Lista 3 - Álgebra linear- T2

Curso de verão 2018 - IME-USP

Professor: Diego Alfonso Sandoval Salazar

Tema: Determinantes, semelhança, diagonalização, produtos internos e ortogonalidade.

- 1. Seja A a matriz sobre K dada por $A=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix}$. Mostre que $\det A=0$.
- 2. Sejam $A \in M_{r \times r}(\mathbb{R}), B \in M_{r \times s}(\mathbb{R}), C \in M_{s \times s}(\mathbb{R}) \in 0 \in M_{s \times r}(\mathbb{R})$. Mostre que

$$Det \left[\begin{array}{cc} A & B \\ 0 & C \end{array} \right] = det(A) \cdot det(C).$$

- 3. Use o exercício anterior para calcular o determinante $deA = \begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 2 & 0 & 2 \\ 4 & 1 & -2 & -1 \\ 1 & 2 & 3 & 0 \end{bmatrix}$.
- 4. Mostre que o determinante da matriz de Vandermonde

$$\left[
\begin{array}{ccc}
1 & a & a^2 \\
1 & b & b^2 \\
1 & c & c^2
\end{array}
\right]$$

$$e(b-a)(c-a)(c-b)$$
.

5. Usar a fórmula da adjunta para calcular as inversas das seguintes matrizes

$$A = \begin{bmatrix} -2 & 3 & 2 \\ 6 & 0 & 3 \\ 4 & 1 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 3 & 1 & 5 \end{bmatrix}$$

6. Calcule os seguintes determinantes

(a)
$$\begin{vmatrix} 2 & 1 & 2 \\ 0 & 3 & -1 \\ 3 & 1 & 1 \end{vmatrix}$$
 (c) $\begin{vmatrix} 3 & 1 & 2 \\ 4 & 5 & 1 \\ -1 & 2 & -3 \end{vmatrix}$ (e) $\begin{vmatrix} -1 & 1 & 2 & 0 \\ 0 & 3 & 2 & 1 \\ 0 & 4 & 1 & 2 \\ 3 & 1 & 5 & 7 \end{vmatrix}$ (g) $\begin{vmatrix} 1 & 3 & 1 & 1 & 3 \\ 2 & 1 & 5 & 2 & -1 \\ 1 & -1 & 2 & 3 & 5 \\ 4 & 1 & -3 & 7 & -1 \\ 2 & 1 & -2 & 4 & 3 \end{vmatrix}$ (b) $\begin{vmatrix} 2 & 4 & 3 \\ -1 & 3 & 0 \\ 0 & 2 & 1 \end{vmatrix}$ (d) $\begin{vmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 8 & 5 & 3 \end{vmatrix}$ (f) $\begin{vmatrix} 1 & 1 & -2 & 4 \\ 0 & 1 & 1 & 3 \\ 2 & -1 & 1 & 0 \\ 3 & 1 & 2 & 5 \end{vmatrix}$

7. Use a regra de Cramer para resolver os seguintes sistemas de equações lineares sobre o corpo dos reais

1

(a) (c)
$$x + y + z = 11$$

$$2x - 6y - z = 0$$

$$3x + 4y + 2z = 0$$

$$3x + 4y + 2z = 0$$

$$3x + y - z = 0$$

$$x + y + z = 0$$

$$y - z = 0$$

$$2x + y + 3z + 5w = 0$$

$$x + y - z - w = 2$$

(b)
$$(d) x + 2y - 3z + 5w = 0$$

$$3x - 2y = 7 2x - y + z = 1 2x + y - 4z - w = 1$$

$$3y - 2z = 6 x + 3y - 2z = 0 x + y + z + w = 0$$

$$3z - 2y = -1 4x - 3y + z = 2 -x - y - z + w = 4$$

- 8. Sejam A e B matrizes $n \times n$ diagonalizáveis sobre o corpo K. Mostre que se A e B comutam então existe P uma matriz $n \times n$ invertível tal que $P^{-1}AP$ e $P^{-1}BP$ são matrizes diagonais.
- 9. Sejam A_1 e A_2 matrizes nilpotentes de tamanho 3×3 sobre o corpo K. Mostre que A_1 e A_2 são semelhantes se, e somente se elas tem o mesmo polinômio minimal.
- 10. Sejam $A, B \in M_{n \times n}(K)$. Mostre que se A e B são matrizes semelhantes então Tr(A) = Tr(B). Onde $Tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \cdots + a_{nn}$.
- 11. Prove se M e N são matrizes $n\times n$ tais que $M^n=0=N^n$ e $M^{n-1}\neq 0,\,N^{n-1}\neq 0.$ Mostre que M e N são semelhantes.
- 12. Suponhamos que $A \in M_{2\times 2}(\mathbb{R})$ é uma matriz simétrica. Mostre que A é semelhante a matriz $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$
- 13. Seja $N \in M_{2\times 2}(\mathbb{C})$ tal que $N^2=0$. Mostre que N=0 ou N é similar sobre \mathbb{C} a matriz $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$.
- 14. Use o exercício anterior, para provar que se $A \in M_{2\times 2}(\mathbb{C})$ então A é semelhante a uma das seguintes matrizes $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ ou $\begin{bmatrix} a & 0 \\ 1 & a \end{bmatrix}$.
- 15. Sela V é um \mathbb{R} -espaço vetorial e P é um operador linear tal que $P^2 = P$. Mostre que I + P é invertível e determine $(I + P)^{-1}$.
- 16. Seja V um espaço vetorial de dimensão finita sobre o corpo K e sejam W_1, \ldots, w_k subespaços de V. As seguintes afirmações são equivalentes:
 - (a) $V = W_1 \oplus w_2 \oplus \cdots \oplus W_k$;
 - (b) Se β_i é uma base para $W_i, i=1,\ldots,k$ então $\beta=\cup_{j=1}^k\beta_j$ é uma base para V.
 - (c) Para cada $j \in \{2, ..., k\}$ temos $W_j \cap (W_1 + ... + W_{j-1}) = 0$.
- 17. Seja $V = M_{n \times n}(K)$ o espaço das matrizes quadradas de tamanho $n \times n$ sobre o corpo K. Considere o subespaço W_1 das matrizes simétricas e W_2 o subespaço das matrizes anti-simétricas. Mostre que $V = W_1 \oplus W_2$.

- 18. Mostre o teorema de Cayley-Hamilton: Seja $T: V \to V$ um operador linear no K-espaço vetorial V de dimensão n (ou seja, $A = [T]_{\beta} \in M_{n \times n}(K)$ a matriz que representa T em alguma base β de V). Considere p o polinômio característico de T ($p(\lambda) = det(A \lambda I)$). Então p(T) = 0 (p(A) = 0).
- 19. Use o teorema de Cayley-Hamilton para mostrar
 - (a) O polinômio minimal divide o polinômio característico de T.
 - (b) Os valores próprio de T são as raízes do polinômio minimal.
 - (c) O polinômio minimal e característico tem as mesmas raízes.
- 20. Se $T: V \to V$ é um operador linear diagonalizável no K-espaço vetorial V de dimensão finita com valores próprios $\lambda_1, \ldots, \lambda_k$ distintos de T. Então, existem operadores lineares P_1, \ldots, P_k em V tais que
 - (a) $T = \lambda_1 P_1 + \cdots + \lambda_k P_k$,
 - (b) $I = P_1 + \dots + P_k$,
 - (c) $P_j P_i = 0$ para $i \neq j$,
 - (d) $P_i^2 = P_i$,
 - (e) $Im P_i = \ker(T \lambda_i I) : E_{\lambda_i}$.
- 21. Se $A \in B$ são matrizes $n \times n$ sobre o corpo K. Então $AB \in BA$ têm os mesmos valores próprios.
- 22. Mostre que se λ é um valor próprio da matriz A sobre o corpo K então $p(\lambda)$ é um valor próprio de p(A), onde $p(x) \in K[x]$.
- 23. Determine os polinômios característico e minimal da matriz real $\begin{bmatrix} 1 & 3 & 3 \\ 3 & 1 & 3 \\ -3 & -3 & -5 \end{bmatrix}.$
- 24. Ache os polinômios característico e minimal da matriz $A = \begin{bmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{bmatrix}$.
- 25. Seja V um espaço vetorial de dimensão finita. Qual é o polinômio minimal para o operador identidade e do operador nulo?
- 26. Seja $V = \mathbb{C}_n[x]$ e o operador diferenciação D sobre V. Qual é o polinômio mínimo e caracteristico para D?
- 27. Seja $A \in M_{n \times n}(K)$ cujo polinômio caracteristico é $p(x) = (x \lambda_1)^{d_1} \cdots (x \lambda_k)^{d_k}$. Mostre que a $Tr(A) = \lambda_1 d_1 \cdots \lambda_k d_k$.
- 28. Seja $V = \mathcal{C}_0(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ \'e continua } \}$. Mostre que o operador linear $T : V \to V$ definido por $(Tf)(x) = \int_0^x f(t) dt$ não possui valores próprios.
- 29. Sejam $V = M_{n \times n}(K)$ e Auma matriz fixa de V. Definimos o operador T sobre V por T(B) = AB. È verdade que A e T tem os mesmos valores próprios?

30. Determine quais das seguintes matrizes são diagonalizaveis sobre os corpo $\mathbb R$ e sobre o corpo $\mathbb C.$

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

31. Diagonalizar ortogonalmente as seguintes matrizes sobre o corpo \mathbb{R} :

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}, \qquad B = \begin{bmatrix} 6 & -3 & -2 \\ -3 & -1 & 5 \\ -2 & 5 & -3 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 1 & 0 & 1 & 5 \end{bmatrix}.$$

32. Seja $T: K^n \to K^n$ um operador linear e consideramos que é representado na base ordenada canônica pela matriz dada. Nos seguintes casos mostre que T é diagonalizavel exibindo uma base formada por vetores próprios de T e sua forma diagonal.

(a)
$$K = \mathbb{C}$$
, $n = 2$ e $\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$.
(b) $K = \mathbb{R}$, $n = 3$ e $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$.

- 33. Seja T um operador linear sobre \mathbb{C}^4 que é representado na base canônica pela matriz $\begin{bmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{bmatrix}.$ Achar condições sobre a, b, c para que T seja diagonalizável.
- 34. Mostre que toda matriz $A \in M_{n \times n}(K)$ tal que $A^2 = A$ é diagonalizável.
- 35. Seja T um operador linear sobre \mathbb{R}^2 que tem como vetors próprios (3,1) e (-2,1) associados aos valores próprios -2 e 3,respectivamente. Calcule T(x,y).
- 36. Seja T e L operadores sobre V. Suponhamos que v é um vetor próprio de T e L associados aos valores próprios λ_1 e λ_2 , respectivamente. Ache valores próprios para de $L \circ T$ e $\alpha L + \beta T$, onde α , β são reais.
- 37. Seja $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R}),$ cuja matriz em relação a base

$$S = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right]. \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}$$

é dada por $[T]_S = \begin{bmatrix} -1 & -4 & -2 & -2 \\ -4 & -1 & -2 & -2 \\ 2 & 2 & 1 & 4 \\ 2 & 2 & 4 & 1 \end{bmatrix}$. Determine uma matriz invertível $M \in M_{4\times 4}(\mathbb{R})$

tal qur $M^{-1}[T]_S M$ seja diagonal.

38. SejaV) o espaço vetorial das funções deriváveis de \mathbb{R} em \mathbb{R} . Donsideramos o subespaço W gerado pelo conjunto $S = \left\{e^{2x}\sin x, e^{2x}\cos x, \right\}e^{2x}$ e o operador derivação D sobre W.

4

- (a) A matriz de D com relação a base S.
- (b) Os valores próprios de D e as funções de W que são so vetores próprios de D.
- 39. Seja um espaço vetorial com produto interno. definimos a distançã entre dois vetores $x, y \in V$ por d(x, y) = ||x y||. Daça as seguintes quatões:
 - (a) $d(x,y) \ge 0$,
 - (b) d(x, y) = 0 se, e somente se, x = y.
 - (c) d(x,y) = d(y-x).
 - (d) $d(x,y) \le d(x,z) + d(z,y)$
- 40. Encontre um produto interno sobre \mathbb{R}^2 tal que $\langle (1,0), (0,1) \rangle = 2$.
- 41. Seja V um espaço vetorial real normado tal que para qualquer $x, y \in V$ se satisfaz $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$. Mostre que $f: V \times V \to \mathbb{R}$ dado por $2f(x,y) = ||x+y||^2 2||x||^2 2||y||^2$ é um produto interno de V que induz a norma $||\cdot||$.
- 42. Seja $T: V \to V$ um operador linear sobre o espaço vetorial V munido de um produto interno <,>. Mostre que se ||Tv||=||v|| para qualquer $v \in V$, então < Tv, T, w> = < v, w>, para qualquer $x, w \in V$.
- 43. Seja V um espaço vetorial munido do produto interior <,>. Demonstrar que se $x,y\in V,$ x=y se, e somente se < x,z>=< y,z> para qualquer $z\in V.$
- 44. Seja $V = M_{n \times n}(\mathbb{C})$ o espaço das matrizes quadradas de tamanho $n \times n$ com entradas complexas. Considere o produto interno dado por $\langle A, B \rangle = Tr(AB^*)$.
 - (a) Mostre que <, > acima é um produto inteno.
 - (b) Determine o complemento ortogonal das matrizes diagonais.
- 45. Considere $V = \mathbb{R}_3[x]$ o espaço dos polinomios com entradas reais de grau menor ou igual a 3 munido do produto interno $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$.
 - (a) Determine o complemento ortogonal dos polinomios escalares (constantes ou \mathbb{R}).
 - (b) Determine uma base ortogonal de V a partir da base $\{1, x, x^2, x^3\}$.
- 46. Seja S um subconjunto não-vazio de um espaço vetorial V com produto interno. Mostre que $(S^{\perp})^{\perp}$ contem o subespaço gerado por S. Quando V tem dimensão finita mostre que $(S^{\perp})^{\perp} = Span S$.
- 47. Seja $V = \mathcal{C}_0([-1,1], \mathbb{R})$ o espaço das funciones continuas definidas no intervalo [-1,1] com valores em \mathbb{R} , considere o produto interno

$$\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt.$$

Seja Wo subespaço vetorial das funções impares, isto é, as funções que satisfazen f(-t) = -f(t). Determine o complemento ortogonal de W.

48. Seja A uma matriz $n \times n$ com entradas em \mathbb{R} . Definimos Lin(A) como o espaço vetorial gerado pelas linhas de A, Col(A) o espaço vetorial gerado pelas colunas de A e $Nul(A) = \{x \in \mathbb{R}^n : Ax = 0\}$. Mostre que $(Lin(A))^{\perp} = Nul(A)$ e $(Col(A))^{\perp} = Nul(A^T)$.

- 49. Sejam V um espaço vetorial de dimensão finita com produto interno, $S = \{v_1, \ldots, v_n\}$ é uma base ortonormal para V, T um operador linear sobre V e $A = [T]_S$. Prove que $a_{ij} = \langle Tv_j, v_i \rangle$.
- 50. Considere $\beta = \{(1,0,1), (1,0,-1), (0,3,4)\}$ uma base de \mathbb{R}^3 . Construa uma base ortonormal para \mathbb{R}^3 munido do produto interno usual.
- 51. Seja V um espaço vetorial sobre K de dimensão finita munido do produto interno <,>. Suponha $T:V\to V$ um operador linerar tal que $T^2=T$. Mostre que $T=T^*$ se, e somente se $TT^*=T^*T$.
- 52. Seja $T:V\to V$ um operador linear sobre o espaço vetorial V de dimensão finita sobre o corpo dos números complexos, munido de um produto interno. Mostre que
 - (a) $[T]_{\beta}^* = [T^*]_{\beta}$, onde β é uma base ortogonal de V.
 - (b) $\langle Tx, y \rangle = \langle x, T^*y \rangle$ para todo $x, y \in V$.
 - (c) $T^*(V) = (ker T)^{\perp}$.
- 53. Seja $V = \mathbb{C}^2$ munido com o produto interno canónico. Seja T o operador definido por T(1,0) = (1,-2) e T(0,1) = (i,-1). Determine T^* .
- 54. Seja $V = \mathbb{C}^3$ munido com o produto interno canónico. Considere T o operador linear sobre V cuja matriz associada em relação à base canónica é dada por $A_{ij} = (i)^{\hat{i}+j}$. Determine uma base para o $\ker T^*$ e para $\operatorname{Im} T^*$.
- 55. Sejam V um espaço vetorial de dimensão finita com produto interno e T um operador linear sobre V. Se T é invertivél, então $(T^{-1})^* = (T^*)^{-1}$
- 56. Seja $V = \mathbb{R}_3[x]$ com o produto interno $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$ e D o operador derivação sobre V. Ache D^* .
- 57. Sejam $V = M_{2\times 2}(\mathbb{R})$ munido do produto interno $A.B >= Tr(B^*A)$ e $M \in V$. Se $T: V \to V$ é definido por T(A) = MA MA. para $A \in V$. Ache T^* .
- 58. Sejam $V = M_{n \times n}(K)$ o espaço vetorial das matrizes quadradas sobre o corpo K e $n \in \mathbb{Z}^+$. Mostre que
 - (a) $(P^{-1}AP)^n = (P^{-1})A^nP$, para todo $n \in \mathbb{N}$, $A \in V$, sendo P qualquer matriz invertível.
 - (b) Seja $f(x) = a_0 + a_1 x + \dots + a_n x^n \in K[x]$ então $f(P^{-1}AP) = P^{-1}f(A)P$, onde $P \in V$ invertível.
- 59. Seja W um subespaço de dimensão finita de um espaço vetorial V com produto interno. Consideremos P a projeção ortogonal de V sobre W. Mostre que $\langle Px, y \rangle = \langle x, Py \rangle$ para todo $x, y \in V$.
- 60. Seja V um K-espaço vetorial com produto interno. Para $v, w \in V$, define-se $T \in \mathcal{L}(V, V)$ por $T_{v,w}(u) = \langle u, w \rangle v$. Mostre
 - (a) $(T_{v,w})^* = T_{w,v}$.
 - (b) $T_{v,w}T_{x,y} = T_{v,< w,x>y}$.
 - (c) Se V tem dimensão finita, então $Tr(T_{v,w}) = \langle v, w \rangle$?