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Abstract

In this paper we consider the Nonnegative Matrix Factorization (NMF) problem: given an (elementwise)
nonnegative matrix V ∈ Rm×n+ find, for assigned k, nonnegative matrices W ∈ Rm×k+ and H ∈ Rk×n+ such
that V = WH . Exact, nontrivial, nonnegative factorizations do not always exist, hence it is interesting to
pose the approximate NMF problem. The criterion which is commonly employed is I-divergence between
nonnegative matrices. The problem becomes that of finding, for assigned k, the factorization WH closest
to V in I-divergence. An iterative algorithm, EM like, for the construction of the best pair (W, H) has been
proposed in the literature. In this paper we interpret the algorithm as an alternating minimization procedure à
la Csiszár–Tusnády and investigate some of its stability properties. NMF is widespreading as a data analysis
method in applications for which the positivity constraint is relevant. There are other data analysis methods
which impose some form of nonnegativity: we discuss here the connections between NMF and Archetypal
Analysis.
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1. Introduction

The approximate Nonnegative Matrix Factorization (NMF) of nonnegative matrices is a data
analysis technique only recently introduced [9,14]. Roughly speaking the problem is to find, for a
given nonnegative matrix V ∈ Rm×n+ , and an assigned k, a pair of nonnegative matrices W ∈ Rm×k+
and H ∈ Rk×n+ such that, in an appropriate sense, V ≈ WH . In [9] EM like algorithms for the
construction of a factorization have been proposed. The algorithms have been later derived in
[10] by using an ad-hoc auxiliary function, a common approach in deriving EM algorithms. In
[14] the connection with the classic alternating minimization of the I-divergence [2] has been
pointed out but not fully investigated. In this paper we pose the NMF problem as a minimum I-
divergence problem that can be solved by alternating minimization and derive, from this point of
view, the algorithm proposed in [9]. There are alternative approaches to approximate nonnegative
matrix factorization. For instance, recently, see [3], results have been obtained for the approximate
factorization (w.r.t. the Frobenius norm) of symmetric nonnegative matrices.

Although only recently introduced the NMF has found many applications as a data reduction
procedure and has been advocated as an alternative to Principal Components Analysis (PCA) in
cases where the positivity constraint is relevant (typically image analysis). The title of [14] is a clear
indication of this point of view, but a complete analysis of the relations between NMF and PCA
is still lacking. Our interest in NMF stems from the system theoretic problem of approximate
realization (or order reduction) of Hidden Markov Models. Partial results have already been
obtained [6].

This paper is organized as follows. In Section 2 we pose the approximate nonnegative matrix
factorization problem, define the I-divergence between matrices and discuss the solution proposed
in [9,10]. In Section 3 we pave the way for the alternating minimization algorithm presenting the
properly lifted version of the minimization problem and solving the two partial minimizations
in the style of Csiszár and Tusnády [2]. In Section 4 we construct the alternating minimization
algorithm and compute the iteration gain. One of the advantages of working with the lifted problem
is that it sheds a new light also on the derivation of the algorithm via auxiliary functions given in
[10]. In Section 5 we will use the results of Section 3 to construct a very natural auxiliary function
to solve the original problem. A discussion of the convergence properties of the algorithm is given
in Section 6. In the concluding Section 7 we establish a connection between the approximate NMF
problem and the Archetypal Analysis algorithm of Cutler and Breiman [4]. The present paper is
an extended version of [7].

2. Preliminaries and problem statement

The NMF is a long standing problem in linear algebra [8,12]. It can be stated as follows. Given
V ∈ Rm×n+ , and 1 � k � min{m, n}, find a pair of matrices W ∈ Rm×k+ and H ∈ Rk×n+ such that
V = WH . The smallest k for which a factorization exists is called the positive rank of V , denoted
prank(V ). This definition implies that rank(V ) � prank(V ) � min{m, n}. It is well known that
prank(V ) can assume all intermediate values, depending on V . Examples for which nonnegative
factorizations do not exist, and examples for which factorization is possible only for k > rank(V )

have been constructed in the literature [8]. The prank has been characterized only for special
classes of matrices [12] and algorithms for the construction of a NMF of a general positive matrix
are not known.

The approximate NMF has been recently introduced in [9] independently from the exact NMF
problem. The set-up is the same, but instead of exact factorization it is required that V ≈ WH in
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an appropriate sense. In [9], and in this paper, the approximation is to be understood in the sense
of minimum I-divergence. For two nonnegative numbers p and q the I-divergence is defined as

D(p‖q) = p log
p

q
− p + q,

with the conventions 0/0 = 0, 0 log 0 = 0 and p/0 = ∞ for p > 0. From the inequality x log x �
x − 1 it follows that D(p‖q) � 0 with equality iff p = q. For two nonnegative matrices M =
(Mij ) and N = (Nij ), of the same size, the I-divergence is defined as

D(M‖N) =
∑
ij

D(Mij‖Nij ).

Again it follows that D(M‖N) � 0 with equality iff M = N . For nonnegative vectors or tensors
of the same size a similar definition applies.

The problem of approximate NMF is to find for given V and a fixed number k (often referred
to as the inner size of the factorization)

arg min
W,H

D(V ‖WH). (1)

The function D : (W, H) → D(V ‖WH) will sometimes be referred to as the objective function.
The domain of D is the set of pairs (W, H) with nonnegative entries. The interior of the domain
is the subset of pairs (W, H) with positive (> 0) entries, whereas pairs on the boundary have at
least one entry equal to zero.

Although the objective function (W, H) �→ D(V ‖WH) is easily seen to be convex in W and
H separately, it is not jointly convex in the two variables. Hence (W, H) �→ D(V ‖WH) may have
several (local) minima and saddle points, that may prevent numerical minimization algorithms
to converge to the global minimizer. However D(V ‖WH) cannot have a local maximum in an
interior point (W0, H0), because then also W �→ D(V ‖WH0) would have a local maximum in
W0, which contradicts convexity. Local maxima at the boundary are not a priori excluded.

It is not immediately obvious that the approximate NMF problem admits a solution. The
following result is therefore relevant.

Proposition 2.1. The minimization problem (1) has a solution.

The proof of this proposition is deferred to Section 4.
Notice that, increasing the inner size from k to k + 1, the optimal value of the objective function

decreases. This follows from the fact that one can trivially embed the factorization problem with
inner size k into the problem with inner size k + 1 simply adding a zero last column to the optimal
W and an arbitrary last row to the optimal H of the problem with inner size k. Unfortunately,
unlike the SVD of a matrix, the best approximations with increasing k are not embedded one into
another. For increasing k the computations are to be carried out anew.

Although, according to Proposition 2.1, a solution to the minimization problem exists, it will
certainly not be unique. In order to rule out too many trivial multiple solutions, we impose the
condition that H is row stochastic, so

∑
j Hlj = 1 for all l. This is not a restriction. Indeed, first

we exclude without loss of generality the case where H has one or more zero rows, since we would
then in fact try to minimize the I-divergence with inner size smaller than k. Let h be the diagonal
matrix with elements hi = ∑

j Hij , then WH = W̃ H̃ with W̃ = Wh, H̃ = h−1H and H̃ is by
construction row stochastic. The convention that H is row stochastic still does not rule out non-
uniqueness. Think e.g. of post-multiplying W with a permutation matrix � and pre-multiplying
H with �−1.
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Let en (e�
n ) be the column (row) vector of size n whose elements are all equal to one. Given k,

the (constrained) problem we will look at from now on is

min
W,H :Hem=ek

D(V ‖WH). (2)

For the sake of brevity we will often write e for a vector of 1’s of generic size. The constraint in
the previous problem will then read as He = e.

To carry out the minimization numerically, Lee and Seung [9,10] proposed the following
iterative algorithm. Denoting by Wt and Ht the matrices at step t , the update equations are

Wt+1
il = Wt

il

∑
j

H t
ljVij

(W tH t )ij
, (3)

Ht+1
lj = Ht

lj

∑
i

W t
ilVij

(W tH t )ij

/∑
ij

W t
ilH

t
ljVij

(W tH t )ij
. (4)

The initial condition (W 0, H 0) will always be assumed to be in the interior of the domain. Only a
partial justification for this algorithm is given in [10], although the update steps (3) and (4) are like
those in the EM algorithm, known from statistics, see [5]. Likewise the convergence properties of
the algorithm are unclear. In the next section the minimization problem will be cast in a different
way to provide more insight in the specific form of the update equations and on the convergence
properties of the algorithm.

We will now show that the V matrix in the approximate NMF problem can always be taken
as a probability matrix P i.e. such that Pij � 0,

∑
ij Pij = 1. This will pave the way for the

probabilistic interpretation of the exact and approximate NMF problems to be given later.
Let P = 1

e�V e
V , Q− = 1

e�We
W , w = e�We and Q+ = H . Notice that e�Pe = e�Q−e = 1

and Q+e = e. Using the definition of divergence and elementary computations, we obtain the
decomposition

D(V ‖WH) = e�V eD(P ‖Q−Q+) + D(e�V e‖w).

Hence, since the number e�V e is known, minimizing D(V ‖WH) w.r.t. (W, H) is equivalent
to minimizing D(P ‖Q−Q+) w.r.t. (Q−, Q+) and D(e�V e‖w) w.r.t. w. The minimizers of the
three problems satisfy the relations W ∗ = e�V eQ∗−, H ∗ = Q∗+, and w∗ = e�V e. Minimizing
D(V ‖WH) is therefore equivalent to minimizing D(P ‖Q−Q+). This enables us to give the
problem a probabilistic interpretation. Indeed,

D(P ‖Q−Q+) =
∑
ij

D(Pij‖(Q−Q+)ij ) =
∑
ij

Pij log
Pij

(Q−Q+)ij
, (5)

which is the usual I-divergence (Kullback–Leibler distance) between (finite) probability measures.
This will be exploited in later sections. From now on we will always consider the following
problem. Given the probability matrix P and the integer k find

min
Q−,Q+:Q+e=e

D(P ‖Q−Q+).

For typographical reasons we often, but not always, denote the entries of P by P(ij) instead of
Pij and likewise for other matrices.

The minimization algorithm is easily seen to be invariant under the previous normalizations.
Let Qt− = Wt

e�Wte
and Qt− = Ht . Substitute the definitions of (P, Qt−, Qt+) into (3) and (4) and
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use the easily verified fact that e�Wte = e�V e for t � 1 to obtain the update equations in the
new notations

Qt+1− (il) = Qt−(il)
∑
j

Qt+(lj)P (ij)

(Qt−Qt+)(ij)
, (6)

Qt+1+ (lj) = Qt+(lj)
∑

i

Qt−(il)P (ij)

(Qt−Qt+)(ij)

/∑
ij

Qt−(il)Qt+(lj)P (ij)

(Qt−Qt+)(ij)
. (7)

3. Lifted version of the problem

In this section we lift the I-divergence minimization problem to an equivalent minimization
problem where the ‘matrices’ (we should speak of tensors) have three indices.

3.1. Setup

Let be given a probability matrix P (i.e. P(ij) � 0,
∑

ij P (ij) = 1) and an integer k �
min{m, n}. We introduce the following sets:

P =
{

P ∈ Rm×k×n+ :
∑

l

P(ilj) = P(ij)

}
,

Q =
{

Q ∈ Rm×k×n+ : Q(ilj) = Q−(il)Q+(lj),

Q−, Q+ � 0, Q+e = e, e�Q−e = 1
}

,

Q=
{

Q ∈ Rm×n+ : Q(ij) =
∑

l

Q(ilj) for some Q ∈ Q

}
.

The interpretation of the sets P, Q, Q is given next.
Suppose one is given random variables (Y−, X, Y+), taking values in {1, . . . , m} × {1, . . . , k} ×

{1, . . . , n}. For convenience we can think of the r.v.’s as defined on the canonical measurable space
(�,F), where � is the set of all triples (i, l, j) and F is 2�. For ω = (i, l, j) we have the identity
mapping (Y−, X, Y+)(ω) = (i, l, j). If R a given probability measure on this space, then the
distribution of the triple (Y−, X, Y+) under R is given by the tensor R defined by

R(ilj) = R(Y− = i, X = l, Y+ = j). (8)

Conversely, a given tensor R defines a probability measure R on (�,F). We will use the notation
D both for I-divergence between tensors and matrices and for the Kullback–Leibler divergence
between probabilities. If P, Q are tensors related to probability measures P and Q like in (8) we
obviously have D(P‖Q) = D(P‖Q).

The sets P, Q correspond to subsets of the set of all measures on (�,F). In particular P
corresponds to the subset of all measures whose Y = (Y−, Y+) marginal coincides with the given
P , while Q corresponds to the subset of measures under which Y− and Y+ are conditionally
independent given X. The first assertion is evident by the definition of P. To prove the second
assertion notice that if Q(Y− = i, X = l, Y+ = j) = Q(ilj) = Q−(il)Q+(lj), then summing
over j one gets Q(Y− = i, X = l) = Q−(il) (since Q+e = e) and similarly Q(Y+ = j |X =
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l) = Q+(lj). It follows that Q(Y− = i, X = l, Y+ = j) = Q(Y− = i, X = l)Q(Y+ = j |X = l)

which is equivalent to

Q(Y− = i, Y+ = j |X = l) = Q(Y− = i|X = l)Q(Y+ = j |X = l),

i.e., Y−, Y+ are conditionally independent given X.
Finally the set Q is best interpreted algebraically as the set of m × n probability matrices that

admit exact NMF of size k.
The following observation (taken from [11]) motivates our approach.

Lemma 3.1. P admits exact factorization of inner size k iff P ∩ Q /= ∅.

Proof. If P ∩ Q /= ∅ then there exists a matrix Q ∈ Q which also belongs to P, therefore P =
Q−Q+. Conversely, if we have P = Q−Q+ with inner size k, then the tensor P given by P(ilj) =
Q−(il)Q+(lj) clearly belongs to P. As in Section 2 we can w.l.o.g. assume that Q+e = e, so
that P belongs to Q as well. �

We are now ready to give a natural probabilistic interpretation to the exact NMF problem.
The probability matrix P admits exact NMF P = Q−Q+ iff there exists at least one measure on
(�,F) whose Y = (Y−, Y+) marginal is P and at the same time making Y− and Y+ conditionally
independent given X.

Having shown that the exact NMF factorization P = Q−Q+ is equivalent to P ∩ Q /= ∅ it
is not surprising that the approximate NMF, corresponding to P ∩ Q = ∅, can be viewed as a
double minimization over the sets P and Q.

Proposition 3.2. Let P be given. The function (P, Q) �→ D(P‖Q) attains a minimum on P × Q
and it holds that

min
Q∈QD(P ‖Q) = min

P∈P,Q∈Q
D(P‖Q).

The proof will be given in Section 3.2.

Remark 3.3. Let P∗ and Q∗ be the minimizing elements in Proposition 3.2. If there is l0 such
that

∑
ij P∗(il0j) = 0, then all Q∗(il0j) are zero as well. Similarly, if there is l0 such that∑

ij Q∗(il0j) = 0, then all P∗(il0j) are zero as well. In each (and hence both) of these cases
the optimal approximate factorization Q∗−Q∗+ of P is of inner size less than k (delete the column
corresponding to l0 from Q∗− and the corresponding row of Q∗+).

3.2. Two partial minimization problems

In the next section we will construct the algorithm for the solution of the double minimization
problem

min
P∈P,Q∈Q

D(P‖Q),

of Proposition 3.2, as an alternating minimization algorithm over the two sets P and Q. This
motivates us to consider here two partial minimization problems. In the first one, given Q ∈ Q
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we minimize the I-divergence D(P‖Q) over P ∈ P. In the second problem, given P ∈ P we
minimize the I-divergence D(P‖Q) over Q ∈ Q.

Let us start with the first problem. The unique solution P∗ = P∗(Q) can easily be computed
analytically and is given by

P∗(ilj) = Q(ilj)

Q(ij)
P (ij), (9)

where Q(ij) = ∑
l Q(ilj). We also adopt the convention to put P∗(ilj) = 0 if Q(ij) = 0, which

ensures that, viewed as measures, P∗ � Q.
Now we turn to the second partial minimization problem. The unique solution Q∗ = Q∗(P) to

this problem can also be easily computed analytically and is given by

Q∗−(il) =
∑
j

P(ilj), (10)

Q∗+(lj) =
∑

i P(ilj)∑
ij P(ilj)

, (11)

where we assign arbitrary values to the Q∗+(lj) (complying with the constraint Q+e = e) for
those l with

∑
ij P(ilj) = 0.

The two partial minimization problems and their solutions have a nice probabilistic interpre-
tation.

In the first minimization problem, one is given a distribution Q, which makes the pair Y =
(Y−, Y+) conditionally independent given X, and finds the best approximation to it in the set P
of distributions with the marginal of Y given by P . Let P∗ denote the optimal distribution of
(Y−, X, Y+). Eq. (9) can then be interpreted, in terms of the corresponding measures, as

P∗(Y− = i, X = l, Y+ = j) = Q(X = l|Y− = i, Y+ = j)P (ij).

Notice that the conditional distributions of X given Y under P∗ and Q are the same. We will see
below that this is not a coincidence.

In the second minimization problem, one is given a distribution P, with the marginal of Y given
by P and finds the best approximation to it in the set Q of distributions which make Y = (Y−, Y+)

conditionally independent given X. Let Q∗ denote the optimal distribution of (Y−, X, Y+). Eqs.
(10) and (11) can then be interpreted, in terms of the corresponding measures, as

Q∗(Y− = i, X = l) = P(Y− = i, X = l)

and

Q∗(Y+ = j |X = l) = P(Y+ = j |X = l).

We see that the optimal solution Q∗ is such that the marginal distributions of (X, Y−) under P

and Q∗ coincide as well as the conditional distributions of Y+ given X under P and Q∗. Again,
this is not a coincidence, as we will explain below.

Remark 3.4. As a side remark we notice that the minimization of D(Q‖P) over P ∈ P for a given
Q ∈ Q yields the same solution P∗. A similar result does not hold for the second minimization
problem. This remark is not relevant for what follows.

We can now state the so called Pythagorean rules for the two partial minimization problems.
This terminology was introduced by Csiszár [1].
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Lemma 3.5. For fixed Q and P∗ = P∗(Q) it holds that, for any P ∈ P,

D(P‖Q) = D(P‖P∗) + D(P∗‖Q), (12)

moreover

D(P∗‖Q) = D(P ‖Q), (13)

where

Q(ij) =
∑

l

Q(ilj). (14)

For fixed P and Q∗ = Q∗(P) it holds that, for any Q ∈ Q,

D(P‖Q) = D(P‖Q∗) + D(Q∗‖Q). (15)

Proof. To prove the first rule we compute

D(P‖P∗) + D(P∗‖Q)

=
∑
ilj

P(ilj) log
P(ilj)Q(ij)

Q(ilj)P (ij)
+
∑
ilj

Q(ilj)
P (ij)

Q(ij)
log

P(ij)

Q(ij)

=
∑
ilj

P(ilj) log
P(ilj)

Q(ilj)
+
∑
ilj

P(ilj) log
Q(ij)

P (ij)

+
∑
ij

Q(ij)
P (ij)

Q(ij)
log

P(ij)

Q(ij)
= D(P‖Q).

The first rule follows. To prove the relation (13) insert Eq. (9) into D(P∗‖Q) and sum over l to
get

D(P∗‖Q) =
∑
ilj

P (ij)
Q(ilj)

Q(ij)
log

P(ij)

Q(ij)
= D(P ‖Q).

To prove the second rule we first introduce some notation. Let P(il·) = ∑
j P(ilj), P(·lj ) =∑

i P(ilj) and P(j |l) = P(·lj )/
∑

j P(·lj ). For Q we use similar notation and observe that
Q(il·) = Q−(il), and Q(j |l) = Q+(lj)/

∑
j Q+(lj), andQ∗−(il) = P(il·) andQ∗+(lj) = P(j |l).

We now compute

D(P‖Q) − D(P‖Q∗) =
∑
ilj

P(ilj)

(
log

P(il·)
Q−(il)

+ log
P(j |l)
Q+(lj)

)

=
∑
il

P(il·) log
P(il·)
Q−(il)

+
∑
lj

P(·lj ) log
P(j |l)
Q+(lj)

= D(Q∗‖Q).

The second rule follows. �

With the aid of the relation (13) we can now prove Proposition 3.2.

Proof of Proposition 3.2. With P∗ = P∗(Q), the optimal solution of the partial minimization
over P, we have
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D(P‖Q) � D(P∗‖Q)

= D(P ‖Q)

� min
Q∈QD(P ‖Q).

It follows that infP∈P,Q∈Q D(P‖Q) � minQ∈Q D(P ‖Q).
Conversely, let Q in Q be given and let Q be defined by Q(ij) = ∑

l Q(ilj) . From

D(P ‖Q) = D(P∗(Q)‖Q)

� inf
P∈P,Q∈Q

D(P‖Q),

we obtain

min
Q∈QD(P ‖Q) � inf

P∈P,Q∈Q
D(P‖Q).

Finally we show that we can replace the infima by minima. Let Q∗− and Q∗+ be such that
(Q−, Q+) �→ D(P ‖Q−Q+) is minimized (their existence is guaranteed by Proposition 2.1). Let
Q∗ be a corresponding element in Q and P∗ = P∗(Q∗). Then D(P∗‖Q∗) = D(P ‖Q∗−Q∗+) and
the result follows. �

For a probabilistic derivation of the solutions of the two partial minimization problems and
of their corresponding Pythagorean rules, we use a general result (Lemma 3.6 below) on the
I-divergence between two joint laws of any random vector (U, V ). We denote the law of (U, V )

under arbitrary probability measures P and Q by PU,V and QU,V . The conditional distributions
of U given V are summarized by the matrices PU |V and QU |V , with the obvious convention
PU |V (ij) = P(U = j |V = i) and likewise for QU |V .

Lemma 3.6. It holds that

D(PU,V ‖QU,V ) = EPD(PU |V ‖QU |V ) + D(PV ‖QV ), (16)

where

D(PU |V ‖QU |V ) =
∑
j

P (U = j |V ) log
P(U = j |V )

Q(U = j |V )
.

If moreover V = (V1, V2), and U, V2 are conditionally independent given V1 under Q, then the
first term on the RHS of (16) can be written as

EPD(PU |V ‖QU |V ) = EPD(PU |V ‖PU |V1) + EPD(PU |V1‖QU |V1). (17)

Proof. It follows from elementary manipulations. �

The first minimization problem can be solved probabilistically as follows. Given Q we are to
find its best approximation within P. Let Q correspond to the given Q and P correspond to the
generic P ∈ P. Choosing U = X, V = Y = (Y−, Y+) in Lemma 3.6, and remembering that PY

is determined by P for all P ∈ P, Eq. (16) now reads

D(P‖Q) = EPD(PX|Y ‖QX|Y ) + D(P ‖Q), (18)
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where the matrix Q is as in (14). The problem is equivalent to the minimization of EPD

(PX|Y ‖QX|Y ) w.r.t. P ∈ P, which is attained (with value 0) at P∗ with P∗X|Y = QX|Y and
P∗Y = P . To derive probabilistically the corresponding Pythagorean rule, we apply (16) with P∗
instead of Q. We obtain, using PY = P∗Y ,

D(PX,Y ‖P∗X,Y

) = EPD(PX|Y ‖P∗X|Y
). (19)

Since also

EPD(PX|Y ‖QX|Y ) = EPD(PX|Y ‖P∗X|Y
), (20)

we combine Eqs. (19) and (20) and insert the result into (18). Recognizing the fact that D(P‖P∗) =
D(PX,Y ‖P∗X,Y

), and using D(P∗‖Q) = D(P ‖Q) according to (13), we then identify (18) as the
first Pythagorean rule (12).

The treatment of the second minimization problem follows a similar pattern. Given P we are
to find its best approximation within Q. Let P correspond to the given P and Q correspond to the
generic Q ∈ Q. Choosing U = Y+, V1 = X and V2 = Y− in Lemma 3.6, and remembering that
under any Q ∈ Q the r.v. Y−, Y+ are conditionally independent given X, Eq. (16) refined with
(17) now reads

D(P‖Q) = EPD(PY+|X,Y−‖PY+|X) + EPD(PY+|X‖QY+|X) + D(PY−,X‖QY−,X).

The problem is equivalent to the minimizations of the second and third I-divergences on the RHS
w.r.t. Q ∈ Q, which are attained (both with value 0) at Q∗ with Q∗Y+|X = PY+|X and Q∗Y−,X =
PY−,X. Note that X has the same distribution under P and Q∗. To derive probabilistically the
corresponding Pythagorean rule we notice that

D(P‖Q) − D(P‖Q∗) = EQ∗D(Q∗Y+|X‖QY+|X) + D(Q∗Y−,X‖QY−,X). (21)

In the right hand side of (21) we can, by conditional independence, replace EQ∗D(Q∗Y+|X‖QY+|X)

with EQ∗D(Q∗Y+|X,Y−‖QY+|X,Y−). By yet another application of (16), we thus see that D(P‖Q) −
D(P‖Q∗) = D(Q∗‖Q), which is the second Pythagorean rule (15).

4. Alternating minimization algorithm

The results of the previous section are aimed at setting up an alternating minimization algorithm
for obtaining minQ D(P ‖Q), where P is a given nonnegative matrix. In view of Proposition 3.2
we can lift this problem to the P × Q space. Starting with an arbitrary Q0 ∈ Q with positive
elements, we adopt the following alternating minimization scheme

→ Qt → Pt → Qt+1 → Pt+1 → (22)

where Pt = P∗(Qt ), Qt+1 = Q∗(Pt ).
To relate this algorithm to the one of Section 2 (formulas (6) and (7)) we combine two steps

of the alternating minimization at a time. From (22) we get

Qt+1 = Q∗(P∗(Qt )).

Computing the optimal solutions according to (9), (10) and (11) one gets from here the formulas
(6) and (7) of Section 2.

The Pythagorean rules allow us to easily compute the update gain D(P ‖Qt) − D(P ‖Qt+1)

of the algorithm.
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Proposition 4.1. The update gain at each iteration of the algorithm (22) in terms of the matrices
Qt is given by

D(P ‖Qt) − D(P ‖Qt+1) = D(Pt‖Pt+1) + D(Qt+1‖Qt ). (23)

Proof. The two Pythagorean rules from Lemma 3.5 now take the forms

D(Pt‖Qt ) = D(Pt‖Qt+1) + D(Qt+1‖Qt ),

D(Pt‖Qt+1) = D(Pt‖Pt+1) + D(Pt+1‖Qt+1).

Addition of these two equations results in

D(Pt‖Qt )= D(Pt‖Pt+1) + D(Pt+1‖Qt+1) + D(Qt+1‖Qt )

and since D(Pt‖Qt ) = D(P ‖Qt) from (13), the result follows. �

Remark 4.2. If one starts the algorithm with matrices (Q0−, Q0+) in the interior of the domain,
the iterations will remain in the interior. Suppose that, at step n, the update gain is zero. Then,
from (23), we get that D(Qt+1‖Qt ) = 0. Hence the tensors Qt+1 and Qt are identical. From this
it follows by summation that Qt+1− = Qt−. But then we also have the equality Qt−(il)Qt+1+ (lj) =
Qt−(il)Qt+(lj) for all i, l, j . Since all Qt−(il) are positive, we also have Qt+1+ = Qt+. Hence,
the updating formulas strictly decrease the objective function until the algorithm reaches a fixed
point.

We close this section with the proof of Proposition 2.1 in which we use the result of Proposition
4.1.

Proof of Proposition 2.1. We first prove that there exists a pair of matrices (W, H) with Hem =
ek and Wek = V en for which D(V ‖WH) is finite. Put W = 1

k
V ene

�
k and H = 1

e�
mV en

eke
�
mV .

Note that indeed Hem = ek and Wek = V en and that all elements of W and H , and hence those
of WH , are positive, D(V ‖WH) is therefore finite.

Next we show that we can restrict ourselves to minimization over a compact set K of matrices.
Specifically, we will show that for all positive matrices W and H , there exist positive matrices
W ′ and H ′ with (W ′, H ′) ∈ K such that D(V ‖W ′H ′) � D(V ‖WH). We choose for arbitrary
W 0 and H 0 the matrices W 1 and H 1 according to (3) and (4). It follows from Proposition 4.1 that
indeed D(V ‖W 1H 1) � D(V ‖W 0H 0). Moreover, it is immediately clear from (3) and (4) that
we have W 1e = V e and H 1e = e. Hence, it is sufficient to confine search to the compact set L
where He = e and We = V e.

Fix a pair of indices i, j . Since we can compute the divergence elementwise we have the trivial
estimate

D(V ‖WH) � Vij log
Vij

(WH)ij
− Vij + (WH)ij .

Since for Vij > 0 the function dij : x → Vij log
Vij

x
− Vij + x is decreasing on (0, Vij ), we have

for any sufficiently small ε > 0 (of course ε < Vij ) that dij (x) > dij (ε) for x � ε and of course
limε→0 dij (ε) = ∞. Hence to find the minimum of dij , it is sufficient to look at x � ε. Let
ε0 > 0 and such that ε0 < min{Vij : Vij > 0}. Let G be the set of (W, H) such that (WH)ij � ε0
for all i, j with Vij > 0. Then G is closed. Take now K = L ∩ G, then K is the compact
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set we are after. Let us observe that K is non-void for sufficiently small ε0. Clearly the map
(W, H) �→ D(V ‖WH) is continuous on K and thus attains its minimum. �

5. Auxiliary functions

Algorithms for recursive minimization can often be constructed by using auxiliary functions.
For the problem of minimizing the divergence D(V ‖WH), some such functions can be found in
[10] and they are analogous to functions that are used when studying the EM algorithm, see [15].
The choice of an auxiliary function is usually based on ad hoc reasoning, like for instance finding
a Lyapunov function for studying the stability of the solutions of a differential equation. We show
in this section that the lifted version of the divergence minimization problem leads in a natural
way to useful auxiliary functions. Let us first explain what is meant by an auxiliary function.

Suppose one wants to minimize a function x �→ F(x), defined on some domain. The function
(x, x′) �→ G(x, x′) is an auxiliary function for F if

G(x, x′) � F(x′), ∀x, x′,
G(x, x) = F(x), ∀x.

If we define (assuming that the arg min below exists and is unique)

x′ = x′(x) = arg min G(x, ·), (24)

then we have

F(x′) � G(x, x′) � G(x, x) = F(x)

and hence the value of F decreases by replacing x with x′. A recursive procedure to find the
minimum of F can be based on the recipe (24) by taking x = xt and x′ = xt+1. To be useful an
auxiliary function G must allow for a simple computation or characterization of arg min G(x, ·).

We consider now the minimization of D(P ‖Q) and its lifted version, the minimization of
D(P‖Q) as in Section 3. In particular, with reference to the alternating minimization scheme (22),
with the notations of Section 4, we know that Qt+1 is found by minimizing Q′ �→ D(P∗(Qt )‖Q′).
This strongly motivates the choice of the function

(Q, Q′) �→ G(Q, Q′) = D(P∗(Q)‖Q′)

as an auxiliary function for minimizing D(P ‖Q) w.r.t. Q.
Using the decomposition of the divergence in Eq. (16) we can rewrite G as

G(Q, Q′) = D(P∗Y ‖Q′Y ) + EP∗D(P∗X|Y ‖Q′X|Y ). (25)

Since P∗X|Y = QX|Y , and P∗Y = P we can rewrite (25) as

G(Q, Q′) = D(P ‖Q′Y ) + EP D(QX|Y ‖Q′X|Y ). (26)

From (26) it follows that G(Q, Q′) � D(P ‖Q′), and that G(Q, Q) = D(P ‖Q), precisely the
two properties that define an auxiliary function for D(P ‖Q).

In [10] one can find two auxiliary functions for the original minimization problem D(V ‖WH).
One function is for minimization over H with fixed W , the other for minimization over W with
fixed H . To show the connection with the function G defined above, we first make the dependence
of G on Q−, Q+, Q′−, Q′+ explicit by writing G(Q, Q′) as G(Q−, Q+, Q′−, Q′+).
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The auxiliary function for minimization with fixed Q− can then be taken as

Q′+ �→ G+
Q(Q′+) = G(Q−, Q+, Q−, Q′+),

whereas the auxiliary function for minimization with fixed Q+ can be taken as

Q′− �→ G−
Q(Q′−) = G(Q−, Q+, Q′−, Q+)

The functions G+
Q and G−

Q correspond to the auxiliary functions in [10], where they are given in
an explicit form, but where no rationale for them is given.

For the different auxiliary functions introduced above, we will now compute the update gains
and compare these expressions with (23).

Lemma 5.1. Consider the auxiliary functions G, G−
Q, G+

Q above. Denote by Q′− and Q′+ the
minimizers of the auxiliary functions in all three cases. The following equalities hold:

D(P ‖Q−Q+) − G−
Q(Q′−) = D(Q′Y−,X‖QY−,X) (27)

D(P ‖Q−Q+) − G+
Q(Q′+) = EP∗D(Q′Y+|X‖QY+|X) (28)

D(P ‖Q−Q+) − G(Q−, Q+, Q′−, Q′+) = D(Q′Y−,X‖QY−,X) + EQ′D(Q′Y+|X‖QY+|X).

(29)

Proof. We prove (29) first. The other two follow from this. A simple computation, valid for any
Q− and Q+, yields

D(P ‖Q−Q+) − G(Q−, Q+, Q′−, Q′+) (30)

=
∑
ij

P (ij)
∑

l

Q(ilj)

Q(ij)

(
log

Q′−(il)

Q−(il)
+ log

Q′+(lj)

Q+(lj)

)

=
∑
il

∑
j

P (ij)Q(ilj)

Q(ij)

 log
Q′−(il)

Q−(il)
+
∑
lj

(∑
i

P (ij)Q(ilj)

Q(ij)

)
log

Q′+(lj)

Q+(lj)

(31)

Now we exploit the known formulas (6) and (7) for the optimizing Q′− and Q′+. The first term in
(31) becomes in view of (6) (or, equivalently, in view of (9) and (10))∑

il

Q′−(il) log
Q′−(il)

Q−(il)
,

which gives the first term on the RHS of (29). Similarly, the second term in (31) can be written in
view of (7) as∑

l

∑
ij

Q′(ilj)

∑
j

Q′+(lj) log
Q′+(lj)

Q+(lj)
,

which yields the second term on the RHS of formula (29). Formulas (27) and (28) are obtained
similarly, noticing that optimization of G+

Q and G−
Q separately yield the same Q′+, respectively

Q′−, as those obtained by minimization of G. �

Remark 5.2. Notice that although for instance G−
Q(Q′−) � D(P ‖Q′−Q′+) for all Q′− and Q′+,

we have for the optimal Q′− that G−
Q(Q′−) � D(P ‖Q−Q+).
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Corollary 5.3. The update gain of the algorithm (6), (7) can be represented by

D(P ‖Qt) − D(P ‖Qt+1) = D
(

Qt+1Y−,X‖QtY−,X
)

+ EQt+1D
(

Qt+1Y+|X‖QtY+|X)
+ EP D

(
QtX|Y ‖Qt+1X|Y )

. (32)

Proof. Write

D(P ‖Qt) − D(P ‖Qt+1) = D(P ‖Qt) − G(Qt , Qt+1) + G(Qt , Qt+1) − D(P ‖Qt+1)

and use Eqs. (25) and (29). �

We return to the update formula (23). A computation shows the following equalities.

D(Pt‖Pt+1) = EP D(QtX|Y ‖Qt+1X|Y
) (33)

D(Qt+1‖Qt ) = D(Qt+1Y−,X‖QtY−,X

) + EQt+1D(Qt+1Y+|X‖QtY+|X
). (34)

In Eq. (33) we recognize the second term in the auxiliary function, see (26). Eq. (34) corresponds
to Eq. (29) of Lemma 5.1 and we see that formula (23) is indeed the same as (32).

The algorithm (6), (7) is to be understood by using these two equations simultaneously. As an
alternative one could first use (6) to obtain Qt+1− and, instead of using Qt−, feed this result into
(7) to obtain Qt+1+ . If we do this, we can express the update gain of the first partial step, like in the
proof of Corollary 5.3, by adding the result of Eq. (27) to the second summand of (26), with the
understanding that Q′ is now given by the Qt+1(ij)Qt (lj). The update gain of the second partial
step is likewise obtained by combining the result of (28) and the second summand of (26), with
the understanding that now Q is to be interpreted as given by the Qt+1(ij)Qt (lj). Of course, as
another alternative, the order of the partial steps can be reversed. Clearly, the expressions for the
update gains for these cases also result from working with the auxiliary functions G−

Q and G+
Q,

the Eqs. (27) and (28) and proceeding as in the proof of Corollary 5.3.

6. Convergence properties

In this section we study the convergence properties of the divergence minimization algorithm
(6), (7).

The next theorem states that the sequences generated by the algorithm converge for every
(admissible) initial value. Of course the limits will in general depend on the initial value.

Theorem 6.1. Let Qt−(il), Qt+(lj) be generated by the algorithm (6), (7) and Qt the correspond-
ing tensors. Then the Qt−(il) converge to limits Q∞− (il) and the Qt converges to a limit Q∞ in
Q. The Qt+(lj) converge to limits Q∞+ (lj) for all l with

∑
i Q∞+ (il) > 0.

Proof. We first show that the Qt− and Qt+ form convergent sequences. We start with Eq. (23).
By summing over n we obtain

D(P ‖Q0) − D(P ‖Qt) =
t−1∑
k=1

(
D(Ps‖Ps+1) + D(Qs+1‖Qs)

)
.

It follows that
∑∞

k=1 D(Ps‖Ps+1) and
∑∞

k=1 D(Qs+1‖Qs) are finite. Now we use that fact
that for any two probability measures, the Kullback–Leibler divergence D(P‖Q) is greater than
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or equal to their Hellinger distance H(P, Q), which is the L2 distance between the square roots
of corresponding densities w.r.t. some dominating measure, see [13, p. 368]. In our case we have
H(Qs , Qs+1) = ∑

ilj (
√

Qs+1(ilj) − √
Qs(ilj))2. So we obtain that

∞∑
k=1

H(Qs+1, Qs) < ∞.

We therefore have that, pointwise, the tensors Qt form a Cauchy sequence and hence have a
limit Q∞. We will show that Q∞ belongs to Q. Since the Qt (ilj ) converge to limits Q∞(ilj),
by summation we have that the marginals Qt−(il) = Qt (il·) converge to limits Q∞(il·) (we use
the notation of the proof of Lemma 3.5), and likewise we have convergence of the marginals
Qt (·lj ) to Q∞(·lj ) and Qt (·l·) to Q∞(·l·). Hence, if Q∞(·l·) > 0, then the Qt+(lj) converge
to Q∞+ (ij) := Q∞(·lj )/Q∞(·l·) and we have Q∞(ilj) = Q∞(il·)Q∞+ (ij). Now we analyze the
case where Q∞(·l0·) = 0 for some l0. Since in this case both Q∞(il0j) and Q∞(il0·) are zero,
we have still have a factorization Q∞(il0j) = Q∞− (il0)Q

∞+ (l0j), where we can assign to the
Q∞+ (l0j) arbitrary values. Let L be the set of l for which

∑
i Q∞− (il) > 0. Then Q∞(ij) =∑

l∈L Q∞− (il)Q∞+ (lj) and the Qt converge to Q∞. This proves the theorem. �

Remark 6.2. Theorem 6.1 says nothing of the convergence of the Qt+(lj) for those l where∑
i Q∞− (il) = 0. But their behavior is uninteresting from a factorization point of view. Indeed,

since the l-th column of Q∞− is zero, the values of the l-th row of Q∞+ are not relevant, since
they do not appear in the product Q∞− Q∞+ . As a matter of fact, we now deal with an approximate
nonnegative factorization with a lower inner size. See also Remark 3.3.

In the next theorem we characterize the properties of the fixed points of the algorithm. Recall
from Section 2 that the objective function has no local maxima in the interior of the domain.

Theorem 6.3. If (Q−, Q+) is a limit point of the algorithm (6), (7) in the interior of the domain,

then it is a stationary point of the objective function D. If (Q−, Q+) is a limit point on the boundary
of the domain corresponding to an approximate factorization where none of the columns of Q− is
zero (

∑
i Q−(il) > 0 for all l), then all partial derivatives �D

�Q−(il)
and �D

�Q+(lj)
are nonnegative.

Proof. By computing the first order partial derivatives of the objective function, using the middle
term of Eq. (5), we can rewrite the update Eqs. (6), (7) as

Qt+1− (il) = Qt−(il)

(
− �Dt

�Q−(il)
+ 1

)
(35)

and

Qt+1+ (lj)

(∑
i

Qt+1− (il)

)
= Qt+(lj)

(
− �Dt

�Q+(lj)
+
∑

i

Qt−(il)

)
, (36)

where �Dt

�Q−(il)
stands for the partial derivative �D

�Q−(il)
evaluated at (Qt−, Qt+) and likewise for

�Dt

�Q+(lj)
.

Let (Q−, Q+) be a limit point of the algorithm. Eqs. (35) and (36) become

Q−(il) = Q−il

(
− �D

�Q−(il)
+ 1

)
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Q+(lj)

(∑
i

Q−(il)

)
= Q+(lj)

(
− �D

�Q+(lj)
+
∑

i

Q−(il)

)
.

It follows that we then have the relations

Q−(il)
�D

�Q−(il)
= 0

and

Q+(lj)
�D

�Q+(lj)
= 0.

We first consider Q−. Suppose that for some i and l we have Q−(il) > 0, then necessarily
�D

�Q−(il)
= 0. Suppose now that for some i, l we have Q−(il) = 0 and that �D

�Q−(il)
< 0. Of course,

by continuity, this partial derivative will be negative in a sufficiently small neighborhood of this
limit point. Since we deal with a limit point of the algorithm, we must have infinitely often
for the iterates that Qt+1− (il) < Qt−(il). From (35) we then conclude that in these points we
have �D

�Q−(il)
> 0. Clearly, this contradicts our assumption of a negative partial derivative, since

eventually the iterates will be in the small neighborhood of the limit point, where the partial
derivative is positive. Hence, we conclude that �D

�Q−(il)
� 0, if Q−(il) = 0. The proof of the

companion statement for the Q+(lj) is similar. If Q+(lj) > 0, the corresponding partial derivative
is zero. Let l be such that Q+(lj) = 0 and suppose that we have that �D

�Q+(lj)
< 0. If we run the algo-

rithm, then �Dt

�Q+(lj)
/
∑

i Qt+1− (il) converges to a negative limit, whereas
∑

i Qt−(il)/
∑

i Qt+1− (il)

converges to one. Hence there is η > 0 such that eventually �Dt

�Q+(lj)
/
∑

i Qt+1− (il) < −2η/3 and∑
i Qt−(il)/

∑
i Qt+1− (il) > 1 − η/3. Hence eventually we would have, see (36),

Qt+1+ (lj) − Qt+(lj) = Qt+(lj)

−
�Dt

�Q+(lj)∑
i Qt+1− (il)

+
∑

i Qt−(il)∑
i Qt+1− (il)

− 1

 > η/3,

which contradicts convergence of Qt+(lj) to zero. �

Remark 6.4. If it happens that a limit point Q− has a zero l-th column, then it can easily be
shown that the partial derivatives �D

�Q+(lj)
of D are zero. Nothing can be said of the values of the

partial derivatives �D
�Q−(il)

for such l. But, see also Remark 6.2, this case can be reduced to one
with a lower inner size factorization, for which the assertion of Theorem 6.3 is valid.

Corollary 6.5. The limit points of the algorithm with
∑

i Q−(il) > 0 for all l are all Kuhn–Tucker
points for minimization of D under the inequality constraints Q− � 0 and Q+ � 0.

Proof. Consider the Lagrange function L defined by

L(Q−, Q+) = D(P ‖Q−Q+) − λ · Q− − µ · Q+,

where for instance the inner product λ · Q− is to be read as
∑

il λilQ−(il) for λil ∈ R. Let us
focus on a partial derivative �L

�Q−(il)
in a fixed point of the algorithm. The treatment of the other

partial derivatives is similar. From the proof of Theorem 6.3 we know that in a fixed point we have
Q−(il) �D

�Q−(il)
= 0. Suppose that Q−(il) > 0, then �D

�Q−(il)
= 0 and the Kuhn–Tucker conditions

for this variable are satisfied with λil = 0. If Q−(il) = 0, then we know from Theorem 6.3 that
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�D
�Q−(il)

� 0. By taking λil = �D
�Q−(il)

� 0, we see that also here the Kuhn–Tucker conditions are
satisfied. �

Remark 6.6. Wu [15] has a number of theorems that characterize the limit points of the closely
related EM algorithm, or generalized EM algorithm. These are all consequence of a general
convergence result in Zangwill [16]. The difference of our results with his is, that we also have to
consider possible limit points on the boundary, whereas Wu’s results are based on the assumption
that all limit points lie in the interior of the domain.

7. Relation with other minimization problems

Other data analysis methods proposed in the literature enforce some form of positivity con-
straint and it is useful to investigate the connection between NMF and these methods. An interest-
ing example is the so called Archetypal Analysis (AA) technique [4]. Assigned a matrix X ∈ Rm×n

and an integer k, the AA problem is to find, in the convex hull of the columns of X, a set of k vectors
whose convex combinations can optimally represent X. To understand the relation between NMF
and AA we choose the L2 criterion for both problems. For any matrix A and positive definite
matrix � define ‖A‖� = (tr(AT�A))1/2. Denote ‖A‖I = ‖A‖. The solution of the NMF problem
is then

(W, H) = arg min
W,H

‖V − WH‖,
where the minimization is constrained to the proper set of matrices. The solution to the AA problem
is given by the pair of column stochastic matrices (A, B) of respective sizes k × n and m × k

such that ‖X − XBA‖ is minimized (the constraint to column stochastic matrices is imposed by
the convexity). Since ‖X − XBA‖ = ‖I − BA‖XT X the solution of the AA problem is

(A, B) = arg min
A,B

‖I − BA‖XT X.

AA and NMF can therefore be viewed as special cases of a more general problem which can be
stated as follows. Given any matrix P ∈ Rm×n+ , any positive definite matrix �, and any integer
k, find the best nonnegative factorization P ≈ Q1Q2 (with Q1 ∈ Rm×k+ , Q2 ∈ Rk×n+ ) in the L2
sense, i.e.

(Q1, Q2) = arg min
Q1,Q2

‖P − Q1Q2‖�.
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