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I n  the  previous pape r  Professor  I)U~C[OND has presented a weal th  of exper-  

imenta l  da ta  on the  universal  physical  constants  (primari ly those known as  

the  a tomic  constants) .  This mate r ia l  is made  up of a score or more  individua[  
exper imenta l  results. Not  all of these are of equal  exper imenta l  accuracy.  

Some of t h e m  m a y  be combined among  themselves  to yield a simple d a t u m  
which represents  an average  value of several  independent  evaluat ions of the  
same physica l  quant i ty .  I n  wha teve r  way  this m a y  be done we still find our-  

selves wi th  more  da ta  t h a n  are required to obtain  an evaluat ion of the  funda-  
men t a l  physical  constants .  This m a y  be expressed b y  a classical e x a m p l e  
(the example  is classical in t h a t  i t  represents  one of the  first instances in which 
the  existence of the overde termined na ture  of the exper imenta l  da ta  became  

forcefully evident.)  
The value of the  f a raday  constant  as measured  b y  the  silver v o l t a m e t e r  

is [11 F = 5Ve = 9 651 .29~  0.19 emu/mole ;  the  a tomic  weight  of the  electron 

as inferred f rom the isotopic shift i n  the  Ba lmer  series for hydrogen  and  deu-  

t e r ium is [2] N m  = (54.895 ± 0.008).10 -~ amu.  F r o m  this we can calculate 

a value for the  specific electronic charge 

e/m =- (1.75814 ! 0.00026).107 e m u / g .  

I n  compar ison with this the  vatue of elm determined f rom measurement~  

of the  acceleration and deflection of electrons in electromagnet ic  fields yielda 

a value [3] 

elm ~- (1.75959 :j: 0.00038).107 e m u / g .  
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We could of course have equally well used the measured values of the 

atomic weight of the electron and the specific electronic charge to calculate 

an (( indirect >) value of the Fa raday  constant~ or conversely use the specific 
electronic charge and the Fa r aday  to find an indirect value of the electron'~ 

atomic weight. These calculations are summarized in Table I. We are then 

TABLE I. -- Compariso~ o] direct and i~tdirect values ]rom a sim 

Direct Values 

Indirect Values 

ole overdetermined system. 

1~ = 2¢e Nm e/m 
(cmu/mole) (amu) (emu/g) 

9651.29±0.19 

(Nm) (e/m) 

(54.895±0.008)' I0 -~ 

W(elm) 

54.849 :j::O.O06 9659.32±1.83 

1.759 59 ±0.000 36). 10 v 

W N m  

1.758 14 :~0.000 26 

presented with the embarrassing problem of choosing which consistent set o f  

three numbers ought to be used; each choice is certainly poor in itself since 

each is contradicted by  the other two. I t  should be emphasized tha t  the 

numbers presented in this table are illustrative and al though based on direct 

measurements~ do not  represent in any way a selection of ~< best >~ data  or are 

they to be considered as recommended numbers.  They are presented in order 
to show the nature of the difficulty (which is actually compounded many-fold) 

when we a t t empt  to analyze the experimental  da ta  on the atomic constants,  

considering these data  as a single unified complex of experimental  results. 

The experiments described in the preceding paper measure various combi- 

nations of the atomic constants. In  some experiments the same combinat ion 

or the same constant  is measured in different ways;  in others a measurement  

is made of a quant i ty  whose value is also deducible from combining the results 

of two or more different and independent experiments. Thus we are confronted 

with an inter-related complex which is similar (in an abstract  form) to the 
situation which is found most  often in geodetic triangulation. Let  us there- 
fore look more closely at  the structure of our present problem . 

Each of the quantities whose measurement  is described in the preceding 

paper can be expressed in terms of h, e, m, N ,  A ,  c, and a few other auxiliary 

quantities whose numerical values are accurately known. The Rydberg  constant,  

however, which is a function of h, e, m, and e, is much more accurately mea-  

sured than  are any of its component  factors. I t  is therefore convenient to 

consider the g y d b e r g  constant  as an exact numerical quant i ty  and to use it 

to express the electron/mass as a known function of the other variables. I n  

addition, to the accuracy required in the discussion to follow, it is convenient 
to t reat  the velocity of light, c, as an exactly known quanti ty.  Fur thermore,  



112 E.R.  COHEN 

because of the  fact  t ha t  the  fine s t ructure  constant ,  s, is more  accurate ly  de- 
t e rmined  b y  direct  observat ion of fine s t ructure  in hydrogen  than  it can be 

c o m p u t e d  b y  combining, say measurements  of e, h/e and c, it is also convenient  

to  use s as a var iable  in place of h. Thus we shall choose to express all of the  
exper imen ta l  results in te rms of the  quanti t ies ~, e, £V, and  A which we m a y  

call the  p r i m a r y  unknowns of our analysis. The result  of any  exper iment  
can then  be described as measur ing (except for  quanti t ies which can be con- 

sidered as accurate ly  calculable correction factors) some produc t  of pbwers 
of the  p r i m a r y  variables  of the  fo rm 

(1) ](s, e, 2V, A) = c~%bN~A ~ = A(1 ± a ) .  

The  second expression is not  ac tual ly  an equat ion;  it  is a shor t -hand  me thod  

for  indicat ing t h a t  we do not  know the t rue  value of the  r ight  hand  side of 
the  equal i ty  bu t  t ha t  the  exper iment  can be in terpre ted  Us indicat ing a value 
which is defined only to the  ex ten t  of a probabi l i ty  distr ibution with  mean  

value  A and with relat ive s tandard  deviat ion a. This in te rpre ta t ion  is not  
the  only one however  and  we shall discuss a different in te rpre ta t ion  later.  

For  convenience in analyzing the da ta  it  is useful to linearize our equations.  
W e  adop t  origin values s0, eo, No, Ao, which have  been chosen sufficiently 
close to our expected solution t h a t  any  set of values s,  e, .Y, A (any point  
in our (( constants-space ))) in which we are likely to be  interested will differ 

f rom the origin values b y  small  amounts .  (~ Small  ~> is de termined here b y  the  
magni tudes  of the second der ivat ives  of the  funct ion ]; we assume t h a t  we 
can expand  f(e, s, 2¢,A) as a mul t iva r ia te  Taylor  series abou t  the  origin point ,  

and t h a t  in such an expansion only the  linear te rms  need be retained.  I t  is 
in pract ice  mos t  convenient  to expand  the logar i thm of ] in a Taylor  series; 
we then  deal  wi th  relat ive deviat ions and  if the  funct ion is a simple p roduc t  

of powers of the  variables  as is the  case here, we obtain,  in place by  Equa-  
t ion (1), the  linearized equat ion 

(2) axe, -~ bx~ -~ cx~ ~ dx A = h ~ a, 

where x~ ~ (~--~0) /So;  x~ = (e--eo)/eo,  etc., and  h = ( A - - A o ) / A o  in which 

A0 is the  value of the  funct ion / eva lua ted  with the  origin values So, eo, No, Ao. 

1. - A g e o m e t r i c a l  in t erpre ta t ion .  

There  are various ways  in which we can in terpre t  the  exper imenta l  da ta  

geometr ical ly.  Professor BIRGE in his pape r  has discussed various types  of 

diagrams [4-7] which he has used to aid him in evaluat ing (~ best  )> or (~ mos t  
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consis tent  )) values of the a tomic  constants  whose numer ica l  magni tudes  he 
seeks. These geometr ical  descriptions are all representa t ions  (in t e rms  of 
var ious  types  of projections) of the  following geometr ieM structure.  

We  m a y  represent  eaeh exper imenta l  de te rmina t ion  as defining a single 
funct ional  relat ionship among  the  var ious physical  constants .  We m a y  con- 
sider t h a t  an independent  set of constants  forms an or thogonal  co-ordinate 
sys t em in a (( constants-space ~). Each  funct ional  relat ionship (each exper iment)  
t hen  is represented b y  a surface in this space. An a rb i t r a ry  point  in the  space 

{a given set of values of the  constants ,  say ~, e, N,  A) is in agreement  wi th  
the  exper imenta l  result  if i t  lies in the  surface. A point  ( tha t  is, a set  of values 

for the  constants)  is therefore  consistent  with several  exper imentM results 
if i t  lies a t  the  common intersect ion of the  surfaces. I n  general  if we have  

more  exper iments  (surfaces or e q u a t i o n s ) t h a n  we have  constants  to be  deter- 

mined (dimensionali ty of the  space) it is not  a priori  evident  t h a t  there  will 
be  a point  through which every surface passes. I f  the  exper iments  are reason- 
ab ly  consistent  there  will be a point ,  however,  which is close to all of the  
surfaces. The best  choice for the  set of physical  constants  is t ha t  point  which 
is (( closest ~) to all of the  su1"faces. The definition of (~ distance ~) in this space 

( that  is, the  definition of a metric)  we shall discuss below; for the  m o m e n t  
let  us assume t h a t  we can define distance. We  should then  wan t  to consider 
a metr ic  funct ion defined with regard to the  point  in question and  the  existing 

surfaces. The problem we then  set for ourselves is to find the  point  which 
minimizes this function. 

This leads us to a second geometr ical  representa t ion  of the  problem.  At  
each point  in our (( constants-space )) we have  defined the  va lue  of a certain 
function.  We now consider a space of one higher dimensional i ty  and consider 
a hyper-surface  whose distance f rom an or thogonal  subspace (the original 
constants-space),  is defined a t  each point  b y  the  value of a certain funct ion 
(the exact  fo rm of this funct ion we have  not  ye t  specified). We  then  seek 
the point  on this surface which is a min imum.  I t  is possible to m a k e  several  
general  remarks  abou t  the  fo rm of the  function,  which we shM1 call Q. I t  

mus t  pr imar i ly  be defined in such a way  tha t  its value is independent  of the  
ac tual  var iables  used to describe it. This means  t h a t  Q is a scalar with respect  

to a t ransformat ion  or ro ta t ion  in the (( constants-space ~). I n  addi t ion it  should 

also be invar ian t  with respect  to non-essential  modifications in the form in 
which the  cxperime~atal results are presented.  Again a simple example  m a y  
be  in order. 

Le t  us suppose t ha t  one of our exper imenta l  equations can be wr i t ten  in 
the  fo rm 

(3) ax~ ÷ bx~ ÷ cx~ = h ± a, 

which s tates  t ha t  the exper imenta l  result  h was obta ined with a s tandard  

8 - S u p p l e m e n t o  al  N u o v o  C i m e n t o .  
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error  ~= a. I f  we t ransform variables f rom x~, x2, x3 to a new set of variables  
Y~, Y2, Y3, we obtain in place of this equat ion the expression 

(3a) 

T h e  funct ion Q must  be defined in terms of the coefficients a, b, c, (and t h e  
corresponding coefficients of all of the other  experimental  data) in such a way  
t ha t  Q(~, fi, y;  y l ,  y.2, ya) should be equal  to Q(a, b, c; xl ,  x2, x~). F u r t h e r m o r e  
Q must  be invar iant  with respect  to  t ranformat ion  of the  equations;  the  most  
easily recognized type  of funct ion t ransformat ion would be the  rep lacement  
of equat ion (3) by  the expression! 

(3b) naxl  ÷ nbx2 ÷ ncx3 = nh 4- n(~ . 

When  this is done it is perhaps suggestive tha t  all of the exper imenta l  equa- 
tions ought  to be wri t ten  in a normalized form 

a b c d 
(4) - x l  ÷ - x ~  ÷ - x 3  = -  ± ] .  

When the equations are wr i t ten  in this form all of the equations have equal  
accuracy and we might  t h e n  in~er t ha t  they  ought  to be given equal weight  
in the  analysis. At this point  we use the word (( weight ~ in a quali tat ive sense; 
la ter  we shall give a quant i ta t ive  definition which will formalize the  intui t ive  
not ion tha t  da ta  with small s tandard  errors should be given more weight or  
importance and data  with larger errors should be given less weight in any  

analysis. 

2.  - T h e  c r i t e r i o n  of  l e a s t  s q u a r e s .  

Unti l  now we have purposely made only very  general s ta tements  abou t  
the problem of finding the best  or most  consistent set of unknowns from a 
set of overdetermined equations. I t  may  perhaps be apparent  t ha t  we would 
like to introduce the criterion of least squares in a logical and completely 
deduct ive manner.  I t  is almost certain tha t  this cannot  be done; we can 
however  carry  our  deduct ive development  to a certain point,  then  induct ively 

int roduce the least squares criterion and finally just ify the choice (at least  
partially) by  considering the conditions which it must  satisfy. We could 
specify t ha t  the funct ion Q Which has been previously mentioned shall be 
defined as the  sum of the squares of the deviation of the point  f rom each of 
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the experimentally defined surfaces, each deviation normalized by  dividing i t  

by  the s tandard deviation of the experimental measurement.  The eondition~ 

tha t  Q be a minimum is therefore the usual  condition of (~ least squares ~) which 

was first formulated by  GAuss about  1820 [8]. 

There have been m a n y  who have objected to the use of the method  of least  

squares on the grounds tha t  it assumes the Gaussian curve for the probabi l i ty  

distribution of the error in any part icular  measurement.  The objection is 

indeed valid tha t  the assumption of the Gaussian distribution is often un- 
warranted in m a n y  experimental  configurations. The real problem at issue, 

however, is one of determining a (( best ~) set of values tha t  can be computed 

from an over-determined system of equations, and this is essentially the problem 
of determining an analytic basis on which one can define the adjective (,' best. ~ 

The condition of least squares serves as one such analytic criterion. 

This says nothing in itself of what  could be calldd the physical  interpre- 

ta t ion of the criterion. I t  is recognized, in general, tha t  the method  of 

least squares corresponds to the ((Axiom of Maximum Likelihood ~), if the  
distribution functions of all the errors are Gaussian [9]. GAuss himself was, 

able to justify the method  on a much wider base, and in 1821 he published 

a theory  which replaces this axiom with an (( Axiom of Minimum Error  ~) or 

(( Axiom of Maximum Weight.  ~) [10]. The definition of (( best ~ is not  to be  

made on the basis of tha t  solution which is most  likely to be correct, but  on 

tha t  combination of data  which yields the most  accurate result and to which 

can, therefore, be a t tached the greatest statistical weight. (The statistical 

weight of a statistical variable is defined in the present sense as the reciprocal 

of the variance, i.e., the reciprocal of the mean square error, of the quant i ty . )  

Consider then an overdetermined set of n equations expressing relationships 
between q variables. We can find an infinite number  of solutions for the q 

variables depending on how we choose to combine the equations. We ca~ 

think of this process as one in which some set of ~ -  1 of the equations are 

used to express q -  1 of the variables in terms of one part icular  variabler 
s~y x~. These values are then to be subst i tuted into the remaining n -  q + ]  
equations to give a set of n -  q + l  values for the variable x~. Any  of these 

numerical values is a possible choice for the variable x~ and, in general we 

would want  to take some weighted average of these numerical  values. The 

numerical value of such an average depends both on the weights a t tached to 

the elements tha t  go to make up the average and on the numerical values of 

these elements. Ultimately, therefore, the value ascribed to x~ depends on 

n - - q  independent  and urbitrary parameters which specify the mathemat ica l  

form of the average and n quantities which are either the observational nu- 

merics or quantities directly deduced from them (such as relative deviations 
from a set of origin values) which determine the numerical value of the average. 

There are only n - - q  arbi t rary  parameters  ra ther  than  n - - q + l  because the  
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choice of the  n -  q~- i  weights is restr ic ted b y  the  condition t h a t  their  sum 

is uni ty .  
The  numer ica l  value of xl is thus expressed as a l inear combinat ion  of n 

numer ica l  quantit ies,  each of which has associated with  it  a m e a n  square  error. 
I f  the  numerical  quanti t ies  are observat ionMly independent ,  we can assert  
t h a t  the  m e a n  square error of xl is the  sum of certain coefficients depending 
on the  n - - q  free parameters ,  t imes the  mean  square  errors of the  n obser- 
va t ionM numerics.  The Axiom or Condition of Minimum Er ror  s ta tes  t h a t  
the  ~ best  ~) choice for xl is t ha t  one whose error  is a m i n i m u m  with  respect  
to the  possible var ia t ion  of the  free parameters .  This condition is equivalent  

to the  condit ion of least  squares, a l though the  results cannot ,  in general, be  
identified as corresponding to t h a t  set which has m a x i m u m  likelihood except  

in the  case when the  distr ibution funct ion for the  errors is specified to be 
Gaussian.  This is however,  an  advan tage  for one can easily cons t ruc t  distri- 
but ions  (for example ,  rec tangular  distributions) for which the  condit ion of 
m a x i m u m  likelihood has no unique solution. Fur the rmore ,  the  deve lopment  
of the  condit ion of m i n i m u m  error is quite general  in regard to the  forms of 
the  error dis t r ibut ion funct ions;  all t h a t  is specified is the mean  square error, 
so t h a t  the  range of appl icabi l i ty  of the  theory  of least  squares is ex tended 
f rom Gaussian distr ibutions to the  much  larger class of distr ibutions wi th  

finite second moments .  
As an e lementa ry  example  of the  me thod  and in order ot clarify the  con- 

cepts involved,  let  us consider a p rob lem which is perhaps  the  s implest  
possible example.  We have  two measurements  of the  quan t i ty  x; these two 
measuremen t s  are a~ and as, in general, al=/=a~. We also assume t h a t  each 
measu remen t  represents  a single selection f rom a universe of values. We  let  
the  probabi l i ty  distr ibution of the  first measu remen t  be  PI(~) such t h a t  the  
p robabi l i ty  is P~(~)d~, t h a t  the  result  of a measu remen t  of the  quan t i ty  x 
b y  the  specified procedure  shall lie be tween the values ~ and  ~ - d ~ .  Similarly, 
the  second measu remen t  of x is to be character ized b y  the  p robab i l i ty  distri- 

bu t ion  P~(~). We  need not  make  any  detai led specification of the  fo rm of the  

dis t r ibut ion functions P1 und P~; it  is no t  even necessary t h a t  the  two func- 
t ions have  similar form. We  impose upon  t h e m  only the  restr ict ion t h a t  the  

dis tr ibut ions huve finite second moments .  
I f  we have  two measurements  of x then  we can take  some average  value 

to use as the  (~best)~ choice. There are, however,  several  different choices 

for this average  and we can write 

(5) xo(~) = ~a~ ÷ (1 -- ~)a~, 

where ~ is any  real  number ,  a l though in tui t ively  we would prefer  t ha t  0 < ~ < 1 

because this is the  condition t h a t  xo lies be tween the values a~ and  as. De- 

fined in this way,  the  mean  of the  universe of values of x0 is 
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(6) "~o - - f f [ ~  + (1 --a)~I]P~(~)P2(~) d~ d ~ .  

E a c h  p r o b a b i l i t y  d i s t r i b u t i o n  is a s s u m e d  to  b e  n o r m a l i z e d  a n d  if  t h e r e  a re  

no  s y s t e m a t i c  e r rors  in  e i t h e r  m e a s u r e m e n t ,  t h e  e x p e c t a t i o n  v a l u e  of each  

m e a s u r e m e n t  is x. 

T h e r e f o r e  we  f ind  

(7) 5o = ~ x  + ( 1 - - ~ ) x  = x ,  

so t h a t  t h e  e x p e c t a t i o n  v~ lue  of t h e  a v e r a g e  is i n d e e d  t h e  q u a n t i t y  we a re  

t r y i n g  to  m e a s u r e ,  i n d e p e n d e n t  of t h e  p a r a m e t e r  ~ w h i c h  d e t e r m i n e s  t h e  p a r t -  

i cu l a r  ave rage .  B u t  we  n o w  ask  t h e  q u e s t i o n :  (( H o w  a c c u r a t e  is t h i s  a v e r a g e ;  

w h a t  is i t s  s t a n d a r d  d e v i a t i o n ?  ~ I f  we  l e t  s 2 be  t h e  m e a n  s q u a r e  d e v i a t i o n  

of t h e  u n i v e r s e  f r o m  w h i c h  xo is e x t r a c t e d ,  we h~ve ,  b y  t h e  u s u a l  def in i t ion ,  

(s) e 2 : f f [ a ~  -}- (1 - -  a)~] - -  x]"P~(~)P2(*]) d~ d~ = 

The  two  i n t e g r a l s  in  t h e  l a s t  f o r m  of E q u a t i o n  (8) a re  t h e  v a r i a n c e s  ( the  m e a n  

s q u a r e  er rors ) ,  r e s p e c t i v e l y ,  of t h e  f i rs t  a n d  of ~he s econd  m e a s u r e m e n t s .  These  

2 a n d  ~ T h e  e xp re s s ion  for  t h e  e r ro r  in  t h e  q u a n t i t i e s  a r e  de f ined  to  b e  a l  a2" 

a v e r a g e  in  t e r m s  of t h e  e r rors  of t h e  n u m b e r s  e n t e r i n g  in to  t h e  a v e r a g e  is, 

the re fo re ,  

(9) 2 2 2  

W e  f ind  t h a t ,  a l t h o u g h  t h e  e x p e c t a t i o n  v a l u e  of t h e  a v e r a g e  is i n d e p e n d e n t  

of a, t h e  e r ro r  in  t h e  a v e r a g e  is a f u n c t i o n  of ~. F o r  ~ ~ 0 w e  h a v e  s 2 = a~ 
a n d  for  a 1 we h a v e  s 2 2. = = a l ,  we  m a y  r e a s o n a b l y  a sk  w h e t h e r  a p r o p e r  

choice  of a m i g h t  n o t  r e su l t  in  ~ v a l u e  of e 2 w h i c h  is sma l l e r  t h a n  e i the r  of 

these  a n d  i n d e e d  w h a t  v a l u e  of ~ l eads  to  a m i n i m u m  v a l u e  of s *. I t  is eas i ly  

shown  t h a t  t h e  m i n i m u m  v a l u e  of s 2 is 

2 2 2  2 (lO1 ~o = ~1~/ (G1+~1 

2 2 w h i c h  is a c h i e v e d  w h e n  ~ = a~/(a~ + a~) a n d  t h e  c o r r e s p o n d i n g  v a l u e  of xo i s  
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The (( w e i g h t s ,  to be  a t t ached  to measured  quant i t i es  in order to compute  
the  (~ bes t  )) average  are therefore  propor t ional  to the  reciprocal  of the  mean  
square  error of each measurement .  I f  we define the  stat is t ical  weights 

~. =11.~, w~ =1/o~, 

we h a v e  two impor t an t  formulas  

(125) xo = (w~a~ + w~a~)/(w~ + ,w~) , 

(]2b) wo = 1/e~ = w~ + w~. 

The first of these essentially justifies the  nomencla ture  of (~ stat ist ical  weight  ,~ 
f o r  t h e  reciprocal  variance,  since it  is this quan t i ty  t ha t  determines the  im- 
por tance  of the measurement  in the computa t ion  of the average.  The second 
formula  shows tha t  when this (( bes t  )~ average  is obta ined the  weight  of the  

resul t  ( computed  as the reciprocal of the  var iance of the average) is jus t  the  
sum of the  weights of the  components  and, fur thermore ,  t ha t  this is the  
m a x i m u m  weight  ascribable to any  average.  An other  l inear combinat ion  

of the  two observat ions would have  a weight  which is less t han  the  sum of 
the  individual  weights and  i s ,  therefore,  an inefficient average  t h a t  wastes 
weight. The stat is t ical  weight  of the average  is a m a x i m u m  (equal to the  
sum of the  weights of the  individual  components) ,  when the  weighting employed  
in comput ing  the average  is de termined b y  the  stat is t ical  weights of the  com- 

ponents .  

3. - A general ized theory of leav t squares.  

The example  which we have  jus t  considered can be immedia te ly  generalized 

to  consider the  combinat ion  of severM measurements  ins tead of only two.  
F u r t h e r m o r e  it  is also ra ther  s t ra ight forward  (although lengthy) to ex tend  

the  concepts in t roduced above  into the  p rob lem of finding the best  set of 
values of several  s imultaneous variables  re la ted  b y  linear equations.  This is 

of course the  sort  of sys tem in which we are in teres ted once we have  l inearized 

the  equat ions of observat ion as previously indicated.  

We  write the linearized sys tem in the  fo rm 

(13) 

a l l X l  - ~  a12X2 --~ 5 1 3 2 3  --~ o.. ~ -  a l q X  q = C 1 

a21xl Jr- a2~x2 4:- a~3x3 ~ ... ~ a2~x~ --: c~ 

. . . . .  • . o . .  . . . . . . . . . .  . ,  
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We shall use R o m a n  letters to indicate the indices which range from 1 

~o q and which refer to the unknowns, and Greek letters for those which range 

from 1 to n and refer to the observational equations. 

Since the c,  are assumed to be independent,  the errors ~,  in % are urn- 
correlated and 

(14) 
i f  v = # ,  

- 0  if v :/: #. 

We wish to find x~ as a linear combination of the c wi th  appropriate 

coefficients, ~ chosen so as to determine the x~ with max imum accuracy or 
min imum error. Thus we write 

(15) 

,a /zj 

This equat ion is to be understood as follows. Each  of the n individual 
equations of observation (identified by  the index # is to be multiplied by  a 

number,  ~ ,  there being a set of n such numbers  for each variable x~. These 
numbers are to be chosen such that ,  when the n equations are then summed, 

the coefficient of each x, other than  the specified x~, is zero, while the coef- 

ficient of x~ is unity.  This implies tha t  there are q conditions on each of the 

q sets of n multipliers. This is not  sufficient to define the multipliers since 

n > q. The additional conditions are obtained by  requiring tha t  we choose 

~hat linear combinat ion for each variable x~ which will have  the smallest 
variance and hence the largest possible weight. I t  can be shown [11] tha t  

such a condition leads to exact ly  the same values of x/ as would be obtained 
from the condition tha t  we minimize the quadratic form 

(16) Q = ~(a.~x~ ÷ a~2x~ ~-... ~-a.¢x~-c~) ~. 
tTiz 

Hence the condition of Minimum Error  is just the least squares condition and 

is therefore equivalent to the condition of Maximum Likelihood of the more 

restricted Gaussian case. I t  is, however, much more general than  the latter. 

No restriction is put  on the probabil i ty distributions of the input  errors, ~ ,  

in the % other than  tha t  these distributions must  have finite second moments,  

i.e., the % must  exist. Subject to this condition, they  m a y  have more than 

one ~( mode ~ or indeed any arbi t rary shape; nor is it necessary tha t  the 
distr ibution functions all have the same form. 
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This general i ty  of the  significance of the  least  squares ad jus tmen t  w h e n  
s t a t ed  in te rms  of the second m om en t s  of the error dis t r ibut ion is of g rea t  

impor tance .  I t  emphasizes also the  desirabil i ty of adopt ing  the  roo t -mean-  
square  deviat ion as a measure  of error in preference to such error measures  
as the  (~ probable  error ~), or the (( mean  absolute error. ~) For  a gaussian dis- 

t r ibut ion,  the  three  measures,  roo t -mean-square  error, mean  absolute  er ror  
and  probab le  error ( that  error which divides the distr ibution curve  into equal  
areas, so t h a t  the  probabil i t ies of errors of absolute magni tude  grea te r  t h a n  
or less t h a n  the  probable  error are equal) s tand in the  rat ios1:0.798 0:0.674 5. 
I t  is however  a mis take  to th ink  of the  different ei~or measures  as s imply  
expressing the  same error spread on different scales. When  we do not  l imi t  

ourselves to gaussian distr ibution the  root -mean-square  error or s t anda rd  er ror  
enjoys a posit ion of far  grea ter  s tat is t ical  significance and  general i ty  t h a n  
do the  others.  This is because the s tandard  deviat ion has a simple reproduct ion  

p rope r ty  (for any  fo rm of probabi l i ty  distr ibution) which i's not  shared b y  a n y  

other  p a r a m e t e r  with the  same generali ty.  
I t  m a y  even be  worthwhile  to avoid the  discussion of p robab i l i ty  distri- 

but ions  and  var iances  ent irely and  speak only of s tat is t ical  weights  and  the  
weight  to be  assigned to each exper imenta l  number  or to any  n u m b e r  t h a t  

resul ts  f rom ar i thmet ic  combinat ions  of exper imenta l  data .  
I t  can be  shown~ independent ly  of the development  which led to Eqna -  

t ion (16) t h a t  if the weight  to be  assigned t o  a r andom var iable  is to be  in 

accord with  cer tain e lementary  axioms regarding the definition of weight  and  
a t  the same t ime  be a funct ion only of the s tandard  error of the  variable,  t hen  
t ha t  funct ion is uniquely de termined to ~ be the reciprocal  of the var iance.  
The  weight  of a quan t i ty  should therefore  be  defined in such a way  t h a t  i t  
is consis tent  wi th  the  identification as the  reciprocal  of the  var iance  in those  
cases where a var iance can be exper imenta l ly  determined.  B u t  we should 
be  p repa red  as well to admi t  to considerat ion subject ive evaluat ions of the  
weight  of an exper iment  based on an impar t ia l  and  honest  appraisal  of the  
inherent  accuracy  of one exper iment  in comparison to another  even though 

no analyt ic  evaluat ion of the var iance exists. I t  m a y  well be  t h a t  the  in t ro-  

duct ion of (( weights ~ in place of (~ v a r i a n c e s ,  is purely  a semant ic  subte r fuge ;  

even so, i t  m a y  prove  a useful concept.  
If ,  in equat ion (16), we introduce the  nota t ion  

(17) rg = a~lx  1 -]- a ~ x ~  -{- ... ~- a~qxq - -  c , ,  

we can write Q in a ma t r ix  or tensor form [11, 12] 

(18) Q = %z~r~ = R + I I R  
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in which ~,~ are the  elements  of a diagonal ma t r ix  

(19) 

2 %,, = 1/% ff = v, 

0 # :/:v, 

R is the vector  wi th  components  r~ and  R + is the  t ransposed vector.  This 
fo rm m a y  appear  cumbersome and unvie ldy in ~ctual  use, and it  is if the  

simpler formula t ion  is available.  However ,  i t  represents  the  point  of depar- 

ture  for generalizing the  formula t ion  and establishing its complete  invariance.  
I f  we per fo rm a linear t r ans format ion  on R and obtain  R ' =  T R  we must .  

write 

(20) Q = R ' + T - I + H T - 1 R '  , 

since Q mus t  be a scalar invar iant .  Hence  the  t r ans formed  weight  ma t r ix  H '  
is no longer diagonal. I t  now has the fo rm 

(21) I I ' =  T - I + H T  -1 = [ T S T + ]  -1 , 

where S is the inverse of the  diagonal  ma t r ix  H ;  the diagonal  elements of S 
We see immedia te ly  however  t ha t  the t r ans formed  are the var iances  %.  

ma t r ix  S ' =  T S T  + is exact ly  the  ma t r ix  which now expresses the  variances 
and covariances of the t r ans formed  vec tor  components  r: .  The elements of S '  
are the  m e a n  error products ,  / ' ' \~,fl~>. I n  the t r ans formed  sys tem the errors ~,. 
are not  in general  independent  and hence S'  is not  diagonal  as is the  error 

ma t r i x  in equat ion  (14). Thus,  the  fo rm given in equat ion  (18) represents  
the  generalized s t a t ement  of the least squares condition; the weight  m a t r i x / /  
is the inverse of the error mat r ix ,  or covariance matr ix ,  of the  observat ional  
date. I f  the  observat ional  equat ions are not  independent ,  the  covariance 
ma t r ix  S and  the weight  m a t r i x / / a r e  not diagonal. The off-diagonal elements 
of S are direct ly re la ted to the  degree to which the corresponding observat ional  
da ta  are in terdependent .  

4.  - S t a n d a r d  errors a n d  c o r r e l a t i o n  c o e f f i c i e n t s .  

The stat is t ical  errors to be  assigned to the ou tpu t  values of any  least squares  
ad ju s tmen t  must ,  in general, be  described not  only b y  s ta t ing the  s t anda rd  

deviat ion for each numerical  result  bu t  also b y  specifying the correlations 

which exist  be tween  each pair  of results. The numerical  ou tpu t  values of 

~, e, LV, etc., are of lit t le use unless functions of these quanti t ies  can be corn- 
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bined to compute  other  derived values. The s tandard  deviations of such de- 
r ived  values mus t  be  computed  b y  formulae  which involve not  only the s tandard  
devia t ions  of the values entering into the  funct ion bu t  also the  eovariances v~, 
connect ing all possible pairs o~ those values. This is because the  ou tpu t  values 

of a least  squares ad jus tmen t  are not  in general s tat is t ical ly independent  quan- 
t i t ies  b u t  are (( s tat ist ically correlated ~). 

Each  quan t i ty  subject  to r andom  or accidental  error (frequently known 

as a (~random variable  )~) m a y  convenient ly  be  thought  of as a sample  t aken  
at  r a n d o m  f rom a (( universe ~> of values which group themselves  a round  a 

m e a n  value according to some f requency law. For  each such r a n d o m  vari-  

able x~, one is to th ink  then  of the implied universe of values f rom which the  
~ar iab le  is selected. This universe m a y  be described b y  giving some of its 
p a r a m e t e r s .  Thus,  if the  universe is known to be  Gaussian, for example,  then  
p resc r ip t ion  of its first and  second moments ,  i.e., its mean  value, /~, and  its 
var iance  ~ are sufficient. 

Two such r an dom  quanti t ies  are observat ional ly  independent  if the  r a n d o m  
selection of a sample value f rom one universe in no wise affects or biases the  
free selection of a sample  f rom the other  universe.  If,  for example,  two 

variables are connected b y  a strict  funct ional  relat ionship so t ha t  the  va lue  

of either one is uniquely determined b y  the other, the  var iables  are complete ly  
correlated and  the correlation coefficient connecting t h e m  has the absolute  
value uni ty .  R a n d o m  samples can no longer be  selected freely and  inde- 
p e n d e n t l y  f rom the two universes because of the funct ional  condit ion which 
~ies the  selections rigidly together.  Hav ing  selected a sample  value f rom one 
universe a t  r a n d o m  the second selection is now complete ly  specified. On the  
other  hand,  if one of the  two r a n d o m  variables  is a funct ion of the other  and  
also of still other  complete ly  independent  r a n d o m  variables,  then  these two 
will be  par t ia l ly  bu t  not  complete ly  correlated, and  the  correlat ion coefficient 

connecting t hem will have  a value somewhere between - - 1  and  + 1 .  I n  
general  if we have  a set of s tat is t ical ly independent  r andom variables,  y~,, 
t hen  a second set of variables,  x~, obta ined b y  linear t r ans format ion  on the  y ,  

(22) X i = ~ Zi~y ~ 
,u 

will  not  be  stat ist ically independen~ since a given one of the variables  y ,  and  

hence a given source of error is present  in more  than  one of the  var iables  x~. 

This of course is just  the  s i tuat ion which exists i n  the prob lem of least  squares 

ad jus tment .  To each outpu~ value,  xi, there corresponds a s t andard  devia-  
tion, a~, (<~ variance ~ v ,  = a~) and to each pair  (x~, x~) there corresponds a 

~ covar iance  ~, vis = r~jff,aj. The entire set of Variances and covariances fo rm 
a symmet r i c  ma t r ix  which we m a y  call the ~ error mat r ix .  ~> The elements  
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'of this ma t r ix  are required in order to compute  the  error measures  of o the r  
quant i t ies  depending on the  x~. 

5. - The standard errors of the residues of a least  squares  ad jus tment  [13] .  

I n  any  least squares ad ju s tmen t  of da ta  it  is obviously i m p o r t a n t  to be  

able to assign a s t andard  deviat ion to the difference be tween  the  ad jus ted  
ou tpu t  d a t u m  and the input  d a t u m  f rom which it  was obtained.  Closely 
related to this quest ion is the  question of the value which would be obta ined 
in a least  squares analysis if a specific inpu t  d a t u m  had  been omit ted.  The 
input  and  ou tpu t  da ta  are cer ta in ly  correlated and  it  would be incorrect  to 
calculate the  s tandard  devia t ion of the  difference wi thou t  considering this 

correlation. 
The measured  input  da t a  consist of numbers  c ,  as in equat ion (13); a f te r  

the least  squares solution has been per formed and we have  ob ta ined  the  adjus ted  

values for the x 's  we can insert  these values into equat ion  (13) to obta in  the  

* is the adjus ted  value of c~ which we shall designate b y  c*., The n u m b e r  c~ 

best  es t imate  which we can m a k e  of the  correct  value of c, based  upon all the  

* is thus a measure  of da ta  avai lable  to us. The difference between % and  c~ 

the  ex ten t  to which the  observed valne c, is consistent  wi th  all of the  other  
data .  I n  order to eva lua te  this consistency we m u s t  have  an es t imate  of the 
magni tude  of the difference which migh t  be  expec ted  on the  basis of s tat is t ical  
f luctuations.  I t  can be shown fairly easily t h a t  the  var iance  of the  difference, 
% -  c*~ is given by  o,~ - -  o~*'~ where o 2, is the  var iance  of the  input  d a t u m  and 

,2 is the var iance of the  ad jus ted  value.  This is a surpris ingly simple result  
~nd it  justifies the  descript ion of the  ~djusted vMue as being compounded  
of two te rms;  one is the  direct  input  value c, while the  other  is an effective 
or indirect  value which is de te rmined  b y  the  combined act ion of all of the  

other d~ta. This indirect  value is the  value of c,  which would be deduced 
f rom a least  squares analysis f rom which the  direct ly observed d a t u m  had  
been omit ted.  

The indirect  value and  its var iance  are given b y  

2 * *2  *2 
i ( 7 . C .  - -  0". C.. , (7 .  (~$  _ _  C / k ) '  (23) % - -  a2__~*2 - - %  + 2 *~ 

2 *2  
(24) % ~ ~.2 • 

_ #  - -  _ #  

This expression for the  var iance  implies t h a t  the  s tat is t ical  weights, which 

are propor t ional  to the  reciprocal  of the var iances  are re la ted by  the  equat ion 

(25)  = + p = c i ( 7 2 .  
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I f  we use weights ra ther  t han  variances,  Equa t ion  (23) takes on the  simple 

fo rm 

(26) c*~ - -  PI'% -~ ~ 

which is mere ly  the  s t a t emen t  t h a t  the  least  squares adjus ted  va lue  is t h e  
weighted mean  of the  direct input  value and  the indirecg value.  

6 .  - A n a l y s i s  of  d a t a .  

We now at  last  come to the  prob lem of mak ing  a specific analysis of a given 
set of exper imenta l  da t a  in order to de te rmine  best  values.  We  h a v e  for-  
mu la t ed  a procedure  for doing this;  we mus t  now determine the da ta  to which 

this procedure  is to be applied. One mus t  be  especially careful not  to a p p l y  
the  m e t h o d  of least  squares bl indly;  i t  is no t  ~ subst i tu te  for careful selectior~ 
of data .  No provision exists in the  m e t hod  for identifying and isolating sys te-  
ma t i c  error;  the  comparison of g 2 with the  theoret ical  p robabi l i ty  table  is 
useful in this regard  b u t  it  is not  definitive and can only indicate a probable  

existence of sys temat ic  error. 
I n  a least  squares fit t ing each d a t u m  is to be  assigned a weight  which is 

inversely propor t iona l  to its var iance.  Such a weighting is not  a rb i t r a ry ;  i t  

can be deduced direct ly f rom the  fo rm of the  quadra t ic  exp re s s ion  

Q = Z 

which we a t t e m p t  to minimize.  An observat ion with  a large var iance  there-  
fore carries lit t le weight  in determining the  value of Q, and hence m a y  be  
omi t t ed  wi thou t  g rea t ly  affecting the  result.  There  is, however,  a more  im-  
p o r t a n t  reason for omit t ing  d a t a ' o f  low weight.  W h e n  an exper imenter  design~ 
his exper iment  he mus t  carefully consider the  possible presence of sys temat ic  

error  as well as the  presence of r a n d o m  error. The r andom error of the  finaI 

resul t  can be  reduced b y  duplicat ion and  repet i t ion since these errors, are 

different in each repet i t ion;  the  sys temat ic  errors, on the  other  h a n d  do not  

cancel out  bu t  remain.  Now it  is p roper  in an exper iment  to reduce any  pos-  

sible source of sys temat ic  e r r o r  to a point  where it m a y  be of the  order of, 

say, one t en th  of the  r a n d o m  error of a single observat ion.  I n  this way  the  

sys temat ic  error will be  of the  same order as, or smaller than ,  the  r andom error  
of the  final quoted result .  However ,  i t  is nei ther  feasible nor  pract ical  to do 

m u c h  be t t e r  t h a n  this in the  suppression of sys temat ic  error. 
Thus an exper iment  wi th  a quoted error which is large compared  to another  

similar  bu t  more  precise measuremen t  m a y  well be  affected with a sys temat ic  
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error which is large compared  to the accuracy of the  second exper iment .  This 
sys temat ic  error would then, a f o r t i o r i ,  be  large compared  to the  accuracy 
which migh t  be  claimed for weighted mean  of the  two results. I t  would 
~herefore be  inappropr ia te  to include the  less precise observat ion in a 

weighted  mean.  
I t  is also necessary to reject  da ta  which suffer f rom serious sys temat ic  error 

even if (and perhaps,  especially if) the da ta  are precisely measured.  Grounds 

for the suspicion of such sys temat ic  error m y  arise ei ther f rom exper imenta l  
sources (such as a reevaluat ion  of the conditions under  which the  exper iment  

was per formed under  such circumstances t ha t  corrections for such sys temat ic  

errors can not  be made  to the  existing data)  or f rom theoret ical  sources (in 
which, as in the  case of the  hyperfine s t ruc ture  spli t t ing in hydrogen  the pre- 

cision of the  exper iment  is higher t han  the esixting s ta te  of the  theory  of the 
exper imen t  can handle).  

B y  the  first criterion for reject ion ment ioned  above  a lmost  all of the histo- 
rically impor t an t  early experiments ,  including m a n y  which were considered 
i m p o r t a n t  as late  as 1947 are excluded. Within  their  es t imgted precision 
ranges such measurements  are not  inconsistent  with the  la ter  more  precise 
results bu t  they  are re la t ively  so much  less accura te  as to have  quite negligible 

influence in the  present  least  squares ad jus tment .  As a resul t  of this criterion 
very  few measurements  publ ished prior  to 1950 remain.  

Professor DU~O~D has surveyed,  in the previous paper ,  the impor t an t  
exper iments  which have  a bear ing on the  values of the a tomic  constants.  We 

shall  now collect here those results which are to be used in an gnalysis of these 
constants.  

(i) The conversion /actor A, f rom the Siegbahn nominal  scale of X - r a y  
w~velengths (in X-units)  to mill iangstroms. We shall use the value recommended  

by  Sir LAWRENCE :BRAGG since it  p resumably  supersedes the earlier va lue  
quo t ed  b y  T. T. BII~GE (*): 

(27) A ---- 1.002 020 ~ 0.000 030 • 

(ii) The Siegbahn-Avogadro number N' s. We use Birge 's  value conver ted  
to the physical  scale 

N~ = N A  3 = (6.061 79 ~: 0.000 23).10 ~3 mole -1 . 

(iii) The line structure separation in deuterium, AE~): The frequency 

(*) However, very recent information concerning TYR~ ' s  measurements on X-ray 
wavelengths indicates that this work suffers a systematic error of the order of 30 to 
50 ppm because of the ommission of the L~mb shift in the calibration of the photo- 
graphic plates. (See the previous paper by J. W. M. DuMo~D). 
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separat ion between the  levels 22P~ and 22P½ measured b y  DAY]~o~F, TRIEB- 
WASSE1% and LAMB 

(29) AED = ~2 RDe 1 + g ~2 1 + 7c---- 5.946 ~-~ = (110971.59~-:0.I0) MHz 

(iv) The gyromagnetic ratio o] the proton, 7~, obtained at  the ~Tational 

Bureau  of Standards by  TttOMAS~ DRISCOLL and HIPPLE 

(30) Y, : # 'Ne /M,e  = (26 725.3 + 0.3) s -1 gauss -1 . 

(v) The determinat ion of the  ]araday by  electrolysis; al though more  
accurate  values m a y  soon be avafluble we are at  the moment  confronted with 
two somewhut discrepant measurements  on silver and on iodine. The iodine 
value is 

(31) F = Ne/c = (9 652.15 + 0.13) emu/mole (physical scale), 

and  the  silver is 

(32) F = Ne/e = (9 651.29 =[= 0.19) emu/mole (physical scale).  

(vi) The magnetic moment o / the  proton in terms of the  nuclear magne ton .  
BLocK and JEFF~IES obtain the  value (uncorrected for diamagnetism) 

(33) ~ ' - -  2.792 36 + 0.000 10 

and ttlPP~E, So~I~E]~ and TtIO~IAS obtain for the  same quan t i ty  

(34) #'---- 2.792 68 -{- 0.000 03 .  

(vii) The short wavelength limit of the  continuous X - m y  spectrum is 
unfor tuna te ly  not  known exper imental ly  with sufficient accuracy to car ry  
much weight in a least squares fitting. The difficulties here have  been p~e- 
viously discussed [14]. I t  appears tha t  the best  exper imental  value is 

(35) hc~feA = (12370.8 + 1.0) e m u .  

In  formalat ing the da ta  on which our input  equations of observation are 
to be based, care had  been taken  to do so in such a way as to avoid hidden 
correlations between the  equations of observation.  ~o r  example,  the mea-  
surements resulting f rom observed values of crystal  densities and their  X - r a y  
grat ing constants are almost invar iably quoted as measurements  of Avogadro~s 
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number ,  N. To obtain  2V f rom these measurements ,  however,  i t  is necessary 
to combine the  results whith the cube of the conversion constant ,  A. Con- 
sequent ly  we have  equa ted  the numeric  which was ac tual ly  measured  to t h e  
appropr ia te  function, N A  3, of our p r i m a ry  unknown.  I n  other words we have  
been careful to see t h a t  no single measured  quan t i ty  shall be involved as a 

subs tant ia l  cont r ibutor  to the  error measures  to two or more  of the obser- 
va t iona l  equations a t  once. 

I t  will not  be  possible here to discuss the  numerical  details of the  ac tua l  

least  squares analysis.  These m a y  b e  found elsewhere in the  l i tera ture  [157 16]. 
Only the  results and their  evaluat ion will be  presented.  I t  has a l ready been 
ment ioned,  p robab ly  more  t han  once, t h a t  the  exper imenta l  da ta  are not  
entirely self-consister~t. Thus,  the  two determinat ions  of the  F a r a d a y  constants  
(by iodine and silver vol tameters)  differ by  89 par ts  per  million al though each 

measu remen t  claims to have  an accuracy  of 20 par t s  per  million or bet ter .  
The measuremen t  of the  p ro ton  magnet ic  m o m e n t  b y  BLocH and JEFFR~S 
is 115 par t s  per  million higher t han  the  measuremen t  by  HIePL]~ SOMMER 

and T~OM~S. This is some three  t imes larger t han  the s tandard  deviat ion of 
the  da ta  would imply.  The recent ly  publ ished reanalysis  of this exper iment  [17] 
has resulted in a reduct ion of BLOCH and J~PF~IES' result  by  109 p a r t s  per  

million, thus bringing it  in excellent accord with HIP1,LE, SOMMER and THOMAS. 
Fur thermore ,  the modificat ion of the inverse cyclotron b y  COLLIS~GTOI~, DELLIS~ 
S~DERS and TUlC]~EI~FIELD [18] yields a value which differs f rom T~mGE~'S 
corrected BLOCI~ and JEFFRIES result  b y  21 ~ 39 par t s  per  million, and f rom 

NIPPLE, SOMMER and T~OMAS omegat ron  value b y  16 ~= 18 par t s  per  million. 
Professor  DvMO~D has a l ready fully described the  problems associated with 
the  short  wavelength  limit. 

A pre l iminary  least  squares analysis was carried out in 1952 with  the  da ta  
then  available.  This comprised th i r teen  equations in five variables,  ~, e, :V, 
A and c. The value Z s (which is the m i n i mum value of the funct ion Q - -  the 
funct ion whose minimizat ion  it  is our object  to obtain) was 52.1. This is a 
dis turbingly large figure since there  are only eight degrees of f reedom and 
hence we would expect  g ~ to have  the mean  value 8 and to lie be tween 
the  limits 2.73 and  15.51 with  90~o confidence. The probabi l i ty  is less 

t han  one in a thousand  t h a t  g ~ would be larger t han  26.1 entirely as 

a result  of r andom error. We m a y  say with a lmost  complete  ce r ta in ty  tha t  
there is a sys temat ic  error ei ther  in the observat ional  da ta  themselves  or in  
the  ass ignment  of weights to those measurements .  

The mos t  convenient  m e t hod  for invest igat ing the existence of sys temat ic  

error in a set of da ta  such as the one a t  hand  is the comparison of the direct 

and indirect  values of each input  numeric  as has been described earlier. Such 

a comparison was made  and  the  implications are direct and  conclusive [13]. 
The iodine value of the f a r aday  for example  is much  more  consistent with 
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the indirect  value than  is the silver faraday.  The difference between the 
iodine value and the  indirect  value is 53 ± 26 parts  per million, while the 
silver fa raday  differs from the indirect  value by  142 =[: 30 parts  per million. 
The existence of sources of experimental  systematic  error in this measurement  
has been pointed out  and this physical evidence strengthens the significance 
of the statist ical  implication. 

Similarly the indirect value of the proton  magnetic moment  agrees with 
HIPPLE, SOMMEI~ and THOMAS' value, thus indicating the possible existence 
of an error in the original inverse cyclotron work. This, of course, was la ter  
confirmed by  TRIGGEI~'S reanalysis [17] and the modified exper iment  carried 

out  at  OxfOrd by  SA~DE~S et al. [18]. 
The determinat ions of the short wavelength limit of the continuous X- ray  

spect rum are al l  in disagreement with the indirect  value. Hence we ma y  tend  
to doubt  the  direct data ;  there are certainly valid experimental  reasons why 
we should, and one is t empted  to reject  all of these data.  

A word of caution is in order  at  this point.  Of the  th i r teen items which 
were inc luded  in this prel iminary analysis we have deduced reasons to re ject  
five. This represents ~ ra ther  drastic censoring and should be carried out  
with care. As soon as we eliminate one i tem the values of all of the  other  
adjus ted  ou tpu t  values change. Hence str ict ly we should re-evaluate the least 
squares solution after  each rejection in order to determine a new basis for 
the subsequent  rejections. Fur thermore ,  the decision to re ject  a da tum ~s 
discrepant  m a y  ve ry  well depend upon the order in which other  da t a  are 
rejected. I t  is quite possible, in general, t ha t  a par t icular  exper imental  result  
is in disagreement with the indirectly determined value, not  because of an 
error in the exper iment  itself, bu t  because some other  error-ridden exper iment  
is s trongly distort ing the indirect value. I f  the la t ter  exper iment  were rejected 
first, the  former  one might  well be retained. This is part icular ly liable to occur 
if the to ta l  degrees of freedom of the system is small so tha t  each exper imental  
i tem can contr ibute  significantly to  the  overall result. 

A completely different approach to the  problem of determining which 
equations of the  th i r teen are likely to suffer f rom systematic error is afforded 
by  an analysis of variance approach. This analysis involves the calculation 

of Z ~ for every  possible subset of the th i r teen equations and the com- 
parison of these values of Z 2 to determine whether  the value of 52.1 

can be ascribed t0 the effect of one or a few items or whether  all of the da ta  
contr ibute  equally to this large value. In  the first instance we would be willing 
to say tha t  those items responsible for anomalously large contributions to Z ~ 
were, in fact,  suffering f rom systematic  error;  in the second instance we would 
ascribe an increased s tandard  error to all of the da ta  and admit  tha t  if system- 
~tie errors existed they  were so wide-spread as to defy unique identi- 

fication. 
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A p a r t i a l  survey ,  a l t hough  n o t  complete ,  is a d e q u a t e  to conf i rm the  impl i -  

ca t ions  of Tab le  I I :  Si lver  cou lomete r  va lue  for the  f a r a d a y  c o n s t a n t  a n d  

Bloch  a n d  Jeffries p r o t o n  m a g n e t i c  m o m e n t  d e t e r m i n a t i o n  are in  error  a n d  

all  of the  shor t  w a v e l e n g t h  l imi t  m e a s u r e m e n t s  are somewha t  suspect .  A c t u a l l y  

suspic ion does n o t  fal l  s t rong ly  on the  B e a r d e n  a n d  Schwarz  va lue  b u t  this  

is due  more  to i ts  low weight  t h a n  to its close agreement .  Thus  a l t hough  its  

res idue  is in  mos t  compar i sons  as large or larger  t h a n  the  residues of the  o ther  

TABLE II.  - Direct and  indirect  evaluation o/ f undamen ta l  constants (1952 A d j u s t m e n t ) .  

Constan t  

A 

N A  a 

[(1) 

: I(Ag) 
[ 

f(BJ) 

' I (HST/ 

I(FHD) 

Direct value 
(experimental) 

1.002 020 4,0.000 080 

6 061.79 4,0.23" 102° 

(26 752.34,0.6) emu 18-1 

(9652.154, 
4, 0.13) emu/mole 

(9 651.29 4, 
4-0.19) emu/mole 

2.79237 4,0.00010 

2.79268 4,0.00003 

(12 370.02 +0.63) emucm 

Indirect value 

1.002 073 ~0.000 01~ 

6 062.904,0.39 

26751.94,0.4 

9 651.90i0.15 

9652.21±0.11 

2.79270 4, 0.00005 

2.79263=}=0.00005 

12 372.40~0.17 

12 372.374,0.17 

Least squares 
solution 

1.0020 63 4,0.000 013 

6 062.08 4,0.20 

26752.04,0.5 

9 652.01 ~=0.10 

9 652.01 -t:0.10 

2.79267 4,0.00003 

2.79267 :{:0.00003 

12 372.23::J:0.16 

12 372.23~0.16 (12371.034,0.48) emucm 

[(BS) (12370.77=[=1.03) emucm 12372.284-0.17 12372.234,0.16 

Remarks .  - BJ ~ F. BLOCH and C. D. JEFFRI~S; HST = J. A. HIPPLE, 
H. SUM~IER and H. A. THOMAS; FHD = G. F. FELT, J. N. HARRIS and J. W. 
M. DuMOND; B J W =  J. A. B]~ARDEN, F. T~ JOHNSON and H. M. WATTS; 
B S ~ J. n .  BEARD:EN and G. SCHWARZ. 

X-ray S.W.L. = Short wavelength limit of the continuous X-ray spectrum. 

The column marked << Direct value ~> gives the experimental datum measured 
in the experiment which is indicated in the first column. The <~ Indirect value >> 
is the one which would be deduced from a least squares analysis if the given 
experiment were excluded from consideration. If the same experiment is repeated 
by different observers only t, he single experiment in question (and not the others 
of the same kind) is excluded. The column marked <, Residue of least squares 
solution ~ is the adjusted value of the 1952 analysis. The last column gives, 
in pa.rf.s per million, the difference between the 1east squares solution and the 
input  datum. The error quoted is the standard error of tha t  difference. 

[The fine structure splitting, AE a, and the velocity of light have been omitted 
from this table because the direct measurements of these items have so much 
more weight than the indirect values that  the elimination of numerical accuracy 
in the calculation precludes a meaningful evahlation of the latter]. 

9 - S~tpplemento al Nuovo Cimento. 
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short  wavelength limit determinations, its contribution to Z 2 is much smaller 

because of the much larger s tandard error assigned to it. 

The  1955 evaluation of the atomic constant  [16] therefore rejected the silver 

fa raday  and B~oc~ and JEFFI~IES Proton magnetic moment  measurement.  I n  

addit ion the short wavelength limit values were replaced by  a single expressiorL 

based on the average of all the low voltage data  as has been previously men- 

tioned. I t  was also considered adequate to consider the velocity of light to 

be an auxiliary constant,  not  subject to least squares analysis. This ra ther  

drastic censoring of the data  reduces the system to seven equations in four 

unknowns.  The calculated value of Z ~- is then found to be 3.25 which 

is deceptively close to the expectation value, since the 90% confidence limits 

are 0.35 < g ~ <  7.81. I t  can also be argued tha t  the short wavelength limit 

measurements  should be dropped entirely (and a strict adherence to our se- 
lection conditions would require this). I n  this case we decrease our sys tem 

to one with only two degrees of freedom. The value of Z 2 is then 

only 0.44. This is at  first sight quite low compared with the expectation va lue  

of 2.00; however the 90% confidence limits are 0.10 and 5.99. I n  fact, the 

probabil i ty tha t  Z 2 might  be lower t h a n  0.44 is almost 20%, and 

this probabil i ty is further  increased if we recognize tha t  we have rather  dras- 

t i c a l l y  censored all those data  which contribute to large values of g 2. 

Fur thermore  , the actual  solution is not grea t ly  changed by  rejecting the short  

wavelength limit data  entirely; the largest chahge in any output  value is less 

than  one four th  of the assigned s tandard  deviation. 
The system of seven equations in four unknowns which is obtained when 

we exclude those data  which appear to be discordant with the remainder of  
our data  is given below. As has been mentioned above we assume the velo- 

city of light to be an exact constant  in this analysis, its value being 

(36) c = 299793.0 k m / s .  

(The actual  s tandard  deviation to be assigned to this number  is ~= 0.3 kin/s, 

bu t  this error has a negligible effect on the numerical results of the leas~ 

squares analysis.) 
The origin values and the linearized variables are taken to be:  

- -  ~0  (37) xl -- - - " 1 0 5  ~o = 0.007297 000 , 
g 0  

6 - -  6 0 
(38) x o = - - "  10 ~ eo = 4.802 200.10 -1° esu , 

~0 

N - -  No 10 ~ N o =  0.602 500 0"10 ~ mole -~, 
(39) x~ -- No 

A - -  Ao. 105 Ao : 1.002 020 0 . (40) x~ = A~ 
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With  these definitions the observational equations become: 

Weight 

(41) x~ = 0.0 0.11, 

(~t2) x a + 3 x 4  = 3.5 0.07, 

(43) x 1 : 4.0 4.92, 

(44) 3 x l - - x 2  = - -  2.3 0.19, 

(45) x~+xa = 11.1 0.58, 

(46) - -  3x14:-2x2-l-x8 = 1 . 3 . 5  0.83, 

(47) - -  x i +  x2 - - x ~  = - -  5.6 0.015, 

Experhnental source 

A = 1.002 02 ::t:: 0.000 03 

N A  ~ (Birge's average) 

Fine structure splitting in 

deuterium 

Gyromagnetie  ratio of proton 

Iodine faraday,  electrochem- 

istry 

Magnetic moment  of proton 

(omegatron) 

Short wavelength limit (low 

voltage) 

The normal  equations are formed according to the usual rules; they  are 

(0¢) 14.115xl - -  5.565x~ - -  2.490x3 + 0.015x~ = --  15.162 

(e) - -  5.565xl @ 4.105x: -]- 2.240x3 - -  0.015x4 29.201 

(N) - -  2.490xl ~- 2.240xz -]- 1.480x3 ~ 0.210x4 = 17.888 

(A) 0.015x 1 - -  0.015x~ + 0.210x3 @ 0.755x4 = 0.819 

(4s) 

It should be noted here tha t  the normal  equations are to be formed directly 
f rom the coefficients of the quadratic form, Q, as given in equation (16) and 

tha t  no simplification or cancellation should be made in the equations. This 

is because the coefficients of the normal  equations have a significance which 

is not  limited to the determination of the values of the x~. An alteration in 

the equations which would not  alter the solution (such as the cancellation of 

a common factor in one of the equations, or even the re-ordering of the equa- 

tions in the set) can destroy the identifications of the coefficients of the normal  
equations as the weight matr ix  of the solution. 

The error (or variance) matr ix of the solution is the inverse of the matr ix  

of the coefficients of the normal equations. Hence the error matr ix  is 

(49) V 

0.1989 - -  0.5760 0.5603 0 . 1 6 3 3 \  c~ 

0.576 0 3.4478 - - 4 . 4 3 1 9  1 . 2 8 9 8 ~  e 

--0.5603 - -4 .4319 6.7167 - - 1 . 9 4 5 2 ]  N 

0.16o3 1.2898 - - 1 . 9 4 5 2  1.887 9 /  A 

c~ e N A 
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a n d  the  so lu t ion  for the  var inb les  is 

(5o) 

xl = 3.92 

x~ --~ 13.72 

x~ = - - 2 . 3 7  

x~ - -  1.94 

The  vn lue  of g ~ for this  so lu t ion  is 

(51) Z ~ = 3.25 . 

This  is to be  compared  to the  v~lue  52.1 which  was o b t a i n e d  in  the  p r e l i m i n a r y  

~ d j u s t m e n t .  The  m a j o r  change  in  the  var iub les  caused b y  the  de le t ion  of 

those  d~ ta  suspec ted  of sy s t ema t i c  error  is ~n increase  in  x~ of 2.23 ~nd  ~n 

~ t t e n d a n t  decrease in  x4 of 2.35 ; this  corresponds  to ~ change  in  Avog~dro ' s  

n u m b e r  ~V of 22.3 p p m  u n d  a ehunge  i n  the  convers ion  fac tor  A of - -  23.5 p p m .  

The  v~lue  of Z ~ can  be expressed e q u i v a l e n t l y  in  t e rms  of the  ra t io  of ex- 

t e r n a l  to i n t e r n a l  cons i s tency  

re/ri = % / Z 2 / ( ~ - -  q) = 1.041 .  

The  90~o conf idence i n t e r v a l  for rJr~ wi th  3 degrees of f reedom is 0.594 

ro/r~ ~__ 2.795. Hence  the re  is no pa r t i cu l a r  compu l s ion  to use i n t e r n a l  r~ the r  

t h a n  e x t e r n a l  cons i s t ency  meusures ;  our  d~t~ te l l  us on ly  t h a t  the  two mea-  

'sures are cons is ten t .  W e  shull, however ,  quote  our  f inal  error  m a t r i x  in  t e rms  

of e x t e r n a l  cons i s t ency  since this  is t he  l~rger meusu re  (~lbeit  n o t  s igni f icant ly  

so). F u r t h e r m o r e ,  the  error  m a t r i x  will  be  re-expressed in  t e rms  of r e l a t ive  

pa r t s  per  mi l l ion  in  the  p r i m a r y  var iables .  

The  error  m a t r i x  und  corre la t ion  coefficients ~re g iven  in  Tables  I I I  a n d  IV.  

TABLE I I I . -  Covariance matrix (1955 Adjustme~t).  

Elements of the matrix are in units of (relative parts per million) ~. 

e 

o: 

A 
N 
.F 

e m h g A N F 

374 
560 
685 

62 
140 

- -  480 
- -  107 

560 
940 

1057 
60 

226 
- -  778 
- -218  

685 
1 057 
1 246 

103 
262 

- -  899 
- -  216 

62 
60 

103 
22 
18 

- -61  
2 

140 
226 
262 

18 
204 

- -211 
- -71  

- -  480 
- -  778 
- -  899 

- - 6 1  
- -  211 

726 
246 

- -  107 
- -218  
- -216  

2 
- -71  

246 
141 
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T~BL~: IV. - Correlation coef]icients (1955 Adjustme~tt). 
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e m h ~ A N F 

e 

Ht 

h 

A 
5' 
F 

1.00 
0.95 
0.99 
0.70 
0.51 
0.92 
0.47 

0.95 
1 . 0 0  

0.97 
0.43 
0.52 
0.94 
0.60 

0.99 

0.97 

1.00 

0.63 

0.52 

0.94 

0.51 

-0.70 
0.43 
0.63 
1 . 0 0  

0.27 
- -  0.48 

0.03 

0.51 
0.52 
0.52 
0.27 
1 . 0 0  

- -  0.55 
- -  0.42 

- -  0.92 
- -  0.94 
- -  0.94 
- -  0.48 
- -  0.55 

1 . 0 0  

0.77 

0.47 
- -  0.60 
- -  0.51 

0.03 
- -  0.42 

0.77 
1 . 0 0  

The  e r ro r  m a t r i x  of T a b l e  I I I  has  been  e x t e n d e d  to  i nc lude  t h e  v a r i a b l e s  m, h 
a n d  F .  These  v a r i a b l e s  were  e l i m i n a t e d  f r o m  t h e  l e a s t  squa re s  so lu t ion  b y  t h e  

use  of a u x i l i a r y  equa t i ons .  I t  is, howeve r ,  i n c o n v e n i e n t  to  be  fo r ced  to  use  

t hese  e q u a t i o n s  in  o r d e r  to  express  m, h or  F in  t e r m s  of our  p r i m a r y  v a r i a b l e s  

each  t i m e  one needs  to  c o m p u t e  c o r r e l a t i o n  coeff icients  b e t w e e n  these  va r -  

iab les  a n d  o t h e r  va r i ab l e s .  T h e  v a r i a n c e s  a n d  c o r r e l a t i o n  coefficients for  t he se  

s e c o n d a r y  v a r i a b l e s  can  be  c a l c u l a t e d  in  t e r m s  of t h e  v a r i a n c e  m a t r i x  of t h e  

p r i m a r y  va r i ab l e s .  Thus ,  a l t h o u g h  we h a v e  p r o d u c e d  a m a t r i x  of s e v e n t h  o r d e r  

i t  is s t i l l  on ly  of t h e  f o u r t h  r a n k  s ince t h r e e  of t h e  rows (or co lumns)  can  be  

e x p r e s s e d  as l i nea r  c o m b i n a t i o n s  of t h e  o t h e r  rows (or co lumns) .  The  n e a r  

e q u a l i t y  of m a n d  h co lumns  of t h e  m a t r i x  of c o r r e l a t i o n  coefficients  (Tab le  IV)  

is a r e f l ec t ion  of t h e  s t r o n g  coup l ing  b e t w e e n  t h e  a d j u s t e d  va lue s  of t he se  two  

va r i ab l e s .  

This  is a r e su l t  of t h e  r e l a t i o n s h i p  

2 R ~ h  
m - -  

C~2 ' 

a n d  t h e  f ac t  t h a t  t h e  r e l a t i v e  s t a n d a r d  e r ro r  of a is m u c h  sma l l e r  t h a n  t h e  

e r ro r  in  e i t he r  m or  h. 

7 .  - O u t p u t  v a l u e s .  R e c o m m e n d e d  ( 1 9 5 5 )  l e a s t  s q u a r e s  a d j u s t m e n t .  

T h e  1955 a d j u s t m e n t  is b a s e d ,  as has  been  e x p l a i n e d  ear l ie r ,  on  t h e  de te r -  

r u ina t i on  of fou r  p r i m a r y  u n k n o w n s  o:, e, N a n d  A,  b y  l e a s t - s q u a r e s  a d j u s t m e n t  

f r o m  s e v e n  i n d e p e n d e n t  sources  of e x p e r i m e n t a l  i n p u t  d a t a  c o m b i n e d  w i t h  

a n u m b e r  of a u x i l i a r y  c o n s t a n t s  whose  va lue s  a re  k n o w n  so m u c h  m o r e  ac-  

c u r a t e l y  t h a n  t h e  a f o r e m e n t i o n e d  i n p u t  d a t a  t h a t  t h e y  a re  neg l ig ib le  e r ro r  

c o n t r i b u t o r s .  

The  p h y s i c a l  scale  of a t o m i c  we igh t s  is u s e d  a l m o s t  e x c l u s i v e l y  in  t hese  

t ab les ,  t h e  S a c k u r - T e t r o d e  c o n s t a n t  (g iven  on  b o t h  p h y s i c a l  a n d  c h e m i c a l  

scales)  b e i n g  t h e  sole excep t i on .  The  conve r s ion  f a c t o r  b e t w e e n  these  scales,  

r ~ 1.000 272 ~ 0.000 005 c a l c u l a t e d  b y  I t .  T. BIRGE on t h e  bas i s  of t h e  a b u n -  
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dance ratio for the oxygen isotopes, ~60: ~sO: ~70 = (506 ± 10) : 1 : (0.204 ± 0.008) 

is adopted here as a definition for the chemical scale. These abundance ratios, 

and the value or r implied by  them, are subject to variat ion depending on 

the source of the oxygen. The value of the ~O/~sO ratio can va ry  from ap- 

proximately  495 for oxygen f rom air or carbonates to 515 for oxygen from 

water  and rocks. Corresponding to this variat ion is a variat ion in the value 

of r f rom 1.002 78 to 1.002 68. The In ternat ional  Commission on Atomic Weights 

is at  present (1956) considering the arbi t rary  redefinition of the chemical scale 

of atomic weights in terms of the physical scale and the value r = 1.002 75. 

The accuracy ~scribed to our ~dopted value is such tha t  these two numbers  

do not  differ significantly (approximately one half the s tandard  error). 

The new Kelvin scale of temperature  adopted October 1954 i n  Paris at  

the Tenth  General Conference on Weights and Measures is here used. On 

this scale the triple point  of water  is assigned the temperature  273.16 °K 

exactly.  This changes the numerical  value of the gas constant ,  Ro, slightly 

f rom tha t  used in earlier evaluations and gives the value of the ice point  as 

(273.150 0 :k 0.000 2)°K.  Absolute electrical units are used exclusively, the 

(~ internat ional  ~> electrical units having been abolished in 1948. 

T A B L n  V .  - A u x i l i a r y  constant . i s .  

Rydberg wave number for infinite mass 
R¢~ = (109737.309_4_0.012) 

Rydberg wave numbers for the light nuclei 
RE = (109 677.576±0.012) 
R D =  

~ayi e 

Velocity of light 
C ~  

Atomic mass of neutron 

era-1  

cm-1  

(109 707.419 :k0.012) cm -1 
(109 717.345 ~:0.012) em 1 
(109 722.267Z0.012) cm 1 

(299 793.0 J:0.3) km s -1 

1.008982 ~0.000003 (physical scale) 

Atomic mass of hydrogen 
H = 1.008142~0.000003 (physical ~¢ale) 

Atomic. mass ratio of hydrogen to proton 
H/}/,  = 1.00054461 (computed using atomic mass of electron 

2gin = 0.00054875) (physical scale) 

Atomic mass of the proton 
M s ~ 1.007593-~0.000003 (physical scale) 

Atomic mass of deuterium 
D = 2.014735±0.000006 (physical scale) 
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Atomic  mass  r a t i o  of d e u t e r i u m  to d e u t e r o n  

D / M  a = 1 .00027244  ( c o m p u t e d  us ing  a t o m i c  mass  of e lec t ron ,  
N m  = 0.000 548 75) (physica l  scale)) .  

Ra t io  of e l ec t ron  m a g n e t i c  m o m e n t  to  p r o t o n  m a g n e t i c  m o m e n t  w i t h o u t  d iama-  
gne t i c  cor rec t ion  

[ M p / ( N m y ) ] ( 1  ~- ~/2~ - -  2.973~2/~ ~) = 658.228 8 @ 0.000 4 

A n o m a l o u s  m a g n e t i c  m o m e n t  of e lec t ron  

t~¢/tt0 = (1 -}- e / Y z c -  2.973c~2/~r ~) = 1,001 145 36 
( c o m p u t e d  us ing  t h e  va lue  1/e = 137.037) 

Gas c o n s t a n t  pe r  mole  

irg o = (8.316 96=k0.000 34). 107 erg  mole -1 deg -1 (physica lsea le)  

S t a n d a r d  vo lume  of a per fec t  gas 

Vo = (22 420.7-,L0.6) em a a r m  mole -~ (physica l  scale) 

TABL~ VI .  - L e a s t  squares ad ju s t ed  o u t p u t  va lues ,  1965.  

The  q u a n t i t y  fo l lowing each  :k s ign is t h e - s t a n d a r d  er ror .  A t t e n t i o n  is ca l led  
to  t h e  f ac t  t h a t  t h e  q u a n t i t i e s  in  th i s  Tab le  are o b s e r v a t i o n a l l y  co r re l a t ed  so t h a t  
in  t h e  c o m p u t a t i o n  of t he  e r ror  measu res  of de r ived  va lues  d e p e n d e n t  on  two  
or more  of t h e  va lues  in  t h i s  Tab le  t he  e r ror  m a t r i x  of Tab le  I I I  m u s t  be  used.  

A v o g a d r o ' s  c o n s t a n t  

2g : (6.024 86 ± 0 . 0 0 0  16). 1023 mole  -1 (physica l  scale) 

L o s c h m i d t ' s  c o n s t a n t  

L o = N / V  o= (2.687 19 ± 0 . 0 0 0  10). 10 ~9 cm -a (physica l  scale) 

E lec t ron ic  charge  

E l e c t r o n  re s t  mass  

e = (4.802 86~:0 .000 09).  10 -1° esu 
e ' =  e/c = (1.602 06~:0 .000 03)" 10 -2° e m u  

m : (9.108 3 : c 0 . 0 0 0 3 ) .  10 -ys g 

P r o t o n  re s t  mass  

, m  =: M~/IY  = (1.672 39£=0.000 04). 102a g 

N e u t r o n  re s t  mass  

m n = Mn/-~r : (1.674 70£_0.000 04)" 10:24 g 

P l a n c k ' s  c o n s t a n t  
h = (6.625 17~=0.00023) .  10 -27 erg  s 

l~/2~r = (1.054 43 ~=0,000 04)- 10 -37 e rg  s 

Convers ion  f ac to r  f rom S iegbahn  X - u n i t s  to  mi l l i angs t roms  

A = ,~g/,~s --  1.002 0 3 9 ~ 0 . 0 0 0 0 1 4  
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F a r a d a y  c o n s t a n t  
= N e  = (2.893 66 ~0.0O0 03). 10 ~ esu mole  -~ 

F '  = N e / c =  (9 652.19 ~0.11)  emu  mole  -~ 

Charge- to -mass  ra t io  of t he  e lec t ron  

e/m = (5.273 05~=0.000 07). 10 ~7 esu g - t  

e/mc 

Rat io  h/e  

h/e = 

Fine  s t ruc tu re  cons t an t  

1/~. = 
~/2~ = 

~2=_ 

1 - -  ( 1 - -  ~)+ = 

(1.758 90~=0.000 02)- 107 emu  g-~ 

(1.379 42± 0 . 000  02). 10 -17 erg s csu -1 

(7.297 29 :L0.000 03)" 10 -a 
137.037 3 ~0 .000  6 
(1.161 398±0 .000  005)" 10 -a 
(5.325 04 ~:0.000 05)" 10 ~5 
(0.266 252 ~:0.000 002)" 10 -~ 

Atomic  mass  of t he  e lec t ron  

~Vm = (5.487 63~:0.000 06). 10 -a (physical  scale) 

Rat io  of mass  of hyd rogen  to  mass  of p r o t o n  (*) 

= 1.000 544 613~0 .000  000 006 

A.tomic mass  of p r o t o n  

M~, = t I  - -  N m  = 1.007593~0.000003 

Rat io  p r o t o n  mass  to e lec t ron  mass  

~ J ( N m )  = 1836 .12±0 .02  

Reduced  mass  of e lec t ron  in h y d r o g e n  a t o m  

# = m M ~ / H  = (9.103 4~:0.000 3). 10 - ~  g 

SchrSdinger  cons t an t  for  a f ixed nucleus 

2 m / h  ~ = (1.638 36 ~0 .000  07). 1027 erg - t c m  -~ 

Sehr6dinger  cons t an t  for t h e  hyd rogen  a t o m  

2#/h 2 = (1.637 4 8 ~ 0 . 0 0 0  07)- 1027 erg -1 cm -2 

F i r s t  B o h r  rad ius  
ao = h2/(me 2) = ~/(4~R¢~) = 

: (5.291 72~0 .000  02).10 -9 cm 

Radius  of e lec t ron  orbi t  in no rma l  ~H, refer red  to  cen te r  of mass  

ao ao(1 _ ~2)½ = (5.291 58 J=0.000 02). 10 -9 cm 

Separa t ion  o~ p ro ton  and  e lec t ron in no rma l  ~H 

a o a o R ~ / R ~ =  (5.294 46 =~0.000 02) • 10-~ cm 

(physical  scale) 

(physical  scale) 

(*) The binding energy of the electron in the hydrogen atom has been iacluded in the 
quantity. The mass oi the electron whea found in the hydrogen atom is not m, but 
more correctly m(1 -- l]2a ~ + ...). 
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C o m p t o n  w a v e l e n g t h  of t h e  e l e c t ron  

~e.,o ~ h / ( m c )  ~ o : ~ / 2 R ~  = (24.262 65=0.000 2)- 10 - n  cm 

~-c.,¢ = ~c,,J2~ : (3.861 51 5=0.000 04).  10 -~1 c m  

C o m p t o n  w a v e l e n g t h  of t h e  p r o t o n  

~c.,p ~ h / m p c  ~ (13.214 15=0.000 2).  10 -1~ c m  

kc.,, =: 2c,,p/2~ = ~2.103 085=0.000 03).  l0  -1~ c m  

C o m p t o n  w a v e l e n g t h  of t h e  n e u t r o n  

~c . . ,  - -  h / m , c  = (13.195 9 5=0.000 2). 10 -1~ c m  

kc..~ ~ ~c,,~/2z = (2.100 1 9 ~ 0 . 0 0 0  03).  10 -v~ c m  

Classical  e l e c t ron  r a d i u s  

Thomson cross section 

(2.817 8 5 5 = 0 . 0 0 0 0 4 ) . 1 0  ~3 c m  

r o = (7.940 3 0 i 0 . 0 0 0  21 ) . 10  -26 c m  

(8/3)zr~ = (6.652 05 5=0.00018).  10 -25 c m  2 

F i n e  s t r u c t u r e  d o u b l e t  s e p a r a t i o n  in  h y d r o g e n  

AE~ = (1/16)R~e2[1 + ~/~ + ( 5 / 8 -  5.946/~2)~, 2] = 

= ( 0 . 3 6 5 8 7 1 ± 0 . 0 0 0 0 0 3 )  a m  -1 

= (10968.565=0.10)  Hz  -1 

F i n e  s t r u c t u r e  s e p a r a t i o n  in d e u t e r i u m  

A E D  = A E ~ R D / . R H  = (0 .3659705=0.000003)  c m  1 

= (10971.545=0.10)  Hz  -1 
Z e e m a n  d i s p l a c e m e n t  p e r  g a u s s  

e / 4 : ~ m c  2 == (4.668855=t=0.00006). 10 -~ c m  -1 G --1 

B o l t z m a n n ' s  c o n s t a n t  

k = I i o / N  = (1 .380445=0.00007) .  10 -16 e rg  dog -1 

-~ (8 .61675=0.0004) ,  10 -5 eV deg  -1 

1/]c : (11605.45=0.5)  deg eV -1 

F i r s t  r a d i a t i o n  c o n s t a n t  

c l ~ 8 z h c  ~ (4.9918=t=0.0002).  10 -15 erg  c m  

Second  r a d i a t i o n  c o n s t a n t  

c 2 ~ hc /k ,  ~ (1 .438805=0.00007)  c m  de(A" 

A t o m i c  specific h e a t  c o n s t a n t  

c 2 / c = h / ] ~  = (4.799 31 5=0.00023).  10 -11 s deg 

W i e n  d i s p l a c e m e n t  l a w  c o n s t a n t  (*) 

2ma~T = c2/4.96511423 = (0.289782 ± 0 . 0 0 0 0 1 3 )  c m  deg 

S t e f a n - B o l t z m a n n  c o n s t a n t  

= ( ~ / 6 0 ) ( I ~ 4 / h %  2) = (0.56687 5=0.00010).  10 -~ crg  cm -~ deg -~ s -1 

(*) The numerical constant 1.96511423 is the root of the transcendental equation 
x =  5(1 -- exp [ -  x]). 
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E. ~. COHEN 

Sackur -Te t rode  cons t an t  

Saekur -Te t rode  cons t an t  

B o h r  m a g n e t o n  

So/Ro = ~ -b In [(2ZRo)~h-32V -4] = 
= - -  5.573244-0.00007 

S o  = - -  (46.35244-0.0020).  10 erg mole-~deg -~ 
(physical  scale) 

So/Roc h = - -  5.57256 4-0.00007 
S O = - -  (46 .3467±0.0020) .  107 erg mole -1 deg -1 

(chemical  scale) 

= (0 .92731~0.00002) -10  -2° erg G -1 

Anomalous  e lec t ron m o m e n t  correct ion 

1 -~ a /2a  - -  2.973~2/a 2 = .u,/.uo = 1.0011453584-0.000000005 

( compu ted  using ad ju s t ed  value l /~  = 137.0373~=0.6000) 

Magne t ic  m o m e n t  of the  e lec t ron 

#o = (0.928374-0.00002).  10 -~° erg G -~ 

Nuclear  m a g n e t o n  

Proton moment 

.u, ~ he/(4um~c) = .Uo2Vm/H + 
(0 .505038±0.000018) .  10 -23 erg G -I  

.up == (2.792 75 4-0.00003) nuclear  m a g n e t o n s  
= (1.41044~_0.00004). 10 -2a erg G -1 

G y r o m a g n e t i c  ra t io  of t he  p ro ton  in hyd roge n  (uncorrec ted  for  d iamagne t i sm)  

y r =  (2.675234-0.00004)- 10 ~ r ad  s -1 G -1 

Gyromagne t i c  ra t io  of t he  p r o t o n  (corrected) 

y = (2.675304-0.00004).  104 t a d  s -1 G -1 

Mul t ip l ie r  of (Curie constant)½ x½, to  give magne t i c  m o m e n t  per  molecule  

(3tc/N(x)½ = 2.6178 4-0.00010). 10 -2° (erg mole deg-1)½ 

Mass-energy  convers ion  fac tors  

l g  

1 e lec t ron mass  

1 a tomic  mass  un i t  
1 p r o t o n  mass  

1 n e u t r o n  mass  

= (5 .61000±0.00011) .  102¢ MeV 
= (0.5109764-0.000007) hleV 

= (931.141±0.010)  MeV 
= (938.2114-0.010) MeV 
= (939.5054-0.010) MeV 

Q u a n t u m  energy,  E ,  convers ion  fac tors  

1 eV = (1.60206=[-0.00003)'10 -12 erg 

F / Y  = hc 
E).g 

E / v  

= (1.98618-j=0.00007). 10 -1~ erg cm 
= (12397 .67±0 .22) -10  - s  eV cm 
== ( 1 2 3 7 2 . 4 4 ± 0 . 1 6 ) k V  X - u n i t s  
= (6.62517 4-0.00023).  10 -~7 erg s 
= (4.13541 4-0.00007). 10 -is  eV s 
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"~/E = ( 5 . 0 3 4 7 9  ± 0 . 0 0 0 1 7 ) "  1015 c m  ~ e rg  -1 

= ( 8 0 6 6 . 0 3 - t - 0 . 1 4 )  e m  -1 eV  -1 

:~/E = ( 1 . 5 0 9 4 0 ± 0 . 0 0 0 0 5 ) .  1026 s -~ e rg  -~ 

= ( 2 . 4 1 8 1 4 z 0 . 0 0 0 0 4 ) - 1 0 1 ~  s 1 eV-1  

de  B r o g l i e  w a v e l e n g t h s  2B.., of  e l e m e n t a r y  p a r t i c l e s  (*) 

Elect,  t o n s  

P r o t o n s  

N e u t r o n s  

l~]ner~y of 2 200 m / s  n e u t r o n  

~B.,n 

~2200 - -  
T2200 

(7 .273 77 ± 0 . 0 0 0 0 6 ) c m  -° s 1/V 

( 1 . 5 5 2 2 5 7 ± 0 . 0 0 0 0 1 6 ) .  10 -13 c m  (erg)~/(E)~ 

(1.226 378 ± 0 . 0 0 0  010) .  10 -~ c m  (eV)½/(E)~ 

( 3 . 9 6 1 4 9  ± 0 . 0 0 0 0 5 ) .  10 -3 c m  2 s -1 /V  

(3 .622 53 ± 0 . 0 0 0  08) .  10 -~5 c m  (erg)½/(E)½ 

( 2 . 8 6 2 0 2 ± 0 . 0 0 0 0 4 ) - 1 0  ~ c m  (eV)½/(E)½ 

( 3 . 9 5 6 0 3 = t - 0 . 0 0 0 0 5 ) .  10 3 c m  2 s - 1 / V  
( 3 . 6 0 2 0 4 ± 0 . 0 0 0 0 8 ) .  10 -~5 c m  (erg-~/(E) ½ 

( 2 . 8 6 0 0 5  ± 0 . 0 0 0 0 4 ) -  10 -9 c m  (eV)½/(E)½ 

(0 .025 297 3 ± 0 . 0 0 0 0 0 0  3) eV  

(293 .585  =t-0.012) ° K  
(20 .435 ± 0 . 0 1 2 )  oC 

T h e  R y d b e r g  ~ n d  r e l a t e d  d e r i v e d  c o n s t a n t s  

Roe = (109 7 3 7 . 3 0 9 ± 0 . 0 1 2 )  e m  -~ 

R¢oc = (3.289 848 ± 0 . 0 0 0  003)-  101~ s -1 

l~odtc ~ ( 2 . 1 7 9 5 8 : L 0 . 0 0 0 0 7 ) .  10 n e rg  

R h d e  i. 10-s  ( 1 3 . 6 0 4 8 8 ± 0 . 0 0 0 2 2 )  eV 

H y d r o g e n  i o n i z a t i o n  p o t e n t i a l  
10 = RH(hd/e)(1 + ¼~2 + ...). 10-s  = 

= (13.597 65 ± 0 . 0 0 0  22) eV  

(*) These formulae apply only to nonrelativistic velocities. If the velocity of the ])article 
~s not  negligible compared to the  velocity of light, c, or the  energy not  negligible compared to the  

rest mass energy, we m u s t  use 2B..D = ~c[e(e +2)] -½ where ,~eis the  appropriateCompton wavelenght 
of the particle in question and e is the kinetic energy measured in units of the particle rest-mass. 
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