored aesthetic
possibilities in games.

5.4.4 Game Engine Integration

Game developers do not always have access to the native C++ code underlying the application,
specially when using data-driven game engines. In this case, the usual method of including third
party systems is through some sort of plug-in mechanism, where small or medium scale pieces of
software can be easily linked (either statically or dynamically) with the game engine code. This
mechanism is responsible for detecting which plug-ins are currently bound to the engine, then
registering them so that the game code and content may refer to the third party features later. For
instance, a game engine may receive a plug-in that enables Virtual Reality input-output support,
or maybe some non-standard advanced rendering technique for ultra-realistic visual effects, etc.
Essentially, game engine plug-ins are necessary to extend the basic feature set provided.

As such, the VORPALmiddleware must follow the same protocol to be used in games powered
by game engines, a context in which our system clearly would be considered a third party software.
However, we do not need to port every part of the middleware for it to become fully compatible
with an engine. All we need is to write a plug-in encapsulating the Audio Engine. The Soundtrack
Creation Kit is only necessary for the sound designers, who should work directly on Pure Data
even if the game is developed on a data-driven game engine. The users must still deliver the
Patches from the Soundtrack Creation Kit together with the soundtrack Patches, though. Once
they are appropriately placed into a directory the game application can reach, the Audio Engine,
now embedded into the game engine, will find and load them accordingly.

We illustrate this process by describing how we implemented such plug-ins for two separate
free software game engines: LÖVE and Godot. The first is not a data-driven engine, while the
second is. This allows us to show not only that the middleware is compatible with both kinds of
engines, but also how the corresponding plug-in should be implemented in each case. It should
not be difficult to understand how to generalize this process for other engines, even proprietary
ones. Thus, the rest of this section is dedicated to discussing the implementation we provide of
VORPAL plug-ins for the LÖVE and Godot game engines.

106 IMPLEMENTATION 5.4

LÖVE Integration

Figure 5.11: LÖVE ’s logo [Tea16].

LÖVE is a 2D focused game engine in which everything is done by programming in a Lua
environment. A comprehensive API is provided with arguably everything a 2D game might need,
and there is no software architecture imposed – although the default implementation comes with
a simple idle-synchronized Game Loop. The engine itself is programmed in C++, then wrapped
as Lua modules. This means that extending LÖVE is as simple as adding a new Lua module to
the game project folder. Thus, to implement a plug-in for this game engine we basically need to
write Lua bindings for the VORPAL Audio Engine. There are many sources available on how to
write Lua bindings, including some of our previous work [Miz].

Essentially, a Lua binding (like with many other script languages) is done by compiling a
dynamic library containing some C routines with specific signatures and naming convention,
which the host program looks for using some platform-specific API (for instance, dlopen in
Linux systems). Even though these special routines must be compiled as “pure” C, the library as
a whole needs not, which allows us to easily bind C++ code. Since the code necessary to bind the
Audio Engine was very small and straightforward, we simply added an optional build target to
the VORPAL repository, which basically compiles src/lua/vorpal_lua.cxx in our source
tree as a Lua-compatible dynamic library. In that file, we provide bindings for the following
classes and methods:

• vorpal::Engine::start

• vorpal::Engine::finish

• vorpal::Engine::registerPath

• vorpal::Engine::tick

• vorpal::Engine::eventInstance

• vorpal::SoundtrackEvent::pushCommand

• vorpal::SoundtrackEvent::setAudioSource

Since vorpal::Engine is a Singleton, its Lua binding treats it as a module (the Lua equivalent,
roughly). On the other hand, vorpal::SoundtrackEvent is bound as a proper class with
instances and methods. In Section 5.4.5 we show a concrete example of how to use these bindings.

Godot Integration

Godot has a scripting language of its own, called GDScript. It is a strictly Object-Oriented
language with a syntax that closely resembles Python. To make Godot plug-ins that extend that

5.4 MIDDLEWARE USAGE 107

Figure 5.12: Godot ’s logo [Stu16].

language by adding third party features, Okam Studio has developed a modular mechanism in
the build system of the engine. In short, by placing the appropriate files in a special folder inside
the Godot repository, its build system (written in Scons16) automatically compiles the code in
that folder into the engine. Compared to LÖVE, it involves a more advanced understanding of
large-scale C++ application building. The files required for a Godot module like this are:

• The source code of the third party feature;

• Some glue code that binds the features as GDScript classes; and

• Two Scons configuration files with compilation flags and the like.

Since this module mechanism works by simply placing a folder inside the Godot build tree,
we preferred to implement our Godot bindings in a separate repository, which is to be cloned
directly inside the Godot repository. It currently supports only Godot 2.1, which, as of this
writing, is the latest stable version of the engine. Our bindings do not include the VORPAL
Audio Engine. Instead, we assume it is installed in the programmer’s environment. Here we took
a different approach from LÖVE when implementing the Audio Engine bindings. We wrapped
both vorpal::Engine and vorpal::SoundtrackEvent in a single GDScript class called
VorpalModule, which contains a list of all created Soundtrack Events and operates on them
by providing and using a unique identifier integer for each Event – essentially their index on the
list. We chose this shortcut since this binding was part of the Sound Wanderer project, and we
had other, more important priorities to focus on in that game. In fact, the Sound Wanderer code
base is the best example currently available of how to use the VORPAL Godot bindings.

5.4.5 Examples

We now discuss two usage examples of the VORPAL middleware. The first example is a rather
artificial implementation in pure C++ that serves to illustrate how the API should be used. The
second is more illustrative, comprising a micro-game – more of a “toy” actually – where you can
control a simple amplitude modulation by moving a circle with the keyboard directional keys.
Both examples are available at a separate GitHub repository: https://github.com/vorpal-project/
examples.

Example 1: Native API

This example is located at the src/basic directory in the repository tree. It simulates how a
Game Loop behaves by sleeping a random amount of time every frame, then using that amount

16 http://scons.org/

https://github.com/vorpal-project/examples
https://github.com/vorpal-project/examples
http://scons.org/

108 IMPLEMENTATION 5.4

to tick the Audio Engine. There is only a single soundtrack Patch loaded during the example
execution, which by default is a Patch called “basic” in the patches folder. It plays a sinusoidal
wave whose frequency changes as times passes in the “game”. The resulting soundtrack is not
quite interactive, but our main concern here is how the game code uses the Audio Engine API.
The source file src/basic/main.cxx contains all the code for this example. We now explain
its main parts.

1 int main (int argc, char** argv) {

2 string event_name = "basic";

3 if (argc >= 2) {

4 event_name = argv[1];

5 }

6 srand(time(0));

Listing 5.8: File src/basic/main.cxx, lines 27-32.

The main code starts by checking whether the user specified a Patch name (Listing 5.8). If
he or she has not, it defaults to “basic” as explained before. Then we initialize the standard
random number generator with a seed, since we use randomly generated numbers to simulate
the variability of frame duration in a Game Loop. Next, we initialize the Audio Engine while
checking for errors. Notice how we use the parameter in the vorpal::Engine::start method
to provide search paths for loading Patches in line 3 of Listing 5.9. The first one is a relative
path to the patches folder in the repository tree, while the second is a macro containing the
path to the Soundtrack Creation Kit Patches installed in the system. As explained in Section
5.4.3, another way to do this would be to place the Soundtrack Creation Kit Patches in the same
directory as the soundtrack Patches of the game. Listing 5.10 presents the part that loads the
Soundtrack Event. As with the Audio Engine initialization, it checks for errors. If there is any,
it clears all used resources through vorpal::Engine::finish at line 6 before exiting the
application.

1 vorpal::Engine engine;

2 {

3 vorpal::Status status = engine.start({"../patches", VORPAL_PATCHES_PATH});

4 if (!status.ok()) {

5 cout << "Error: " << status.description() << endl;

6 return -1;

7 }

8 cout << "Opened device " << status.description() << endl;

9 }

Listing 5.9: File src/basic/main.cxx, lines 34-42.

Listing 5.11 contains the simulated Game Loop. It forcefully runs for only ten seconds before
terminating the game execution. This is done by accumulating passed time in the seconds

variable. We calculate the frame duration by keeping track of the moment the last frame started
in the variable last (lines 2 and 5) and computing the difference between it and the current
frame (line 4). We use the Clock type, which is an alias we made for a system clock class in

5.4 MIDDLEWARE USAGE 109

1 shared_ptr<vorpal::SoundtrackEvent> ev;
2 {
3 vorpal::Status status = engine.eventInstance(event_name, &ev);
4 if (!status.ok()) {
5 cout << "Error: " << status.description() << endl;
6 engine.finish();
7 return -1;
8 }
9 }

Listing 5.10: File src/basic/main.cxx, lines 45-53.

the C++11 standard. Since it uses an internal implementation-dependent representation of time,
we just cast it to double and divide by the known duration of a whole second. Line 6 calls
gameTick, which we discuss ahead and represents a frame of the Game Loop. It provides the
Soundtrack Event by parameter so it can send Commands to it. Then we tick the Audio Engine
at line 7 and finish the frame by updating the total time of execution in seconds. Lastly, we define
the gameTick routine in Listing 5.12. Line 3 calculates a random amount of time the simulated
game frame will “last”, choosing from 16 to 32 milliseconds (somewhere between 60 FPS and 30
FPS, respectively). Lines 4 accumulates the delta values to send in discretized step values as a
Command to the soundtrack Patch – that is, it sends how many whole seconds have passed by
truncating the floating point value. Lastly, the gameTick routine sleeps for the chosen amount
of time in line 6.

1 double seconds = 0.0;

2 auto last = Clock::now();

3 while (seconds < 10.0) {

4 double delta = 1.0*(Clock::now() - last).count()/ONE_SECOND.count();

5 last = Clock::now();

6 gameTick(delta, ev);

7 engine.tick(delta);

8 seconds += delta;

9 }

Listing 5.11: File src/basic/main.cxx, lines 55-63.

The “basic” Patch can be seen in Figure 5.13. It uses the Output Bus and Command
Abstractions from the VORPAL Soundtrack Creation Kit to synthesize and output a sinusoidal
sound wave at varying frequencies, calculated from the step Command parameter sent by
gameTick. Essentially, the “time steps” from the “game” are controlling the sound pitch in real-
time, albeit not interactively. It does react properly to the random sleep periods, evidencing the
robustness of the Audio Engine.

Example 2: Integrating with LÖVE

This example is located at the src/demo directory in the repository tree. It contains a simple
interactive application (still not quite a game) written using the LÖVE framework. When it runs,
the user acquires control over a circle avatar in front of a black background inside a 2D space.

110 IMPLEMENTATION 5.4

1 void gameTick (double delta, shared_ptr<vorpal::SoundtrackEvent> ev) {
2 static double total = 0.0;
3 auto sleep_time = Clock::duration(milliseconds(16 + rand()%16));
4 total += delta;
5 ev->pushCommand("step", static_cast<int>(total));
6 sleep_for(sleep_time);
7 }

Listing 5.12: File src/basic/main.cxx, lines 70-76.

Figure 5.13: The “basic” Patch from the first example. It plays a sinusoidal wave with a frequency
determined by the parameters sent through the step Command.

Using the directional keys in the keyboard, the user can move the circle around. The position of
the circle is then fed to the Audio Engine both as a Command parameter and as the Soundtrack
Event position. On the soundtrack Patch side, the x value of the position determines the pitch
of a triangular wave from 60 up to 84 in the MIDI scale, while the y value determines the pitch
of a rectangular wave from 84 down to 60 in the MIDI scale. Both waves are multiplied before
being sent to the Output Bus of the Patch. As with the previous example, we now explain each
of the main parts of the code and finish this chapter by presenting the Patch used. The example
source code is mostly written in src/demo/main.lua, but there are two other auxiliary files
which we do not cover here.

1 local vorpal = require "vorpal"

Listing 5.13: File src/demo/main.lua, line 4.

The code starts by requireing the Lua module that binds Audio Engine features, as shown
in Listing 5.13. Modules in Lua often behave like “objects”, so we can store them in variables and
access their fields. Listing 5.14 presents a LÖVE -specific function that is one of the first called
when the game runs. It provides the programmer a place to write initialization code. In this case,
we initialize the VORPAL Audio Engine in line 2, register the same paths as the first example
in lines 3 and 4, then load the Soundtrack Event for this game in line 5. The other initializations
are omitted.

LÖVE provides the function depicted in Listing 5.15 for the programmer to implement what
the Game Loop should do (using idle-frame synchronization by default). In this example, it merely

5.4 MIDDLEWARE USAGE 111

1 function love.load ()
2 vorpal.start()
3 vorpal.registerPath("../patches")
4 vorpal.registerPath(VORPAL_PATCHES_PATH)
5 ev = vorpal.eventInstance "demo"
6 -- *snip*
7 end

Listing 5.14: File src/demo/main.lua, lines 12-20.

1 function love.update (dt)
2 -- *snip* (update avatar position)
3 ev:pushCommand("pos", avatar.x/W, avatar.y/H)
4 ev:setAudioSource(5*(avatar.x - W/2)/W, 5*(avatar.y - H/2)/H, 0)
5 vorpal.tick(dt)
6 end

Listing 5.15: File src/demo/main.lua, lines 35-46.

updates the user’s avatar position according to what keyboard keys he or she is pressing. Then, at
the end of the frame, it sends the “pos” Command to the Soundtrack Event passing the x and y
values of the avatar’s position as parameters; updates the Soundtrack Event position in the virtual
space of the Audio Engine; then finally ticks the Engine using the dt parameter provided by the
Game Loop of the LÖVE framework. Although Lua has its own garbage collecting mechanism,
we still need to make sure that instances of vorpal::SoundtrackEvent are freed before
the Audio Engine is finished as a whole. That is why we added the code from Listing 5.16
implementing the love.quit callback, which is called when a LÖVE game is closed normally.

1 function love.quit ()

2 ev = nil

3 vorpal.finish()

4 end

Listing 5.16: File src/demo/main.lua, lines 48-51.

The Patch comprising the soundtrack of this example if shown in Figure 5.14. It is slightly
more complex than the one from the first example. Here we preferred to use the Oscillator
from the Soundtrack Creation Kit to synthesize triangular (left) and rectangular (right) waves.
The triangular wave has its frequency controlled by the x parameter of the “pos” Command,
increasing in pitch the more the avatar goes right. The rectangular wave is controlled by the y
parameter, increasing in pitch as the avatar goes up. Both waves are multiplied by each other
before being sent to the Output Bus. Since the rectangular wave uses lower frequencies, the
resulting sound produces perceptible vibration effects.

We started this Chapter by presenting a prototype game we used to validate the proposal
that Pure Data works as a real-time soundtrack representation. Based on that, we developed
the VORPAL middleware, which we detailed throughtout Sections 5.2 and 5.3. Then we demon-
strated how both kinds of user (programmers and sound designers) can make use of the system.
In the next Chapter, we will discuss the results observed from the actual use of the middleware,
which we complement by applying the validation criteria defined in 1.2.3.

112 IMPLEMENTATION 5.4

Figure 5.14: The “demo” Patch from the second example. It plays a signal resulting from the multipli-
cation of two synthesized waves with frequencies derived from the user’s avatar position in the game.

Chapter 6

Results

This chapter discusses the main results of our research and how they validate our middleware
solution following the criteria from Section 1.2.3. Each of the following sections directly cor-
responds to one of the criteria, except for the last one. Section 6.1 fulfills our first validation,
Basic Feature Support, by presenting an actual game we developed that uses our middleware
to produce its soundtrack. Section 6.2 meets the second validation, Advanced Feature Support,
which involved gathering feature requests from the literature and professional sound designers
to guide the development of VORPAL, then verify whether it really supports each of them. In
Section 6.3, we address the third validation, Usability, which was included in this thesis with
the intention of identifying how our tool could put all of its features to a better use by provid-
ing better interfaces and workflows for its users, programmers and sound designers alike. Then,
Section 6.4 makes a deeper analysis of the VORPAL middleware by inspecting the consequences
of our decision to use Pure Data as both a digital content creation interface and as a real-time
soundtrack representation format.

6.1 Sound Wanderer

Sound Wanderer is a proof of concept game we developed in a partnership with Dino Vicente
De Lucca (refer to Section 4.2.3), who contributed as both game designer and sound designer to
the application. The game was not developed after the conclusion of the middleware, but rather
side by side with it. It served as our guiding line much as it served to showcase the features of
the system. Thus, developing this game was an essential part of our research, specially due to
our Basic Feature Support validation, which specified that our middleware be tested using an
actual game, and not only code examples (see Section 5.4.5). It was never intended to become a
commercial product, although we did aim for a pleasant and complete game experience, albeit
not exactly a challenging one. To avoid the nontrivial task of writing a game from scratch, Sound
Wanderer was developed using Godot and the VORPAL plug-in discussed in Section 5.4.4. It was
only tested on Linux platforms. An unedited gameplay video of the released version discussed
here is available at https://www.youtube.com/watch?v=oCw719VmIn8.

Sound Wanderer is divided in two parts. During the first of them, the game uses a first-person
view to allow the player to explore a dark building where he or she must solve three puzzles to

113

https://www.youtube.com/watch?v=oCw719VmIn8

114 RESULTS 6.1

Figure 6.1: One of the puzzle rooms in Sound Wanderer. This particular room has a Tetris statue which
plays “Theme A” from that game.

open the exit. There is no explicit plot, but an extra-diegetic voice guides the player’s actions.
Starting from a small corridor that leads to a larger hall, the player finds three rooms and one
closed gate, the exit. Each room contains one of the puzzles, which involves a real-time music
composition we explain ahead. After solving the three puzzles and passing through the exit gate,
the player “falls” to the second part of the game, which changes the perspective into a 2D top-
view of the player’s avatar – a triangle – inside a psychedelic amorphous dimension. There, he
or she must find yet another exit, but there is none. Most of this part is about experiencing the
soundtrack, which responds to the player’s movement and exploration. After a certain amount
of time passes, a black-hole appears to suck in the player’s avatar and end the game with an
inexorable “Game Over”.

In the first part of Sound Wanderer, each puzzle room contains a statue resembling a famous
game and playing a certain music theme. Upon closing in on the statue, the music stops, and the
player is prompted to try out three different music themes and point out which one belongs to
the statue. The player may try as many times as needed, and when the right theme is selected,
he or she is teleported back to the central hall. The right theme should be the same as the one
that was playing as he or she entered the room, and the appearance of the statue should be a
strong hint, specially for veteran players. However, the melody of each theme is stochastic, that
is, it is randomly determined as it plays, which might make it slightly harder to know which song
belongs to each statue. The stochastic behavior of these themes follows a Markov chain derived
from one of the original themes from the corresponding game title depicted by the statue. The
process used to create this Markov chains essentially analyzes the frequency with which each
melody step occurs after the corresponding previous step, thus capturing melodic patterns of the
original score and playing a random theme which often sounds like the original but is seldom

6.1 SOUND WANDERER 115

Figure 6.2: The exit gate from the puzzle rooms sequence. It constantly emits a pulsing sound and
opens after all three puzzles are solved.

really the same. We do not describe the exact Markov chain extraction algorithm here since it
is outside the scope of this thesis. The important part is that each chain is fed to a Pure Data
Patch which plays the stochastic melody at run-time, that is, each and every note is decided in
real-time. This would be simply impractical to do with sample-based audio, making this part of
Sound Wanderer one of the strongest examples of the contributions provided by the VORPAL
middleware. Figure 6.1 shows one of the puzzle rooms in Sound Wanderer. The games and songs
used in the statues are:

• Super Mario Bros. (Nintendo, 1985) – “Overworld Theme” by Koji Kondo;

• Tetris (GameBoy version, Nintendo, 1989) – “Type A” arrangement by Hirokasu Tanaka
of the Russian folk song, “Korobeiniki ”; and

• Undertale (Toby Fox, 2015) – “Spiders Dance” by Toby Fox.

The puzzles are not the only soundtrack elements of the first part though. The player’s
footsteps also have sound effects, which vary according to whether the avatar has just started
walking, has been walking for more than one step, has just stopped walking or is turning around.
All puzzle rooms have a door that is closed when the player enters, causing a loud and echoing
bang sound throughout the room. The exit gate is also continuously emitting a pulsing sound to
enhance its mystery. There is the guiding voice, played from recorded samples of voice actor Yuri
Koster. Lastly, when the player leaves the first part by falling through the exit gate, a Sheppard
tone [She64] is played to add to the illusion of a free fall. Figure 6.2 depicts the exit gate of the
first part when it is still closed. All the sound effects are spatialized with binaural effects.

After falling through the first exit, the player arrives at the second part of Sound Wanderer,
which we call the “Damnation Room”. It is intended as a merely exploratory environment with

116 RESULTS 6.1

Figure 6.3: During the first part, an electronic music plays according to whether the player is moving
or not. The colorful objects with white borders are the wardens the player must find.

no clear purpose but that showcases a number of real-time effects in its soundtrack. It is also
further divided into two parts. In the first, there is a psychedelically colorful background, and
the player has to find four wardens (represented by colorful geometric shapes) spread around
the area. An electronic music grows in the soundtrack for each warden found. There is also an
introduction to the “Damnation Room” by the guiding voice, now distorted to a much lower pitch.
The main real-time effect here is in the electronic music. It is composed of a bass, a hi-hat, and
two melody voices. Except for one of the melody voices, all other parts of the music come from
timbres synthesized in Pure Data using the Synthesizer and Sequencer features of the VORPAL
Soundtrack Creation Kit. The hi-hat is synthesized from a noise generator, and has its pitch very
subtly modulated by a sinusoidal wave. The bass and the sequenced melody vary which notes
are to be played according to whether the player is moving or not. This is done by activating
the slots of their corresponding Sequencers at the right moments. The other melody is a looped
sample theme composed directly by De Lucca. Figure 6.3 shows how this part looks like.

The second part of the “Damnation Room” has a dark and gray background pattern ac-
companied by a composition of white noise variations for the soundtrack. The sound in this
sequence is entirely made of a real-time timbre synthesis by adding noise waves equalized in
different frequencies. Here we intended to show how VORPAL is able to produce soundtracks
considerably different from traditional score-based themes. Aside from the ambience, this part
of the “Damnation Room” features random polygonal obstacles appearing from time to time and
falling onto the player. Each of these obstacles talks using the guiding voice (still acted by Yuri
Koster) when the player comes close to them. The voices use the 3D spatialization effect, so that
when the player just passes by the side of one of the obstacles, he or she can hear the voice
walking past them. The actual speech each obstacle says is randomly selected from a pool of

6.2 ADVANCED FEATURES 117

Figure 6.4: In the second part, a mix of equalized white noise waves play in the background, while the
obstacles talk nonsense when approached.

hand picked phrases from the Oblique Strategies deck1, to which a random effect is applied –
such as reverberation, ring modulation, etc. Figure 6.4 shows how this part of the game looks
like.

An initial release of the game was submitted as a demonstration to the 12th International
Symposium on Computer Music Multidisciplinary Research and accepted [MVK16]. There, we
let conference participants play our game and provide feedback. We also had a short paper
accepted in the same conference [MK16], which served to further explain the technology behind
Sound Wanderer to the players. Figures 6.5a and 6.5b show pictures of the demonstration. After
this release, we continued partnering with De Lucca mainly to improve the “Damnation Room”
based on the feedback obtained at the conference, which lead to the current vesion of the game.
A gameplay video is available at https://youtu.be/7ON_gnZrHJ0.

6.2 Advanced Features

In Section 1.2.3, we defined the second validation criterion of our research as a feature list derived
from both the literature and interviews with professional sound designers. The list was formalized
in Section 4.2.4 under the name of System Requirements. Here we verify, one by one, whether
the VORPAL middleware satisfies these Requirements.

1 https://en.wikipedia.org/wiki/Oblique_Strategies

https://youtu.be/7ON_gnZrHJ0
https://en.wikipedia.org/wiki/Oblique_Strategies

118 RESULTS 6.2

(a) Some developers of Sound Wanderer.
De Lucca (left), game and sound designer,
and Wilson Kazuo Mizutani (right), game
designer and programmer.

(b) Some conference participants playing
Sound Wanderer. The game was designed
to be played using PlayStation-compatible
gamepads.

Figure 6.5: Pictures taken by De Lucca during the 12th International Symposium on Computer Music
Multidisciplinary Research held in São Paulo, June 2016.

0. Compatibility with Game Applications

This System Requirement is met by the proof of concept game Sound Wanderer described in
Section 6.1, since it not only demonstrates that the middleware is compatible with an actual
game application, but that it can be used together with industry-tested game engines (Godot in
our case).

1. Independence from Programmers

Since the Soundtrack Creation Kit is but a set of Pure Data Abstractions and Externals, and the
sound designer is free to do anything he or she is capable of in the visual programming language
of Pure Data, this means that they have control over all the aspects of the game soundtrack.
The Markov chain implementations in the puzzle rooms of Sound Wanderer are a good example
of how much liberty and control the sound designer has when producing the soundtrack. The
only part they cannot control are when Commands (along with their parameters) are sent and
where the Soundtrack Events are positioned inside the virtual sound space of the Audio Engine,
but this is practically inevitable. Only the game application knows about the game state (which
carries the timings and the game entity whereabouts inside the virtual world simulation). Even
if the Soundtrack Creation Kit had direct access to the game state, it would still require that
the host application provided it in some way in the first place, so the dependency would still be
there on way or the other.

2. Real-Time Controlled Music Sequencing

The Sequencer feature of the Soundtrack Creation Kit implements support for this System Re-
quirement by offering a relatively simple mechanism for sequencing soundtrack behavior. We
demonstrated its capabilities in the background music of the first part of the “Damnation Room”
in Sound Wanderer, when the electronic music responds to whether the player is moving by
adding or removing notes from one of the melody sequences. Additionally, the Sequencer is not

6.2 ADVANCED FEATURES 119

the only way the Soundtrack Creation Kit can achieve real-time controlled sequencing. The
Markov chains in the puzzle rooms have their own sequencing mechanism, which manipulates
the melody in real-time note by note. This means that even if the Sequencer is too simple for
advanced sequencing implementations, it can still be done by programming it directly in Pure
Data.

3. Real-Time Controlled Synthesis

This System Requirement is satisfied by the Synthesizer feature of the Soundtrack Creation Kit,
which allows at least as many timbres as the Minimoog synthesizer, and has been successfully
demonstrated in the “Damnation Room” of Sound Wanderer too. The second example from
Section 5.4.5 also shows how it is possible to change a timbre at its wave shape level in a real-
time interaction with the game application. Besides, the possibility still remains of synthesizing
timbres using Pure Data directly, like in the first example from Section 5.4.5.

4. Music Transitions

There is no particular feature in the Soundtrack Creation Kit that directly meets this System
Requirement, but it is nevertheless supported and Sound Wanderer clearly demonstrates that.
During the second part of the “Damnation Room”, the game soundtrack transitions between
five different looped drum samples. All transitions there are properly synchronized, displaying
no perceptible artifacts when the middleware changes from one sample to the next. The Sample
feature from the Soundtrack Creation Kit helps in the case of sample-based transitions, but in the
more general case transitions are feasible through a direct implementation thanks the procedural
audio approach of the middleware.

5. Variable Mix

The Output Bus Abstraction in the Soundtrack Creation Kit, which is the main audio output
of each Soundtrack Event, comes with a volume control which allows for real-time variable mix
between Soundtrack Event instances. For a variable mix within the same Patch, a direct Pure
Data implementation is required, which is demonstrated by the latest version of our Mari0
extension prototype, with its soundtrack being composed of a variable mix between the drums,
the bass and the melody. Thus, this System Requirement is also met.

6. Variable Frequency Filter

The [vorpal_filter] from the Synthesizer feature in the Soundtrack Creation Kit supports
this System Requirement by emulating the filter of the Minimoog synthesizer. This is demon-
strated by the hi-hat in the electronic music of the first part of the “Damnation Room” in Sound
Wanderer, since it essentially plays a noise signal band-pass filtered at a frequency modulated
by a sinusoidal wave. As with other Requirements, it could also have been done directly in Pure
Data.

120 RESULTS 6.3

7. 3D Audio Spatialization

By enabling the 3D audio spatialization feature of the OpenAL programming library in the
Audio Engine API – more specifically in vorpal::SoundtrackEvent::setAudioSource

– the VORPAL middleware successfully meets this System Requirement. This is clearly shown by
the second example of Section 5.4.5, but is also present throughout most of the Sound Wanderer
soundtrack, specially with the talking obstacles in the second part of the “Damnation Room”.
However, it is thanks to this that all the Soundtrack Events can only output mono sounds, as
discussed in Section 4.2.3.

8. Playback Randomization

We have demonstrated support for this System Requirement both at the Markov chains from
the puzzle rooms and the talking obstacles in the “Damnation Room” of Sound Wanderer. In
the Markov chains, the game manages to randomize music themes on the granularity level of its
score, choosing the next note to be played stochastically. In the “Damnation Room”, a recorded
speech is chosen from a pool of samples to be played when the player comes near the obstacles.
There is also a randomization in the effect applied to the sample chosen.

9. Polyphony Control

Polyphony control could be implemented at two different levels inside the VORPAL middleware.
The first is to allow Patches developed with the Soundtrack Creation Kit to control polyphony
inside themselves, and this is indeed supported – it is only a matter of using multiple Synthesizers
and Samples and regulating how many can be playing at the same time. The second level of
polyphony control would be between Soundtrack Events, and this is not supported, because it has
a slight conflict with the next System Requirement. While we do consider that this Requirement
is met in the current implementation, we intend to improve its support to include polyphony
control between Soundtrack Events in future versions of the middleware.

10. Resource Usage Optimization

We support this feature by using C++ smart pointers that self-manage their own allocation
process through reference-counted garbage collection. This essentially means that as long as
the game code holds a reference to a Soundtrack Event instance, it will be kept in memory,
playing its sounds. Unused Events are interrupted and removed from memory, thus optimizing
this resource usage. However, this also means that a Soundtrack Event that is referenced in
game code cannot be prematurely removed by, say, a polyphony control mechanism. To do that,
the Audio Engine would either have to invalidate an Event instance already referenced by game
code, or allow unreferenced instances to persist in memory until they expire or their polyphony
threshold demands so.

6.3 USAGE FEEDBACK 121

6.3 Usage Feedback

In this section, we discuss the third and last validation of the VORPAL middleware. It is worth
remembering that the motivation behind this validation is to identify how much the features
guaranteed by the System Requirements are actually accessible to the users of our system.
Properly addressing this issue involves other research areas beyond computer music and game
programming, and as such we take this validation more as a future guide for how to actually
make our contribution usable in real world projects, not only prototypes and proof of concept
games. In that sense, there are two very different types of users to our technology: programmers
and sound designers, both from a digital games development context.

The only actual programmer who used the technology was the author of this thesis when
developing the Mari0 prototype and Sound Wanderer. So we strove to have a strictly critical
analysis of how much the Audio Engine – which is the part of the middleware programmers
interact with – was really easy to understand and work with. The fact that its API is essentially
composed of two classes with few methods makes it undoubtedly quick to grasp. Yet, there
are at least two details that might not seem obvious at a first glance. The first is that, since
Soundtrack Events are not sequential sound pieces, there is no “play” or “stop” operation. As
soon as a Soundtrack Event is instanced, it is running and potentially playing something. Any
kind of playback control has to be implemented as Commands the sound designer uses to control
the Event. The second issue is with the time parameter of vorpal::Engine:tick. It should
contain the value of how many seconds have passed since the last call to that method, and is
supposed to be obtained from the synchronization mechanisms of the Game Loop of the host
application. When we integrate the middleware with other game engines, this data is promptly
available. However, in the first example of Section 5.4.5, when we emulate a Game Loop, we
found that actually measuring the time difference between frames might not be that simple, and
even the slightest deviations immediately incur in audio artifacts in the Audio Engine. Thus, it
could be improved by either measuring this time by itself or by being more robust to errors in
the parameter (by using a mean, for instance). Aside from the API, one other issue with the
Audio Engine is that it requires the developer to compile libpd to avoid the extra dependency,
and while we had no problems with that on Linux platforms, our few attempts at compiling in
Windows failed due to errors inside the Pure Data source code2.

For the sound designer perspective, we discuss here how both De Lucca and us worked on
the soundtrack of Sound Wanderer. The most noteworthy point in reviewing that process is that
practically all real-time effects De Lucca proposed for the game were successfully implemented
save for time constraints, which sustains the claims on the power of procedural audio. There are,
however, two caveats to this statement. The first is that, being a sound designer not used to
working with games, De Lucca was still experimenting with the possibilities and might not have
reached for more complex effects, thus meaning that we likely could have pushed the middleware
further (and eventually met one or more design restrictions). The second caveat is that, since De
Lucca had no previous experience with Pure Data (only Max/MSP), all the effects he wanted to
produce had to be implemented together with us – he was, after all, learning two new languages

2 There was likely some missing (or exceeding) compilation directives, which we decided not to spend any more
time looking into given our research deadlines.

122 RESULTS 6.4

at the same time (Pure Data and the Soundtrack Creation Kit) while designing a game for the
first time. This comes as no surprise given what we discussed back in Section 2.1 about Scott’s
work on the challenges of forcing ever new technologies on game musicians for the sake of better
soundtracks or more efficient workflows [Sco14]. In fact, given that Pure Data is a full-fledged
programming language, expecting a sound designer to feel comfortable with it means demanding
that they learn how to program at least to a certain degree. In other words, we have essentially
inverted one of the original problems with game audio: where the programmers had to understand
sound and music to implement what the sound designers could not, now it is the latter who has
to comprehend programming concepts to produce the soundtrack. On the other hand, providing
a general purpose procedural audio tool through a completely programming-free environment is
borderline utopic. There are two possible extremes here with a full spectrum of combinations
in-between: to specialize the interface and embrace the narrowing of aesthetics, or close in on
Turing-completeness to widen its capabilities. The VORPAL middleware leans more towards the
latter at the cost of a steeper learning curve, but with the benefits of using a language arguably
widespread in the computer music community.

6.4 Middleware Limitations

Pure Data was a fundamental design decision in the architecture of VORPAL. It not only sup-
ports real-time procedural audio, but it sped up our development process by relieving us of
implementing an interpreter and an editor to the real-time soundtrack file format used by the
middleware. Besides, being a tool reasonably widespread in the computer music community, we
found no lack of material and references in the literature or the Internet. Most important of all,
it ultimately works. Pure Data successfully achieves real-time soundtracks in games. That being
said, there are severe limitations to both its implementation and usability.

On the implementation side, as we point out a number of times throughout Chapter 5, the
main issue with Pure Data is that all of its state is coded into the global scope of the application.
This forced our own implementation to behave as if it was on a global scope, even if we managed
to mostly hide that from the user thanks to design patterns such as the Singleton pattern. The
problem is that the global state will also propagate to the user’s application one way or another,
imposing a likely undesired restriction on their code. Globally scoped state complicates multi-
threaded programming, and prevents proper encapsulation of concerns since every part of the
code base can now access shared data - making it harder to trace the origin of errors when the
software escalates. Another problem with the Pure Data implementation (and libpd) is that it
can only load Patches from file paths, meaning its code forces the programmer to let Pure Data
open and handle files by itself. While this may seem like a burden off the programmer’s work at
first, it actually complicates things when the file system of the target platform is not compatible
to what Pure Data expects, for instance on a mobile system. In this case, it would be better if
the host application opened the files then fed Pure Data with its raw data.

In terms of usability, the Pure Data application and its Patch editor have a number of
minor quirks which make the development of Patches cumbersome at times. For instance, linking
Connections to Objects can only be done if the user puts the end point of the Connection almost

6.4 MIDDLEWARE LIMITATIONS 123

exactly on top of the Inlet of the Object. This requires precise control of the mouse and can
slow down the process of writing complex Patches with a high number of Connections. However,
these relatively small peculiarities are still overshadowed by the fact that Abstractions cannot
have their state saved along the parent Patch. The Pure Data format only stores the creation
arguments of any Object created in a Patch. If that Object is a slider, the slider value is also
a creation argument and its state is properly saved. But when an Object is an Abstraction, the
state of Objects inside the Abstraction are not part of its creation arguments, and are thus not
saved in the file of the parent Patch. There are a few contrived ways of circumventing this3,
but it pushes even more complex operations to the sound designer. This makes the use of our
Synthesizer feature, for instance, very uncomfortable since the sound designer has to provide
its state through Message Objects in the parent Patch instead of just tweaking the sliders and
having they stay that way when the Patch is reopened later (see examples back in Section 5.4.5).

3 http://forum.pdpatchrepo.info/topic/8803/state-saving-abstractions

http://forum.pdpatchrepo.info/topic/8803/state-saving-abstractions

124 RESULTS 6.4

Chapter 7

Conclusion

We started this thesis by exposing how making soundtracks for games, specially real-time con-
trolled ones, is currently an endeavor entirely dependent on the technologies at the disposal of the
developers. We then moved on to propose the VORPAL middleware as a free software solution
based on procedural audio. This decision was based in great part on the works of Farnell, who
advocates the use of procedural audio over sample-based audio, and Collins, which discusses the
history of sound in games and what are the possibilities of real-time soundtracks. After explain-
ing all the concepts and tools needed to understand and implement a game audio middleware,
we formulate our methodology and the final software architecture of our proposed middleware
solution. The actual implementation of this solution was discussed at length, exposing the two
main components of the system: the Audio Engine and the Soundtrack Creation Kit.

This chapter, which concludes this thesis, addresses our conclusions regarding our research
and its contributions in Section 7.1, including the technological challenges involved and what
are our expectations on real-time soundtracks in games in general. Lastly, Section 7.2 addresses
future work that would bring our research ever closer to better solutions to the process of creating
and delivering entertaining real-time soundtracks in digital games.

7.1 Final Considerations

Games with real-time soundtracks have existed since the birth of the game industry itself. Arcade
games had no choice but to deploy procedural audio for both their sound effects and music. Not
long after, by the end of the last century, iMuse had already developed features for dynamic
music scores, which was then used for game titles that earned their place in game history. Then,
for the last two decades, computers and consoles started having more and more process power
and memory capacity, game budgets skyrocketed and development teams grew more diverse and
experienced. Now we have soundtracks with full orchestras and a handful of bleeding edge audio
middleware systems. Yet, this research has argued that this is not enough.

First, from a developer’s perspective, we explained how the lack of a dedicated game audio
middleware burdens both programmers and sound designers, since programmers have to do part
of the sound designers’ work, while the sound designers depend on both the programmers and
the underlying technology used to shape the soundtrack. This is solved by the aforementioned

125

126 CONCLUSION 7.1

middleware tools, possibly at a financial cost. Second, there are practically no games exploring the
possibilities of procedural audio, which means there are many potentially interesting experiences
being entirely neglected by the whole game development community, despite all the benefits
defended by Farnell [Far07]. With this research, we have gathered a number of approaches to
real-time soundtracks and studied the industry needs to develop our own game audio middleware
with the intention of at least opening the way for this still barely explored design space.

Our proposal is not free of its own shortcomings. While aesthetic limitations on synthesized
sounds are being constantly reduced by continuous technical advances, real-time procedural
composition of music, for instance, has still much to be developed. As long as sequential music
– in the sense that its contents follow a predetermined and unchangeable sequence of events –
provide better results, relying on sample-based audio remains the best option for this soundtrack
role (preferably with the support of a dedicated middleware), both in terms of the resulting sound
aesthetic and of the technical and technological skills required of the sound designers involved.
In that sense, Pure Data is the double-edged sword we found to deal with the balance between
power and accessibility: it provides everything we need, but requires some level of programming
literacy from sound designers. Being a widespread tool in the academic field of computer music,
though, it is more than enough for the purpose of our objective.

That is, by bringing a viable and accessible alternative to the table, we promote further and
more effective investment and research exactly on approaches of yet experimental nature such
as real-time procedural music in games. The problem is that, if VORPAL remains a strictly
feature-oriented tool, and not exactly easy to use, this objective will stay a far-fetched reality.
As we discuss in Section 7.2, there is a number of ways in which we and other interested parties
can take real-time soundtracks in games a step closer to being a reliable design choice. Until
then, the industry standard will likely remain on the sample-based side of sonic composition,
because anything besides a licensed technology such as Wwise or FMOD Studio involves too
much technical and artistic risk if the game is not particularly intended to sell on an innovative
soundtrack experience.

One possibility our middleware opens is to provide a framework for adaptive music structures
such as the ones proposed by Livingstone et al. and Eladhari et al. (discussed in Section 2.2).
Both the CMERS and the Humor Matrix these authors propose can be trivially implemented
with the Command Abstraction of the Soundtrack Creation Kit. For instance, let us say we
want to implement the Humor Matrix, which is a five-by-five matrix mapping pairs of mood
values (inner and outer moods of game characters) to twenty-five possible samples containing
different versions of a music theme. It is but a matter of defining two Commands – inner-mood
and outer-mood – which must be triggered from the game code in the appropriate narrative
conditions (or using the Mind Module proposed by Eladhari et al.), then mapped in a Pure Data
Patch to the adequate samples. This could be as simple as transforming the pairs of received
values in a number ranging from 1 to 25, then using the [route] Object to forward the control
to play (or just increase the volume) of the right sample.

Soundtracks in digital games is one of those intrinsically multidisciplinary research contexts
where there is no such thing as knowing too much of other areas involved. Which is why we strove
to work alongside professionals and researchers which could not only complement our experience

7.2 FUTURE WORK 127

in computer science and game design, but also properly direct us at what were the core issues,
the real problems that needed solving in game soundtracks. All of these contributions came out of
these people’s good will and free time, and if not for them we would be left to work on and develop
a tool that would likely serve no actual purpose. Although the VORPAL middleware would have
certainly benefited from having ourselves know more about and have more experience with sound
and music. That being said, the fact that soundtracks in games (and movies for that matter)
are often approached as an afterthought – as confirmed by both the literature [Mat14] and the
interviewed sound designers (see Section 4.2.3) – remained a cornerstone in the motivation of
this research, leading us to where we are now.

7.2 Future Work

In the last section of this thesis, as we consider the future of real-time soundtracks in digital games
and the roles of game audio middleware systems in that context, we present a list of punctual
improvements to the VORPAL middleware and future research topics of interest. Sections 7.2.1
and 7.2.2 discuss what could be improved in the Audio Engine and the Soundtrack Creation Kit,
respectively. Then, in Section 7.2.3, we consider the implications of no longer using Pure Data in
the VORPAL middleware and if it would be worth the effort. Section 7.2.4 addresses our future
plans for supporting mobile and web platforms. Lastly, in Section 7.2.5, we discuss what research
topics are left to be tackled as possible continuations to this thesis.

7.2.1 Audio Engine Improvements

The following is a list of relevant improvements that could be added to the VORPAL Audio
Engine.

Dynamic Buffer Allocation

As of the latest implementation of the Audio Engine, the number of created OpenAL buffers is
fixed at initialization time. This is a waste of resources when the number of Soundtrack Events
sending their audio to the sound card is not that high. One simple way to improve this is to use
a dynamic amortized allocation where the buffers are created on demand, then freed when audio
transfers are reduced.

Patch-Controlled 3D Spatialization

In our 3D spatialization feature, we assumed that the only motivation a sound designer would
have to use binaural effects would be to simulate the positions of game entities as actual sound
sources. Thus, we designed our API to only allow control of these positions from the source code
side of the game. This becomes a restriction when the sound designer wants to use a binaural
effect for any different purpose. As such, another improvement in the Audio Engine would be
to implement a protocol for capturing Messages from loaded Patches specifying the 3D virtual
position of the corresponding Soundtrack Event. Alternatively, the Soundtrack Creation Kit

128 CONCLUSION 7.2

could provide its own tool set for implementing binaural spatalization on the Pure Data side of
the middleware.

Robust Time Handling

As discussed in Section 6.3, slight oscillations in the time parameter required by the method
vorpal::Engine::tick are prone to cause sound artifacts. This can be avoided by using a
more robust control of how time passes inside the Engine, like using the mean of the last N > 1

time values instead. Another very different approach would be to decouple the Audio Engine from
the Game Loop of the host application by running it in a separate thread, managing its own
synchronization mechanisms. This requires a much more careful implementation, but would make
the programming usability of the middleware much better, as long as the underlying platform
supports multithreading.

7.2.2 Soundtrack Creation Kit Improvements

The following is a list of relevant improvements that could be added to the VORPAL Soundtrack
Creation Kit.

Documentation and Examples

In Pure Data, most Objects have a documentation Patch attached to them, which can be viewed
by right-clicking them and selecting the “Help” option. All native Objects from Pure Data come
with at least one such Patch containing an example. This is specially important for the user to
know what are the roles of the Inlets and Outlets of Objects. Thus, it would be a significant
improvement to the usability of the Soundtrack Creation Kit if proper documentation Patches
for every Abstraction were written and distributed along the rest of the middleware package.

Tool Bar Patch

One of the first obstacles to using Pure Data for non-programmers is that Objects are created by
typing their names. There is no tool bar with a pallet of all available Objects, since it would be
impossible to fit them all anyway. However, inside the scope of the Soundtrack Creation Kit, the
actual number of Objects available is quite manageable. As such, one possible improvement to
the Soundtrack Creation Kit would be to write a “tool bar” Patch from where the sound designer
could pick Object types to place in his or her own Patch. This is possible thanks to how the
Pure Data format works, which allows for dynamic patching, that is, using Messages to create
and connect Objects in a Patch procedurally (the Pure Data equivalent of metaprogramming).

Bank of Procedural Sound Effects

Following the implementations presented by Farnell [Far10], for instance, we could include dozens
of built-in sound effect Abstractions in the Soundtrack Creation Kit. This would save the sound
designer’s time when creating many soundtrack elements of a game, even if only as temporary
placeholder sound until better quality samples as available. Unless, of course, one implemented

7.2 FUTURE WORK 129

state-of-the-art algorithms for physics-based sound effects such as the ones described in Section
2.3.

7.2.3 Beyond Pure Data

As discussed in Section 6.4, at the same time that Pure Data was what made the VORPAL
middleware possible, it also has its own limitations that stop the system from being a more at-
tractive alternative to proprietary tools. Here, we discuss what would be necessary to emancipate
VORPAL from Pure Data, and what would be the benefits and setbacks of doing so. One way
or another, migrating to an independent soundtrack format would most certainly be the next
important step in the development of VORPAL.

The simplest solution to this would be to base the new format on Pure Data, but taking care to
handle the very same problems we are trying to avoid. For instance, just by providing an alternate
implementation of the Pure Data virtual machine that does not leave its state in global scope
would already be a great improvement. The next step after that would be to extend the Patch
file format to allow storing the state of Objects inside Abstractions. This would likely require
major changes to the format as a whole, but just by making these two modifications most of the
internal problems of the Soundtrack Creation Kit would be gone. The biggest improvement and
challenge, however, would be to re-implement the Pure Data Patch editor interface. Designing a
more fluid and intuitive interface would come a long way in terms of usability, but writing code
for graphical user interfaces is always a large and error-prone enterprise.

Nonetheless, even if we did manage to develop our own format and the corresponding editor
and interpreter, we would still be left with a problem. One of the greatest advantages of using
Pure Data is that it has a history and a community. This means two things. The first is that
many contributions accumulated over time, and now even the core set of native Objects in Pure
Data is just too much to replicate without a dedicated development team. That is, our new
Soundtrack Creation Kit would not have all the features it has now, making it much less useful.
The other problem is that Pure Data, when compared to an arbitrary new language, is a rather
well-established standard in the computer music community when it comes to free software
visual programming languages. Making a new one demands that users learn it, where the current
implementation of VORPAL starts from day zero with a relatively large pool of potential users
already comfortable with its language. All this means that actually implementing our own format
and editor is a task that should be tackled with care, since it would not only be an investment
of our time, but also the users’ time. If it is not worth it, we are probably better staying with
Pure Data. Achieving a consistent and actually usable proposal for this new format would make
for a promising doctorate dissertation, we believe.

7.2.4 Other Platforms

The current stable version of the VORPAL middleware supports only desktop Linux, but with
enough time to fine-tune the CMake build scripts, support for Windows and Mac OS is also
possible. Mobile might be a more challenging target, due to the restrictions on file system access
and the way Pure Data handles it (see Section 6.4), but it would definitely be the next platform

130 CONCLUSION 7.2

compatibility priority, since procedural audio allows mobile games to carry much more sonic
content at a memory cost orders of magnitude lower (see also Section 4.2.1). The most challenging,
however, is the Web platform, since everything there has to ultimately run in JavaScript. This
would mean using a Web implementation of Pure Data1, as well as porting the Audio Engine
and adapting it to work with the Web Audio API2.

Another approach would be to narrow the studies on game sound according to specific target
platforms. That is, one could research how the findings in this thesis could be further refined to
better deal with specific platform characteristics, such as the mobile issue with lack of memory,
of the intense real-time dynamics of computer games, or the peculiarities of audio in Web-based
applications.

7.2.5 Research Perspectives

The multidisciplinary aspects of this research area allow our contribution to open paths to
a number of novel research topics that can further improve the soundtrack of digital games,
specially now that an accessible technology is available to explore the design space of real-time
soundtracks. In game design, if one considers the possibilities of procedural audio, we could
analyze how it supports player interaction with the interface and controls, that is, how feedback
sound effects can be automated, and how that improves the user experience. There are also many
possible research paths in the general direction of using real-time soundtracks to construct unique
narratives, where every little action the player does changes something in the music or ambience,
from a single note to whole transitions or improvised arrangements. In a more mechanics and
semiotic oriented approach, one could study how real-time sound effects and voices balance action
games with intensive output feedback3, identifying a sonic language that can keep the players
informed of the things even the best HUD interface cannot.

In computer music, one of the most promising topics is the simulation of the physics of sound,
such as the works seen in Section 2.3. Of course, most real-time synthesis technique studies are
relevant to achieving interesting timbres efficiently too, specially if they can balance memory
and processing time with sound quality and fidelity, like with dynamic LOAD. Researching
for generic and flexible sound effects synthesis techniques would be a welcome contribution to
sandbox games like Minecraft (Mojang, 2011) where players construct their own worlds and
machinery, since it could potentially provide infinite sound signatures for the players’ creations.
This line of research, mostly intended at widening the reach of VORPAL’s capabilities, is a great
opportunity for masters students interested in the area.

There are also the already mentioned music automation techniques from Section 2.2. One
could research into specific aesthetics and design real-time music composition frameworks that
can generate or manipulate the playback of music tracks in games with little or no effort from
both programmers and sound designers. For example, we could study the use of Jazz themes
in Shoot’em Up games, establishing a standard protocol for programmers to feed genre-specific
data to the middleware and for the sound designer to compose the themes around with. Another

1 https://github.com/sebpiq/WebPd
2 https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
3 In the recent title Overwatch (Blizzard, 2016), for instance, avatars shout out when they are going to unleash

a powerful ability, and the fact that it helps player react to it is an intrinsic part of how the game is balanced.

https://github.com/sebpiq/WebPd
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

FUTURE WORK 131

possible approach to this could be to use machine learning to derive music tracks from a large
database of themes pertaining to the targeted game or music genre, as long as Pure Data is
able to handle the demanded level of computation complexity; or one could use on-line machine
learning that judges the player’s acceptance of the presented soundtrack as he or she plays the
game, tuning it to his or her taste or performance.

For game programming in a more general sense, it might be necessary to reconsider how
sound is approached from game code if the real-time behaviors of the soundtrack become more
frequent and time-intensive. There might be other design patterns and algorithms, beyond those
discussed in Chapter 5, which are more appropriate for such extreme conditions. Besides, when
the CPU is no longer enough for real-time computation of a game soundtrack, there are many
possible approaches using the GPU instead, specially with the recent release of Vulkan4. This
new technology has yet to be fully explored by both the industry and the academia. There are
certainly a number of new graphics and audio pipeline architectures to be discovered.

One specific topic we believe would be the next greatest step in this research, specially
if we opt to dismiss Pure Data, is how to computationally represent real-time soundtracks.
That is, finding data structures, protocols, and eventually higher level abstractions that form an
effective, efficient, and convenient representation of what real-time soundtracks are, what they
can do, how they interact with the game, etc. For instance, with 3D models, due to the sheer
amount of geometry data involved, most animation formats are designed around key frames, using
interpolation to determine intermediate movements and to mix animations together. Using it as
a metaphor, we could wonder what would be the “vertices” and “faces” of sound, and how they
could be “animated” in real-time. Finding something of this sort while trying to keep aesthetic
impositions to a minimum would be a very adequate follow up research topic to this thesis –
likely at a doctoral level, as we mentioned in Section 7.2.3.

Games would be nowhere as entertaining without the sonic engagement of players, be it to
reinforce the suspension of disbelief by giving texture to the game narrative, or be it to tell
what the image cannot explain by itself. That is why, just as the actions of the player leads to
both epic adventures and wrenching tragedies, so should they take part in the construction of
the music and sound of that experience. By sticking to the stagnating sample-based approach
that permeates the industry, we are actively taking the safer, but longer path towards that end.
With this research and the proposed middleware technology, we provide one of the many missing
pieces of the puzzle that effectively bridge programmers and sound designers in this joint quest for
interactive, dynamic, adaptive and real-time soundtracks that will make our games ever better.

4 https://www.khronos.org/vulkan/

https://www.khronos.org/vulkan/

132 CONCLUSION

Bibliography

[Aqu13] Aquegg. 4-bit-linear-pcm.svg. http://creativecommons.org/licenses/by-sa/3.0, 2013.
Creative Commons BY-SA 3.0 License, last access July 14, 2015. 25

[Atl08] Atlus. https://nintendo-okie.com/2010/09/22/shin-megami-tensei-persona-4-review/,
2008. Last access August 15, 2016. 29

[Aud15a] AudioKinetic. Audiokinetic customers. https://www.audiokinetic.com/community/
customers/, 2015. Last access September 22, 2016. 50

[Aud15b] AudioKinetic. Audiokinetic documentation. https://www.audiokinetic.com/
library/, 2015. Last access September 22, 2016. 52, 53, 54

[Aud16a] AudioKinetic. Audiokinetic wwise logo. https://www.audiokinetic.com/products/
wwise/, 2016. Last access September 22, 2016. 50, 56

[Aud16b] AudioKinetic. Video tutorials. https://www.audiokinetic.com/resources/videos/,
2016. Last access September 29, 2016. 51

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change
(2Nd Edition). Addison-Wesley Professional, 2004. 68

[Bas15] Sérgio Basbaum. Interação música-imagem. Lecture Notes for Sound Design Course,
2015. 28, 29

[BDT+08] Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle Viaud-Delmon and Doug
James. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans.
Graph., 27(3):24:1–24:9, Agosto 2008. 21, 73

[BGM+01] Kent Beck, James Grenning, Robert C. Martin, Mike Beedle, Jim Highsmith, Steve
Mellor, Arie van Bennekum, Andrew Hunt, Ken Schwaber, Alistair Cockburn, Ron
Jeffries, Jeff Sutherland, Ward Cunningham, Jon Kern, Dave Thomas, Martin Fowler
and Brian Marick. Manifesto for agile software development. http://agilemanifesto.
org/, 2001. 33, 68

[DPS+15] Gabriel Durr, Lys Peixoto, Marcelo Souza, Raisa Tanoue and Joshua D. Reiss. Im-
plementation and evaluation of dynamic level of audio detail. In Audio Engineering
Society Conference: 56th International Conference: Audio for Games, Feb 2015. 10

[DT07] Christopher DeCoro and Natalya Tatarchuk. Real-time mesh simplification using the
gpu. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games,
I3D ’07, pages 161–166, New York, NY, USA, 2007. ACM. 10

[E01] Thomas Engel and Factor 5. A technique to instantaneously reuse voices in a sample-
based synthesizer. In Mark DeLoura, editor, Game Programming Gems II, pages
521–524. Charles River Media, 2001. 9

133

http://creativecommons.org/licenses/by-sa/3.0
https://nintendo-okie.com/2010/09/22/shin-megami-tensei-persona-4-review/
https://www.audiokinetic.com/community/customers/
https://www.audiokinetic.com/community/customers/
https://www.audiokinetic.com/library/
https://www.audiokinetic.com/library/
https://www.audiokinetic.com/products/wwise/
https://www.audiokinetic.com/products/wwise/
https://www.audiokinetic.com/resources/videos/
http://agilemanifesto.org/
http://agilemanifesto.org/

134 BIBLIOGRAPHY

[ENF06] Mirjam Eladhari, Rik Nieuwdorp and Mikael Fridenfalk. The soundtrack of your
mind: Mind music - adaptive audio for game characters. In Proceedings of the 2006
ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology, ACE ’06, New York, NY, USA, 2006. ACM. 19, 20

[Ent14] Blizzard Entertainment. http://hearthstone.gamepedia.com/File:Main_menu.jpg,
2014. Last access August 15, 2016. 29

[Ext] ExtraCreditz. Video game music. https://www.youtube.com/watch?v=CKgHrz_
Wv6o. Last access July 27, 2016. 18

[Far07] Andy Farnell. An introduction to procedural audio and its application in computer
games. 2007. 4, 8, 9, 11, 16, 21, 69, 126

[Far10] Andy Farnell. Designing Sound. The MIT Press, 2010. 4, 9, 16, 21, 63, 128

[FMM08] Fabio Furlanete, Jônatas Manzolli and Kenji Mase. Ludo: A collective sound sculpting
game over the network. 2008. 22

[Fre] Will Freeman. Sound in transit. Develop, July 2014 issue, p. 19. 55

[Gam12] Subset Games. https://en.wikipedia.org/wiki/File:FTL_Faster_Than_Light_
Screenshot.jpg, 2012. Last access July 25, 2016. 7

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994. 85

[Gre14] Jason Gregory. Game Engine Architecture. A. K. Peters/CRC Press, 2014. 2, 6, 32,
34, 35, 37, 39, 42, 76

[Har09] Alex Harden. https://upload.wikimedia.org/wikipedia/commons/a/a2/Minimoog_
(Buffalo_Museum_of_Science).jpg, 2009. Last access October 21, 2016. 100

[HLZ04] Robin Hunicke, Marc Leblanc and Robert Zubek. Mda: A formal approach to game
design and game research. In In Proceedings of the Challenges in Games AI Work-
shop, Nineteenth National Conference of Artificial Intelligence, pages 1–5. Press,
2004. 33

[JBP06] Doug L. James, Jernej Barbič and Dinesh K. Pai. Precomputed acoustic trans-
fer: Output-sensitive, accurate sound generation for geometrically complex vibration
sources. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 987–995, New
York, NY, USA, 2006. ACM. 21, 73

[Joh97] Ralph E. Johnson. Components, frameworks, patterns. In Proceedings of the 1997
Symposium on Software Reusability, SSR ’97, pages 10–17, New York, NY, USA,
1997. ACM. 39

[KC08] Karen Karen Collins. Game Sound: An Introduction to the History, Theory, and
Practice of Video Game Music and Sound Design. The MIT Press, 2008. 1, 3, 17,
25, 28, 29, 42

[Lib16] Libpd. Libpd showcase. http://libpd.cc/portfolio/showcase/, 2016. Last access
September 29, 2016. 63

[LK04] Nelson Posse Lago and Fabio Kon. The quest for low latency. In Proceedings of the
International Computer Music Conference, pages 33–36, 2004. 38

http://hearthstone.gamepedia.com/File:Main_menu.jpg
https://www.youtube.com/watch?v=CKgHrz_Wv6o
https://www.youtube.com/watch?v=CKgHrz_Wv6o
https://en.wikipedia.org/wiki/File:FTL_Faster_Than_Light_Screenshot.jpg
https://en.wikipedia.org/wiki/File:FTL_Faster_Than_Light_Screenshot.jpg
https://upload.wikimedia.org/wikipedia/commons/a/a2/Minimoog_(Buffalo_Museum_of_Science).jpg
https://upload.wikimedia.org/wikipedia/commons/a/a2/Minimoog_(Buffalo_Museum_of_Science).jpg
http://libpd.cc/portfolio/showcase/

BIBLIOGRAPHY 135

[LMBT10] Steven R. Livingstone, Ralf Muhlberger, Andrew R. Brown and William F. Thomp-
son. Changing musical emotion: A computational rule system for modifying score
and performance. Computer Music Journal, 34(1):41–64, Março 2010. 19, 20, 27

[Luc91] LucasArts. https://upload.wikimedia.org/wikipedia/en/8/82/Monkey_island_2_
prison.png, 1991. Last access September 19, 2016. 48

[Luc94] LucasArts. Method and apparatus for dynamically composing music and sound
effects using a computer entertainment system. United States Patent 5315057, 1994.
47

[Mat14] Eugênio Matos. A Arte de Compor Música para o Cinema. Senac, Brasília, DF,
Brasil, 2014. 1, 4, 19, 21, 28, 29, 30, 31, 127

[Men13] Lucas Correia Meneguette. Situações Sonoras e Jogos Digitais. Simpório Brasileiro
de Games, pages 30–33, 2013. 1, 16

[Mey05] Scott Meyers. Effective C++, Third Edition. Addison-Wesley, 2005. 85

[Miz] 83, 106

[MK16] Wilson K. Mizutani and Fabio Kon. An extensible and flexible middleware for real-
time soundtracks in digital games. In Proceedings of the 12th International Sympo-
sium on CMMR, pages 175–182. The Laboratory of Mechanics and Acoustics, 2016.
37, 117

[Moj08] The International House of Mojo. Lucasarts’ secret history: Monkey is-
land 2: Lechuck’s revenge. http://mixnmojo.com/features/sitefeatures/
LucasArts-Secret-History-Monkey-Island-2-LeChucks-Revenge/, 2008. Last
access September 19, 2016. 47

[MP11] Lucas Correia Meneguette and Pontifícia Universidade Católica De São Paulo. Áudio
Dinâmico Para Games : Conceitos Fundamentais E Procedimentos De Composição
Adaptativa. Simpório Brasileiro de Games, pages 1–10, 2011. 29

[MVK16] Wilson K. Mizutani, Dino Vicente and Fabio Kon. Sound wanderer: An experimen-
tal game exploring real-time soundtrack with openda. Demonstration at the 12th
International Symposium on Computer Music Multidisciplinary Research, 2016, São
Paulo, 2016. 68, 117

[Nin85] Nintendo. https://en.wikipedia.org/wiki/File:NES_Super_Mario_Bros.png, 1985.
Last access July 22, 2016. 3

[NW07] Chris Nelson and Burkhard C. Wünsche. Game/music interaction: An aural interface
for immersive interactive environments. In Proceedings of the Eight Australasian
Conference on User Interface - Volume 64, AUIC ’07, pages 23–26, Darlinghurst,
Australia, Australia, 2007. Australian Computer Society, Inc. 22

[Nys14] Robert Nystrom. Game Programming Patterns. Genever Benning, 2014. 35, 37, 42,
103

[Pau03] Leonard Paul. Audio prototyping with pure data. http://www.gamasutra.com/
view/feature/131258/audio_prototyping_with_pure_data.php, 2003. Last access
November 16, 2016. 62

https://upload.wikimedia.org/wikipedia/en/8/82/Monkey_island_2_prison.png
https://upload.wikimedia.org/wikipedia/en/8/82/Monkey_island_2_prison.png
http://mixnmojo.com/features/sitefeatures/LucasArts-Secret-History-Monkey-Island-2-LeChucks-Revenge/
http://mixnmojo.com/features/sitefeatures/LucasArts-Secret-History-Monkey-Island-2-LeChucks-Revenge/
https://en.wikipedia.org/wiki/File:NES_Super_Mario_Bros.png
http://www.gamasutra.com/view/feature/131258/audio_prototyping_with_pure_data.php
http://www.gamasutra.com/view/feature/131258/audio_prototyping_with_pure_data.php

136 BIBLIOGRAPHY

[PH07] J. R. Parker and J. Heerema. Musical interaction in computer games. In Proceedings
of the 2007 Conference on Future Play, Future Play ’07, pages 217–220, New York,
NY, USA, 2007. ACM. 22

[PH08] J. R. Parker and John Heerema. Audio interaction in computer mediated games.
Int. J. Comput. Games Technol., 2008:1:1–1:8, Janeiro 2008. 22

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation, Second Edition. Morgan Kaufmann, 2010. 21

[Puc16] Miller Puckette. Pure data logo. https://puredata.info/downloads/pure-data/logo,
2016. Last access September 29, 2016. 63

[Rab00] Steve Rabin. The magic of data-driven design. In Mark DeLoura, editor, Game
Programming Gems, pages 3–7. Charles River Media, 2000. 5, 6

[Roa96] C. Roads. The Computer Music Tutorial. MIT Press, 1996. 24

[Roy70] Winston Royce. Managing the development of large software systems. In In Pro-
ceedings of IEEE WESCON, pages 1–9, 1970. 33, 69

[RSM+10] Nikunj Raghuvanshi, John Snyder, Ravish Mehra, Ming Lin and Naga Govindaraju.
Precomputed wave simulation for real-time sound propagation of dynamic sources in
complex scenes. ACM Trans. Graph., 29(4):68:1–68:11, Julho 2010. 21, 73

[Sch14] Jesse Schell. The Art of Game Design: A Book of Lenses, Second Edition. A. K.
Peters/CRC Press, 2014. 1, 2, 28, 33

[Sch15a] Stephan Schutze. The music system 15 years in the making. http:
//gamasutra.com/blogs/StephanSchutze/20150105/233385/The_music_system_
15_years_in_the_making.php, 2015. Last access April 29, 2015. 59

[Sch15b] Stephan Schutze. The music system 15 years in the making part
2. http://gamasutra.com/blogs/StephanSchutze/20150113/234015/The_music_
system_15_years_in_the_making_Part_2.php, 2015. Last access April 29, 2015.
59

[Sco14] Nathan Scott. Music to middleware: The growing challenges of the game music com-
poser. In Proceedings of the 2014 Conference on Interactive Entertainment, IE2014,
pages 34:1–34:3, New York, NY, USA, 2014. ACM. 15, 47, 72, 122

[She64] Roger N. Shepard. Circularity in judgements of relative pitch. Journal of the Ac-
coustical Society of America, 36:2346–53, 1964. 115

[Sof16a] Elias Software. Elias logo. https://www.eliassoftware.com/licensing/, 2016. Last
access September 28, 2016. 60

[Sof16b] Elias Software. Tutorials. https://www.eliassoftware.com/about/tutorials/, 2016.
Last access September 28, 2016. 61

[Sta12] Stabyourself. http://stabyourself.net/images/screenshots/mari0-1.png, 2012. Last
access October 13, 2016. 83

[Stu99] Ensemble Studios. https://en.wikipedia.org/wiki/File:Age_ii_feudal_age_celts.
jpg, 1999. Last access July 22, 2016. 4

[Stu16] Okam Studio. Godot logo. https://commons.wikimedia.org/wiki/File:Godot_
(game_engine)_logo.svg, 2016. Last access October 26, 2016. 107

https://puredata.info/downloads/pure-data/logo
http://gamasutra.com/blogs/StephanSchutze/20150105/233385/The_music_system_15_years_in_the_making.php
http://gamasutra.com/blogs/StephanSchutze/20150105/233385/The_music_system_15_years_in_the_making.php
http://gamasutra.com/blogs/StephanSchutze/20150105/233385/The_music_system_15_years_in_the_making.php
http://gamasutra.com/blogs/StephanSchutze/20150113/234015/The_music_system_15_years_in_the_making_Part_2.php
http://gamasutra.com/blogs/StephanSchutze/20150113/234015/The_music_system_15_years_in_the_making_Part_2.php
https://www.eliassoftware.com/licensing/
https://www.eliassoftware.com/about/tutorials/
http://stabyourself.net/images/screenshots/mari0-1.png
https://en.wikipedia.org/wiki/File:Age_ii_feudal_age_celts.jpg
https://en.wikipedia.org/wiki/File:Age_ii_feudal_age_celts.jpg
https://commons.wikimedia.org/wiki/File:Godot_(game_engine)_logo.svg
https://commons.wikimedia.org/wiki/File:Godot_(game_engine)_logo.svg

BIBLIOGRAPHY 137

[TCAM09] Micah T. Taylor, Anish Chandak, Lakulish Antani and Dinesh Manocha. Resound:
Interactive sound rendering for dynamic virtual environments. In Proceedings of the
17th ACM International Conference on Multimedia, MM ’09, pages 271–280, New
York, NY, USA, 2009. ACM. 21, 73

[Tea16] LÖVE Development Team. LÖve logo. https://love2d.org/wiki/Löve_Logo_
Graphics, 2016. Last access October 26, 2016. 106

[Tec16a] Firelight Technologies. Adaptive music in fmod studio: Transition markers and
logic. http://www.fmod.org/adaptive-music-fmod-studio-transition-markers-logic/,
2016. Last access September 26, 2016. 58

[Tec16b] Firelight Technologies. Adaptive music in fmod studio:
Transition timelines and submixes. http://www.fmod.org/
adaptive-music-fmod-studio-transition-timelines-submixes/, 2016. Last access
September 26, 2016. 59

[USP10] USPGameDev. https://uspgamedev.org/horus-eye/, 2010. Last access July 25, 2016.
5

[VN14] Bruno Santos Viana and Ricardo Nakamura. Immersive interactive narratives in
augmented reality games. In Proceedings of the Third International Conference on
Design, User Experience, and Usability. User Experience Design for Diverse Inter-
action Platforms and Environments - Volume 8518, pages 773–781, New York, NY,
USA, 2014. Springer-Verlag New York, Inc. 1

[Wik] The Free Encyclopedia Wikipedia. Lua-scripted video games. https://en.wikipedia.
org/wiki/Category:Lua-scripted_video_games. Last access July 25, 2016. 6

[WL01] Keith Weiner and DiamondWare Ltd. Interactive processing pipeline for digital au-
dio. In Mark DeLoura, editor, Game Programming Gems II, pages 529–538. Charles
River Media, 2001. 4, 37

[Woo98] Bobby Woolf. Pattern Languages of Program Design 3 - Null Object. Addison-Wesley,
1998. 85

https://love2d.org/wiki/L�ve_Logo_Graphics
https://love2d.org/wiki/L�ve_Logo_Graphics
http://www.fmod.org/adaptive-music-fmod-studio-transition-markers-logic/
http://www.fmod.org/adaptive-music-fmod-studio-transition-timelines-submixes/
http://www.fmod.org/adaptive-music-fmod-studio-transition-timelines-submixes/
https://uspgamedev.org/horus-eye/
https://en.wikipedia.org/wiki/Category:Lua-scripted_video_games
https://en.wikipedia.org/wiki/Category:Lua-scripted_video_games

	Introduction
	Motivation
	Related problems
	Available Solutions
	Challenges

	Objective
	Intermediate Goals
	Contributions
	Validation

	Text Organization

	Related Work
	Game Audio in General
	Music Automation
	Physically Based Real-Time Synthesis
	Other Works

	Concepts and tools
	Digital Audio
	Digital Signal Processing (DSP)
	Symbolic Representation

	Soundtracks
	Traditional Production Process
	Real-Time Soundtracks

	Digital Games
	Development Process
	Software Architecture
	Tool and Technologies
	Algorithms and Data Structures for Real-Time Audio in Games

	Related Technologies
	iMuse
	Wwise
	FMOD Studio
	Elias
	Pure Data
	Comparison

	Proposed solution
	Methodology
	System Requirements
	Rodolfo Santana
	Kaue Lemos
	Dino Vicente De Lucca
	Final List of System Requirements

	Digital Representation of Real-Time Soundtracks
	Considered Formats and Comparison
	Chosen Format

	Architecture
	Audio Engine
	Soundtrack Creation Kit
	Components Integration

	Implementation
	Prototype
	Audio Engine
	High-Level API
	Pure Data Patch Management
	Sound Playback
	Real-Time Soundtrack Processing

	Soundtrack Creation Kit
	Output Bus
	Commands
	Music Sequencing
	Samples
	Sound Synthesis

	Middleware Usage
	Distribution
	Programmer's Workflow
	Sound Designer's Workflow
	Game Engine Integration
	Examples

	Results
	Sound Wanderer
	Advanced Features
	Usage Feedback
	Middleware Limitations

	Conclusion
	Final Considerations
	Future Work
	Audio Engine Improvements
	Soundtrack Creation Kit Improvements
	Beyond Pure Data
	Other Platforms
	Research Perspectives

	Bibliography

