
         663

Reversible Jump MCMC for Non-Negative Matrix Factorization

Mingjun Zhong

mingjun@dcs.gla.ac.uk
Department of Computing Science

University of Glasgow
Glasgow, G12 8QQ, Scotland UK

http://www.dcs.gla.ac.uk/inference/

Mark Girolami

girolami@dcs.gla.ac.uk
Department of Computing Science

University of Glasgow
Glasgow, G12 8QQ, Scotland UK

http://www.dcs.gla.ac.uk/inference/

Abstract

We present a fully Bayesian approach to Non-
Negative Matrix Factorisation (NMF) by de-
veloping a Reversible Jump Markov Chain
Monte Carlo (RJMCMC) method which pro-
vides full posteriors over the matrix compo-
nents. In addition the NMF model selec-
tion issue is addressed, for the first time, as
our RJMCMC procedure provides the poste-
rior distribution over the matrix dimensions
and therefore the number of components in
the NMF model. A comparative analysis is
provided with the Bayesian Information Cri-
terion (BIC) and model selection employing
estimates of the marginal likelihood. An il-
lustrative synthetic example is provided us-
ing blind mixtures of images. This is then
followed by a large scale study of the recov-
ery of component spectra from multiplexed
Raman readouts. The power and flexibility
of the Bayesian methodology and the pro-
posed RJMCMC procedure to objectively as-
sess differing model structures and infer the
corresponding plausible component spectra
for this complex data is demonstrated con-
vincingly.

1 INTRODUCTION

We consider the NMF problem (Paatero and Tapper,
1994; Lee and Seung, 2001) of representing a non-
negative matrix X as a product of two non-negative
matrices, formulated as,

X = AS + E, (1)
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where A ∈ RN×M
+ , S ∈ RM×T

+ , and E ∈ RN×T is the
tolerance within each column and is assumed to follow
a Normal distribution with zero mean and unknown
diagonal covariance Λ = diag(λ1, · · · , λN ). Each row
of S designates one component and M is the number
of components (NoC). Our aim is to obtain the joint
posterior for M , A, and S. It is well known that this
decomposition is non-unique and hence not likelihood
identifiable, we therefore invoke weak identifiability by
the use of proper priors within the Bayesian frame-
work.

Some NMF algorithms based on gradient methods,
e.g., (Lee and Seung, 2001), could be directly employed
to obtain Maximum a Posteriori estimates of A and
S given an assumed NoC M . Indeed a Bayesian ap-
proach to NMF, using Metropolis sampling, is pro-
posed in (Moussaoui et al., 2006) although no attempt
at model-order inference was made in that work. All
of these methods implicitly assume that the NoC are
known a priori. Estimating NoC is essentially the
model selection problem and in this paper we con-
sider several possible approaches. It is required to
compute the posterior distribution of M given ob-
served data X, which is proportional to the marginal
likelihood p(X|M). However, the integral p(X|M) =
∫

p(X,Θ|M)dΘ is analytically intractable for the cur-
rent problem, where we denote Θ = {A,S,Λ}. The
BIC of (Schwarz, 1978) is a method of obtaining an
asymptotic approximation of the marginal likelihood
and could be simply employed with any number of
standard NMF algorithms although as will be demon-
strated in subsequent sections this approximation is
not without its shortcomings. The use of the Ther-
modynamic Integral identity forms the basis for esti-
mates of the log-marginal likelihood which have been
shown to improve upon estimators using samples from
the posterior density, see (Friel and Pettitt, 2008)
and references therein. For example estimating the
marginal likelihood using the harmonic mean identity
can yield highly unstable estimators and ways to cir-
cumvent this problem have been proposed in (Raftery



         664

Reversible Jump MCMC for Non-Negative Matrix Factorization

et al., 2007). (Green, 1995) proposed the general RJM-
CMC methodology which is a generalized Metropolis-
Hastings algorithm allowing trans-dimensional explo-
ration of model and parameter space. Green’s method
considers M as a random variable, and the posterior
of all the model parameters, i.e., P (M,Θ|X), is the
invariant distribution. The outputs of the RJMCMC
algorithm are then both the samples of Θ and M .

2 A GIBBS SAMPLER FOR NMF

We firstly develop a Gibbs sampler for NMF which
will be used for approximating the marginal likelihood
and deriving an RJMCMC algorithm. The tth col-
umn of X, S and E are represented as xt, st and
ǫt, respectively. The element of the nth row and
tth column of X is xnt, and with similar form the
elements of A and S are anm and smt respectively.
Given model (1) the data likelihood can be represented

as p(X|A,S,Λ) =
∏T

t=1 Nxt
(Ast,Λ) where Ny(µ,Σ)

represents the probability density function of a Normal
random vector y with mean vector µ and covariance
matrix Σ. Note that all the vectors of this paper are
column vectors for simplicity. In selecting our prior
distributions for smt, anm, and λn we note that a con-
jugate form for the variance of the likelihood takes the
form of a Gamma density and to take account of pos-
sible sparseness a truncated exponential distribution
is placed on each anm (Hoyer, 2004). For the prior
on each smt it is assumed that the values will a priori

be distributed uniformly in a certain range consistent
with the observed data and so

p(smt|cs, ds) = Unif(cs, ds),

p(anm|αa, ca, da) = Expon(αa)1[ca,da](anm),

p
(

λ−1
n |αλ, βλ

)

= Gamma(αλ, βλ)

where 1A(ω) denotes an indicator function, and the
hyper-parameters cs, ds, αa, ca, da, αλ, βλ are fixed in
this paper. For the experiments we are considering,
we observed that setting αa = αλ = βλ = 1 was able
to give acceptable results. We set ca = 0, da = 2,
and the cs > 0 and ds > 0 are set based on the ob-
served data values. Now then we need to compute
the full posterior p(S,A,Λ|X, γ) for a fixed M where
γ = {αa, αλ, βλ, cs, ds, ca, da}. Details of derivations
are shown in the APPENDIX. Note that the poste-
riors of the columns of S are independent as are the
rows of A. The conditional posterior of the mth row
of S can be represented as follows,

p(sm|X,A,S−m) ∝ Nsm
(µsm

,Σsm
)

T
∏

t=1

1[cs,ds](smt)

where S−m represents those elements of S excluding
sm, µsm

= (µsm1
, · · · , µsmT

)T and Σsm
= σ2

sm
I. As

was noted before, sm is a column vector, i.e., the trans-
pose of the mth row of S. Similarly, if we represent
the mth column of A as am, the posterior of am can
therefore be represented as

p(am|X,A−m,S) ∝ Nam
(µam

,Σam
)

N
∏

n=1

1[ca,da](anm)

where A−m represents those elements of A exclud-
ing am, µam

= (µa1m
, · · · , µaNm

)T and Σam
=

diag(σ2
a1m

, · · · , σ2
aNm

). The conditional posterior of
the reciprocal of the noise variance can be represented
as a Gamma distribution with the following form,

p(λ−1
n |xn,an,S, αλ, βλ) = Gamma(αn, βn)

where xn represents the transpose of the nth row of
X and an represents the transpose of the nth row of
A. Details of those posterior parameters can be found
in the APPENDIX. As the conditional distributions of
A and S are represented as truncated Gaussian forms,
a straightforward Gibbs sampler can be conveniently
employed. Sampling from a truncated Gaussian is
achieved by employing the method of (Damien and
Walker, 2001). We now have a means of sampling from
the posterior p(S,A,Λ|X, γ, M) the following section
now considers how the marginal likelihood can be ob-
tained.

3 MODEL COMPLEXITY

3.1 BAYESIAN INFORMATION

CRITERION

The BIC of (Schwarz, 1978) has been widely
used in model selection problems. The BIC,
which is an asymptotic expansion of the quantity
log

∫

p(X,Θ|M)dΘ, is computed as follows,

BIC = log p(X|Θ̂, M) −
1

2
kM log N

where Θ̂ = argmaxΘ {log p(X|Θ, M)}, and kM = N×
M + M × T + N is the number of parameters to be
estimated. In this paper we substitute the Θ̂ by the
output of an NMF algorithm which provides a solution
of maximizing the joint likelihood. The model with
the largest value of BIC is preferred, and one feature
of BIC is that it is independent of model parameter
priors.

3.2 THERMODYNAMIC INTEGRATION

(Friel and Pettitt, 2008) proposed to estimate the
marginal likelihood via power posteriors which is based
on ideas of thermodynamic integration (TI) or path
sampling (Gelman and Meng, 1998). Compared to
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BIC, thermodynamic integration is sensitive to model
parameter priors, which could be useful for selecting
parameter priors for models. Consider a temperature
parameter t ∈ [0, 1], based on the power posterior
pt(Θ|X, M) ∝ p(X|Θ, M)tp(Θ), the thermodynamic
integral follows in the form (Friel and Pettitt, 2008),

log p(X|M) =

∫ 1

0

Ept
{log p(X|Θ, M)}dt

where Ept
denotes the mathematical expectation with

respect to pt(Θ|X, M). Choosing an appropriate
discretization 0 = t0 < t1 < · · · < tn−1 < tn = 1, this
integral can be estimated by using e.g. trapezoidal
integration to obtain a numerical approximation of
the above integral then log p(X|M) ≈ 1

2

∑n−1
i=0 (ti+1 −

ti)Epti+1
{log p(X|Θ, M)} + Epti

{log p(X|Θ, M)}
with the expectations being obtained via Monte Carlo
estimates with the form Epti

{log p(X|Θ, M)} ≈
1
K

∑K
k=1 log p(X|Θk, M) where Θk denotes a sample

drawn from pti
(Θ|X, M). Monte Carlo standard

errors for this approximation follow straightfor-
wardly (Friel and Pettitt, 2008). For this nu-
merical approximation we can also compute a
corresponding lower and upper bound on the log-
marginal likelihood (Calderhead and Girolami, 2008):

log p(X|M) ≥
∑n−1

i=0 (ti+1 − ti)Epti
{log p(X|Θ, M)},

log p(X|M) ≤
∑n

i=1(ti − ti−1)Epti
{log p(X|Θ, M)}.

This estimator of the log-marginal likelihood exploits
the Gibbs sampler presented previously at each step of
the temperature ladder and the marginal likelihoods
for each set of candidate models M is then computed
to assess the plausible values of M . This is found
to be quite costly computationally so an RJMCMC
approach is now developed.

4 RJMCMC FOR NMF

In this section we derive an RJMCMC algorithm
which naturally considers M as a discrete random
variable. In model (1), for a variable NoC m, we
denote the parameter space as Θm = {A,S,Λ} where
A and S are defined as previously. In the setting of
RJMCMC, the model indicator m is also considered as
an unknown parameter, and thus the whole parameter
space can then be written as C = ∪mmax

m=1 {{m} × Θm}
where mmax denotes the maximum NoC. In the
following context, we denote Cm = {m} × Θm,
and θm as an element of Θm. In the setting of
Green’s RJMCMC (Green, 1995), the target invariant
distribution is the posterior p(m, θm|X, γ). When the
current state is {m, θm} ∈ Cm, the acceptance proba-
bility of moving to state {m′, θm′} ∈ Cm′ is α(m, m′) =

min
{

1, p(m′,θm′ |X,γ)π(m′,m)qm(m,θm)
p(m,θm|X,γ)π(m,m′)qm′ (m′,θm′)

∣

∣

∣

∂g(m,θm,m′,θm′)
∂(m,θm,m′,θm′)

∣

∣

∣

}

where qm′(m′, θm′) is a proposal distribution for

(m′, θm′), π(m, m′) is the probability of moving from
subspace Cm to Cm′ , g(·) denotes a bijective function
and in this paper we set it to be an identity function,
i.e. g(y) = y, and | · | denotes the Jacobian. Clearly
in this case the Jacobian is one. Note that for moving
from one subspace to another the proposals must
satisfy the dimension-matching requirement which
has clearly been achieved by the bijective function.

According to (Green, 1995), the proposal qm(·) could
be any distribution as long as it satisfies the dimension-
matching requirement. However, in practice a pro-
posal distribution is required so the algorithm jumps
from one subspace to another. Devising a good pro-
posal distribution for specific problems is a well known
difficulty of RJMCMC (Brooks et al., 2003; Godsill,
2001; Han and Carlin, 2001). For the current problem,
it would be possible to add or remove some rows and
columns of S and A and sample from some proposal
distributions to jump between subspaces. However,
this would not work as the samples would continu-
ally run out of mass of the extremely complex pos-
terior distributions, and thus jumping from one sub-
space to another would never happen. In the case
of π(m′, m) = π(m, m′), a good proposal should fre-
quently have acceptance probabilities of values approx-
imately equal to one. Therefore it is able to make the
RJMCMC jump back from the next subspace to the
current one. So if we set qm(m, θm) = p(m, θm|X, γ),
i.e., the proposal distribution is exactly the joint pos-
terior, the acceptance probability is exactly one. How-
ever this is not the case as the posterior usually does
not have a simple form, and approximation meth-
ods should then be employed. One possible solution
would employ the Laplace approximation to estimate
the modes and variances of the posteriors. In this
case, the posterior is approximately represented as a
Gaussian form, and thus proposal samples can then be
drawn from this Gaussian distribution. For the current
problem, all posteriors of those parameters have trun-
cated Gaussian or Gamma distributions so we follow
the schemes which have been successfully employed in
some other problems for searching for a suitable pro-
posal (Han and Carlin, 2001; Lopes and West, 2004).
The bijective function was set to be an identity func-
tion, and this means we are employing an indepen-
dent sampler which works best when the proposal is a
reasonable approximation to the target posterior dis-
tribution. So before implementing RJMCMC, as in
(Han and Carlin, 2001; Lopes and West, 2004) we ob-
tain the posterior of each parameter in each subspace,
which are then employed as the proposal distributions.
In this paper we only consider the jumps between mod-
els m and m + 1, and the jumps between any two of
those models could be straightforward.
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Suppose we have obtained S conditional posterior sam-
ples of µsmt

, σ2
sm

, µanm
, σ2

anm
, αn and βn as ξ. We

can obtain the Monte Carlo estimates of those pa-
rameters in all the candidate subspaces such that
ξ̂ = 1

S

∑S
s=1 ξ(s), then the proposal of each variable

anm, smt and λ−1
n can be represented as,

qm(anm) = Nanm
(µ̂anm

, σ̂2
anm

)1[ca,da](anm),

qm(smt) = Nsmt
(µ̂smt

, σ̂2
sm

)1[cs,ds](smt),

qm(λ−1
n ) = Gamma(α̂n, β̂n).

In order to compute the acceptance probability, we
need to compute the quantity

log p(m, θm|X)π(m, m′)qm′(m′, θm′)

= log p(m, θm|X) + log π(m, m′) + log qm′(m′, θm′)

∝ log p(X|m, θm, γ) + log p(A,S, Λ|m, γ) + log p(m)

+ logπ(m, m′) +
∑

m′,t
log qm′(sm′t)

+
∑

n,m′

log qm′(anm′) +
∑

n

log qm′(λ−1
n )

So each of the above items are represented as:

log p(X|m, θm, γ) = −
1

2
TN log 2π −

1

2
T

N
∑

n=1

log λn

−
1

2

T
∑

t=1

(xt − Ast)
TΛ−1(xt − Ast)

log p(A,S,Λ|m, γ) = MT log (ds − cs)
−1 + NM log αa

−αa

∑

n,m

anm + (α − 1)

N
∑

n=1

log λ−1
n −

1

β

N
∑

n=1

λ−1
n

log qm′(anm′) = −
1

2

{

log 2πσ̂2
anm′

+
(anm′ − µ̂anm′

)2

σ̂2
anm′

}

log qm′(sm′t) = −
1

2

{

log 2πσ̂2
sm′

+
(sm′t − µ̂sm′t

)2

σ̂2
sm′

}

log qm′(λ−1
n ) = (α̂n − 1) log λ−1

n − (β̂nλn)−1

−α̂n log β̂n − log Γ(α̂n)

Note that in this paper we always suppose the prior
probability of moving from one subspace to another
is 0.5, i.e., π(m, m′) = 0.5, and the prior for
m is a discrete uniform distribution with support
{mmin, mmin + 1, . . . , mmax} where mmin denotes the
minimum NoC. Suppose the current state is in the sub-
space Cm, and we only consider jumps to Cm−1 which
is denoted by a DEATH step and Cm+1 which is de-
noted by a BIRTH step. The probability of attempting
a BIRTH or DEATH step when the current state is in
Cm is given by bm and dm, respectively. In this paper,
we set bmmax

= dmmin
= 0, dmmax

= bmmin
= 1 and

bm = dm = 0.5 for all other values of m. The RJM-
CMC algorithm can then be represented as follows:

• 1. Obtain proposal distributions

• 2. Initialize A,S, and Λ, and set the current
model indicator as m. Set π(m, m′) = 0.5.

• 3. Main loop of RJMCMC algorithm.

– 1. Sample A,S, and Λ.

– 2. If m = mmin, then perform BIRTH step.

– 3. If m = mmax, then perform DEATH step.

– 4. If mmin < m < mmax, draw a uniform
random variable u ∼ U(0, 1).

∗ 1. If u ≤ bm, then perform BIRTH step;

∗ 2. else if u ≤ bm + dm, then perform
DEATH step;

– 5. Repeat.

The BIRTH step is described as follows, and the
DEATH step is similar:

• 1. Draw samples from proposal distributions
qm+1 in Cm+1 subspace.

• 2. Compute acceptance probability α(m, m + 1).

• 3. Draw a uniform random variable u ∼ U(0, 1).

• 4. If u ≤ α(m, m + 1), then accept the proposal
state and set the next state model indicator to be
m + 1.

• 5. Else set the next state to the current state.

We now have the required methodology to tackle our
main problem and firstly use a well known toy problem
to illustrate the various approaches presented.

5 EXPERIMENTS

5.1 SYNTHETIC IMAGE DATA

In this section we apply the described methods to some
synthetic image data which were generated by using
the following mixing matrices (of dimension 7 × 2, 7
× 3 and 7 × 4) and the component images are shown
in the first row of figure 1,
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Gaussian noise with zero mean and vari-
ance levels of 0.05, 0.01, 0.001, 0.0001 were
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Table 1: Estimated number of components by using
BIC, TI and RJMCMC.

2 components
Noise Level 0.05 0.01 0.001 0.0001

BIC 2 2 2 2
TI 2 2 2 2

RJMCMC 2 2 2 2

3 components
Noise Level 0.05 0.01 0.001 0.0001

BIC 4 4 6 6
TI 3 3 3 3

RJMCMC 3 3 3 3

4 components
Noise Level 0.05 0.01 0.001 0.0001

BIC 5 7 7 7
TI 4,5 4,5 4,5 4,5

RJMCMC 2,3,4 4 4 4

Table 2: Computing time in seconds for number of
iterations (NoI) after which the algorithms converged.
Standard deviation values are shown in brackets.

Image Data
Method BIC TI RJMCMC

NoI 50000 1000 20000
Time 826(36) 4.5e+3(95) 5.3e+3(368)

Experimental Data
Method BIC TI RJMCMC

NoI 100000 20000 250000
Time 7.3e+3 5.7e+5 6.4e+4

added to the synthetic image combinations.
The images used here were downloaded from
http://www.cs.helsinki.fi/u/phoyer/NCimages.html.
Before working on model selection, we need to diag-
nose the convergence of the Gibbs sampler, which was
achieved by using the potential scale reduction factor
(PSRF) of (Gelman and Rubin, 1992) which is usually
denoted by R̂. Here we use the iterated graphical
approach described in (Brooks and Gelman, 1998) to
compute R̂. The method divides the I sequences with
length 2T into batches of length b, which gives a series
of sequences of lengths 2kb where k = 1, 2, · · · , T/b.
We then compute R̂(k) using the latter half of the kth
sequence. We compute R̂ for the seven noise variances
with b = 100 and suppose the Gibbs sampler was
converged after all the R̂ were less than 1.2. The
results show that the Gibbs sampler converged after
500 iterations. We then applied the BIC, TI and
RJMCMC to these image data to infer the number
of component images. We used the maximized joint
likelihood outputs of NMF to compute BIC. For TI,

the temperature parameters were set to ti = (i/20)3

where i = 0, 1, · · · , 20, and the Gibbs samplers ran
20000 iterations with the last 10000 being used to
compute the marginal likelihood. For RJMCMC, we
also need to diagnose the convergence and here we em-
ploy the method of (Brooks and Giudici, 2000) which
monitors some particular function of the parameters
such as the log likelihood. We run I chains with 2T
iterations and then compute the total variations both
between chains and between models. Some quantities
are then computed and they are the total variation
V̂ , the within-chain variance Wc, the within-model
variance Wm, the variance within both chains and
models WmWc, the between-model variance Bm, and
the within-chain variation split between and averaged
over models BmWc. Details of these can be found
in (Brooks and Giudici, 2000). Essentially the ratio
V̂ /Wc is the R̂ of Gelman and Rubin. Comparing Wm

and WmWc, which should well approximate the true
mean within-model variance, tells us how well the
chains are mixing within models, and whilst compar-
ing Bm and BmWc, which should well approximate
the true between-model variance, tells us how well
the chains are mixing between models. Five chains
each running 100000 iterations were used to diagnose
the convergence of the RJMCMC and we employ the
log-likelihood as the scalar parameter for diagnosing
convergence which has also been used by (Brooks
and Giudici, 2000). The results showed that after
20000 iterations all these quantities were mixing very
well. We actually used the second half of the chains
of length 100000 iterations to compute the model
posterior distributions. All the results are shown in
Table 1. In the case of 7 mixtures with 2 compo-
nents, both BIC and RJMCMC can correctly locate
NoC. For TI, the estimated log-marginal likelihood
strongly prefers 2 components. However, if we take
into account the Monte Carlo sampling variability
of the estimate of the log-marginal likelihood there
is no significant evidence that models with 2 ∼ 7
components are different. So we show the most likely
NoC estimated by TI in Table 1. In the case of 7
mixtures with 3 components, BIC failed to locate NoC
whilst both TI and RJMCMC can correctly estimate
NoC. In the case of 7 mixtures with 4 components,
BIC again failed to locate NoC. TI prefers 4 and 5
components. RJMCMC suggested 2 ∼ 4 components
when the noise level was 0.05 and in the other cases it
correctly estimates NoC. After the NoC was located,
the components can then be recovered using the
Gibbs sampler. Figure 1 shows an example. We also
compare these methods providing computing times,
and the results are shown in Table 2. Note that
the experiments were done using Matlab-7.4 under
Centos Linux 5 (64-bit, kernel 2.6.18), running on a
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2×dual-core AMD 2214 CPU which runs at 2.2 GHz,
and the machine has 4GB memory. In the table,
the number of iterations show the burn-in required
for convergence. We collected the time of each case
shown in Table 1, and then the mean and standard
deviation values are shown in Table 2. It shows that
BIC requires less computing time as a simple gradient
based method is used in optimization, and as expected
TI and RJMCMC require more time as they are both
sampling based methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

(k)

(l) (m) (n) (o)

(j)(i)

Figure 1: (a-d): Original images; (e-k): Mixtures of
images; (l-o): Posterior mean pixel values (inferred
images) from the Gibbs sampler.

5.2 MULTIPLEXED RAMAN SPECTRA

In this section we applied the described methods
to Surface-Enhanced Resonance Raman Scattering
(SERRS) data (Graham et al., 2006). This novel data
set was generated from multiplexed detection of six dye
labelled oligonucleotides using SERRS (Faulds et al.,
2004). The purpose of this experiment was the si-
multaneous detection of six different DNA sequences
corresponding to different strains of the Escherichia
coli bacterium, each labelled with a different commer-
cially available dye label. The six dye labels were
TAMRA, ROX, HEX, TET, FAM and Cy3 (see their
SERRS spectra in the first row of figure 4). The mul-
tiplexing was carried out using every possible combi-
nation of the six labeled oligonucleotides resulting in
64 sample spectra. Each sample was represented by an
SERRS spectrum containing 574 points. We assume
these measured Raman spectra are a linear mixture
of the spectra of the independent dye labels. So if
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Figure 2: A numerical approximation and an over-
all Monte Carlo standard error (middle line), upper
(▽) and lower (△) bounds of log marginal likelihood
of each model computed by using the thermodynamic
integration.

we represent the Raman spectra as X ∈ R64×574
+ , we

then decompose it into several individual spectra as is
shown in equation (1) where N = 64 and T = 574. In
order to recover those component spectra, we firstly
need to estimate the NoC. BIC results using the max-
imized likelihood outputs of NMF suggested the NoC
was around 10 which is far from the correct NoC of six.
Before performing TI and RJMCMC, we also need to
diagnose the convergence of the Gibbs sampler. We
employed the 64 noise variances to diagnose conver-
gence and it showed that after 20000 iterations the
Gibbs sampler had converged. For the TI, the tem-
perature parameters were set to ti = (i/20)3 where
i = 0, 1, · · · , 20, and the Gibbs samplers ran 40000 it-
erations with the last 20000 being used to compute the
marginal likelihood. The final log-marginal likelihoods
of each model are shown in figure 2. This would sug-
gest the NoC lie in the plausible range of 5 ∼ 7. For
the RJMCMC, we again employ the log-likelihood as
the scalar parameter for diagnosing convergence. Five
chains with each running 1000000 iterations started
from randomly generated points were used to diag-
nose the convergence. We set b = 25000. The results
are shown in figure 3. It shows that both V̂ and Wc

approximated the true variance well, and the plots of
Wm and WmWc show that the chains were mixing very
well within models after 250000 samples. The plots
of Bm and BmWc show that after 250000 iterations,
the chains were well mixed between models which is
essential for computing the posterior model probabili-
ties. The posterior distributions of the NoC computed
using the second half of these five chains are plotted in
figure 3 (d). This suggests the NoC should lie on the
plausible range of 5 ∼ 7. Combining all these results
we concluded that the posterior for m mostly favors
5 ∼ 7 component spectra, which seems reasonable and
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covers the true value of six components. In the case of
m = 5, figure 4 (g-k) shows the recovered spectra, and
it shows that ROX and TAMRA are likely to merge
into one spectrum (j) since both spectra have peaks
in similar frequencies (see plot (l)). We indicate that
the only way to differentiate spectra is to look at fre-
quencies (horizontal axis of the plots in figure 4) where
peaks appear. In the case of m = 7, figure 4 (s-y) plots
the recovered spectra, and it is likely that there is one
noise component additionally. Figure 4 (m-r) shows
the recovered spectra when m = 6, which are compa-
rable to the original ones. The time for each method
to converge is shown again in Table 2. Now for this
larger problem, it shows that BIC is again the fastest
method, but it failed to locate reasonable NoC, and
TI became slower than RJMCMC which is due to the
increase in the number of possible components.

These results are highly encouraging as the RJMCMC
and TI methods have been demonstrated to be capa-
ble of infering the plausible numbers of components
as well as inferring the component spectra from the
multiplexed readouts.

6 CONCLUSIONS

A fully Bayesian framework for the analysis of NMF
has been proposed. A crucial task which has largely
been overlooked in the literature is the estimation of
the underlying number of components. We have con-
sidered several methods namely BIC and TI, and de-
veloped RJMCMC for the NMF problem. The results
have shown that BIC has failed to locate NoC for the
data employed. TI and RJMCMC were able to locate
the correct NoC, which are suitable for model selection
for NMF. For the experimental Raman spectra, when
the NoC was located we have shown that the compo-
nent spectra were able to be inferred from the corre-
sponding posteriors. This indicates that the NMF is
suitable for analysing Raman spectra. It has not es-
caped our attention that the TI and RJMCMC meth-
ods we have proposed could also be used for estimating
the number of sources for standard independent com-
ponent analysis e.g.(Fevotte and Godsill, 2006).

A APPENDIX - CONDITIONAL

DISTRIBUTIONS

In this section we give the derivations of the full poste-
rior distribution p(S,A,Λ|X, γ), which is proportional
to

p(X|S,A,Λ)p(A|αa)p(S|cs, ds)p(Λ|αλ, βλ)

=
∏

t

Nxt
(Ast,Λ)

∏

n,m

p(anm)
∏

m,t

p(smt)
∏

n

p(λ−1
n )

The conditional distribution of each smt can then be
easily obtained with the following form,

p(smt|xt,A, s−m,t,Λ) ∝ p(xt|st,A,Λ)p(smt|cs, ds)

∝ exp

{

−
1

2

(

Asm
s2

mt − 2Bsmt
smt

)

}

1[cs,ds](smt)

∝ Nsmt
(µsmt

, σ2
sm

)1[cs,ds](smt)

where s−m,t represents all the elements of vec-
tor st excluding smt, µsmt

= A−1
sm

Bsmt
and

σ2
sm

= A−1
sm

where Asm
=

∑N
i=1

a2
im

λi
and Bsmt

=
∑N

i=1
aim

λi

(

xit −
∑M

j=1,j 6=m aijsjt

)

. Similarly, the con-

ditional distribution of anm is represented as,

p(anm|xn,S,an,−m, λn) ∝ p(xn|an,S, λn)p(an|αa)

∝ exp

{

−
1

2
(Aanm

a2
nm − 2Banm

anm)

}

exp{−αaanm}

∝ Nanm
(µanm

, σ2
anm

)1[ca,da](anm)

where an,−m represents all the elements of vector an

excluding anm, µanm
= A−1

anm
(Banm

−αa) and σ2
anm

=

A−1
anm

where Aanm
= λ−1

n

(

∑T
t=1 s2

mt

)

and Banm
=

λ−1
n

(

∑T
t=1 smt

(

xnt −
∑M

j=1,j 6=m anjsjt

))

. Finally,

p(λ−1
n |xn,S,an) ∝ p(xn|an,S)p(λ−1

n |αλ, βλ)

∝ Gamma(αn, βn)

where βn =
(

βλ + 1
2

∑T
t=1

(

xnt − aT
n st

)2
)−1

and

αn = αλ + T
2 . These conditional distributions give

those of the vector forms shown in section 2.
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