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ABSTRACT: We study active set methods for optimization problems in Block Angular
Form (BAF). We begin by reviewing some standard basis factorizations, including Saun-
ders’ orthogonal factorization and updates for the simplex method that do not impose any
restriction on the pivot sequence and maintain the basis factorization structured in BAF
throughout the algorithm. We then suggest orthogonal factorization and updating proce-
dures that allow coarse grain parallelization, pivot updates local to the affected blocks, and
independent block reinversion. A simple parallel environment appropriate to the descrip-
tion and complexity analysis of these procedures is defined in Section 5. The factorization
and updating procedures are presented in Sections 6 and 7. Our update procedure out-
performs conventional updating procedures even in a purely sequential environment.

RESUMO: METODO DE CONJUNTO ATIVO PARA PROBLEMAS EM FORMA
ANGULAR DE BLOCOS. Fatorizacoes bésicas sdo revistas, incluindo a fatorizacdo ortog-
onal de Saunders. Sugerem-se entao fatorizacoes ortogonais e procedimentos de atualizagao
em ambiente de paralelismo.
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1. ACTIVE SET METHODS

Consider the linear program
LP :min{fz:z >0 and Az =d}.

If A is m x n, a (nondegenerate) vertex of the feasible region has n — m active inequalities
constraints, i.e. n — m variables are set to 0. These are the residual variables for that
vertex. Permuting the vector x to separate its basic, i.e. nonzero, and residual entries, and
partitioning f and A accordingly, we can write LP as:

min [f* 7] {”’b] ,z>0]| [BR) {’b} =
x T
Using the basis inverse, B~!, we can isolate the basic variables of this vertex
2 =d— Rz"=B~'d— B7'Rz",
and the value of the objective function at this vertex is
p=C(—z22" = fod+ (f7 - fPR)z".

If we make a single element of z" positive, z] > 0. the value of zb, the basic solution,

becomes
b 5 B3 5
z’=d—-Rz" =d—1}R.

and remains feasible if nonnegative. This suggests the simplez method for going from a
feasible vertex to a better feasible vertex. In one step of the simplex we:

o Look for a residual index j such that z; < 0.

e Compute ¢ = Argminkmjypo {dk/Rx;}-

e Make variable z basic, and xz? residual.

e Compute the new basis inverse.

The simplex method cannot proceed if z > 0 in the first step, or if it takes the minimum
of an empty set in the second step. The second case corresponds to an unbounded LP,
and in the first case the current vertex is an optimal solution. Swapping the basic/residual
status of a pair of variables is called (to) pivet. At every pivot we have to update R, i.e.

recompute the fundamental basis [I — 1.2‘] of the null space of [R B]. Historically the
first version of the simplex algorithm, the tableaux simplex, did exactly that, updating
the tableaux matrix [I R J] at every pivot. But we really do not need to carry the

fundamental null space basis explicitly. It suffices to have a factorization of B that allows
us to compute the one column of R, i.e. the one fundamental feasible direction that we
need at every iteration: see [46]. This is the revised simplex method of [13].

We can generalize this simple strategy to problems with nonlinear objective functions,
see [3] and [29], or even to problems with nonlinear constraints, see [31] and [8]. These
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are called active set methods (ASMs) and they all need, in explicit or implicit form, the
fundamental null space basis of [R B]. The best form in which to maintain and update
the fundamental null space basis is highly dependent on the form and structure of the
problem. In this paper we examine this question for problems whose constraint matrix, A4,
is in column block angular form. Minor variations of all our considerations and algorithms
apply to problems in row block angular form.

2. THE COLUMN BLOCK ANGULAR FORM

Optimization problems in BAF are very common in practice, like multiperiod con-
trol, scenario investment planning, stochastic programming, truss or circuit optimization,
economic stabilization, etc. [2], [15], [19]. [26]. [27], [30], [38], [39], and [43].

A matrix in CBAF is a block matrix A, with b x (b + 1) blocks, A%}, 1 < k < b,
1 <1< b+1, where only the diagonal blocks, D*¥ = A% and the (column) angular blocks,
EF = Ak b“, contain nonzero elements (NZE's). Block D* has dimension m(k) x na(k),
and block E* has dimension m(k) x na(b+ 1).

We define the concatenations, shown in Figure 1,

A= [R5 AP for1<k<b+1
AR = [ARY AR for 1 <k < b.

The element in row i and column j of the matrix D is D 4 J, and D’c and Df,]‘ are,

respectively, the block’s ith row and jth column. In the same way, A:;c and Af: are the

jth column and the ith row of A** and A**. respectively.

In an ASM we always have a special square and nonsingular matrix of columns of A,
the basis B. The nonbasic columns of A form the residual matrix, R. We always assume
that the CBAF structure is maintained in B and R, as illustrated in Figure 1. If the kth
diagonal block of B, B¥, has n(k) columns of D¥*, and the kth diagonal block of R has the
remaining da(k) = na(k) —n(k), we define bp*(1...n(k)) and rp¥(1...da(k)) as the basic
and residual column indices of DX, in the order they appear, respectively, in B* and in the
kth diagonal block of R. So bp* and rp*, for 1 < k < b+1, are a compete characterization
of B and R: The diagonal blocks of the basis are B¥ = DF(:,bp*(1 : n(k))) and the
corresponding angular blocks of the basis are C* = E*(:, bpT1(1 : n(b+ 1))) In the same
way, the diagonal and angular blocks of the residual matrix are D*(:,rp¥(1 : da(k))) and
EF(:,rp**t1(1 : da(b+ 1))). In the last equations the colon (:) is to be interpreted as an
index range operator, 1 : n=[1.2,... .n]. and if A is m x n, A(:,:) = A(1:m,1:n) [12].

We define d(k) = m(k) — n(k). and since we assumed B to be nonsingular, d(k) > 0.
Also, since B is square, n(b+ 1) Zl d(k).

3. BASIS FACTORIZATIONS

The basic numerical operation in an ASM is to compute and update the inverse, or
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Figure 1. The Column Block Angular Form.

a factorization, of the current basis B. The factorization most commonly used is the
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Gaussian, LU = B, that allows us to easily compute B~z = U~}(L~'z), from the lower
and upper triangular factors L and U. In fact, we usually have the LU factorization of
QBP, where Q and P are (row and column) permutation matrices. We need or can use
the permutations @ and P in order to:

e Maintain numerical stability.

e Preserve factors’ sparsity.

e Preserve factors’ structure.

Our main goal in this paper is to preserve the block structure in the factorization.
We want to use the CBAF structure to parallelize independent “block operations” in our
algorithms, as explained in the next sections. Preserving structure is also a first step to
preserve sparsity, i.e., structure can be seen as a block scale or “macroscopic” sparsity:
see [5] and [25]. Structure and sparsity are aspects of a combinatorial nature, whereas
stability is an analytical one. Not surprisingly, the criteria for choosing P and @ that
would optimize the combinatorial and the analytical properties of the factorization are
conflicting. Let us examine this point more carefully:

In order to preserve the CBAF structure in the factorization, we shall restrict the
choice of P, allowing column permutations only within each diagonal block, or within the
angular columns, refer to Figure 1. So doing we can implicitly give the permutation P by
the vectors bpF, rp¥, 1 < k < b+ 1, as they are defined in Section 2.

The row permutation @ will now divide each diagonal block in two:

e an upper square block, chosen to be nonsingular, to be factored.
e a lower rectangular block. of dimension d(k) x n(k).

As the ASM progresses, we have to pivot, i.e. we have to replace a column of B by
a column of R, and then update the factorization. If we could guarantee that, at each
diagonal block, the upper block remains nonsingular; then it would be easy to do these
updates preserving the CBAF structure of the factors. Unfortunately, no such guarantee
exists. In fact, in order to achieve numerical stability, we will need to permute upper and
lower rows: see [20] and [44].

These permutations between upper and lower rows, in successive updates, lead to
a degeneration of the CBAF structure in the factorization. Some strategies have been
suggested to preserve block angular structures in the LU factorization, see [5] and [45],
and they all have to forbid this type of permutations. Some remedies are suggested to
preserve stability, nevertheless, some pivots cannot be handled. This is very inconvenient
for, as explained in Section 1, we want the pivot sequence to be determined by the ASM,
and have nothing to do with the details of how we are carrying the implicit fundamental
null space basis of [R B].

4. THE ORTHOGONAL FACTORIZATION

In order to preserve the CBAF structure of B in the factorization, we will use the
orthogonal factorization QU = B, where Q is orthogonal and U upper triangular. The
orthogonal factorization of B is uniquely defined, up to a choice of signs [24]. Furthermore
a permutation matrix, P, is itself orthogonal. So the upper triangular factor, U, in the
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orthogonal factorization QU = PB or (P'Q)U = QU = B must be independent of the
row permutation.

Once we have the QU factorization of B, only the U factor needs to be stored. What
we need is a factorization of the inverse, and instead of using

B—l — U—th

we can use

Qt - U—tBt

and
B =00

Now, since (QU)!QU = U'Q'QU = U'U = B'B, we can also compute U by the
Cholesky factorization of the symmetric matrix B*B. So the orthogonal factor, ), never
has to be explicitly computed: see [22].

We can see that U is itself in CBAF, with b n(k) x n(k) upper triangular diagonal
blocks, V¥, b corresponding n(k) x n(b + 1) rectangular angular blocks, W*, and the final
south-east n(b + 1) x n(b+ 1) triangular block, S.

Bodewig has already considered the idea of symetrizing a matrix in order to solve a
linear system, i.e. solve B!Bz = B'd instead of Bz = d. in order to get a more stable
procedure that is independent of the row permutation, [7]. For the same reasons Saunders
considered the use of the QU factorization in the simplex method, and observed that the
B = LQ factorization would preserve the block angular structure of problems in row block
angular form, [40].

5. BLOCK OPERATIONS

In this and the next sections we derive some procedures to compute and update the
Cholesky factor, U, for bases in CBAF using only a few simple block operations. Moreover
our procedures allow many of these block operations to be performed in parallel. Our
procedures have better complexity bounds than factorizations and updates that do not
explicitly use the block structure of the basis, as [22]. [24] or [40]. Our update procedure
will give us much better bounds even in a purely sequential environment.

Let us consider an efficient direct block QR factorization, procedure bgr() illustrated in
Figure 2, that takes advantage of the CBAF structure of B. in order to parallelize several
steps in the basis’ factorization:

1. Compute (in parallel) the QU factorizations of the b diagonal blocks,

Vk
| =@
2. Apply (in parallel) the orthogonal transformations to the angular blocks, com-

puting
[Wk: Zk] = (Qk)tck
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Figure 2. The QR Factorization.
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3. Form and factor the “south-east” block Z, i.e.,

Zl
S=(@"Yz, Z=|":
Zb
As we can see, almost all the work in bgr() consists of the repetitive application of some
simple block matrix operations. In order to take advantage of this block modularity in the
procedures presented in the next sections, we now define a few simple “block operations”.
A detailed analysis of each one of the basic block operations we need, and the number of

floating point operations (FLOPs) they require, can be found in [24]:
1. Compute the partial Cholesky factorization, eliminating the first n columns of the

block matrix
F G
Gt 0

Vv W
0 Z
where F' = F' is n x n, and G is n x I. This requires (1/6)n3 + (1/2)n?l +

(1/2)ni? + O(n? + 1?) FLOPs.
2. Compute the partial back transformation, i.e. u, in

v w1l [u'] _ [y
o I w2l | y?
where V is n x n upper triangular and W is n x I, 0 and I are the zero and the
identity matrices, and u and y are column vectors. This requires (1/2)n? +nl +
O(n+ 1) FLOPs.
3. Reduce to upper triangular form an upper Hessenberg matrix, i.e., apply a se-

quence of Givens rotations to the row pairs {1,2},{2,3},...{n — 1,n} of the
block matrix

to get

Vv wi

where V is n x n upper Hessenberg, and W is n x [, in order to reduce V' to upper
triangular. This requires 2n% + 4nl + O(n? + 1?) FLOPs.

4. Reduce to upper triangular form a column—upper triangular block matrix, i.e.,
apply a sequence of Givens rotations to the row pairs {n,n—-1}{n-1,n -
2},...{2,1} of the block matrix

[v V]
where u is an n X 1 column vector, and V is n x n upper triangular, in order to

reduce u to a single NZE in the first row, so transforming V from triangular to
upper Hessenberg. This requires 2n? + O(n) FLOPs.
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In the block QR factorization, many of the block operations we have to execute are
independent. Therefore, the block angular structure gives us not only the possibility of
preserving sparsity, but also gives us the opportunity to perform several independent block
operations in parallel. In order to study the advantages of parallelizing the independent
block operations required in our procedures we define a simple parallel computer. In our
parallel complexity analysis we use a network environment, consisting of b+ 1 nodes, every
node having a processor (CPU) and local memory. For k = 1...b, we allocate the blocks
of matrices A and U to specific nodes, as follows:

e The blocks D* E*, V¥ and W* are allocated at node k.
 The south-east blocks Z and S are allocated at node 0 (or b+ 1).
In the next sections we will express our complexity bounds in terms of the sum and

the maximal block dimensions:
b

dbsum = Z m(k)

1
dbmaz = max{m(1).... ,m(b),n(b+1)}.

In our complexity analysis we will not only account for the processing time measured
in FLOP-time units, pTime, but also for the necessary internode communication, INC.
When b block operations, bop®...bop", can proceed in parallel (at different nodes), we
bound their processing time by A% flops(bop*) = flops(bop') A ... A flops(bop®), where
A is the maximum operator, and flops(bop®) is the number of floating point operations
necessary at bop®. In the equations that follow. A has lower precedence then any multi-
plicative or additive operator. The expressions “At node k=1:b compute” or “From node
k=1:b send” mean, “At (from) all the nodes 1 < k < b, in parallel, compute (send)”. In
the complexity upper bounds we give in the next sections, we will always neglect lower
order terms.

6. BLOCK CHOLESKY FACTORIZATION

We can take advantage of the CBAF of B in order do the Cholesky factorization of
B!B with better performance, and parallelizing several block operations. We now give an
algorithmic description of the block Cholesky factorization, beh(), in the simple parallel
environment defined in Section 5. At each step we indicate by pTime = ... an upper
bound to the required processing time, in FLOP units, and by INC = ... an upper bound
to the required internode comunication. As shown in Figure 3, the steps of bch() are as
follows:

1. At node k=1:b compute the blocks (B¥)!B*, (B*)!C*, and (C*)tC*.
pTime = m(k)n(k)? + m(k)n(k)n(b+ 1) + m(k)n(b+ 1)? < 3dbmaz®, INC = 0.

2. Send (C*)!C* from node k to node 0, where we accumulate Z0 = PH (o KoL
pTime =bn(b+1)* < bdbmaz? , INC = b n(b+ 1)? < b dbmaz?

3. At node k compute the partial Cholesky factorization, eliminating the first n(k)
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columns, of the block matrix

(Bk)tBk (Bk)tck
{ (Ck)tBk 0 }

to get
vE wk
o =]
pTime = (1/6)n(k)® + (1/2)n(k)*n(b + 1) + (1/2)n(k)n(b + 1)? < (7/6)dbmaz?,
INC =0.
4. Send Z* from node k to node 0 where we accumulate Z = Zg g,
pTime = b n(b+ 1)? < b dbmaz?. INC = b n(b+ 1)? < b dbmaz?.
5. At node 0 factor the south-east corner S = chol(Z), where chol() indicates the

standard Cholesky factorization.
pTime = (1/6)n(b+ 1)® < (1/6)dbmaz®, INC = 0.

Theorem 6.1. The block Cholesky factorization, bch(), requires mo more than (4 +
1/3)dbmaz® + b dbmaz? processing time, and b dbmaz? internode communication.

At Steps 2 and 4, if the the network allows parallel internode communications, and
the topology of the network is rich enough. we can “fan in” the accumulated matrices in
only log(b) phases, see [6] and [10]. Each phase requires ~ b/2' parallel and independent
tasks, where at each task we transmit and add dbmaz? reals. With this interpretation in
mind we can, in Theorem 6.1, substitute b by log(b) .

7. BLOCK UPDATE PROCEDURE

We now address the problem of updating the QU factorization of the basis when a
basic column, namely the outj column of the outk block of B, gets “out” of the basis, and
the inj column of the ink block of R. a. comes “in” to the basis. Actually, as explained
in Section 3, we only really need to maintain the triangular factor, U. Therefore we want
an update procedure that recomputes U after a pivot. There are intuitive reasons for us
to hope for an efficient update procedure:

e A pivot can be seen as two rank one modifications of B, namely we delete a
column and then add a column to B. There are several procedures to update the
QU factorization of B in this cases, like [22], [24] or [40]. Therefore we could use
a generic “delete column, add column” two step update procedure, even without
taking into consideration the block structure of B.

o We know, from Section 4, that the (block) structure of U is uniquely defined by
the structure of B. Also, deleting a column from one block of B and adding
a column to a second block, results in a “small” structural change, in B or U.
Therefore there ought to be an efficient way to update the factor U after a pivot.
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Let us now present the block update procedure, bup(), that explicitly uses the column
block angular structure of B, in order to achieve a much better performance than a generic
rank one update. The block update procedure is described in terms of the block operations
defined in Section 5. In bup() we consider five different cases:

Case L. ink # outk, ink#b+1, outk#b+1.
Case II. ink = outk, ink #b+1.

Case IIL. ink #b+1, outk=b+1.

Case IV.ink=b+1, outk#b+1.

Case V. ink = outk, ink=b+1.

Let us examine in detail case I, i.e., when ink and outk are distinct diagonal blocks,
as shown in Figure 4. In this case the only NZEs in the outgoing column are in Buk . =
Deutk(: bp°utk(outj)) and the only NZEs in the incoming column, a , are in o™ =
Dk (: rpmk (inj)), see Figure 1.

Let us define y = Bta, and u = Q*a = U~*B'a = U~*y. We notice that vector y has
the block structure of a row in the ink block of B, and so does vector u. Namely the only
NZEs on u are in the blocks u"* and u*!,

wink _ yink  pink =t ymk
ubt! 0 S Taaiell I8
e, outk

In order to update U we remove the outj column of the outk block, U’z s
u as the last column of U**, Then we only have to reduce U to an upper triangular
matrix, by means of orthogonal transformations. The only orthogonal transformations we
use are permutations and the reductions by Givens rotations defined is Section 5. Namely
we:

and insert

e Reduce [Voutk W‘"‘““] from upper Hessenberg to upper triangular.

e Reduce [u’*! S] to upper triangular.

e Tnsert the first row of UPT1*, as the the last row of U"**. Then insert the last
row of U4tk as the first row of U+1:*.

e Reduce S from upper Hessenberg to upper triangular.

The other cases are very similar. We now give an algorithmic description of the block
update procedure, bup(), in the simple parallel environment defined in Section 5. The steps
of bup() are permutations, or the basic block operations defined in Section 5. At each step
we indicate by pTime = ... an upper bound to the required processing time, in FLOP
units, and by INC = ... an upper bound to the required internode communication.

These are the steps for case I:
1. At node ink, compute y"™* = (Bi"*)tai"* and y**! = (% g i e
pTime = m(ink)n(ink) + m(ink)n(b+1) < 2dbmaz?, INC = 0.
2. At node ink, compute the partial back transformation

uink _ Vink Wink =& yz‘nk
z 0 I yb+1 .
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Figure 4. The Block Update Procedure, Case L

Then insert u"** as the last column of Vi,

pTime = (1/2)n(ink)? + n(ink)n(b + 1) < (3/2)dbmaz?, INC = 0.

3. From node ink send z to node 0.



212 J. M. STERN AND S. A. VAVASIS

pTime = 0, INC = n(b+1) < dbmaz.
4. At node 0 compute ub™! = S~z
pTime = (1/2)n(b+1)? < (1/2)dbmaz?, INC = 0.
5. (a) At node outk, remove the column Voutk  from VouF. Then reduce
[yt Weutk] from upper Hessenberg to upper triangular.
(b) At node 0, reduce [ub‘H S] to upper triangular.
Observe that the block operations at steps 5a and 5b are independent, so
pTime = 2n(ink)? + 4n(ink)n(b+ 1) A 2n(b +1)? < 6dbmaz?, INC = 0.
6. From node 0 send vector S to node ink, where it is inserted as the last row
of Wik From node 0 send element ul™! to node ink, where it is inserted as
ut

U:;,T(Liknk)—l»l,n(ink)-f—l' From node outk send vector ¥ 73(05&),- to node 0, where it is

inserted as the first row of S.
pTime =0 , INC = 2n(b + 1) + n(outk) < 3dbmaz.

7. At node 0, reduce S from upper Hessenberg to upper triangular.
pTime = 2n(b+1)? < 2dbmaz® , INC =0.

These are the steps for case II:
Steps 1-5 are exactly as in case I

6. (a) From node ink send Vrf’("“i’;k)’n(mk) and H",i?iknk)_. to node 0.

(b) At node 0 reduce to upper triangular the 2 x n(b+ 1) + 1 matrix

ink rink
[Vn?’ink),n(ink) I/vn(mk).o]
UI;+1 Sl.o
pTime = 4n(b+ 1) < 4dbmaz , INC =n(b+1) < dbmaz.
7. (a) From node 0 send the modified vector

ink 7i
[Vri?ink),n(ink) H/n'(li’::k?.o]

back to node ink.
(b) At node 0, reduce S from upper Hessenberg to upper triangular.
pTime = 2n(b + 1)? < 2dbmaz?® , INC =n(b+ 1) < dbmaz.
These are the steps of case III:
Steps 1-4 are exactly as in case L

5. (a) At node k = 1: b remove the column WE u1; from wk.
(b) At node 0 reduce [ub“ S] to upper triangular. Then remove Se out; from S.
pTime = 2n(b + 1) < 2dbmaz®, INC = 0.

6. From node 0 send to node ink, u*? to be inserted in Vink as Vi@’;k)ﬂ,n(mk)ﬂ,
and S; . to be inserted as the last row of wink,
pTime =0, INC = n(b+ 1) < dbmaz.

7. At node 0, reduce S from upper Hessenberg to upper triangular.
pTime = 2n(b+ 1)? < 2dbmaz?, INC = 0.
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Figure 5. The Block Update Procedure, Case II and III.

These are the steps of case IV:
1. At node k=1:b, compute y* = (B¥)*a* and z* = (C*)ta*.
pTime = AY m(k)n(ink) + m(k)n(b+ 1) < 2dbmaz?, INC = 0.
2. At node k=1:b, compute the partial back transformation

HEIN

and insert u* as the last column of W*.
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pTime = A% (1/2)n(k)? + n(k)n(b+ 1) < (3/2)dbmaz?, INC =0.

From node k=1:b send z*F to node 0, where we accumulate z = Zl

pTime = b n(b+1) < b dbmaz, INC =b n(b+1) < b dbmaz.

At node 0 compute ut! = $7%z, and insert u**! as the last column of S.
pTime = (1/2)n(b+1)2 < (1/2)dbmow:2 INC =0.

Remove the column V4% from veutk and reduce [VoUutt Wout*] to upper
triangular.

pTime = 2n(outk)2 + 4n(outk)n(b + 1) < 6dbmaz®, INC = 0.

Send vector an‘ouk) , from node outk to node 0, where we insert it as the first
row of S, and reduce S to upper triangular.

pTime = 2n(b+ 1)? < 2dbmaz?, INC = n(b+1) < dbmaz.

These are the steps of case V:
Steps 1-4 are exactly as in case IV.

5.

6.

from Weut* and insert u* as the last
b+1

At node k=1:b, remove the column Wk -
column of W¥. At node 0 remove the column S, 5y:; from S, and insert u
the last column of S.

pTime =0, INC = 0.

At node 0, reduce S from upper Hessenberg to upper triangular.

pTime = 2n(b + 1)? < 2dbmaz?, INC = 0.

as

We summarize the complexity of bup() in the following theorem:

Theorem T7.1. In the block update procedure, bup(), neglecting lower order terms, we have
the following upper bounds for the required processing time and internode communication:

Case Processing Times Internode Communication
I 12dbmax? 3dbmazx
I 12dbmaz? 3dbmazx
I 8dbmaz? 2dbmazx
1A% 12dbmaz? + b dbmazx b dbmazx
v 6dbmaz?® + b dbmaz b dbmazx

As in Theorem 6.1, if the network allows parallel internode communication, we can
substitute b by log(b) in our complexity expressions.
In light of Theorem 2, and the previous sections, we can compare bup() with other
basis factorization and update techniques:
e In the standard LU factorization updates used in ASMs, the original factorization

B = LU is replaced, after s pivots, by a sequence B = LL*L?... L*U?®, see [1],

[31], [41], and [42], where L* is lower triangular with a single nontrivial column

So the LU factorization is maintained as a product sequence with an increasing
number of factors. In our case we would also have the progressive degrading of
the CBAF structure in U®, as explained in Section 3. That makes it undesirable
to continue to update the factorization for large values of s, even in the absence
of numerical errors. Instead we would frequently start a fresh factorization, i.e.



ACTIVE SET METHODS 215

Figure 6. The Block Update Procedure, Case IV and V.

“reinvert” the Basis. In contrast, the QU factorization maintains the CBAF
structure of B, and the factorization is given by a single matrix, U, instead of
the product sequence in the LU factorization. Moreover we know that the QU
factorization has much better numerical stability then the LU factorization: see
[24] and [28].

* A generic delete-column add-column QU update as [22], [24] or [40], would require
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O(dbsum?) time. Even using sparse data structures for the matrices involved, the
generic updates require the rotation of all rows of U, so they would still require
O(dbsum dbmaz) processing time in all the 5 pivot cases. Moreover those dbsum
rotations have to be done sequentially. The careful use of the CBAF structure of
B by bup(), gives us the much better bounds of ‘Theorem 2. From computational
experience with ASMs for large block angular problems, we know that in real
application problems, most of the updates will be of case II, i.e. ink = outk,
ink # b+ 1, see [34] and [14], where bup() requires only O(dbmaz?) time, even in
a purely sequential environment!

From the above we can expect the bup() to outperform the standard LU and QU
updating techniques, specially if dbsum > dbmaz and s > dbmaxz, i.e., when the basis is
much larger than its larger block, and we have to pivot many more times than there are
columns in a single block.

When pivoting, by putting the entering column at the end of its block, we are imposing
a particular column permutation on B. We prefer this fixed column ordering strategy for
its small overhead and simplicity of the subsequent Hessenberg updates. It is however
possible to consider more elaborate column ordering strategies at updates and reinversions
[11], [21].

8. REINVERSIONS

In any ASM, after a given number of pivots, the accumulation of errors in the up-
dates forces us to “reinvert” the basis, i.e. recompute the Cholesky factor U directly from
B. From Section 7 we know that most of the factorization work consists of independent
factorizations of the diagonal blocks B¥. Moreover. it is a well known fact that in ASMs
for problems in CBAF, the basis pivots frequently replace a column from one block by
a column from the same block, i.e. usually ink = outk, see [34] and [14]. Therefore, we
will probably have some blocks that have been updated more times, and have accumu-
lated larger errors then others. When reinverting we can take advantage of these facts by
checking the accuracy of each diagonal block factorization, (UK)tU* = (B*)*B*, and only
reinvert the diagonal blocks that have accumulated large errors. Of course, we always have
to reinvert the final south-east block Z.

Before a reinversion, we should address the question of how to order the columns of
the basis B. As explained in Section 4, the orthogonal factorization of a row and column
permutation of B, QBP, is independent of the row permutation, Q. But we can still take
advantage of the column permutation, P, in order to preserve sparsity. As mentioned
above, at each reinversion, only a few blocks of the basis may need a fresh refactorization.
Therefore we do not want to pay the time to run a column ordering algorithm for each
individual block B¥ to be reinverted. This situation is studied in [40]: At the beginning of
the simplex, we order the columns of each rectangular block, A* k= 1...b, into a “near
upper triangular form” (NUTF), and then at each reinversion, order the columns in B¥ as
they are ordered in A* [33].
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9. NUMERICAL EXPERIMENTS

In this section we compare the performance of the simplex algorithm, using the LU or
the QR factorization, when solving linear programs in CBAF. Our test problems have the
structure of the b—scenarios investment problems, like the example we gave is Section 1.
Our test problems have diagonal blocks of dimension dbmaz X 2 dbmaz, b angular columns,
plus an embedded identity matrix. In order to have a large set of test problems, we use
random numbers to generate (admissible) numerical values to the NZEs. The simplex
always begins at the identity basis which. from the way the problem is formulated, gives
us a feasible vertex.

In the following, gr-simplex is an implementation of the simplex algorithm using the
QR factorization and updates, as described in the previous sections, and lu-simplex is
an implementation of the simplex algorithm using a sparse LU factorization and rank one
updates [1]. The two algorithms were implemented in different environments, so we can not
directly compare runing times, nor do we have direct access to a FLOPs counter. However
the runing time of both algorithms is dominated by the back solves of the form Bz = d,
where B is the current basis, using the available factorization of B. But the number of
FLOPs necessary for those back solves is essentially proportional to the number of NZEs
in the factors. Therefore we will use the fill in the basis factors as an indirect measure of
the cost, in FLOPs or runing time, of a step in the simplex. Our analysis will not take
into account all the parallelism intrinsic to the gr-simplex. Even so, in a purely sequential
environment, the gr-simplex seems to be a better alternative to the standard lu-simplex.

In the gr-simplex we only carry the upper triangular Cholesky factor R = Q'B. So
we only monitor the number of NZEs in R. p = nze(R). In the lu-simplex we carry the
upper triangular factor U, the initial lower triangular factor, L, and a sequence of rank
one updates, L', L%, ..., L°P, where cup is the number of times we updated the basis.
Each rank one update is a lower triangular matrix that only differs from the identity at
one column. We keep the nontrivial columns of these rank-one transformations sequence
in a dbsum X cup matrix, LSEQ, where dbsum = b dbmax. Since our starting basis is
the identity, the initial lower triangular factor is trivial, and we only monitor v = nze(U),
A =nze(LSEQ), and the total fill 7 = v + A

Before we analyze statistical data, let us examine in detail a small example. In this
example we have dbmaz = 6 and b = 3. Each row in Table 1 (next page) is one pivot step.
The columns in Table 1 are as follows. Column 6 is the value of the objective function.
Column 2 is the fill in the Cholesky factor, p. Column 3, 4 and 5 are the fillin U, in LSEQ,
and the total, i.e., v, A, and 7. Column 7 is the pivot’s “case”, as defined in Section 7.
Column 1 is the order in which the vertex was visited by the simplex.

In Figure 7 we plot columns 2, 3, 4 and 5 of Table 1, p, v, A and 7, versus the pivot
sequence order in column 1. The values in these four columns are plotted, respectively,
with a solid line, a dashed line, a dotted line, and a dash-dotted line.
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Table 1. Vertex sequence of the example in Figure 7.

Pivot p v A 7 Cost Funct. Case
0 18 18 O 18 100.0000
1 35 3 0 35 87.4386 4
2 40 39 1 40 76.7990 2
3 45 43 2 45 56.3810 2
4 49 48 4 52 47.4169 3
5 65 62 7 69 39.1938 4
6 69 65 12 77 36.1511 2
7 76 67 18 85 32.8104 2
8 82 75 24 99 31.6119 2
9 82 77 25 102 26.1915 1
10 67 62 28 90 25.6187 3
11 68 66 28 94 247787 2
12 75 69 34 103 23.9997 2
13 77 71 40 111 21.6801 1
14 80 75 40 115 20.7741 2
15 84 77 47 124 19.7974 2
16 72 74 53 127 19.1210 3
17 71 76 57 133 19.1169 2
18 74 73 64 137 18.4936 2
19 69 81 73 154 17.0904 3
20 68 78 73 151 16.8475 2
21 68 83 82 165 16.7994 2

Let us first compare nze(R) versus nze(U). There are two important effects con-

tributing to fill the upper triangular factor, each favoring one of the factorizations:

1. Let us consider the factorization of M, a 2 x n matrix. In the LU factorization

we add a multiple of the first to the second row, in order to eliminate M(2,1).
After this “elementary row transformation” the sparsity structure of the first row
remains unchanged, and the sparsity structure of the second row becomes the
Boolean sum of the structures of the two rows. In the QR factorization we apply
a Givens rotation to eliminate M(2,1). But now the sparsity pattern of both
rows become the Boolean sum of the sparsity structure of the original rows of
M (except for the eliminated element, of course). From this we can see why
orthogonal transformations tend to produce much more fill than elementary row
transformations, which tends to favor the LU factorization.

. The QR factorization preserves the CBAF structure of B in the Cholesky factor,

R, as extensively analyzed in the previous sections. Therefore the fill in R is
confined to the nontrivial blocks in its CBAF structure. On the other hand, the
LU factorization progressively degenerates the CBAF structure, allowing fill to
occur anywhere in U. That tends to favor the QR factorization.
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We could observe, in our experiments, that the first effect is more important at the
first pivots of the simplex. But as the nontrivial blocks of the Cholesky factor become
denser, there is a saturation of this effect, and the the fill in R stabilizes, or grows very
slowly. The second effect has a cumulative nature, and as the algorithm progresses, it tends
to fill U at increasing rates. We also observe that as the simplex approaches optimality,
the block structure of the basis becomes very well equilibrated, i.e. all diagonal blocks
have approximately the same number of columns; this benefits the gr-simplex, but not
necessarily the lu-simplex. In accordance which the comments above, we usually observe a
sparser U factor at first steps of the simplex, and a sparser R at the end of the algorithm.
We could also observe that the greater the ratio dbsum/dbmaz, or just b if as in our
test problems the blocks have a constant number of rows, the sooner the second effect
dominates the first.

180 . : — :
160} i -
140} - |
120} e ]
w0 o .

Figure 7. Fill in the factors at the first example in Table 2.

The fill in LSEQ of the lu-simplex is easier to analyze; nze(LSEQ) is a monotonically
increasing function, beginning at zero, but growing always faster. When nze(LSEQ)
becomes larger then nze(U), a basis reinversion is probably due, as explained in Section 8.
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In our test problems that usually happens at the final steps of the algorithm. Moreover,
because the non-identity part of the diagonal blocks in the investment problem are dense,
and because close to optimality many identity columns have been driven out of the basis,
the P3 heuristic applied to a basis at the final steps of the simplex produces almost only
spikes, making the reinversion very expensive. As expected from these reasons, in our test
problems, more frequent reinversions do not improve the runing time of the {u-simplex. For
the reasons above, and in order to simplify the comparative analysis, we reinvert neither
the lu-simplex nor the gr-simplex.

In Table 2 we present ratios for the total fill, p/7, and for the upper triangular fill,
p/v, after 20%, 40%, 60%, 80% and 100% of the pivots, for some test problems. The first
of these problems is the problem at Figure 7, and they all have the same structure, with
dbmaz = 6 and b = 3.

Table 2. Examples with 3 blocks of size 6.
T/p 20% 40% 60% 80% 100%
1.0000 0.8941 0.7282 0.5669 0.4121
1 1.0465 1.1343 1.0870 0.9730 0.8193
2 13 4 2 0
1.0000 1.0000 0.7925 0.8095 0.7727
2 1.0000 1.0465 0.9130 1.0000 1.0000
0 8 2 1 0
0.9825 0.7500 0.5414 0.4804 0.3684
3 1.0370 0.9600 0.8586 0.8687 0.7636
6 9 4 2 0
1.0750 1.0167 0.7922 0.7027 0.6429
4 1.1026 1.1509 1.0339 1.0196 1.0189
1 10 3 1 0
1.0000 0.7375 0.6489 0.5508 0.4966
5 1.0545 0.9672 1.0000 0.9420 0.8902
2 10 4 3 0
1.0000 0.9324 0.8667 0.6364 0.5760
6 1.0196 1.1311 1.1143 0.9844 0.9863
3 7 4 3 0
1.0000 0.9245 0.8590 0.7857 0.7071
7 1.0256 1.0000 1.0308 1.0476 1.0145
3 10 1 0 2
1.0000 0.9273 0.7581 0.8125 0.6864
8 1.0256 1.0625 0.9400 1.0833 1.0000
2 8 3 2 1
1.0000 1.0250 0.8590 0.6404 0.6491
9 1.0256 1.1389 1.1356 0.9344 1.1212
1 6 5 3 1
1.0000 0.9444 0.8148 0.7903 0.7101
10 1.0000 1.0408 1.0000 1.0426 1.0426
0 9 2 1 0
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Table 3 is similar to Table 2, only for larger test problems, with dbmaz =6 and b = 9.

The first problem in Table 3 is the one in Figure 8.

Table 3. Examples with 9 blocks of size 6.

/o 20% 40% 60% 80% 100%

1.0296 0.7903 0.4128 0.3179 0.2650

1 1.1767 1.0692 0.7237 0.5924 0.5619
1 42 10 4 4

0.9297 0.7085 0.4409 0.3148 0.2878

2 1.0620 1.0641 0.8363 0.6706 0.6588
4 32 11 6 3

0.9852 0.8939 0.5500 0.3288 0.2981

3 1.1050 1.1654 0.9747 0.7259 0.6602
15 25 11 7 5

0.8667 0.6829 0.5379 0.3699 0.2538

4 1.0428 0.9894 0.8765 0.7370 0.5651
8 28 13 8 11

0.9866 0.7103 0.3546 0.2887 0.2382

5 1.0889 1.0510 0.6429 0.5869 0.5272
7 31 11 5 4

1.0617 0.9603 0.5714 0.4980 0.4295

6 1.1570 1.2946 0.9947 0.9213 0.8281
2 29 9 5 1

0.9845 0.6675 0.4959 0.3758 0.3284

7 1.0641 0.9509 0.8237 0.7740 0.7696
5 26 13 8 1

0.9731 0.8320 0.6735 0.4325 0.3830

8 1.0824 1.1514 1.1563 0.9463 0.8968
10 27 9 6 6

1.0089 0.8049 0.3984 0.2277 0.1942

9 1.0900 1.1898 0.7297 0.5074 0.4709
7 26 13 7 5

1.0000 0.6098 0.4745 0.3037 0.2495

10 1.1565 0.9336 0.8381 0.6138 0.5482
4 31 14 7 7

Table 4 has even larger problems, with dbmaz = 6 and b = 18. The first problem in
Table 4 is the one in Figure 9.
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Table 4. Examples with 18 blocks of size 6.

T/p 20% 40% 60% 80% 100%

v/p 20% 40% 60% 80% 100%
Case 1 2 3 4 5

0.9564 0.5079 0.3113 0.2681 0.2065

1 1.1573 0.8922 0.6236 0.6014 0.5339
16 62 25 14 11

0.9055 0.4919 0.2310 0.1925 0.1733

2 1.0950 0.9196 0.5169 0.4335 0.4247
6 74 23 12 8

0.9546 0.5223 0.3152 0.1955 0.1571

3 1.1434 09576 0.7011 0.4828 0.4270
35 64 27 15 9

0.9351 0.6436 0.3307 0.2615 0.2094

4 1.0925 1.0121 0.6651 0.5664 0.5139
19 61 28 17 13

0.9195 0.6789 0.2751 0.2122 0.1776

5 1.0462 1.0309 0.6279 0.4845 0.4512
10 57 21 9 12

0.9922 0.5072 0.2816 0.2045 0.1604

6 1.2098 0.9335 0.6482 0.5010 0.4219
23 69 28 16 17

0.8868 0.4192 0.3347 0.3173 0.2928

7 1.0583 0.8081 0.7282 0.7308 0.7053
20 62 20 13 9

0.9822 0.5390 0.2562 0.1858 0.1559

8 1.1156  0.9425 0.6216 0.4157 0.3907
15 71 23 11 7

0.8241 0.3959 0.1683 0.1353 0.1132

9 1.0898 0.7560 0.4140 0.3401 0.3077
16 83 26 14 13

0.9782 0.7064 0.4095 0.2569 0.2374

10 1.1681 1.0203 0.7610 0.5525 0.5600
6 64 19 8 7

After the back solves, the most time consuming operation in a simplex step is the
update of the upper triangular factor. In general this update can be as time-consuming
as a back solve. However we know that for some of the pivot “cases” in the gr-simplex,
namely cases 1, 2 or 3 but not 4 or 5, the gr-update is very inexpensive, involving block
operations local to the blocks receiving or losing a column. We have argued that, in real
problems, most of the pivots should be of case 2. In Tables 2 and 3 the third line for each
test problem gives the number of pivots of each case, confirming this hypothesis.
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Figure 8. Fill in the factors at the first example in Table 3.

The reported numerical experiments had the QR-Simplex implemented in Sparse-
Matlab (Matlab is a trademark of The Mathworks, Inc.). We are currently implementing
the QR-Simplex in C and PV M, a network “Parallel Virtual Machine” process manager
[4]. This implementation, on an heterogeneous Sun SPARCstation network, is intended to
solve large portfolio planning financial problems [19], [43].
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Figure 9. Fill in the factors in the first example in Table 4.
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