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Abstract

In this short note, we focus on the use of the generalized Kullback–Leibler (KL) divergence in the problem
of non-negative matrix factorization (NMF). We will show that when using the generalized KL divergence
as cost function for NMF, the row sums and the column sums of the original matrix are preserved in the
approximation. We will use this special characteristic in several approximation problems.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is argued in [6] that non-negative data are quite naturally occurring in the human perception
of signals such as light intensities or sound spectra, and that we then typically decompose the
complete signal into simpler parts that are non-negative signals as well. One can rewrite this
decomposition as a non-negative matrix factorization (NMF), which explains the popularity of
such factorizations in the problem of approximating non-negative data in a sum of non-negative
parts.

The general approximation problem of a m × n non-negative matrix A by a linear combination
of k diadic uiv

T
i products (k < m, n) reduces to the minimization of the error matrix
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A −
k∑

i=1

σiuiv
T
i ,

where the non-negative elements σi are the weighting factors of the linear combination. The
approximation error is usually determined by a cost function which depends on the application.

If there is no non-negativity constraint on the vectors ui and vi , one can obtain an optimal
rank k approximation in the Frobenius norm by using the singular value decomposition (SVD)
for which efficient algorithms are available [3].

When a non-negativity constraint is imposed, ui and vi are limited to non-negative vectors of
appropriate length. In many applications, this is a crucial property that one wants to preserve. This
makes the low-rank approximation problem non-convex and difficult, but one can still look for a
local minimum of a particular cost function of the low-rank approximation. This can be obtained
in polynomial time, and iterative algorithms for obtaining such local minima have been proposed
in e.g. [6].

In general, adding more constraints often makes the approximation problem more difficult to
solve. But in this paper, we will show that the constraint under which the row and column sums
are preserved is automatically satisfied by using the generalized Kullback–Leibler divergence as
the cost function for the NMF problem. In [2], a discussion is made leading to the preservation of
the matrix sum when using the generalized Kullback–Leibler divergence in the NMF. But this is
just a straightforward result from the preservation of row and column sums, which will be pointed
out in this paper.

One can apply these results in approximating large-scale Markov chains. Typical applications
of this are PageRank [10] used for ordering the web pages, Markov Clustering [12] used for
clustering vertices in a graph and Hidden Markov Models [11] used for learning and predicting
sequential data. The number of such applications is growing, but the size of the underlying
problems is growing as well. The size of the stochastic matrices representing Markov chains
related to the web is e.g. of the order of billions. In order to cope with such large scale stochastic
matrices, one could use NMF to approximate a large stochastic matrix by a lower rank one.

2. NMF problem using generalized KL divergence

The non-negative matrix factorization (NMF) problem imposes non-negativity conditions on
the factors (i.e. A ≈ ∑k

i=1 uiv
T
i , ui, vi � 0) and can be stated as follows:

Given a non-negative (m × n) matrix A, find two non-negative matrices U(m × k) and V (n ×
k) with k � m, n that minimize F(A, UV T), where F(A, UV T) is a cost function defining the
“nearness” between matrices A and UV T.

The choice of cost function F of course affects the solution of the minimization problem. In
this paper, we will focus on the generalized Kullback–Leibler (KL) divergence that is defined as
follows:

F(A, UV T) = D(A‖UV T) :=
∑
ij

Aij log
Aij

[UV T]ij − Aij + [UV T]ij . (1)

The problem

min
U�0,V �0

D(A‖UV T), (2)

where A � 0, is called non-negative matrix factorization using the generalized Kullback–Leibler
divergence. For this divergence, the gradients are easy to construct (see [7]):
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∇Uij
D(A‖UV T) = −

∑
k

(
Aik

[UV T]ik Vkj − Vkj

)
, (3)

∇Vij
D(A‖UV T) = −

∑
k

(
Aki

[UV T]ki

Ukj − Ukj

)
. (4)

The Karush–Kuhn–Tucker (KKT) optimality conditions are then found to be (see [1])

U � 0, V � 0, (5)

∇UD(A‖UV T) � 0, ∇V D(A‖UV T) � 0, (6)

U ◦ ∇UD(A‖UV T) = 0, V ◦ ∇V D(A‖UV T) = 0, (7)

where A ◦ B is the Hadamard product between two matrices having the same size (i.e. [A ◦ B]ij =
AijBij ).

It is important to note that the cost function F(A, UV T) is convex in each of the factors U and
V , but it is not convex in the two factors at the same time, hence the problem can have many local
minima. Some iterative search methods that converge to a stationary point of the above problem
can be found in [6,2,8,9]. In the next section, we will investigate the stochasticity of the stationary
points.

3. Stationary points

In this section, we use the optimality conditions (5) and (7) to show a particular property of
the stationary points of NMF using the generalized KL divergence.

Theorem 1. Let Am×n a non-negative matrix. Then every stationary point (U, V ) of the cost
function in (2) preserves the column sums of A i.e. (11×mA = 11×m(UV T)), the row sums of
A i.e. (A1n×1 = (UV T)1n×1) and the matrix sum of A i.e. (11×mA1n×1 = 11×m(UV T)1n×1),

where 1p×l is p × l matrix with all elements equal to 1.

Proof. At a stationary point, from (7), the matrix V must satisfy the following optimality condi-
tion:

Vij

∑
k

Aki

[UV T]ki

Ukj = Vij

∑
k

Ukj ∀i, j.

Calculating the sum over j of the left-hand side matrix gives

∑
j

Vij

∑
k

Aki

[UV T]ki

Ukj =
∑

k

⎛⎝∑
j

VijUkj

⎞⎠ Aki

[UV T]ki

=
∑

k

Aki

and the sum over j of the right-hand side matrix gives∑
j

Vij

∑
k

Ukj =
∑

k

∑
j

VijUkj =
∑

k

[UV T]ki .

This implies that
∑

k Aki = ∑
k[UV T]ki or 11×mA = 11×m(UV T). For the row sums, one can

easily prove the equality by the same development using the optimality condition of V . The matrix
sum is preserved as a consequence of the preservation of column sums or row sums. �
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Using the above theorem, one obtains the following standard form for every stationary point
of the KL divergence iteration.

Corollary 2. Let Am×n be a non-negative matrix. Every stationary point (Um×k, Vn×k) of the KL
minimization problem has the form:

UV T = Pm×kDk×kQ
T
n×k,

where P, Q are column stochastic, D is diagonal non-negative, and
∑

i Dii = ∑
ij Aij .

Furthermore, if A is column stochastic (or row stochastic) then the matrix DQT(or PD) are
also column stochastic (or row stochastic).

Proof. Define the normalization factors DU and DV as the column sums of U and V , respectively.
Then there exist column stochastic matrices P and Q such that PDU = U , QDV = V . These
matrices are obtained by dividing the respective columns by their non-zero column sums, and
by choosing an arbitrary stochastic column in P or Q if the corresponding column sum in U

or V was zero. Define D = DUDV , then
∑

i Dii = ∑
ij Aij follows since P and Q are column

stochastic. Moreover, PDQT is easily shown to preserve the matrix sum of A.
It is straightforward then that the column sums of DQT and row sums of PD are those of

A, which also proves the last assertion for stochastic matrices. �

Furthermore, if there exists a zero column in U (or V ), one can remove that zero column in
U (or V ) and the corresponding column in V (or U ) without changing the product UV T. This
amounts to saying that one can also obtain a reduced rank factorization of the same type, in which
the diagonal elements of D are restricted to be all strictly positive. By writing the stationary
point in this form, one can compare this with the singular value decomposition (SVD) of a matrix
A = U�V T where the orthogonal matrices U and V are replaced by column stochastic matrices
P and Q.

In particular, if the reduced rank k is 1, it follows from Theorem 1 that we can have a unique
global minimizer:

Â = σuvt , (8)

where σ = ∑
i,j Aij , uj = ∑

j Aij /σ and vi = ∑
i Aij /σ . And if the rank k is equal to min(m, n)

we have a trivial solution which is (U = A, V = In) or (U = Im, V = AT).
If we consider Problem (2) for a non-negative matrix with unit element sum (i.e.

∑
i,j Aij = 1)

then, the stationary points are in fact solutions of the Probabilistic Latent Semantic Analysis
(pLSA) [5] which is used in document classification. The link between pLSA and Problem (2)
was first pointed out in [4]. The pLSA problem is then to find a low-rank joint-probability matrix
that approximates a full rank or higher rank joint-probability matrix A/(

∑
i,j Aij ) using the

generalized Kullback–Leibler divergence.

4. Application: stochastic matrix approximation

If the input matrix A is stochastic, the stochastic matrix UV T that minimizes the generalized
KL divergence is called a low-rank stochastic approximation of A. Theorem 1 shows that if the
input matrix A is column stochastic (or row stochastic or doubly stochastic), the stationary points
UV T are actually column stochastic (or row stochastic or doubly stochastic). In other words, the
stochasticity of the original matrix is naturally preserved in the approximation.
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Using the iterative algorithm in [6], one can numerically obtain a solution for the stochastic
matrix approximation problem. Here are some examples of stationary points that are candidates
for a solution:

• column stochastic matrix

A =
⎡⎢⎣

1
2 0 1

2
1
2 0 0

0 1 1
2

⎤⎥⎦ ≈ PDQT =
⎡⎢⎣0 2

3

0 1
3

1 0

⎤⎥⎦ [ 3
2 0
0 3

2

] [
0 2

3
1
3

2
3 0 1

3

]
, (9)

• row stochastic matrix

A =
⎡⎢⎣

1
2 0 1

2

0 1
2

1
2

2
3

1
3 0

⎤⎥⎦ ≈ PDQT =
⎡⎢⎣0 3

5
3
4 0
1
4

2
5

⎤⎥⎦ [ 4
3 0
0 5

3

] [
0 5

8
3
8

7
10 0 3

10

]
, (10)

• and doubly stochastic

A =
⎡⎢⎣

3
8

1
4

3
8

1
4

1
2

1
4

3
8

1
4

3
8

⎤⎥⎦ = PDQT = PDP T =
⎡⎢⎣

1
2

1
4

0 1
2

1
2

1
4

⎤⎥⎦ [
1 0
0 2

] [
1
2 0 1

2
1
4

1
2

1
4

]
. (11)

In the above examples, the approximations are written in the form presented in Corollary 2.
Especially, in the third example of a doubly stochastic matrix, we have an exact and symmetric
factorization of the form PDP T. In general, it is not easy to find such a symmetric approximation.

Furthermore, instead of considering the ordinary sum of a vector, we can consider the weighted
sum of a vector x, defined as

sw(x) =
∑

i

wixi = xTw, (12)

where w is a positive weight vector. One can find an approximation that preserves the weighted
column sums and row sums of the original matrix. In fact, suppose wr and wc are weight vectors
with respect to which we want to find a low-rank approximation Ũ Ṽ T of A that preserves the
weighted row sums and the weighted column sums respectively, i.e.

Ũ Ṽ Twr = Awr, wT
c Ũ Ṽ T = wT

c A, (13)

we can use the following procedure:

(1) create Â = Dwr ADwc , where Da is the diagonal matrix having the vector a on the main
diagonal,

(2) find a low rank non-negative approximation UV T of Â by using NMF algorithm for the
generalized KL divergence,

(3) and create the desired approximation Ũ Ṽ T using Ũ = D−1
wc

U and Ṽ = D−1
wr

V .

Applying Theorem 1, one can easily check that (13) does hold for the newly created matrix
Ũ Ṽ T.

The preservation of weighted column sums and row sums implies that we can use the same
procedure to construct a low rank non-negative approximation that preserve the left and right
principal eigenvectors of a square non-negative matrix. The trick is then simply to use the left
and right principal eigenvectors of the original matrix as the weight vectors described above to
construct the desired approximation.
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