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Abstract

Principal Components Analysis (PCA) has become established as one of the
key tools for dimensionality reduction when dealing with real valued data. Ap-
proaches such as exponential family PCA and non-negative matrix factorisation
have successfully extended PCA to non-Gaussian data types, but these techniques
fail to take advantage of Bayesian inference and can suffer from problems of over-
fitting and poor generalisation. This paper presents a fully probabilistic approach
to PCA, which is generalised to the exponential family, based on Hybrid Monte
Carlo sampling. We describe the model which is based on a factorisation of the
observed data matrix, and show performance of the model on both synthetic and
real data.

1 Introduction

In Principal Components Analysis (PCA) we seek to reduce the dimensionality of a D-dimensional
data vector to a smaller K -dimensional vector, which represents an embedding of the data in a lower
dimensional space. The traditional PCA algorithm is non-probabilistic and defines the eigenvectors
corresponding to the K-largest eigenvalues as this low dimensional embedding. In probabilistic
approaches to PCA, such as probabilistic PCA (PPCA) and Bayesian PCA [1], the data is modelled
by unobserved latent variables, and these latent variables define the low dimensional embedding. In
these models both the data and the latent variables are assumed to be Gaussian distributed.

This Gaussian assumption may not be suitable for all data types, especially in the case where data
is binary or integer valued. Models such as Non-negative Matrix Factorisation (NMF) [2], Discrete
Components Analysis (DCA) [3], Exponential Family PCA (EPCA) [4] and Semi-parametric PCA
(SP-PCA) [5], have been developed that endow PCA the ability to handle data for which Bernoulli
or Poisson distributions may be more appropriate. These general approaches to PCA involve the
representation of the data matrix X as a product of smaller matrices: the factor score matrix V,
representing the reduced vectors; and a data independent part ®, known as the factor loading
matrix. In the original data matrix, there are N x D entries, and in the matrix factorisation there are
(N + D) x K entries, which is a reduction in the number of parameters if K < N, D [3].

Models such as PCA, NMF and EPCA are from the class of deterministic latent variable
models [6], since their latent variables are set to their maximum a posteriori (MAP) values.
Welling et al. [6] argue that the resulting model essentially assigns zero probability to all input
configurations that are not in the training set. This problem stems from the use of an inappropriate
objective function, and can be remedied by using an alternate approximate inference scheme. In
this paper, we propose a fully Bayesian approach to PCA generalised to the exponential family.

Our approach follows the method of factorising the data matrix into two lower rank matrices using
an exponential family distribution for the data with conjugate priors. The exponential family of dis-
tributions is reviewed in section 2, and the complete specification for the model is given in section 3.
Learning and inference in the model is performed using the Hybrid Monte Carlo approach, which is



appropriate due to the continuous nature of variables in the model. The connections to existing gen-
eralised PCA methods, such as NMF and EPCA are discussed in section 4. We present results on the
performance of our Bayesian exponential family PCA model in section 5. We report performance
using both a synthetic data set to highlight particular model properties and also on two real datasets:
the Cedar Buffalo digits dataset and data on cardiac SPECT images. The Bayesian approach gives us
many samples of the final low dimensional embedding of the data, and techniques for determining a
single low dimensional embedding are discussed in section 6. In section 7 we conclude, and present
a survey of possible future work.

2 Exponential Family Models

In the exponential family of distributions, the conditional probability of a value x,, given parameter
value 0, takes the following form:

p(x,[0) = exp{s(xn)TO + h(xn) +9(0)} (1

where s(x,,) are the sufficient statistics, 8 is a vector of natural parameters, h(x,,) is a function of
the data and ¢(0) is a function of the parameters. In this paper, the natural representation of the
exponential family likelihood is used, such that s(x,,) = x,,.

It is convenient to represent a variable x,, that is drawn from an exponential family distribu-
tion using the notation: x,, ~ Expon(@) with natural parameters 6. Probability distributions that
belong to the exponential family also have natural conjugate prior distributions p(€). The conjugate
prior distribution for the exponential family distribution of equation (1) is:

p(0) oc exp{AT0 +vg(0) + f(A)} (2)

where A and v are hyperparameters of the prior distribution. In this case we use the notation:
6 ~ Conj(, v) as shorthand for the conjugate distribution.

As an example, for binary data an appropriate data distribution is the Bernoulli distribution.
The distribution is usually written as p(x|u) = p®(1 — p)*~%, with g in [0,1]. The exponential

family form of this distribution, using the terms in equation (1) are: h(z) = 0, § = In(3 ’_‘H)

and g(f) = —In(1 + ). The natural parameters can be mapped to the parameter values of
the distribution using the link function, which is the logistic sigmoid in the case of the Bernoulli
distribution. The terms of the conjugate distribution can also be derived easily.

3 Bayesian Exponential Family PCA

We can consider Bayesian Exponential Family PCA (BXPCA) as a method of searching for two
matrices V and ®, and we define the product matrix P = V@. In traditional PCA, the elements of
the matrix P which are the means of Gaussians, lie in the same space as that of the data X. In the
case of BXPCA and other methods for non-Gaussian PCA such as EPCA [4], this matrix represents
the natural parameters of the exponential family distribution of the data.

We represent the observed data as an N x D matrix X = {xi,...,xx}, with an individual
data point x, = [Zp1,...,Zpp]. N is the number of data points and D is the number of input
features. © is a K x D matrix with rows 0. Visa N x K matrix V = {vy,...,v,}, and rows
Vp = [Un1,...,Unk], are K-dimensional vectors of continuous values in R. K is the number of
latent factors representing the dimensionality of the reduced space.

3.1 Model Specification

The generative process for the BXPCA model is described in figure 1. Let m and S be hyperparam-
eters representing a K -dimensional vector of initial mean values and an initial covariance matrix
respectively. Let a and 3 be the hyperparameters corresponding to the shape and scale parameters
of an inverse Gamma distribution. We start by drawing g from a Gaussian distribution and the
elements o7 of the diagonal matrix X from an inverse gamma distribution:

p ~ N (pm, S) or ~ iG(a, B) 3)
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Figure 1: Graphical Model for Bayesian Exponential Family PCA.

For each data point n, we draw the K -dimensional entry v,, of the factor score matrix:
v ~ N (v, X) ())

The data is described by an exponential family distribution with natural parameters 8. The expo-
nential family distribution modelling the data, and the corresponding prior over the model parame-
ters, is:

Xn|Vn, © ~ Expon (Z vnk0k> 0y, ~ Conj (A, v) 5)
k

We denote 2 = {V,0, u, X} as the set of unknown parameters with hyperparameters ¥ =
{m, S, o, 3, A\, v}. Given the graphical model, the joint probability of all parameters and variables
is:

P(X, 2¥) = p(X|V, 0)p(O|A, v)p(V|p, Z)p(p|m, S)p(Ela, 5) (6)

Using the model specification given by equations (3) - (5) and assuming that the parameter v = 1,
the log-joint probability distribution is:

N T
np(X, Q¥) = (Z vnk0k> Xp + h(x) + g (Z vnk9k> (7)
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where the functions A(-), g(-) and f(-) correspond to the functions of the chosen conjugate distribu-
tion for the data.

3.2 Learning

The model parameters @ = {V,0, u, ¥} are learned from the data using Hybrid Monte Carlo
(HMC) sampling [7]. While the parameters ¥ = {m, S, «, 3, \, v} are treated as fixed hyperpa-
rameters, these can also be learned from the data. Hybrid Monte Carlo is a suitable sampler for use



with this model since all the variables are continuous and it is possible to compute the derivative of
the log-joint probability. HMC is also an attractive scheme for sampling since it avoids the random
walk behaviour of the Metropolis or the Gibbs sampling algorithms [7].

Hybrid Monte Carlo (HMC) is an auxiliary variable sampler where we sample from an aug-
mented distribution p(x, u), rather than the target distribution p(x), since it is easier to sample from
this augmented distribution [8]. HMC utilises the gradient of the target distribution to improve
mixing in high dimensions. In BXPCA, the target distribution is: £(Q|¥) = — Ilnp(X, Q|¥) and
represents the potential energy function. The auxiliary variable u, is Gaussian and is used to define

the kinetic energy K = %uTu. Furthermore, we define the gradient vector A(X, Q) £ agd(é)) ,
which can be computed using equation (7). The sum of the kinetic and the potential energy
defines the Hamiltonian. Samples of €2 and u are obtained by combining the Hamiltonian with the
gradient information in the simulation of so-called “leapfrog” steps. These details and the general

pseudocode for HMC can be found in MacKay [9].

One key feature of HMC is that the dynamics is simulated in an unconstrained space. Therefore to
correctly apply HMC to this model, we must ensure that all constrained variables are transformed
to an unconstrained space, perform dynamics in this unconstrained space, and then transform the
variables back to the original constrained space. The only variable that is constrained in BXPCA
is 3 where each diagonal element o7 > 0. Each o} can be transformed to a corresponding
unconstrained variable ¢ using the transformation: o7 = e*. This transformation requires that
we then apply the chain rule for differentiation and that we must include the determinant of the

Jacobian of the transformed variables, which is: |J| = ‘% exp(a,%)’ = lexp(&)| = o3

We also extended the HMC procedure to handle missing inputs in a principled manner, by
analytically integrating them out.In practice, this implies working with missing data under the
Missing at Random (MAR) assumption. Here, we divide the data into the set of observed and
missing data, X = {X°% X™#s5in91 and use the set X°** in the inference.

4 Related Work

Exponential Family PCA: Exponential family PCA (EPCA) [4] is a general class of PCA
algorithms that allows the ideas of PCA to be applied to any data that can be modelled from a
distribution in the exponential family. Like BXPCA, it is based on a factorisation of the data into a
factor score matrix V and a factor loading matrix ®. The algorithm is based on the optimisation
of a loss function which is based on the Bregman divergence between the data and the learned
reconstruction of the data. The learning is based on an alternating minimisation procedure where the
two matrices V and © are optimised in turn, and each optimisation is a convex function. The EPCA
objective function can be seen as the likelihood function of a probabilistic model, and hence this op-
timisation corresponds to maximum a posteriori (MAP) learning. The use of MAP learning makes
EPCA a deterministic latent variable model [6], since the latent variables are set to their MAP values.

In both our model and EPCA, the product P = V@O represents the natural parameters of the
distribution over the data, and must be transformed using the link function to get to the parameter
space of the associated data distribution. Our model is different from EPCA in that it is a fully
probabilistic model in which all parameters can be integrated out by MCMC. Furthermore, EPCA
does not include any form of regularisation and is prone to overfitting the data, which is avoided in
the Bayesian framework. We will compare BXPCA to EPCA throughout this paper.

Non-negative Matrix Factorisation: Non-negative Matrix Factorisation (NMF) [2] is a technique
of factorising a matrix into the product of two positive lower rank matrices. In NMF, the matrix
product P approximates the mean parameters of the data distribution, and is thus in the same space
as the data. A mean parameter for example, is the rate A if the data is modelled as a Poisson
distribution, or is the probability of data being a 1 if the data is modelled as a Bernoulli. In NMF,
V and O are restricted to be positive matrices, and inference corresponds to maximum likelihood
learning with a Poisson likelihood. Similarly to EPCA, this learning method places NMF in the
class of deterministic latent variable methods.



Discrete Components Analysis: The Discrete Components Analysis (DCA) [3] is a family
of probabilistic algorithms that deals with the application of PCA to discrete data and is a unifica-
tion of the existing theory relating to dimensionality reduction with discrete distributions. In DCA
the product P = V@O is the mean parameter of the appropriate distribution over that data, as with
NMEF, and also constrains V and © to be non-negative. The various algorithms of the DCA family
are simulated using either Gibbs sampling or variational approximations.

Bayesian Partial Membership: The Bayesian Partial Membership (BPM) model is a clus-
tering technique that allows data points to have fractional membership in multiple clusters. The
model is derived from a finite mixture model which allows the usual indicator variables to take on
any value in the range [0,1]. The resulting model has the same form as the model shown in figure
1, but instead of the model variable V being modelled as a Gaussian with unknown mean and
covariance, it is instead modelled as a Dirichlet distribution. This difference is important, since
it affects the interpretation of the results. In the BXPCA, we interpret the matrix V as a lower
dimensional embedding of the data which can be used for dimensionality reduction. In contrast,
the corresponding matrix for the BPM model, whose values are restricted to [0,1], is the partial
membership of each data point and represents the extent to which each data point belongs to each
of the K clusters.

5 Results and Discussion

Synthetic Data: Synthetic data was generated by creating three 16-bit prototype vectors with each
bit being generated with a probability of 0.5. Each of the three prototypes is replicated 200 times,
resulting in a 600-point data set. We then flip bits in the replicates with a probability of 0.1, as in
Tipping [10], thus adding noise about each of the prototypes. BXPCA inference was run using this
data for 4000 iterations, using the first half as burn-in. Figure 2 demonstrates the learning process of
BXPCA. In the initial phase of the sampling, the energy decreases slowly and the model is unable
to learn any useful structure from the data. Around sample 750, the energy function decreases and
some useful structure has been learnt. By sample 4000 the model has learnt the original data well,
as can be seen by comparing sample 4000 and the original data.

To evaluate the performance of BXPCA, we define training and test data from the available
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Figure 2: Reconstruction of data from samples at various stages of the sampling. The top plot shows
the change in the energy function. The lower plots show the reconstructions and the original data.
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Figure 3: Boxplots comparing the NLP and RMSE of BXPCA and EPCA for various latent factors.

data. The test data was created by randomly selecting 10% of the data points. These test data
points were set as missing values in the training data. Inference is then run using BXPCA,
which has been extended to consider missing data. This method of using missing data is a
natural way of testing these algorithms, since both are generative models. We calculate the
negative log probability (NLP) and the root mean squared error (RMSE) using the testing data.
We evaluate the same metrics for EPCA, which is also trained considering missing data. This
missing data testing methodology is also used in the experiments on real data that are described later.

In figure 3a and 3b, the RMSE and NLP of the two algorithms are compared respectively,
for various choices of the latent factor K. EPCA shows characteristic underfitting for K = 1
and demonstrates severe overfitting for large K. This overfitting is seen by the very large values
of NLP for EPCA. If we examine the RMSE on the training data shown in figure 3c, we see the
overfitting problem highlighted further, where the error on the training set is almost zero for EPCA,
whereas BXPCA manages to avoid this problem. We expect that a random model would have a
NLP = 10% x 600 x 16 = 960 bits, but the NLP values for EPCA are significantly larger than
this. This is because as EPCA begins to overfit, it becomes highly confident in its predictions and
the proportion of bits which it believes are 1, for example, but which are actually 0, increases.
This is shown in figure 3d, where we show the frequency of incorrect predictions, where the error
between the predicted and actual bits is greater than 0.95. BXPCA, based on a Bayesian approach
thus avoids overfitting and gives improved predictions.

Digits Data: BXPCA was applied to the CEDAR Buffalo digits dataset. The digit 2 was
used, and consists of 700 greyscale images with 64 attributes. The digits were binarised by
thresholding at a greyscale value of 128 from the 0 to 255 greyscale range. Table 1 compares the
performance of BXPCA and EPCA, using the same method of creating training and testing data
sets as for the synthetic data. BXPCA has lower RMSE and NLP than EPCA and also does not
exhibit overfitting at large K, which can be seen in EPCA by the large value of NLP at K = 5.

SPECT Data: The data set describes the diagnosis of cardiac Single Proton Emission Computed
Tomography (SPECT) images [11]. The data consists of 267 SPECT image sets, and has been
processed resulting in 22 binary attributes. Table 2 compares the performance of BXPCA and EPCA.
This dataset demonstrates that EPCA quickly overfits the data, as shown by the rapidly increasing
values of NLP, and that the two algorithms perform equally well for low values of K.



Table 1: Table comparing BXPCA and EPCA on the digit 2 dataset.
| | K [ 2 | 3 [ 4 [ 5 |

NLP | 20323 | 20220 | 20024 | 2032.0
BXPCA | RMSE | 0.389 | 0.385 | 0.380 | 0.383
o | NLP [ 21255 | 24821 | 29902 | 47088

RMSE | 0392 | 0393 | 0399 | 0.402

Table 2: Table Comparing BXPCA and EPCA on the SPECT dataset.

| | K [ t | 2 [ 3 [ 4 | 5 [ 6 [ 7 | 8

|

BXPCA NLP | 348.67 | 343.40 | 325.94 | 331.47 | 291.75 | 305.22 | 310.36 | 319.06
RMSE | 0441 | 0433 | 0405 | 0419 | 0377 | 0.393 | 0.383 | 0.396
EPCA NLP | 388.18 | 516.78 | 507.79 | 1096.6 | 1727.4 | 4030.0 | 4209.0 | 4330.0
RMSE | 0439 | 0427 | 0413 | 0439 | 0.487 | 0.517 | 0.528 | 0.560

6 Choice of Final Embedding

For the purposes of dimensionality reduction, PCA is used to search for a low dimensional
embedding V of the data points. In EPCA, the alternating minimisation returns a single V that is
the low dimensional representation. In BXPCA though, we do not get a single V, but rather many
samples which represent the variation in the embedding. Furthermore, we cannot simply take the
average of each of these samples to obtain a single V, since we have not included any identifiability
constraints in the model. This lack of identifiability subjects V to permutations of the columns, and
to rotations of the matrix, making an average of the samples meaningless.

There are several approaches to obtaining a single low dimensional representation from the
set of samples. The simplest approach is to choose from the set of available samples, the best global
configuration, {V*, ©*} = arg maxg:., p(X, 2*)|¥), and use this V*. A second approach aims
to give further information about the variability of the embedding. We begin by fixing the model
parameters to {©®*, pu*, 3"}, These can be set using the sample chosen in the first approach. We
then sample V from the conditional distribution:

V ~p(VIX, 0% u* X)) x p(X|V,0")p(V|p", X) (8)

where equation (8) is obtained using Bayes theorem and the joint probability distribution given in
equation (6). We can now average these samples to obtain a single embedding since the problems
of rotation and permutation have been removed by constraining the variables {@®™, u*, X"}, We
demonstrate this procedure using the synthetic data described in the previous section for K = 2.
Figure 4 shows the embedding in the 2D space for 10 data points and 20 independent samples
drawn according to equation (8). The graph shows that there is some mean value and also gives
us an understanding of the variation that is possible, in this 2D embedding. The drawback of this
last approach is that it does not give any indication of the effect of variation in ®. To gain some
understanding of this effect, we can further extend this approach by choosing ) random samples,

e = {e*W, @ ..., @*(Q)}, at convergence of the HMC sampler. We then repeat the afore-

mentioned procedure for these various ©*(@)_ This then gives an understanding of the variability of
the final embedding, in terms of both ® and V.

7 Conclusions and Future Work

We have described a Bayesian approach to PCA which is generalised to the exponential family.
We have employed a Hybrid Monte Carlo sampling scheme with an energy based on the log-joint
probability of the model. In particular, we have demonstrated the ability of BXPCA to learn the
structure of the data while avoiding overfitting problems, which are experienced by other maximum
likelihood approaches to exponential family PCA. We have demonstrated this using both synthetic
and real data.
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Figure 4: Variation in final embedding for 10 data points and various samples of V

In future the model can be extended by considering an alternate distribution for the factor
score matrix V. Instead of considering a Gaussian distribution, a Laplacian or other heavy tailed
distribution could be used, which would allow us to determine the lower dimensional embedding
of the data, and also give the model a sparseness property. We could also specifically include
restrictions on the form of the score and the loading matrices, V and © respectively, to ensure
identifiability. This makes learning in the model more complex since we must ensure that the
restrictions are maintained. Also, it will prove interesting to consider alternate forms of inference,
specifically the techniques of sequential Monte Carlo to allow for online inference.
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