Expectation Propagation

Erik Sudderth

6.975 Week 11 Presentation

November 20, 2002

Introduction

$$
p(x) \propto \prod_{i} \psi_{i}(x)
$$

Goal: Efficiently approximate intractable distributions
Features of Expectation Propagation (EP):

- Deterministic, iterative method for computing approximate posterior distributions
- Approximating distribution may be selected from any exponential family
- Framework for extending loopy Belief Propagation (BP):
- Structured approximations for greater accuracy
- Inference for continuous non-Gaussian models

Outline

Background

- Graphical models
- Exponential families

Expectation Propagation (EP)

- Assumed Density Filtering
- EP for unstructured exponential families

Connections to Belief Propagation

- BP as a fully factorized EP approximation
- Free energy interpretations
- Continuous non-Gaussian models
- Structured EP approximations

Clutter Problem

n independent observations from a Gaussian distribution of unknown mean x embedded in a sea of clutter

$$
p\left(x \mid y_{1}, \ldots, y_{n}\right) \propto p_{0}(x) \prod_{i=1}^{n} p_{i}\left(y_{i} \mid x\right)
$$

\Longrightarrow posterior is a mixture of 2^{n} Gaussians

Graphical Models

An undirected graph \mathcal{G} is defined by
$\mathcal{V} \longrightarrow$ set of N nodes $\{1,2, \ldots, N\}$
$\mathcal{E} \longrightarrow$ set of edges (s, t) connecting nodes $s, t \in \mathcal{V}$
Nodes $s \in \mathcal{V}$ are associated with random variables x_{s}

Graphical Models

An undirected graph \mathcal{G} is defined by
$\mathcal{V} \longrightarrow$ set of N nodes $\{1,2, \ldots, N\}$
$\mathcal{E} \longrightarrow$ set of edges (s, t) connecting nodes $s, t \in \mathcal{V}$
Nodes $s \in \mathcal{V}$ are associated with random variables x_{s}

Graph Separation

Conditional Independence

$$
p\left(x_{A}, x_{C} \mid x_{B}\right)=p\left(x_{A} \mid x_{B}\right) p\left(x_{C} \mid x_{B}\right)
$$

Markov Properties \& Factorizations

Question

Which probability distributions $p(x)$ satisfy the conditional independencies implied by a graph \mathcal{G} ?

Hammersley-Clifford Theorem

x is Markov w.r.t. \mathcal{G}

assuming $p(x)>0 \forall x$, where
$Z \quad \longrightarrow \quad$ normalization constant
$\psi_{c}\left(x_{c}\right) \longrightarrow$ arbitrary positive "clique potential" function
$\mathcal{C} \quad \longrightarrow$ set of all cliques of \mathcal{G}
Cliques are fully connected subsets of \mathcal{G} :

Exponential Families

$$
q(x ; \theta)=\exp \left\{\sum_{\alpha} \theta_{\alpha} \phi_{\alpha}(x)-\Phi(\theta)\right\}
$$

$\theta \longrightarrow$ exponential (canonical) parameter vector $\phi_{\alpha}(x) \longrightarrow$ potential function
$\Phi(\theta) \longrightarrow \log$ partition function (normalization)

Examples:

- Gaussian
- Poisson
- Discrete multinomial
- Factorized versions of these models

Manipulation of Exponential Families

$$
q(x ; \theta)=\exp \left\{\sum_{\alpha} \theta_{\alpha} \phi_{\alpha}(x)-\Phi(\theta)\right\}
$$

Products:

$$
q\left(x ; \theta_{1}\right) q\left(x ; \theta_{2}\right) \propto q\left(x ; \theta_{1}+\theta_{2}\right)
$$

Quotients: $\quad \frac{q\left(x ; \theta_{1}\right)}{q\left(x ; \theta_{2}\right)} \propto q\left(x ; \theta_{1}-\theta_{2}\right)$
May not preserve normalizability
Projections: $\quad \theta^{*}=\underset{\theta}{\arg \min } D(p(x) \| q(x ; \theta))$
Optimal solution found via moment matching:

$$
\int q\left(x ; \theta^{*}\right) \phi_{\alpha}(x) d x=\int p(x) \phi_{\alpha}(x) d x
$$

Assumed Density Filtering (ADF)

$$
p(x) \propto \prod_{i}^{p /(x)}
$$

- Choose an approximating exponential family $q(x ; \theta)$
- Initialize by approximating the first compatibility function:

$$
\theta^{1}=\underset{\theta}{\arg \min } D\left(\psi_{1}(x) \| q(x ; \theta)\right)
$$

- Sequentially incorporate all other compatibilities:

$$
\theta^{i}=\underset{\theta}{\arg \min } D\left(\psi_{i}(x) q\left(x ; \theta^{i-1}\right) \| q(x ; \theta)\right)
$$

The current best estimate $q\left(x ; \theta^{i-1}\right)$ of the product distribution is used to guide the incorporation of $\psi_{i}(x)$
\Longrightarrow Superior to approximating $\psi_{i}(x)$ individually

ADF for the Clutter Problem

ADF is sensitive to the order in which compatibility functions are incorporated into the posterior

ADF as Compatibility Approximation

$$
\begin{gathered}
p(x) \propto \prod_{i} \psi_{i}(x) \\
\theta^{i}=\underset{\theta}{\arg \min } D\left(\psi_{i}(x) q\left(x ; \theta^{i-1}\right) \| q(x ; \theta)\right)
\end{gathered}
$$

Standard View: Sequential approximation of the posterior
Alternate View: Sequential approximation of compatibilities

$$
q\left(x ; \theta^{i}\right) \propto m_{i}(x) q\left(x ; \theta^{i-1}\right) \quad m_{i}(x) \propto \frac{q\left(x ; \theta^{i}\right)}{q\left(x ; \theta^{i-1}\right)}
$$

$m_{i}(x) \longrightarrow$ exponential approximation to $\psi_{i}(x)$ member of exponential family $q(x ; \theta)$

Expectation Propagation

Idea: Iterate the ADF compatibility function approximations, always using the best estimates for all but one function to improve the exponential approximation to the remaining term

Initialization:

- Choose starting values for the compatibility approximations:

$$
m_{i}(x)=1
$$

- Initialize the corresponding posterior approximation:

$$
q(x ; \theta) \propto \prod_{i} m_{i}(x)
$$

EP Iteration

1. Choose some $m_{i}(x)$ to refine.
2. Remove the effects of $m_{i}(x)$ from the current estimate:

$$
q\left(x ; \theta^{\backslash i}\right) \propto \frac{q(x ; \theta)}{m_{i}(x)}
$$

3. Update the posterior approximation to $q\left(x ; \theta^{*}\right)$, where

$$
\theta^{*}=\underset{\theta}{\arg \min } D\left(q(x ; \theta \backslash i) \psi_{i}(x) \| q(x ; \theta)\right)
$$

4. Refine the exponential approximation to $m_{i}(x)$ as

$$
m_{i}(x) \propto \frac{q\left(x ; \theta^{*}\right)}{q(x ; \theta \backslash i)}
$$

EP for the Clutter Problem

EP generally shows quite good performance, but is not guaranteed to converge

Relationship to Belief Propagation

- BP is a special case of EP
- Many results characterizing BP can be extended to EP
- EP provides a mechanism for constructing improved approximations for models where BP performs poorly
- EP extends local propagation methods to many models where BP is not possible (continuous non-Gaussian)

Explore relationship for special case of pairwise MRFs:

$$
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s, t}\left(x_{s}, x_{t}\right)
$$

Belief Propagation

- Combine the information from all nodes in the graph through a series of local message-passing operations

$\Gamma(s) \longrightarrow$ neighborhood of node s (adjacent nodes) $m_{t s}\left(x_{s}\right) \longrightarrow \quad$ message sent from node t to node s
("sufficient statistic" of t 's knowledge about s)

BP Message Updates

$m_{t s}\left(x_{s}\right)=\alpha \int_{x_{t}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{u \in \Gamma(t) \backslash s} m_{u t}\left(x_{t}\right) d x_{t}$

1. Combine incoming messages, excluding that from node s, with the local observation to form a distribution over x_{t}
2. Propagate this distribution from node t to node s using the pairwise interaction potential $\psi_{s t}\left(x_{s}, x_{t}\right)$
3. Integrate out the effects of x_{t}

Fully Factorized EP Approximations
 $$
q(x ; \theta)=\prod_{s \in \mathcal{V}} q_{s}\left(x_{s}\right)
$$

Each $q_{s}\left(x_{s}\right)$ can be a general discrete multinomial distribution (no restrictions other than factorization)

$$
m_{s, t}\left(x_{s}, x_{t}\right)=m_{t \rightarrow s}\left(x_{s}\right) m_{s \rightarrow t}\left(x_{t}\right)
$$

\rightarrow Compatibility approximations in same exponential family

Initialization:

- Initialize compatibility approximations $m_{s, t}\left(x_{s}, x_{t}\right)$
- Initialize each term in the factorized posterior approximation:

$$
q_{s}\left(x_{s}\right) \propto \prod_{t \in \Gamma(s)} m_{t \rightarrow s}\left(x_{s}\right)
$$

Factorized EP Iteration I

1. Choose some $m_{s, t}\left(x_{s}, x_{t}\right)$ to refine.
$\longrightarrow m_{s, t}\left(x_{s}, x_{t}\right)$ involves only x_{s} and x_{t}, so the approximations $q_{u}\left(x_{u}\right)$ for all other nodes are unaffected by the EP update
2. Remove the effects of $m_{s, t}\left(x_{s}, x_{t}\right)$ from the current estimate:

$$
\begin{aligned}
& q_{s \backslash t}\left(x_{s}\right) \propto \frac{q_{s}\left(x_{s}\right)}{m_{t \rightarrow s}\left(x_{s}\right)}=\prod_{u \in \Gamma(s) \backslash t} m_{u \rightarrow s}\left(x_{s}\right) \\
& q_{t \backslash s}\left(x_{t}\right) \propto \frac{q_{t}\left(x_{t}\right)}{m_{s \rightarrow t}\left(x_{t}\right)}=\prod_{v \in \Gamma(t) \backslash s} m_{v \rightarrow t}\left(x_{t}\right)
\end{aligned}
$$

Factorized EP Iteration II

3. Update the posterior approximation by determining the appropriate marginal distributions:

$$
\begin{aligned}
& q_{s}\left(x_{s}\right)=\sum_{x_{t}} \psi_{s, t}\left(x_{s}, x_{t}\right) q_{s \backslash t}\left(x_{s}\right) q_{t \backslash s}\left(x_{t}\right) \\
& q_{t}\left(x_{t}\right)=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) q_{s \backslash t}\left(x_{s}\right) q_{t \backslash s}\left(x_{t}\right)
\end{aligned}
$$

4. Refine the exponential approximation to $m_{s, t}\left(x_{s}, x_{t}\right)$ as

$$
\begin{aligned}
& m_{t \rightarrow s}\left(x_{s}\right) \propto \frac{q_{s}\left(x_{s}\right)}{q_{s \backslash t}\left(x_{s}\right)}=\sum_{x_{t}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{v \in \Gamma(t) \backslash s} m_{v \rightarrow t}\left(x_{t}\right) \\
& m_{s \rightarrow t}\left(x_{t}\right) \propto \frac{q_{t}\left(x_{t}\right)}{q_{t \backslash s}\left(x_{t}\right)}=\sum_{x_{s}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{u \in \Gamma(s) \backslash t} m_{u \rightarrow s}\left(x_{s}\right)
\end{aligned}
$$

\longrightarrow Standard BP Message Updates

Bethe Free Energy

$$
\begin{gathered}
p(x)=\frac{1}{Z} \prod_{(s, t) \in \mathcal{E}} \psi_{s, t}\left(x_{s}, x_{t}\right) \prod_{s \in \mathcal{V}} \psi_{s}\left(x_{s}\right) \\
G(q, p)=\sum_{(s, t) \in \mathcal{E}} \int q_{s, t}\left(x_{s}, x_{t}\right) \log \frac{q_{s, t}\left(x_{s}, x_{t}\right)}{q_{s}\left(x_{s}\right) q_{t}\left(x_{t}\right) \psi_{s, t}\left(x_{s}, x_{t}\right)} d x_{s, t}+\sum_{s \in \mathcal{V}} \int q_{s}\left(x_{s}\right) \log \frac{q_{s}\left(x_{s}\right)}{\psi_{s}\left(x_{s}\right)} d x_{s}
\end{gathered}
$$

BP: Minimize subject to marginalization constraints

$$
\int q_{s, t}\left(x_{s}, x_{t}\right) d x_{s}=q_{t}\left(x_{t}\right)
$$

EP: Minimize subject to expectation constraints

$$
\int q_{s, t}\left(x_{s}, x_{t}\right) \phi_{\alpha}\left(x_{t}\right) d x_{s, t}=\int q_{t}\left(x_{t}\right) \phi_{\alpha}\left(x_{t}\right) d x_{t}
$$

Implications of Free Energy Interpretation

Fixed Points

- EP has a fixed point for every product distribution $p(x)$
- Stable EP fixed points must be local minima of the Bethe free energy (converse does not hold)

Double Loop Algorithms

- Guaranteed convergence to local minimum of Bethe
- Separate Bethe into sum of convex and concave parts:

Outer Loop: Bound concave part linearly
Inner Loop: Solve constrained convex minimization

Are Double Loop Algorithms Worthwhile?

Non-Gaussian Message Passing

- Choose an approximating exponential family
- Modify the BP marginalization step to perform moment matching: construct best local exponential approximation

Switching Linear Dynamical Systems

$s_{t} \longrightarrow$ discrete "system mode"
$z_{t} \rightarrow$ conditionally Gaussian
$y_{t} \rightarrow$ observation
Exact Posterior: Mixture of exponentially many Gaussians EP Approximation: Single Gaussian for each discrete state

Structured EP Approximations

Original

Fully Factorized EP (Belief Propagation)

Structured EP

Wainwright:

- Structured EP approximations must use triangulated graphs
- Unifies structured EP-style approximations and region based Kikuchi-style approximations in common framework Which higher order approximation is more effective?

Open Research Directions

- For a given computational cost, what combination of substructures and/or region-based clustering produce the most accurate estimates?
- How robust and effective are EP iterations for continuous, non-Gaussian models? Are the posterior distributions arising in practice well modeled by exponential families?

References

T. Minka, "A Family of Algorithms for Approximate Bayesian Inference". PhD Thesis, MIT, Jan. 2001.
T. Minka, "Expectation Propagation for Approximate Bayesian Inference". UAI 17, pp. 362-369, 2001.
T. Heskes and O. Zoeter, "Expectation Propagation for Approximate Inference in Dynamic Bayesian Networks". UAI 18, pp. 216-223, 2002.
M. Wainwright, "Stochastic Processes on Graphs with Cycles: Geometric and Variational Approaches". PhD Thesis, MIT, Jan. 2002.

