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This note contains three parts. First, we will review some preliminaries for EP. Then, EP algorithm will be

described in the next section. Finally, the relationship between EP and other variational methods will be discussed.

I. PRELIMINARIES

A. Exponential family

The exponential family of distributions over x is a set of distributions with the form

p(x; θ) = h(x)g(θ)exp
(
θT u(x)

)
, (1)

where measurement x may be scalar or vector, discrete or continuous, θ are parameters of the distribution, h(x)

and u(x) are some functions of x, and the function g(θ) is a normalization factor as

g(θ)
∫

h(x)exp
(
θT u(x)

)
dx = 1. (2)

In addition, if the variables are discrete, just simply replace the integration with summation.

Exponential family has many properties, which may simplify computations. For example, if a likelihood function

is one of members in the exponential family, the posterior can be expressed in a closed-form expression by choosing

a conjugate prior within the exponential family. Moreover, exponential family has a wide range of members such

as Gaussian, Bernoulli, discrete multinomial, Poisson and so on, thus it is applicable to many different inference

models.

B. Kullback-Leibler divergence

Kullback-Leibler (KL) divergence [1] is a measure to quantify the difference between a probabilistic distributions

p(x) and an approximate distribution q(x). For the distributions p(x) and q(x) over continuous variables, KL

divergence is defined as

DKL(p(x)‖q(x)) =
∫

p(x)log
p(x)
q(x)

dx, (3)

where for discrete variables, just replace integration with summation. Moreover, KL divergence is a non-symmetric

measure, which means DKL(p(x)‖q(x)) 6= DKL(q(x)‖p(x)). To give readers an intuitive view about the difference

between the above two forms of KL divergence, we assume that the true distribution p(x) is multimodal and the

candidate distribution q(x) is unimodal. By minimizing DKL(q(x)‖p(x)), the approximate distribution q(x) will
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pick one of the modes in p(x), which is usually used in variational Bayes method. However, the best approximate

distribution q(x) obtained by minimizing DKL(p(x)‖q(x)) will be the average of all modes. The later case is used

in the approximate inference procedure of EP. Since this report focus on the review of EP algorithm, we will study

the property of minimizing DKL(p(x)‖q(x)) first. Regarding the difference between minimizing DKL(p(x)‖q(x))

and DKL(q(x)‖p(x)), we will discuss it later in this chapter.

To ensure a tractable solution for minimizing KL divergence DKL(p(x)‖q(x)), the approximate distribution q(x)

is usually restricted within a member of the exponential family. Thus, according to (1), q(x) can be written as

q(x; θ) = h(x)g(θ)exp
(
θT u(x)

)
, (4)

where θ are the parameters of the given distribution.

By substituting q(x; θ) into the KL divergence DKL(p(x)‖q(x)), we get

DKL(p(x)‖q(x)) = −lng(θ)− θTEp(x)[u(x)] + const, (5)

where the const represents all the terms that are independent of parameters θ. To minimize KL divergence, take

the gradient of DKL(p(x)‖q(x)) with respect to θ to zero, we get

−5 lng(θ) = Ep(x)[u(x)]. (6)

Moreover, for (2), taking the gradient of both sides respect to θ, we get

5g(θ)
∫

h(x)exp
{

θT u(x)
}

dx + g(θ)
∫

h(x)exp
{

θT u(x)
}

u(x)dx = 0. (7)

Then by rearranging and reusing (2) again, we get

−5 lng(θ) = Eq(x)[u(x)]. (8)

By comparing (6) and (8), we obtain

Ep(x)[u(x)] = Eq(x)[u(x)]. (9)

Thus, from (9), we see that the minimization of KL divergence is equivalent to matching the expected sufficient

statistics. For example, for minimizing KL divergence with a Gaussian distribution q(x;θ), we only need to find

the mean and covariance of q(x; θ) that are equal to the mean and covariance of p(x;θ), respectively.

C. Assumed-density filtering (ADF)

ADF is a technique to construct tractable approximation to complex probability distribution. EP can be viewed

as an extension on ADF. Thus, we first provide a concise review of ADF and then extend it to EP algorithm.
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Let us consider the Bayes’s rule and suppose that the factorization of posterior distribution has the following

form

p(x|y) =
p(x)p(y|x)

p(y)

=
1
Z

p0(x)
N∏

i=1

p(yi|x),

=
1
Z

N∏

i=0

pi(x),

(10)

where Z is a normalization constant, pi(x) is a simplified notation of each corresponding factor in (10), where

p0(x) = p0(x) and pi(x) = pi(yi|x) for i > 0. If we assume that the likelihood function p(yi|x) has a complex

form, the direct evaluation of the posterior distribution would be infeasible. For example, if each likelihood function

is a mixture of two Gaussian distributions and there are total N = 100 number of observed data. Then to get the

posterior distribution, we need to evaluate mixture of 2100 Gaussians.

To solve this problem, approximate inference methods try to seek an approximate posterior distribution that can

be very close to the true posterior distribution p(x|y). Usually, the approximate distributions are chosen within the

exponential family to ensure the computational feasibility. Then the best approximate distribution can be found by

minimizing KL divergence:

θ∗ = arg min
θ

DKL(p(x)‖q(x;θ)). (11)

However, we can see that it is difficult to solve (11) directly. ADF solves this problem by iteratively including each

factor function in the true posterior distribution. Thus, at first, ADF chooses q(x; θ0) to best approximate factor

function p0(x) through

θ0 = arg min
θ

DKL(p0(x)‖q(x;θ)). (12)

Then ADF will update the approximation by incorporating the next factor function pi(yi|x) until all the factor

functions have been involved, which gives us the following update rule

θi = arg min
θ

DKL(pi(x)q(x; θi−1)‖q(x;θ)). (13)

As shown in Section I-B, if q(x;θ) is chosen from the exponential family, the optimal solution of (13) is

matching the expected sufficient statistics between the approximate distribution q(x; θi) and the target distribution

pi(x)q(x; θi−1). Moreover, according to (13), we can see that the current best approximation is based on the

previous best approximation. For this reason, the estimation performance of ADF may be sensitive to the process

order of factor functions, which may produce extremely poor approximation in some cases. In the next section, we

will provide another perspective of the ADF update rule, which results the EP algorithm and provides a way to

avoid the drawback associated with ADF algorithm.
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II. EXPECTATION PROPAGATION

By taking another perspective, ADF can be seen as sequentially approximating the factor function pi(x) by the

approximate factor function p̃i(x), which is restricted within the exponential family, and then exactly updating the

approximate distribution q(x; θ) by multiplying these approximate factor functions. This alternative view of ADF

can be described as:

p̃i(x) ∝ q(x;θi)
q(x; θi−1)

, (14)

which also produces the EP algorithm. EP algorithm initializes each factor function pi(x) by a corresponding

approximate factor function p̃i(x). Then, at later iterations, EP revisits each approximated factor function p̃i(x)

and refined it by multiplying all the current best estimate but one true factor function pi(x) of the revisiting term.

After multiple iterations, the approximation is obtained according (15).

q(x; θ∗) ∝
∏

i

p̃i(x). (15)

Since this procedure does not depend on the process order of the factor function, EP provides a more accurate

approximation than ADF.

The general process of EP is given as follows:

1) Initialize the term approximation p̃i(x), which can be chosen from one of members in the exponential family

based on the problem.

2) Compute the approximate distribution

q(x; θ) =
1
Z

∏

i

p̃i(x), (16)

where Z =
∫ ∏

i p̃i(x)dx.

3) Until all p̃i(x) converge:

a) Choose p̃i(x) to refine the approximate.

b) Remove p̃i(x) from the current approximated distribution q(x;θ) with a normalization factor:

q(x; θ\i) ∝ q(x; θ)
p̃i(x)

. (17)

c) Update q(x; θ), where we first combine q(x; θ\i) , current pi(x) and a normalizer Zi, and then minimize

the KL divergence through moment matching projection (9) (i.e. the Proj(·) operator):

q(x; θ) = Proj
(

1
Zi

q(x; θ\i)pi(x)
)

. (18)

d) Update p̃i(x) as

p̃i(x) = Zi
q(x; θ)

q(x; θ\i)
. (19)

4) Get the final approximate distribution through

p(x) ≈ q(x; θ∗) ∝
∏

i

p̃i(x). (20)
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A. Relationship with BP

This section shows that BP algorithm is a special case of EP, where EP provides an improved approximation for

models in which BP is generally intractable.

Let us first take a quick review of BP algorithm. The procedure of BP algorithm is iteratively updating all

variables nodes, then updating all factor nodes through sending messages in parallel, and finally update the belief

of each variable after each iteration. By taking another viewpoint, BP can be viewed as updating the belief over a

variable xi by incorporating one factor node at each time. Under this perspective, the belief of variable xi will be

updated as

b(xi) =
mXi→fs

(xi) mfs→Xi
(xi)

Zi
, (21)

where Zi =
∫

mXi→fs
(xi) mfs→Xi

(xi) dxi is the normalization factor. Moreover, we can loosely interpret

mXi→fs
(xi) and mfs→Xi

(xi) as the prior and likelihood message, respectively.

Let us suppose that each likelihood message mfs→Xi (xi) has a complex form, e.g. a mixture of multiple Gaussian

distributions. Then the computational complexity to evaluate the exact beliefs over all variables would be infeasible.

Instead of propagating exact likelihood message mfs→Xi (xi), EP passes an approximate message m̃fs→Xi(xi),

where m̃fs→Xi(xi) is obtained by using the projection operation as shown in the general process of EP. Moreover,

m̃fs→Xi(xi) is usually chosen from exponential family to make the problem tractable. Thus, the approximate belief

in EP has the following form

b(xi) ≈ q(xi) ∝
∏

s∈N(Xi)

m̃fs→Xi(xi). (22)

To show BP as a special case of EP, we further define the partial belief of a variable node as

b(xi)\fs =
b(xi)

m̃fs→Xi (xi)
∝

∏

s′∈N(Xi)\s
m̃fs′→Xi (xi), (23)

and the partial belief of a factor node as

b(fs)\Xi =
b(fs)

m̃Xi→fs (xi)
, (24)

where b(fs) =
∏

j∈N(fs) m̃Xj→fs (xj) is define as the belief of the factor node fs. By comparing to (18) and (19),

the factor node message updating rule in EP can be written as

m̃fs→Xi (xi) =
Proj

(
b(xi)\fsmfs→Xi (xi)

)

b(xi)\fs

=
Proj

(
b(xi)\fs

∫
xs\xi

fs (xs) b(fs)\Xi

)

b(xi)\fs

(25)

where the integral works over continuous variable. For discrete variable, one can simply replace integral with

summation. Furthermore, the new belief b(xi) will be approximated as

b(xi) ≈ qi(xi) =
b(xi)\fsm̃fs→Xi (xi)

Zi
, (26)

where Zi =
∫

xi
b(xi)\fsm̃fs→Xi (xi).
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Now, if the integral in (25) is tractable (e.g. a linear Gaussian model) even without using the projection to

approximate mfs→Xi
. Then b(xi)\fs in (25) can be canceled. Finally, the factor node message update rule in EP

reduces to the standard BP case.

III. RELATIONSHIP WITH OTHER VARIATIONAL INFERENCE METHODS

In this section, we will describe the relationship between EP and other variational inference algorithms, e.g.

variational Bayes (VB). The Bayesian probabilistic model specifies the joint distribution p(x,y), where all the

hidden variables in x are given prior distributions. The goal is to find the best approximation for the posterior

distribution p(x|y). Let us take a look at the decomposition of the log joint distribution as follows

log p(x,y) = log p(x|y) + log p(y). (27)

By rearranging (27) and taking the integral of the both side of the rearranged equation with respect to a given

distribution q(x), we get the log model evidence

log p(y) =
∫

q(x) log(p(y))dx

=
∫

q(x) log(p(x,y))−
∫

q(x) log(p(x|y))dx,

(28)

where
∫

q(x)dx = 1. Then, by reformatting (28), we get

log p(y) = L(q(x)) + DKL(q(x)||p(x)), (29)

where we define

L(q(x)) =
∫

q(x) log(
p(x,y)
q(x)

)dx, (30)

DKL(q(x)||p(x)) =
∫

q(x) log(
q(x)

p(x|y)
)dx. (31)

Since DKL(q(x)||p(x)) is a nonnegative functional, L(q(x)) gives the lower bound of log p(y). Then the maximiza-

tion of the lower bound L(q(x)) with respect to the distribution q(x) is equivalent to minimizing DKL(q(x)||p(x)),

which happens when q(x) = p(x|y). However, working with the true posterior distribution p(x|y) may be

intractable. Thus, we assume that the elements of x can be partitioned into M disjoint groups xi, i = 1, 2, · · · ,M .

We then further assume that the factorization of the approximate distribution q(x) with respect to these group has

the form

q(x) =
M∏

i

qi(xi). (32)

Please note that the factorized approximation corresponds to the mean filed theory, which was developed in physics.
Given the aforementioned assumptions, we now try to find any possible distribution q(x) over which the lower
bound L(q(x)) is largest. Since the direct maximization of (30) with respect to q(x) is difficult, we instead to
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optimize (30) with respect to each of the factors in (32). By substituting (32) into (30), we get

L(q(x)) =

∫
qj(xj)




∫
log (p(x,y))

∏

i6=j

qi(xi)dxi


 dxj −

∫
qj(xj) log(qj(xj))dxj + const

= −
∫

qj(xj) log(
qj(xj)

p̃(xj ,y)
)dxj + const

= −DKL(qj(xj)||p̃(xj ,y)) + const,

(33)

where we define p̃(xj ,y) as

p̃(xj ,y) = exp




∫
log (p(x,y))

∏

i 6=j

qi(xi)dxi




= exp (Ei 6=j [log p(x,y)]) .

(34)

Thus, if we keep all the factors qi(xi) for i 6= j fixed, then the maximization of (33) with respect to qj(xj) is

equivalent to the minimization of DKL(qj(xj)||p̃(xj ,y)). In practices, we need to initialize all of the factors qi(xi)

first, and then iteratively update each of the factor qj(xj) by minimizing the DKL(qj(xj)||p̃(xj ,y)), until the

algorithm convergences.

Now we can see the key difference between EP and VB is the way to minimizing the KL divergence. The

advantage of VB is that it provides a lower bound during each optimizing step, thus the convergence is guaranteed.

However, VB may cause under-estimate for variance. In EP, minimizing DKL(p(x)||q(x)) is equivalence to the

“moment matching”, but convergence is not guaranteed. However, EP has a fix point and if it does converge, the

approximation performance of EP usually outperforms VB.
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