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Abstract

Nonnegative matrix approximation (NNMA) is a recent technique for di-
mensionality reduction and data analysis that yields a parts based, sparse
nonnegative representation for nonnegative input data. NNMA has found
a wide variety of applications, including text analysis, document cluster-
ing, face/image recognition, language modeling, speech processing and
many others. Despite these numerous applications, the algorithmic de-
velopment for computing the NNMA factors has been relatively defi-
cient. This paper makes algorithmic progress by modeling and solving
(using multiplicative updates) new generalized NNMA problems that
minimize Bregman divergences between the input matrix and its low-
rank approximation. The multiplicative update formulae inthe pioneer-
ing work by Lee and Seung [11] arise as a special case of our algorithms.
In addition, the paper shows how to use penalty functions forincorporat-
ing constraints other than nonnegativity into the problem.Further, some
interesting extensions to the use of “link” functions for modeling non-
linear relationships are also discussed.

1 Introduction

Nonnegative matrix approximation (NNMA) is a method for dimensionality reduction and
data analysis that has gained favor over the past few years. NNMA has previously been
calledpositive matrix factorization[13] andnonnegative matrix factorization1 [12]. As-
sume thata1, . . . ,aN areN nonnegative input (M -dimensional) vectors. We organize
these vectors as the columns of a nonnegative data matrix

A ,
[

a1 a2 . . . aN

]

.

NNMA seeks a small set ofK nonnegative representative vectorsb1, . . . , bK that can be
nonnegatively (or conically) combined to approximate the input vectorsai. That is,

an ≈
K

∑

k=1

cknbk, 1 ≤ n ≤ N,

1We use the wordapproximationinstead offactorization to emphasize the inexactness of the
process since, the inputA is approximated byBC .



where the combining coefficientsckn are restricted to be nonnegative. Ifckn andbk are
unrestricted, and we minimize

∑

n ‖an−Bcn‖2, the Truncated Singular Value Decompo-
sition (TSVD) ofA yields the optimalbk andckn values. If thebk are unrestricted, but the
coefficient vectorscn are restricted to be indicator vectors, then we obtain the problem of
hard-clustering (See [16, Chapter 8] for related discussion regarding different constraints
oncn andbk).

In this paper we consider problems where all involved matrices are nonnegative. For many
practical problems nonnegativity is a natural requirement. For example, color intensities,
chemical concentrations, frequency counts etc., are all nonnegative entities, and approxi-
mating their measurements by nonnegative representationsleads to greater interpretability.
NNMA has found a significant number of applications, not onlydue to increased inter-
pretability, but also because admitting only nonnegative combinations of thebk leads to
sparse representations.

This paper contributes to the algorithmic advancement of NNMA by generalizing the prob-
lem significantly, and by deriving efficient algorithms based on multiplicative updates for
the generalized problems. The scope of this paper is primarily on generic methods for
NNMA, rather than on specific applications. The multiplicative update formulae in the pi-
oneering work by Lee and Seung [11] arise as a special case of our algorithms, which seek
to minimize Bregman divergences between the nonnegative input A and its approxima-
tion. In addition, we discuss the use penalty functions for incorporating constraints other
than nonnegativity into the problem. Further, we illustrate an interesting extension of our
algorithms for handling non-linear relationships throughthe use of “link” functions.

2 Problems
Given a nonnegative matrixA as input, the classical NNMA problem is to approximate it
by a lower rank nonnegative matrix of the formBC, whereB = [b1, ..., bK ] andC =
[c1, ..., cN ] are themselves nonnegative. That is, we seek the approximation,

A ≈ BC, whereB,C ≥ 0. (2.1)

We judge the goodness of the approximation in (2.1) by using ageneral class of distortion
measures calledBregman divergences. For any strictly convex functionϕ : S ⊆ R → R

that has a continuous first derivative, the correspondingBregman divergenceDϕ : S ×
int(S) → R+ is defined asDϕ(x, y) , ϕ(x) − ϕ(y) − ∇ϕ(y)(x − y), where int(S)
is the interior of setS [1, 2]. Bregman divergences are nonnegative, convex in the first
argument and zero if and only ifx = y. These divergences play an important role in
convex optimization [2]. For the sequel we consider only separable Bregman divergences,
i.e.,Dϕ(X, Y ) =

∑

ij Dϕ(xij , yij). We further requirexij , yij ∈ domϕ ∩ R+.

Formally, the resulting generalized nonnegative matrix approximation problems are:
min

B, C≥0
Dϕ(BC, A) + α(B) + β(C), (2.2)

min
B, C≥0

Dϕ(A, BC) + α(B) + β(C). (2.3)

The functionsα andβ serve aspenaltyfunctions, and they allow us to enforce regulariza-
tion (or other constraints) onB andC. We consider both (2.2) and (2.3) since Bregman
divergences are generally asymmetric. Table 1 gives a smallsample of NNMA problems
to illustrate the breadth of our formulation.

3 Algorithms

In this section we present algorithms that seek to optimize (2.2) and (2.3). Our algorithms
are iterative in nature, and are directly inspired by the efficient algorithms of Lee and Seung
[11]. Appealing properties include ease of implementationand computational efficiency.



DivergenceDϕ ϕ α β Remarks
‖A − BC‖2

F
1

2
x2

0 0 Lee and Seung [11, 12]
‖A − BC‖2

F
1

2
x2

0 λ1
T C1 Hoyer [10]

‖W ⊙ (A − BC)‖2
F

1

2
x2

0 0 Paatero and Tapper [13]
KL(A,BC) x log x 0 0 Lee and Seung [11]
KL(A,WBC) x log x 0 0 Guillamet et al. [9]
KL(A,BC) x log x c1BT B1 −c′‖C‖2

F Feng et al. [8]
Dϕ(A, W1BCW2) ϕ(x) α(B) β(C) Weighted NNMA (new)

Table 1: Some example NNMA problems that may be obtained from(2.3). The correspond-
ing asymmetric problem (2.2) has not been previously treated in the literature. KL(x, y)
denotes the generalized KL-Divergence =

∑

i xi log xi

yi

−xi +yi (also called I-divergence).

Note that the problems (2.2) and (2.3) are not jointly convexin B andC, so it is not easy
to obtain globally optimal solutions in polynomial time. Our iterative procedures start by
initializing B andC randomly or otherwise. Then,B andC are alternately updated until
there is no further appreciable change in the objective function value.

3.1 Algorithms for (2.2)

We utilize the concept of auxiliary functions [11] for our derivations. It is sufficient to
illustrate our methods using a single column ofC (or row ofB), since our divergences are
separable.

Definition 3.1 (Auxiliary function). A function G(c, c′) is called an auxiliary function
for F (c) if:

1. G(c, c) = F (c), and

2. G(c, c′) ≥ F (c) for all c′.

Auxiliary functions turn out to be useful due to the following lemma.

Lemma 3.2 (Iterative minimization). If G(c, c′) is an auxiliary function forF (c), then
F is non-increasing under the update

c
t+1 = argminc G(c, ct).

Proof. F (ct+1) ≤ G(ct+1, ct) ≤ G(ct, ct) = F (ct).

As can be observed, the sequence formed by the iterative application of Lemma 3.2 leads to
a monotonic decrease in the objective function valueF (c). For an algorithm that iteratively
updatesc in its quest to minimizeF (c), the method for proving convergence boils down to
the construction of an appropriate auxiliary function. Auxiliary functions have been used
in many places before, see for example [5, 11].

We now construct simple auxiliary functions for (2.2) that yield multiplicative updates. To
avoid clutter we drop the functionsα andβ from (2.2), noting that our methods can easily
be extended to incorporate these functions.

SupposeB is fixed and we wish to compute an updated column ofC. We wish to minimize

F (c) = Dϕ(Bc, a), (3.1)

wherea is the column ofA corresponding to the columnc of C. The lemma below shows
how to construct an auxiliary function for (3.1). For convenience of notation we useψ to
denote∇ϕ for the rest of this section.



Lemma 3.3 (Auxiliary function). The function

G(c, c′) =
∑

ij

λijϕ

(

bijcj

λij

)

−
(

∑

i

ϕ(ai) + ψ(ai)
(

(Bc)i − ai

)

)

, (3.2)

with λij = (bijc
′
j)/(

∑

l bilc
′
l), is an auxiliary function for(3.1). Note that by definition

∑

j λij = 1, and as bothbij andc′j are nonnegative,λij ≥ 0.

Proof. It is easy to verify thatG(c, c) = F (c), since
∑

j λij = 1. Using the convexity of
ϕ, we conclude that if

∑

j λij = 1 andλij ≥ 0, then

F (c) =
∑

i

ϕ

(

∑

j

bijcj

)

− ϕ(ai) − ψ(ai)
(

(Bc)i − ai

)

≤
∑

ij

λijϕ

(

bijcj

λij

)

−
(

∑

i

ϕ(ai) + ψ(ai)
(

(Bc)i − ai

)

)

= G(c, c′).

To obtain the update, we minimizeG(c, c′) w.r.t. c. Let ψ(x) denote the vector
[ψ(x1), . . . , ψ(xn)]T . We compute the partial derivative

∂G

∂cp

=
∑

i

λipψ

(

bipcp

λip

)

bip

λip

−
∑

i

bipψ(ai)

=
∑

i

bipψ

(

cp

c′p
(Bc

′)i

)

− (BT ψ(a))p. (3.3)

We need to solve (3.3) forcp by setting∂G/∂cp = 0. Solving this equation analytically
is not always possible. However, for a broad class of functions, we can obtain an analytic
solution. For example, ifψ is multiplicative (i.e.,ψ(xy) = ψ(x)ψ(y)) we obtain the
following iterative update relations forb andc (see [7])

bp ← bp · ψ−1

( [ψ(aT )CT ]p
[ψ(bT C)CT ]p

)

, (3.4)

cp ← cp · ψ−1

( [BT ψ(a)]p
[BT ψ(Bc)]p

)

. (3.5)

It turns out that whenϕ is a convex function of Legendre type, thenψ−1 can be obtained
by the derivative of the conjugate functionϕ∗ of ϕ, i.e.,ψ−1 = ∇ϕ∗ [14].

Note. (3.4) & (3.5) coincide with updates derived by Lee and Seung [11], if ϕ(x) = 1

2
x2.

3.1.1 Examples of New NNMA Problems

We illustrate the power of our generic auxiliary functions given above for deriving algo-
rithms with multiplicative updates for some specific interesting problems.

First we consider the problem that seeks to minimize the divergence,

KL(Bc,a) =
∑

i

(Bc)i log
(Bc)i

ai

− (Bc)i + ai, B, c ≥ 0. (3.6)



Let ϕ(x) = x log x − x. Then,ψ(x) = log x, and asψ(xy) = ψ(x) + ψ(y), upon
substituting in (3.3), and setting the resultant to zero we obtain

∂G

∂cp

=
∑

i

bip log(cp(Bc
′)i/c′p) −

∑

i

bip log ai = 0,

=⇒ (BT
1)p log

cp

c′p
= [BT log a − B

T log(Bc
′)]p

=⇒ cp = c′p · exp

(

[BT log
(

a/(Bc′)
)

]p

[BT 1]p

)

.

The update forb can be derived similarly.

Constrained NNMA. Next we consider NNMA problems that have additional constraints.
We illustrate our ideas on a problem with linear constraints.

min
x

Dϕ(Bc, a)

s.t. Pc ≤ 0, c ≥ 0.
(3.7)

We can solve (3.7) problem using our method by making use of anappropriate (differen-
tiable) penalty function that enforcesPc ≤ 0. We consider,

F (c) = Dϕ(Bc, a) + ρ‖max(0,Pc)‖2, (3.8)

whereρ > 0 is some penalty constant. Assuming multiplicativeψ and following the
auxiliary function technique described above, we obtain the following updates forc,

ck ← ck · ψ−1

(

[BT ψ(a)]k − ρ[P T (Pc)+]k
[BT ψ(Bc)]k

)

,

where(Pc)+ = max(0,Pc). Note that care must be taken to ensure that the addition of
this penalty term does not violate the nonnegativity ofc, and to ensure that the argument
of ψ−1 lies in its domain.

Remarks. Incorporating additional constraints into (3.6) is however easier, since the ex-
ponential updates ensure nonnegativity. Givena = 1, with appropriate penalty functions,
our solution to (3.6) can be utilized for maximizing entropyof Bc subject to linear or
non-linear constraints onc.

Nonlinear models with “link” functions. If A ≈ h(BC), whereh is a “link” function
that models a nonlinear relationship betweenA and the approximantBC, we may wish
to minimizeDϕ(h(BC), A). We can easily extend our methods to handle this case for
appropriateh. Recall that the auxiliary function that we used, depended upon the convexity
of ϕ. Thus, if(ϕ◦h) is a convex function, whose derivative∇(ϕ◦h) is “factorizable,” then
we can easily derive algorithms for this problem with link functions. We exclude explicit
examples for lack of space and refer the reader to [7] for further details.

3.2 Algorithms using KKT conditions

We now derive efficient multiplicative update relations for(2.3), and these updates turn out
to be simpler than those for (2.2). To avoid clutter, we describe our methods withα ≡ 0,
andβ ≡ 0, noting that ifα andβ are differentiable, then it is easy to incorporate them in
our derivations. For convenience we useζ(x) to denote∇2(x) for the rest of this section.

Using matrix algebra, one can show that the gradients ofDϕ(A, BC) w.r.t. B andC are,

∇BDϕ(A, BC) =
(

ζ(BC) ⊙ (BC − A)
)

C
T

∇CDϕ(A, BC) =B
T
(

ζ(BC) ⊙ (BC − A)
)

,



where⊙ denotes the elementwise or Hadamard product, andζ is applied elementwise to
BC. According to the KKT conditions, there exist Lagrange multiplier matricesΛ ≥ 0
andΩ ≥ 0 such that

∇BDϕ(A, BC) = Λ, ∇CDϕ(A, BC) = Ω, (3.9a)

λmkbmk = ωknckn = 0. (3.9b)

Writing out the gradient∇BDϕ(A, BC) elementwise, multiplying bybmk, and making
use of (3.9a,b), we obtain

[(

ζ(BC) ⊙ (BC − A)
)

C
T
]

mk
bmk = λmkbmk = 0,

which suggests the iterative scheme

bmk ← bmk

[(

ζ(BC) ⊙ A
)

CT
]

mk
[(

ζ(BC) ⊙ BC
)

CT
]

mk

. (3.10)

Proceeding in a similar fashion we obtain a similar iterative formula forckn, which is

ckn ← ckn

[BT
(

ζ(BC) ⊙ A
)

]kn

[BT
(

ζ(BC) ⊙ BC
)

]kn

. (3.11)

3.2.1 Examples of New and Old NNMA Problems as Special Cases

We now illustrate the power of our approach by showing how onecan easily obtain iterative
update relations for many NNMA problems, including known and new problems. For more
examples and further generalizations we refer the reader to[7].

Lee and Seung’s Algorithms. Let α ≡ 0, β ≡ 0. Now if we setϕ(x) = 1

2
x2 or

ϕ(x) = x log x, then (3.10) and (3.11) reduce to the Frobenius norm and KL-Divergence
update rules originally derived by Lee and Seung [11].

Elementwise weighted distortion.Here we wish to minimize‖W ⊙(A−BC)‖2
F . Using

X ←
√

W ⊙ X, andA ←
√

W ⊙ A in (3.10) and (3.11) one obtains

B ← B ⊙ (W ⊙ A)CT

(W ⊙ (BC))CT
, C ← C ⊙ BT (W ⊙ A)

BT (W ⊙ (BC))
.

These iterative updates are significantly simpler than the PMF algorithms of [13].

The Multifactor NNMA Problem (new). The above ideas can be extended to the multi-
factor NNMA problem that seeks to minimize the following divergence (see [7])

Dϕ(A, B1B2 . . . BR),

where all matrices involved are nonnegative. A typical usage of multifactor NNMA prob-
lem would be to obtain a three-factor NNMA, namelyA ≈ RBC. Such an approximation
is closely tied to the problem of co-clustering [3], and can be used to produce relaxed co-
clustering solutions [7].

Weighted NNMA Problem (new). We can follow the same derivation method as above
(based on KKT conditions) for obtaining multiplicative updates for the weighted NNMA
problem:

min Dϕ(A, W1BCW2),

whereW1 andW2 are nonnegative (and nonsingular) weight matrices. The work of [9] is
a special case as mentioned in Table 1. Please refer to [7] formore details.



4 Experiments and Discussion

We have looked at generic algorithms for minimizing Bregmandivergences between the
input and its approximation. One important question arises: Which Bregman divergence
should one use for a given problem? Consider the following factor analytic model

A = BC + N ,

whereN represents some additive noise present in the measurementsA, and the aim is to
recoverB andC. If we assume that the noise is distributed according to somemember
of the exponential family, then minimizing the corresponding Bregman divergence [1] is
appropriate. For e.g., if the noise is modeled as i.i.d. Gaussian noise, then the Frobenius
norm based problem is natural.

Another question is: Which version of the problem we should use, (2.2) or (2.3)? For
ϕ(x) = 1

2
x2, both problems coincide. For otherϕ, the choice between (2.2) and (2.3) can

be guided by computation issues or sparsity patterns ofA. Clearly, further work is needed
for answering this question in more detail.

Some other open problems involve looking at the class of minimization problems to which
the iterative methods of Section 3.2 may be applied. For example, determining the class
of functionsh, for which these methods may be used to minimizeDϕ(A, h(BC)). Other
possible methods for solving both (2.2) and (2.3), such as the use of alternating projections
(AP) for NNMA, also merit a study.

Our methods for (2.2) decreased the objective function monotonically (by construction).
However, we did not demonstrate such a guarantee for the updates (3.10) & (3.11). Figure 1
offers encouraging empirical evidence in favor of a monotonic behavior of these updates.
It is still an open problem to formally prove this monotonic decrease. Preliminary results
that yield new monotonicity proofs for the Frobenius norm and KL-divergence NNMA
problems may be found in [7].

PMF Objective ϕ(x) = − log x ϕ(x) = x log x − x
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Figure 1: Objective function values over 100 iterations for different NNMA problems. The input
matrixA was random20×8 nonnegative matrix. MatricesB andC were20×4, 4×8, respectively.

NNMA has been used in a large number of applications, a fact that attests to its importance
and appeal. We believe that special cases of our generalizedproblems will prove to be
useful for applications in data mining and machine learning.

5 Related Work
Paatero and Tapper [13] introduced NNMA as positive matrix factorization, and they aimed
to minimize‖W ⊙ (A − BC)‖F, whereW was a fixed nonnegative matrix of weights.
NNMA remained confined to applications in Environmetrics and Chemometrics before
pioneering papers of Lee and Seung [11, 12] popularized the problem. Lee and Seung [11]
provided simple and efficient algorithms for the NNMA problems that sought to minimize



‖A − BC‖F and KL(A,BC). Lee & Seung called these problemsnonnegative matrix
factorization(NNMF), and their algorithms have inspired our generalizations.

NNMA was applied to a host of applications including text analysis, face/image recogni-
tion, language modeling, and speech processing amongst others. We refer the reader to [7]
for pointers to the literature on various applications of NNMA.

Srebro and Jaakola [15] discuss elementwise weighted low-rank approximations without
any nonnegativity constraints. Collins et al. [6] discuss algorithms for obtaining a low rank
approximation of the formA ≈ BC, where the loss functions are Bregman divergences,
however, there is no restriction onB andC. More recently, Cichocki et al. [4] presented
schemes for NNMA with Csisźar’s ϕ-divergeneces, though rigorous convergence proofs
seem to be unavailable. Our approach of Section 3.2 also yields heuristic methods for
minimizing Csisźar’s divergences.

Acknowledgments

This research was supported by NSF grant CCF-0431257, NSF Career Award ACI-
0093404, and NSF-ITR award IIS-0325116.

References
[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering withBregman Divergences. In

SIAM International Conf. on Data Mining, Lake Buena Vista, Florida, April 2004. SIAM.

[2] Y. Censor and S. A. Zenios.Parallel Optimization: Theory, Algorithms, and Applications.
Numerical Mathematics and Scientific Computation. Oxford University Press, 1997.

[3] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum Sum Squared Residue based Co-clustering
of Gene Expression data. InProc. 4th SIAM International Conference on Data Mining (SDM),
pages 114–125, Florida, 2004. SIAM.

[4] A. Cichocki, R. Zdunek, and S. Amari. Csiszár’s Divergences for Non-Negative Matrix Factor-
ization: Family of New Algorithms. In6th Int. Conf. ICA & BSS, USA, March 2006.

[5] M. Collins, R. Schapire, and Y. Singer. Logistic regression, adaBoost, and Bregman distances.
In Thirteenth annual conference on COLT, 2000.

[6] M. Collins, S. Dasgupta, and R. E. Schapire. A Generalization of Principal Components Anal-
ysis to the Exponential Family. InNIPS 2001, 2001.

[7] I. S. Dhillon and S. Sra. Generalized nonnegative matrix approximations. Technical report,
Computer Sciences, University of Texas at Austin, 2005.

[8] T. Feng, S. Z. Li, H-Y. Shum, and H. Zhang. Local nonnegativematrix factorization as a
visual representation. InProceedings of the 2nd International Conference on Development and
Learning, pages 178–193, Cambridge, MA, June 2002.
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