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In the previous paper Professor DUMoND has presented a wealth of exper-
imental data on the universal physical constants (primarily those known as
the atomic constants). This material is made up of a score or more individual
experimental results. Not all of these are of equal experimental accuracy.
Some of them may be combined among themselves to yield a simple datum
which represents an average value of several independent evaluations of the
same physical quantity. In whatever way this may be done we still find our-
selves with more data than are required to obtain an evaluation of the funda-
mental physical constants. This may be expressed by a classical example
(the example is classical in that it represents one of the first instances in which
the existence of the overdetermined nature of the experimental data became
forcefully evident.)

The value of the faraday constant as measured by the silver voltameter
is [1] F= Ne = 9651.294 0.19 emu/mole; the atomic weight of the electron
as inferred from the isotopic shift in the Balmer series for hydrogen and deu-
terium is [2] Nm = (54.895 -+ 0.008)-10-% amu. From this we can calculate
a value for the specific electronic charge

e/m = (L75814 -+ 0.00026) 10" emu/g .

In comparison with this the value of e/m determined from measurements
of the acceleration and deflection of electrons in electromagnetic fields yields
a value [3]

ejm = (1.75959 - 0.00038)-107 emu/g .
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‘We could of course have equally well used the measured values of the
atomic weight of the electron and the specific electronic charge to calculate
an «indirect » value of the Faraday constant, or conversely use the specific
electronic charge and the Faraday to find an indirect value of the electron’s.
atomic weight. These calculations are summarized in Table I. We are then.

TaBLE L. — Comparison of direct and indirect values from a simple overdetermined system..

I = Ne R Nm ejm
(emu/mole) (amu) (emu/g)
Direct Values 9651.204-0.19 | (54.89540.008)-10-5 (1.759 59+0.000 36)-107
(Nm)(e/m) F/(efm) F[Nin
Indirect Values 9659.32-4-1.83 54.849 4-0.006 1.758 14 -+0.000 26

presented with the embarrassing problem of choosing which consistent set of
three numbers ought to be used; each choice is certainly poor in itself since
each is contradicted by the other two. It should be emphasized that the
numbers presented in this table are illustrative and although based on direct
measurements, do not represent in any way a selection of « besgt » data or are
they to be considered as recommended numbers. They are presented in order
to show the nature of the difficulty (which is actually compounded many-fold)
when we attempt to analyze the experimental data on the atomic constants,
considering these data as a single unified complex of experimental results.
The experiments described in the preceding paper measure various combi-
nations of the atomic constants. In some experiments the same combination
or the same constant is measured in different ways; in others a measurement
is made of a quantity whose value is also deducible from combining the results
of two or more different and independent experiments. Thus we are confronted
with an inter-related complex which is similar (in an abstract form) to the
sitnation which is found most often in geodetic triangulation. Let us there-
fore look more closely at the structure of our present problem .

Each of the quantities whose measurement is described in the preceding
Paper can be expressed in terms of k, ¢, m, N, A, ¢, and a few other auxiliary
quantities whose numerical values are accurately known. The Rydberg constant,
however, which is a funetion of #, ¢, m, and ¢, is much more accurately mea-
sured than are any of its component factors. It is therefore convenient to
consider the Rydberg constant as an exact numerical quantity and to use it
to express the electron/mass as a known function of the other variables. In
addition, to the accuracy required in the discussion to follow, it is convenient
to treat the velocity of light, ¢, as an exactly known quantity. Furthermore,
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because of the fact that the fine structure constant, o, is more accurately de-
termined by direct observation of fine structure in hydrogen than it can be
computed by combining, say measurements of ¢, h/e and ¢, it is also convenient
to use « as a variable in place of k. Thus we shall choose to express all of the
experimental results in terms of the quantities «, ¢, N, and A which we may
call the primary unknowns of our analysis. The result of any experiment
can then be described as meagsuring (except for quantities which can be con-
gidered as accurately calculable correction factors) some product of powers
of the primary variables of the form

) flaye, Ny A) = ate? N A = A1 4+ o).

The second expression is not actually an equation; it is a short-hand method
for indicating that we do not know the true value of the right hand side of
the equality but that the experiment can be interpreted as indicating a value
which is defined only to the extent of a probability distribution with mean
value A and with relative standard deviation ¢. This interprefation is not
the only one however and we shall discuss a different interpretation later.

For convenience in analyzing the data it is useful to linearize our equations.
We adopt origin values «,, €, N,, A,, which have been chosen sufficiently
close to our expected solution that any set of values o, ¢, N, A (any point
in our « constants-space ») in which we are likely to be interested will differ
from the origin values by small amounts. «Small » is determined bere by the
magnitudes of the second derivatives of the function f; we assume that we
can expand f(e, «, N,A) as a multivariate Taylor series about the origin point,
and that in such an expansion only the linear terms need be retained. It is
in practice most convenient to expand the logarithm of f in a Taylor series;
we then deal with relative deviations and if the function is a simple product
of powers of the variables as is the case here, we obtain, in place by Equa-
tion (1), the linearized equation

(2) axw, + bx, 4 cwy -+ dwy = h £ o,
where ®, = (¢ — o)fot;” ®, = (6 — €9)[oy €be., and b = (A — A;)[4, in which
A, is the value of the function f evaluated with the origin values o, €, Ny, ;.
1. — A geometrical interpretation.

There are various ways in which we can interpret the experimental data

geometrically. Professor BIRGE in his paper has discussed various types of
diagrams [4-7] which he has used to aid him in evaluating «best » or «most
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consistent » values of the atomic constants whose numerical magnitudes he
seeks. These geometrical descriptions are all representations (in terms of
various types of projections) of the following geometrical structure.

We may represent each experimental determination as defining a single
functional relationship among the various physical congtants. We may con-
sider that an independent set of constants forms an orthogonal co-ordinate
system in a « constants-space ». Each functional relationghip (each experiment)
then is represented by a surface in this space. An arbitrary point in the space
{a given set of values of the constants, say «, ¢, N, A) is in agreement with
the experimental result if it lies in the surface. A point (that is, a set of values
for the constants) is therefore consistent with several experimental results
if it lies at the common intersection of the surfaces. In general if we have
more experiments (surfaces or equations) than we have constants to be deter-
mined (dimensionality of the space) it is not a priori evident that there will
be a point through which every surface passes. If the experiments are reason-
ably consistent there will be a point, however, which is close to all of the
surfaces. The best choice for the set of physical constants is that point which
is «closest » to all of the surfaces. The definition of « distance » in this space
(that is, the definition of a metric) we shall discuss below; for the moment
let us assume that we can define distance. We should then want to consider
a metric function defined with regard to the point in question and the existing
surfaces. The problem we then set for ourselves is to find the point which
minimizes this function.

This leads us to a second geometrical representation of the problem. At
each point in our « constants-space » we have defined the value of a certain
function. We now consider a space of one higher dimensionality and consider
a hyper-surface whose distance from an orthogonal subspace (the original
constants-gpace), is defined at each point by the value of a certain function
(the exact form of this function we have not yet specified). We then seek
the point on this surface which is a minimum. Tt is possible to make several
general remarks about the form of the function, which we shall call . It
must primarily be defined in such a way that its value is independent of the
actual variables used to describe it. This means that @ is a scalar with respect
to a transformation or rotation in the « constants-space ». In addition it should
also be invariant with respect to non-essential modifications in the form in
which the experimental results are presented. Again a simple example may
be in order.

Let us suppose that one of our experimental equations can be written in
the form

3) 0z, + by + cwy = h + o,
which states that the experimental result » was obtained with a standard

8 - Supplemento al Nuovo Cimenio.
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error +-o¢. If we fransform variables from @y, #,, ®; t0 a new set of variables
Y1, Ya, Y5, We obtain in place of this equation the expression

(3a) oy +BY. +yys =h Lo

The function ¢ must be defined in terms of the coefficients a, b, ¢, (and the
corresponding coefficients of all of the other experimental data) in such a way
that Q(et, B, 73 Y15 Y2y ¥s) should be equal to Q(a, b, ¢; @, @, @3). Furthermore
Q must be invariant with respect to tranformation of the equations; the most
easily recognized type of function transformation would be the replacement
of equation (3) by the expression]

(3b) naw, + nbw, - new; = nh + no .

When this is done it is perhaps suggestive that all of the experimental equa-
tions ought to be written in a normalized form

@ b ¢ a
(4) -2+ =+ -y =~+41.
o o o o

When the equations are written in this form all of the equations have equal
aceuracy and we might then infer that they ought to be given equal weight
in the analysis. At this point we use the word « weight » in a qualitative sense;
later we shall give a quantitative definition which will formalize the intuitive
notion that data with small standard errors should be given more weight or
importance and data with larger errors should be given less weight in any
analysis.

2. — The ecriterion of least squares.

Until now we have purposely made only very general statements about
the problem of finding the best or most consistent set of unknowns from a
set of overdetermined equations. It may perhaps be apparent that we would
like to introduce the criterion of least squares in a logical and completely
deductive manner. It is almost certain that this cannot be done; we can
however carry our deductive development to a certain point, then inductively
introduce the least squares criterion and finally justify the choice (at least
partially) by considering the conditions which it must satisfy. We could
specify that the function @ which has been previously mentioned shall be
defined as the sum of the squares of the deviation of the point from each of
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the experimentally defined surfaces, each deviation normalized by dividing it
by the standard deviation of the experimental measurement. The condition.
that @ be a minimum is therefore the usual condition of «least gquares » which
was first formulated by Gauss about 1820 [8].

There have been many who have objected to the use of the method of least
squares on the grounds that it assumes the Gaussian curve for the probability
distribution of the error in any particular measurement. The objection is
indeed valid that the assumption of the Gaussian distribution is often un-
warranted in many experimental configurations. The real problem at issue,
however, is one of determining a « best » set of values that can be computed
from an over-determined system of equations, and this is essentially the problem
of determining an analytic basis on which one can define the adjective ¢ best. »
The condition of least squares serves as one such analytic ecriterion.
This says nothing in itself of what could be calléd the physical interpre-
tation of the criterion. It is recognized, in general, that the method of
least squares corresponds to the « Axiom of Maximum Likelihood », if the
distribution functions of all the errors are Gaussian [9]. GaUss himself was
able to justify the method on a much wider base, and in 1821 he published
a theory which replaces this axiom with an « Axiom of Minimum Error » or
¢ Axiom of Maximum Weight. » [10]. The definition of « best » is not to be
made on the basis of that solution which is most likely to be correct, but on
that combination of data which yields the most accurate result and to which
can, therefore, be attached the greatest statistical weight. (The statistical
weight of a statistical variable is defined in the present sense as the reciprocal
of the variance, i.e., the reciprocal of the mean square error, of the quantity.)
Consider then an overdetermined set of n equations expressing relationships
between ¢ variables. We can find an infinite number of solutions for the ¢
variables depending on how we choose to combine the equations. We can
think of this process as one in which some set of ¢ — 1 of the equations are
used to express ¢ —1 of the variables in terms of one particular variable,
8ay #;. These values are then to be substituted into the remaining n — g1
equations to give a set of # — ¢+1 values for the variable z,. Any of these
numerical values is a possible choice for the variable z; and, in general we
would want to take some weighted average of these numerical values. The
numerical value of such an average depends both on the weights attached to
the elements that go to make up the average and on the numerical values of
these elements. Ultimately, therefore, the value ascribed to a; depends on
n — ¢ independent and arbitrary parameters which specify the mathematical
form of the average and n quantities which are either the observational nu-
merics or quantities directly deduced from them (such as relative deviations
from a set of origin values) which determine the numerical value of the average.
There are only n -— g arbitrary parameters rather than n — ¢--1 because the
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choice of the n — q--1 weights is restricted by the condition that their sum
is unity.

The numerical value of x, is thus expressed as a linear combination of »
numerical quantities, each of which has associated with it a mean square error.
If the numerical quantities are observationally independent, we can assert
that the mean square error of x, is the sum of certain coefficients depending
on the n — ¢ free parameters, times the mean square errors of the n obser-
vational numerics. The Axiom or Condition of Minimum Error states that
the «best » choice for x; is that one whose error is a minimum with respect
to the possible variation of the free parameters. This condition is equivalent
to the condition of least squares, although the results cannot, in general, be
identified as corresponding to that set which has maximum likelihood except
in the case when the distribution function for the errors is specified to be
Gaussian. Thig is howevér, an advantage for one can easily construct distri-
butions (for example, rectangular distributions) for which the condition of
maximum likelihood hag no unique solution. Furthermore, the development
of the condition of minimum error is quite general in regard to the forms of
the error distribution functions; all that is specified is the mean square error,
so that the range of applicability of the theory of least squares is extended
from Gaussian distributions to the much larger class of distributions with
finite second moments.

As an elementary example of the method and in order ot clarify the con-
cepts involved, let us consider a problem which is perhaps the simplest
possible example. We have two measurements of the quantity x; these two
measurements are «, and a,, in general, a,7a,. We also assume that each
measurement represents a gsingle selection from a universe of values. We let
the probability distribution of the first measurement be P,(£) such that the
probability is P,(§)d&, that the result of a measurement of the quantity z
by the specified procedure shall lie between the values & and £4-d&. Similarly,
the second measurement of  is to be characterized by the probability distri-
bution P,(n). We need not make any detailed specification of the form of the
distribution functions P, and P,; it is not even necessary that the two fune-
tions have similar form. We impose upon them only the restriction that the
distributions have finite second moments. ‘

If we have two measurements of # then we can take some average value
to use as the «best» choice. There are, however, several different choices

for this average and we can write
(5) @o(t) = ey 4 (L — ox)ds

where « is any real number, although intuitively we would prefer that 0 << a <1
because this is thé condition that x, lies between the values «, and a,. De-
fined in this way, the mean of the universe of values of #, is
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®) Eo==j]las-+(1—~a»ﬂfﬁ@>P4n>dsdn.

Each probability distribution is assumed to be normalized and if there are
no systematic errors in either measurement, the expectation value of each
measurement is .

Therefore we find

(7) By=o0x +(1—oa)x =,

so that the expectation value of the average is indeed the quantity we are
trying to measure, independent of the parameter « which determines the part-
icular average. But we now ask the question: « How accurate is this average;
what is its standard deviation? » If we let ¢? be the mean square deviation
of the universe from which #, is extracted, we have, by the usual definition,

[

8) sz[h&thm—WR@&WMM:

=a2@—MWﬁm&+u~wﬂm—MWMMm

The two integrals in the last form of Equation (8) are the variances (the mean
square errors), respectively, of the first and of the second measurements. These
quantities are defined to be ¢} and oi. The expression for the error in the
average in terms of the errors of the numbers entering into the average is,
therefore,

9) g5 = oo + (1 — )2 .

We find that, although the expectation value of the average is independent
of o, the error in the average is a function of «. For « == 0 we have & = ¢}
and for « =1 we have ¢ = o}; we may reasonably ask whether a proper
choice of « might not result in a value of &2 which is smaller than either of
these and indeed what value of o leads to a minimum value of ¢2. It is easily
shown that the minimum value of &? is

(10) & = olo3/(a] + o)

which is achieved when « = o}/(0? 4 o%) and the corresponding value of z, is

(11) %:ﬁﬁ+ﬂ.

s | 3
0y O
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The « weights » to be attached to measured quantities in order to compute
the « best » average are therefore proportional to the reciprocal of the mean
square error of each measurement. If we define the statistical weights

w, = 1/a3, w, = 1/o%,
we have two important formulas

(12a) Ty = (W, + Wweas)/ (w0, + wy) ,
(12b) w, = 1/ed = wy 4w, .

The first of these essentially justifies the nomenclature of « statistical weight »
for the reciprocal variance, since it is this quantity that determines the im-
poftanée of the measurement in the computation of the average. The second
formula shows that when this « best » average is obtained the weight of the
result (computed as the reciprocal of the variance of the average) is just the
sum of the weights of the components and, furthermore, that this is the
maximum weight aseribable to any average. An other linear combination
of the two observations would have a weight which is less than the sum of
the individual weights ‘and is, therefore, an inefficient average that wastes
weight. The statistical weight of the average is a maximum (equal to the
sum of the weights of the individual components), when the weighting employed
in computing the average is determined by the statistical weights of the com-
ponents.

3. — A generalized theory of least squares.

The example which we have just considered can be immediately generalized
to consider the combination of several measurements instead of only two.
Furthermore it is also rather straightforward (although lengthy) to extend
the concepts introduced above into the problem of finding the best set of
values of several simultaneous variables related by linear equations. This is
of course the sort of system in which we are interested once we have linearized
the equations of observation as previously indicated.

We write the linearized gystem in the form

1y + Ogoily + Ozl + oo + Oy = G

(13) gy -F Qoply + Aoas - oo - Ooyly == Cp

By By~ OGpgs + a3 + e T Oy = Oy
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We shall use Roman letters to indicate the indices which range from 1
to g and which refer to the unknowns, and Greek letters for those which range
from 1 to » and refer to the observational equations.

Since the ¢, are assumed to be independent, the errors 7 x i ¢, are un-
correlated and

MM,y = o‘i if v =g,
(14)
=0 if » # u.

We wish to find #; as a linear combination of the ¢ with appropriate
coefficients, lf‘ chosen so as to determine the ; with maximum aeccuracy or
minimum error. Thus we write

(15) w; = Mo, + Mo, + Ao, + ... + A,
= > b= D ha,m,.
P i

This equation is to be understood as follows. Bach of the n individual
equations of observation (identified by the index u is to be multiplied by a
number, Z;, there being a set of » such numbers for each variable ;. These
numbers are to be chosen such that, when the n equations are then summed,
the coefficient of each w, other than the specified #;, is zero, while the coef-
ficient of #; is unity. This implies that there are ¢ conditions on each of the
g sets of » multipliers. This is not sufficient to define the multipliers since
# > ¢. The additional conditions are obtained by requiring that we choose
that linear combination for each variable #; which will have the smallest
variance and hence the largest possible weight. It can be shown [11] that
such a condition leads to exactly the same values of x; as would be obtained
from the condition that we minimize the quadratic form

Cu

(16) Q=3 (amwl + Uy + oo+ @, — Cﬂ)z -
n

Hence the condition of Minimum Error is just the least squares condition and
is therefore equivalent to the condition of Maximum Likelihood of the more
restricted Gaussian case. It is, however, much more general than the latter.
No restriction is put on the probability distributions of the input errors, 7,,
in the ¢ » Other than that these distributions must have finite second moments,
ie., the ¢, must exist. Subject to this condition, they may have more than
one «mode » or indeed any arbitrary shape; nor is it necessary that the
distribution functions all have the same form.
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This generality of the significance of the least squares adjustment when
stated in terms of the second moments of the error distribution is of great
importance. It emphasizes also the desirability of adopting the root-mean-
square deviation as a measure of error in preference to such error measures
as the « probable error », or the « mean absolute error.» For a gaussian dis-
tribution, the three measures, root-mean-square error, mean absolute error
and probable error (that error which divides the distribution curve into equal
areas, 50 that the probabilities of errors of absolute magnitude greater than
or less than the probable error are equal) stand in the ratios1:0.7980:0.6745.
It is however a mistake to think of the different efror measures as simply
expressing the same error spread on different scales. When we do not limit
ourselves to gaussian distribution the root-mean-square error or standard error
enjoys a position of far greater statistical significance and generality than
do the others. This is because the standard deviation has a simple reproduction
property (for any form of probability distribution) which is not shared by any
other parameter with the same generality.

It may even be worthwhile to avoid the discussion of probability distri-
butions and variances entirely and speak only of statistical weights and the
weight to be assigned to each experimental number or to any number that
results from arithmetic combinations of experimental data.

It can be shown, independently of the development which led to Equa-
tion (16) that if the weight to be assigned to a random variable is to be in
accord with certain elementary axioms regarding the definition of weight and
at the same time be a function only of the standard error of the variable, then
that function is uniquely determined to:be the reciprocal of the variance.
The weight of a quantity should therefore be defined in such a way that it
is consistent with the identification as the reciprocal of the variance in those
cases where a variance can be experimentally determined. But we should
be prepared as well to admit to consideration subjective evaluations of the
weight of an experiment based on an impartial and honest appraisal of the
inherent accuracy of one experiment in comparison to another even though
no analytic evaluation of the variance exists. It may well be that the intro-
duction of « weights » in place of « variances » is purely a semantic subterfuge;
even $0, it may prove a useful concept.

If, in equation (16), we introduce the notation

(17) T,y = 0%y + 0Ty + o + 0, T — €y

we can write @ in a matrix or tensor form [11, 12]

(18) Q =rm,r, = RIIR

wouy v
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in which z,, are the elements of a diagonal matrix

7, = 1/0%, U =71
(19)
=0 By

R is the vector with components 7, and R+ is the transposed vector. This
form may appear cumbersome and unvieldy in actual use, and it is if the
simpler formulation is available. However, it represents the point of depar-
ture for generalizing the formulation and establishing its complete invariance.
If we perform a linear transformation on R and obtain R'= TR we must
write

(20) Q = R+T-“+IIT'R’,

since ¢ must be a scalar invariant. Hence the trangformed weight matrix 1T’
is no longer diagonal. It now has the form

(1) II'= T[T = [TST+]",

where 8 is the inverse of the diagonal matrix I7; the diagonal elements of 8
are the variances oi. We see immediately however that the transformed
matrix §'= T 8T+ is exactly the matrix which now expresses the variances
and covariances of the transformed vector components 7,. The elements of §’
are the mean error products, <17:y ;>. In the transformed system the errors 171"‘
are not in general independent and hence 8§’ is not diagonal as is the error
matrix in equation (14). Thus, the form given in equation (18) represents
the generalized statement of the least squares condition; the weight matrix 77
is the inverse of the error matrix, or covariance matrix, of the observational
date. If the observational equations are not independent, the covariance
matrix § and the weight matrix I7 are not diagonal. The off-diagonal elements
of 8 are directly related to the degree to which the corresponding observational
data are interdependent.

4. — Standard errors and correlation coefficients.

The statistical errors to be assigned to the output values of any least squares.
adjustment must, in general, be described not only by stating the standard
deviation for each numerical result but also by specifying the correlations
which exist between each pair of results. The numerical output values of
o, ¢, N, ete., are of little use unless functions of these quantities can be com-
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bined to compute other derived values. The standard deviations of such de-
rived values must be computed by formulae which involve not only the standard
deviations of the values entering into the function but also the covariances Vi
connecting all possible pairs of those vilues. This is because the output values
of a least squares adjustment are not in general statistically independent quan-
tities but are « statistically correlated ».

Each quantity subject to random or accidental error (frequently known
a8 a «random variable ») may conveniently be thought of as a sample taken
at random from a «universe» of values which group themselves around a
mean value according to some frequency law. For each such random vari-
able z;, one is to think then of the implied universe of values from which the
variable is selected. This universe may be described by giving some of its
parameters. Thus, if the universe is known to be Gaussian, for example, then
prescription of its first and second moments, i.e., its mean value, u;, and its
variance of are sufficient.

Two such random quantities are observationally independent if the random
selection of a sample value from one universe in no wise affects or biages the
free selection of a sample from the other universe. If, for example, two
variables are connected by a strict functional relationship so that the value
of either one is uniquely determined by the other, the variables are completely
correlated and the correlation coefficient connecting them has the absolute
value unity. Random samples can no longer be selected freely and inde-
pendently from the two universes because of the functional condition which
ties the selections rigidly together. Having selected a sample value from one
universe at random the second selection is now completely specified. On the
other hand, if one of the two random variables is a function of the other and
also of still other completely independent random variables, then these two
will be partially but not completely correlated, and the correlation coefficient
connecting them will have a value somewhere between —1 and +1. In
general if we have a set of statistically independent random variables, y,,
then a second set of variables, #;, obtained by linear transformation on the y,

(22) x, = Z liﬂyﬂ
u

will not be statistically independent since a given one of the variables y, and
hence a given source of error is present in more than one of the variables z;.
This of course is just the situation which exists in the problem of least squares
adjustment, To each output value, x;, there corresponds a standard devia-
tion, ¢, (« variance» v, = o%) and to each pair (x:, #;) there corresponds &
« covariance », v;; = 7;;0,0;. The entire set of variances and covariances form
a symmetric matrix which we may call the « error matrix.» The elements
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of this matrix are required in order to compute the error measures of other
guantities depending on the x,.

5. — The standard errors of the residues of a least squares adjustment [13].

In any least squares adjustment of data it is obviously important to be
able to assign a standard deviation to the difference between the adjusted
output datum and the input datum from which it was obtained. Closely
related to this question is the question of the value which would be obtained
in a least squares analysis if a specific input datum had been omitted. The
input and output data are certainly eorrelated and it would be incorrect to
calculate the standard deviation of the difference without considering this
correlation.

The measured input data consist of numbers ¢, as in equation (13); after
the least squares solution has been performed and we have obtained the adjusted
values for the #’s we can insert these values into equation (13) to obtain the
adjusted value of ¢, which we shall designate by ¢;. The number ¢; is the
best estimate which we can make of the correct value of ¢, based upon all the
data available to us. The difference between ¢, and cl’f is thus a measure of
the extent to which the observed value ¢, is consistent with all of the other
data. In order to evaluate this consistency we must have an egtimate of the
magnitude of the difference which might be expected on the basis of statistical
fluctuations. It can be shown fairly easily that the variance of the difference,
¢, — c;‘ is given by o} — a/’fz where o’ is the variance of the input datum and
0:2 is the variance of the adjusted value. This is a surprisingly simple result
and it justifies the description of the adjusted value as being compounded
of two terms; one is the direct input value ¢, while the other is an effective
or indirect value which is determined by the combined action of all of the
other data. This indirect value is the value of ¢, which would be deduced
from a least squares analysis from which the directly observed datum had
been omitted.

The indirect value and its variance are given by

2% K2 ke
(23) ci:M_GEZG*+_L(C*_C)
(3 0.2_0*2 " 02__0.*2 © |22
» © “ u
2 k2
(24) o = %4l
14 2 ke ”
OM~O'M

This expression for the variance implies that the statistical weights, which
are proportional to the reciprocal of the variances are related by the equation

(25) P =0,+79,, p=Clo*.



124 E. B. COIEN

If we use weights rather than variances, Equation (23) takes on the simple

form

(26) o = i & P
pﬂ + p,u

which is merely the statement that the least squares adjusted value is the

weighted mean of the direct input value and the indirect value.

6. — Analysis of data.

We now at lagt come to the problem of making a specific analysis of a given
set of experimental data in order to determine best values. We have for-
mulated a procedure for doing this; we must now determine the data to which
thig procedure is to be applied. One must be especially careful not to apply
the method of least squares Dlindly; it is not a substitute for careful selection
of data. No provision exists in the method for identifying and isolating syste-
matic error; the comparison of 42 with the theoretical probability table is
useful in this regard but it is not definitive and can only indicate a probable
existence of systematic error.

In a least squares fitting each datum is to be assigned a weight which is
inversely proportional to its variance. Such a weighting is not arbitrary; it
can be deduced directly from the form of the guadratic expression-

Q=2 (T'H/O',u)z ’

which we attempt to minimize. An observation with a large variance there-
fore carries little weight in determining the value of ¢, and hence may be
omitted without greatly affecting the result. There is, however, a more im-
portant reason for omitting data of low weight. When an experimenter designs
his experiment he must carefully consider the possible presence of systematie
error as well as the presence of random error. The random error of the final
result can be reduced by duplication and repetition since these errors are
different in each repetition; the systematic errors, on the other hand do not
cancel out but remain. Now it is proper in an experiment to reduce any pos-
sible source of systematic error to a point where it may be of the order of,
say, one tenth of the random error of a single observation. In this way the
systematic error will be of the same order as, or smaller than, the random error
of the final quoted result. However, it is neither feasible nor practical to do
much better than this in the suppression of systematic error.

Thus an experiment with a quoted error which is large compared to another
similar but more precise measurement may well be affected with a systematic
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error which is large compared to the accuracy of the second experiment. This
systematic error would then, a fortiori, be large compared to the accuracy
which might be claimed for weighted mean of the two results. It would
therefore be inappropriate to include the less precise observation in 2
weighted mean.

It is also necessary to reject data which suffer from serious systematic error
even if (and perhaps, especially if) the data are precisely measured. Grounds
for the suspicion of such systematic error my arise either from experimental
sources (such as a reevaluation of the conditions under which the experiment
was performed under such circumstances that corrections for such systematic
errors can not be made to the existing data) or from theoretical sources (in
which, as in the case of the hyperfine structure splitting in hydrogen the pre-
cision of the experiment is higher than the esixting state of the theory of the
experiment can handle).

By the first criterion for rejection mentioned above almost all of the histo-
rically important early experiments, including many which were considered
important as late as 1947 are excluded. Within their estimated precision
ranges such measurements are not inconsistent with the later more precise
results but they are relatively so much less accurate as to have quite negligible
influence in the present least squares adjustment. As a result of this criterion
very few measurements published prior to 1950 remain.

Professor DuMoND has surveyed, in the previous paper, the important
experiments which have a bearing on the values of the atomic constants. We
shall now collect here those results which are to be used in an analysis of these
constants.

(i) The conversion factor /A, from the Sieghahn nominal scale of X-ray
wavelengths (in X-units) to milliangstroms. We ghall use the value recommended
by Sir LAWRENCE BRAGG since it presumably supersedes the earlier value
quoted by T. T. Bircu (*):

(27) A = 1.002 020 + 0.000 030 .

(ii) The Siegbahn-Avogadro number N,. We use Birge’s value converted
to the physical scale

N, = NA® = (6.061 79 - 0.000 23)-1028 mole~* .

(iii) The fine structure separation in deuterium, AE;. The frequency

(*) However, very recent information concerning TYREN’S measurements on X-ray
wavelengths indicates that this work suffers a systematic error of the order of 30 to
50 ppm because of the ommission of the Lamb shift in the calibration of the photo-
graphic plates. (See the previous paper by J. W. M. DuMonn).
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separation between the levels 2*P, and 2*P, measured by DAYHOFF, TRIEB-
WASSER and LAMB

1 5 2
(20) ABp — —o® Rpe (1 4+ o) |1 + = 5.946 —| = (110971.59--0.10) MHz.
16 8 7 72

(iv) The gyromagnetic ratio of the proton, y,, obtained at the National
Bureau of Standards by THOMAS, DRISCOLL and HIPPLE

(30) v, = NefM c = (26725.3 + 0.3) s~ gauss—*.

(v) The determination of the faraday by electrolysis; although more
accurate values may soon be available we are at the moment confronted with
two somewhat discrepant measurements on silver and on iodine. The icdine
value is

(31) F = Neje = (9 652.15 4+ 0.13) emu/mole (physical scale),
and the silver is
(32) F = Neje = (9651.29 4 0.19) emu/mole  (physical scale) .

(vi) The magnetic moment of the proton in terms of the nuclear magneton.
BrocuH and JEFFRIES obtain the value (uncorrected for diamagnetism)

(33) p'= 2.792 36 £ 0.00010
and HiprLE, SOMMER and THOMAS obtain for the same quantity
(34) p'=2.792 68 4 0.000 03 .

(vii) The short wavelength limit of the continuous X-ray spectrum is
unfortunately not known experimentally with sufficient accuracy to carry
much weight in a least squares ﬁi;ting. The difficulties here have been pre-
viously discussed [14]. It appears that the best experimental value is

(35) hetled = (128370.8 4~ 1.0) emu .

In formulating the data on which our input equations of observation are
to be baged, care had been taken to do so in such a way as to avoid hidden
correlations between the equations of observation. For example, the mea-
gurements resulting from observed values of crystal densities and their X-ray
grating constants are almost invariably quoted as measurements of Avogadro’s
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number, N. To obtain N from these measurements, however, it is necessary
to combine the results whith the cube of the conversion constant, 4. Con-
sequently we have equated the numeric which was actually measured to the
appropriate function, ¥ A% of our primary unknown. In other words we have
been careful to see that no single meagured quantity shall be involved as a
substantial econtributor to the error measures to two or more of the obser-
vational equations at once.

It will not be possible here to discuss the numerical details of the actual.
least squares analysis. These may e found elsewhere in the literature [15, 16].
Only the results and their evaluation will be presented. It has already been
mentioned, probably more than once, that the experimental data are not
entirely self-consistent. Thus, the two determinations of the Faraday constants
(by iodine and silver voltameters) differ by 89 parts per million although each
measurement claims to have an accuracy of 20 parts per million or better.
The measurement of the proton magnetic moment by BLocH and JEFFRIEN
is 115 parts per million higher than the measurement by HIPPLE, SOMMER
and Traomas. This is some three times larger than the standard deviation of
the data would imply. The recently published reanalysis of this experiment [17]
has resulted in a reduction of BLocH and JEFFRIES' result by 109 parts per
million, thus bringing it in excellent accord with HipprLE, SoMMER and THOMAS.
Furthermore, the modification of the inverse cyclotron by COLLINGTON, DELLIS,
SANDERS and TURBERFIELD [18] yields a value which differs from TRIGGER’S
corrected BLocH and JEFFRIES result by 21 + 39 parts per million, and from
HripprE, SoMMER and THOMAS omegatron value by 16 + 18 parts per million.
Professor DuMoND has already fully described the problems associated with
the short wavelength limit.

A preliminary least squares analysis was carried out in 1952 with the data
then available. This comprised thirteen equations in five variables, o ¢ N,
A and ¢. The value y2 (which is the minimum value of the function @ — the
function whose minimization it is our object to obtain) was 52.1. This is a
disturbingly large figure since there are only eight degrees of freedom and
hence we would expect y? to have the mean value 8 and to lie between
the limits 2.73 and 15.51 with 90% confidence. The probability is less
than one in a thousand that %* would be larger than 26.1 entirely as
a result of random error. We may say with almost complete certainty that
there is a systematic error either in the observational data themselves or +in
the assignment of weights to those measurements.

The most convenient method for investigating the existence of systematic
error in a set of data such as the one at hand is the comparison of the direct
and indirect values of each input numeric as has been described earlier. Such
a comparison was made and the implications are direct and conclusive [13].
The iodine value of the faraday for example is much more consistent with
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the indirect wvalue than is the silver {araday. The difference between the
iodine value and the indirect value is 53 4+ 26 parts per million, while the
silver faraday differs from the indirect value by 142 4 30 parts per million.
The existence of sources of experimental systematic error in this measurement
has been pointed out and this physical evidence strengthens the significance
of the statistical implication.

Similarly the indirect value of the proton magnetic moment agrees with
HiprLE, SoMMER and THOMAS® value, thus indicating the possible existence
of an error in the original inverse cyclotron work. This, of course, was later
confirmed by TRIGGER’S reanalysis [17] and the modified experiment carried
out at Oxford by SANDERS ef «l. [18].

The determinations of the short wavelength limit of the continuous X-ray
spectrum are all in disagreement with the indirect value. Hence we may tend
to doubt the direct data; there are certainly valid experimental reasons why
we should, and one is tempted to reject all of these data.

A word of caution is in order at this point. Of the thirteen items whiech
were included in this preliminary analysis we have deduced reasons to reject
five. This represents a rather drastic censoring and should be carried out
with care. As soon as we eliminate one item the values of all of the other
adjusted output values change. Hence strictly we should re-evaluate the least
squares solution after each rejection in order to determine a new basis for
the subsequent rejections. Furthermore, the decision to reject a datum s
discrepant may very well depend upon the order in which other data are
rejected. It is quite possible, in general, that a particular experimental result
is in disagreement with the indirectly determined value, not because of an
error in the experiment itself, but because some other error-ridden experiment
is strongly distorting the indirect value. If the latter experiment were rejected
first, the former one might well be retained. This is particularly liable to occur
if the total degrees of freedom of the system is small so that each experimental
item can contribute significantly to the overall result.

A completely different approach to the problem of determining which
equations of the thirteen are likely to suffer from systematic error is afforded
by an analysis of variance approach. This analysis involves the calculation
of y* for every possible subset of the thirteen equations and the com-
parison of these values of y* to determine whether the value of 52.1
can be ascribed to the effect of one or a few items or whether all of the data
contribute equally to this large value. In the first instance we would be willing
to say that those items responsible for anomalously large contributions to yx*
were, in fact, suffering from systematic error; in the second instance we would
ascribe an increased standard error to all of the data and admit that if system-
atic errors existed they were so wide-spread as to defy unique identi-
fication.
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A partial survey, although not complete, is adequate to confirm the impli-
cations of Table II: Silver coulometer value for the faraday constant and
Bloch and Jeffries proton magnetic moment determination are in error and
all of the short wavelength limit measurements are somewhat suspect. Actually
suspicion does mnot fall strongly on the Bearden and Schwarz value but this
is due more to its low weight than to its close agreement. Thus although its
regidue is in most comparisons as large or larger than the residues of the other

TasLe II. — Direct and indirect evaluation of fundamental constants (1952 Adjustment).

Residue
Constant Direejr. value Indirect value T.east squares géul:?:;
{experimental) solution solution
(ppm)
A 1.002 020 +4-0.000 030 1.002 073 +0.000 015 1.0020 63 4-0.000 013| 43427
NA3 6061.79 +0.23-1020 6062.90-4+0.39 6 062.08 +0.20 48119
o (26752.3-0.6) emu-1s-l 26751.940.4 26752.0+0.5 — 11420
[(I) | (9652.15+ 9651.904-0.15 9652.014+0.10 — 1149
7 J -+ 0.13) emu/mole
] (A2)| (9651.20 1 9652.21+0.11 9652.014-0.10 78417
l +0.19) emu/mole
N,[ (BJ) | 2.79237-0.00010 2.79270£0.00005 | 2.79267 +-0.00003 | 109434
LHST)| 2.79268 +0.00003 2.79263+0.00005 | 2.792674-0.00003 | — 516
= [(FHD) (12370.02--0.63) emucm | 12372.40--0.17 12372.2340.16 179 +48
i{(BJW)(12371.03i0.48)emuem 12372.3740.17 12372.234+-0.16 97439
=z [(BS) (12370.774-1.03) emucm | 12372.284-0.17 12372.23+0.16 119481

Remarks. — BJ = F. Brocu and C. D. JErrFrRIES; HST = J. A. HirpLE,
H. SuMuMER and H. A. Tuomas; FHD = G. F. Fert, J. N. HARRIs and J. W.
M. DuMonp; BJW=J. A. Bearpen, F. T. JounsoN and H. M. Warrs;
B8 =J. A. BEARDEN and (. SCHWARZ.

X-ray S.W.L. = Short wavelength limit of the continuous X-ray spectrum.

The column marked « Direct value » gives the experimental datum measured
in the experiment which is indicated in the first column. The « Indirect value »
is the one which would be deduced from a least squares analysis if the given
experiment were excluded from consideration. If the same experiment is repeated
by different observers only the single experiment in question (and not the others
of the same kind) is excluded. The column marked « Residue of least squares
solution » is the adjusted value of the 1952 analysis. The last column gives,
in parts per million, the difference between the least squares solution and the
input datum. The error quoted is the standard error of that difference.

[The fine structure splitting, AE,, and the velocity of light have been omitted
from this table because the direct measurements of these items have so much
more weight than the indirect values that the elimination of numerical accuracy
in the calculation precludes a meaningful evaluation of the latter].

9 — Supplemento al Nuovo Cimento.
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short wavelength limit determinations, its contribution to x? is much smaller
because of the much larger standard error assigned to it.

The 1955 evaluation of the atomic constant [16] therefore rejected the silver
faraday and BLocH and JEFFRIES proton magnetic moment measurement. In
addition the short wavelength limit values were replaced by a single expression
based on the average of all the low voltage data as has been previously men-
tioned. It was also considered adequate to consider the velocity of light to
be an auxiliary constant, not subject to least squares analysis. This rather
drastic censoring of the data reduces the system to seven equations in four
unknowns. The caleulated value of x* is then found to be 3.25 which
is deceptively close to the expectation value, since the 909, confidence limits
are 0.35 < 42 < 7.81. It can also be argued that the short wavelength limit
measurements ghould be dropped entirely (and a strict adherence to our se-
lection conditions would require this). In this case we decrease our system
to one with only two degrees of freedom. The value of yx* is then
only 0.44. This is at first sight quite low compared with the expectation value:
of 2.00; however the 909, confidence limits are 0.10 and 5.99. In faect, the
probability that x* might be lower than. 0.44 is almost 209, and
this probability is further increased if we recognize that we have rather dras-
tically censored all those data which confribute to large values of y2.
Furthei'more, the actual solution is not greatly changed by rejecting the short
wavelength limit data entirely; the largest change in any output value is less
than one fourth of the assigned standard deviation.

The system of seven equations in four unknowns which is obtained when
we exclude those data which appear to be discordant with the remainder of
our data is given below. As has been mentioned above we assume the velo-
city of light to be an exact constant in this analysis, its value being

(36) ¢ = 299793.0 km/s .

(The actual standard deviation to be assigned to this number is + 0.3 km/s,
but this error has a negligible effect on the numerical results of the least

squares analysis.)
The origin values and the linearized variables are taken to be:

o —

(37) w0 = 0.007 297 000 ,
(38) 2y = 6%6“-105 ¢o = 4.802 2001010 esu
o
(39) @, = ¥ —No 405 N,= 0.602 500 0-10% molet,
0
(40) s _ A=A 0 A, = 1.0020200 .

A,
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With these definitions the observational equations become:

Weight Experimental source

(41) &Ly = 0.0  0.11, A =1.002 02 4 0.000 03

(42) Ta+3m = 3.5 007, NA* (Birge's average)

(43) a = 4.0 4.92, Fine strocture splitting in
deuterium

(44) 3w, —, =— 23 019, Gyromagnetic ratio of proton

(45) Ly -+ = 11.1 0.58, Iodine faraday, electrochem-
istry

(46) — 3a, 23w = 13.5 0.83, Magnetic moment of proton
{omegatron)

47y — o+ 2 — &, =— 5.6 0.015, Short wavelength limit (low
voltage)

The normal equations are formed according to the usual rules; they are

() 141150, — 5.3652, — 2.490z, - 0.015z, — — 15.162
us) (¢) —5.5652, -+ 4.1052, - 2.240wm, — 0.015z, 29.201
(N) —2490z, 22402, -+ 1.480m, - 0.210z, — 17.888
(A) 0.0150, — 0.0152, -+ 0.210m, - 0.755z, —  0.819

It should be noted here that the normal equations are to be formed directly
from the coefficients of the quadratic form, ¢, as given in equation (16) and
that no simplification or cancellation should be made in the equations. This
is because the coefficients of the normal equations have a significance which
is not limited to the determination of the values of the #;,. An alteration in
the equations which would not alter the solution (such as the cancellation of
a common factor in one of the equations, or even the re-ordering of the equa-
tions in the set) can destroy the identifications of the coefficients of the normal
equations as the weight matrix of the solution.

The error (or variance) matrix of the solution is the inverse of the matrix
of the coefficients of the normal equations. Hence the error matrix is

01989 — 0.5760 0.660 3 0.163 3 o
0.576 0 3.4478 —4.4319 1.289 8 e
—0.5603 — £.4319 6.716 7 —1.9452 | N

0.163 3 1.2898 —1.9452 1.8879 A
e ¢ N A

(49) V=
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and the solution for the wvariables is

r = 3.92

2, = 13.72
(50)

&y = —2.37

By = 1.94

The value of x? for this solution is
(b1) ¥ = 3.25.

This is to be compared to the value 52.1 which was obtained in the preliminary
adjustment. The major change in the variables caused by the deletion of
those data suspected of systematic error is an increase in x, of 2.23 and an
atténdant decrease in x, of 2.35; this corresponds to a change in Avogadro’s
number N of 22.3 ppm and a change in the conversion factor A of — 23.5 ppm.

The value of y? can be expressed equivalently in terms of the ratio of ex-
ternal to internal consistency

rori =V g2 (n — q) = 1.041 .

The 909, confidence interval for #,/r, with 3 degrees of freedom is 0.594 <
r,lre <. 2.795. Hence there is no particular compulsion to use internal rather
than external consistency measures; our data tell us only that the two mea-
sures are consistent. We shall, however, quote our final error matrix in terms
of external consistency since this is the larger measure (albeit not significantly
80). Furthermore, the error matrix will be re-expressed in terms of relative
parts per million in the primary variables.

The error matrix and correlation coefficients are given in Tables IIT and IV.

TasLe 1II. — Covariance matrixz (1955 Adjustment).
Elements of the matrix are in units of (relative parts per million)2.

e m h « A N F
e 374 560 685 62 140 — 480 — 107
b3 560 940 1057 60 226 — 778 — 218
h 685 1057 1246 103 262 — 899 — 216
& 62 60 103 22 18 — 61 2
A 140 226 262 18 204 — 211 — 171
N — 480 — 778 — 899 — 61 — 211 726 246
' — 107 — 218 — 2186 2 — 71 246 141
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TaBLe IV. — Correlation coefficients (1955 Adjustment).

e m I o A N 1
e 1.00 0.95 0.99 -0.70 0.51 — 0.92 — (.47
m 0.95 1.00 0.97 0.43 0.52 —0.94 — 0.60
h 0.99 0.97 1.00 0.63 0.52 — 0.94 — 0.51
o 0.70 0.43 0.63 1.00 0.27 —0.48 0.03
A 0.51 0.52 0.52 0.27 1.00 — 0.55 — 0.42
N — 0.92 — 0.94 — 0.94 — 0.48 — 0.55 1.00 0.77
rF — 0.47 — 0.60 — 0.51 0.03 — 0.42 0.77 1.00

The error matrix of Table III has been extended to include the variables m, h
and F. These variables were eliminated from the least squares solution by the
use of auxiliary equations. It is, however, inconvenient to be forced to use
these equations in order to express m, hor Fin terms of our primary variables
each time one needs to compute correlation coefficients between these var-
iables and other variables. The variances and correlation coefficients for these
secondary variables can be calculated in terms of the variance matrix of the
primary variables. Thus, although we have produced a matrix of seventh order
it is still only of the fourth rank since three of the rows (or columns) can be
expressed as linear combinations of the other rows (or columns). The near
equality of m and % columns of the matrix of correlation coefficients (Table IV)
is a reflection of the strong coupling between the adjusted values of these two
variables.
This is a result of the relationship
2R

" e
and the fact that the relative standard error of « i3 much smaller than the
error in either m or h.

7. — Qutput values. Recommended (1955) least squares adjustment.

The 1955 adjustment is based, as has been explained earlier, on the deter-
mination of four primary unknowns o, ¢, N and /1, by least-squares adjustment
from seven independent sources of experimental input data combined with
a number of auxiliary constants whose values are known so much more ac-
curately than the aforementioned input data that they are negligible error
contributors.

The physical scale of atomic weights is used almost exclusively in these
tables, the Sackur-Tetrode constant (given on both physical and chemical
scales) being the sole exception. The conversion factor between these secales,
# =1.000 272 4- 0.000 005 calculated by R. T. BIRGE on the basis of the abun-
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dance ratio for the oxygen isotopes, °0:%0:170 = (506 £-10):1:(0.204 -0.008)
is adopted here as a definition for the chemical scale. These abundance ratios,
and the value or ¢ implied by them, are subject to variation depending on
the source of the oxygen. The value of the **0Q/#0 ratio can vary from ap-
proximately 495 for oxygen from air or carbonates to 515 for oxygen from
water and rocks. Corresponding to this variation is a variation in the value
of » from 1.002 78 to 1.002 68. The International Commission on Atomic Weights
is at present (1956) considering the arbitrary redefinition of the chemical scale
of atomic weights in terms of the physical scale and the value # = 1.00275.
The accuracy ascribed to our adopted value is such that these two numbers
do not differ significantly (approximately one half the standard error).
The new Kelvin scale of temperature adopted October 1954 in Paris at
the Tenth General Conference on Weights and Measures is here used. On
this scale the triple point of water is assigned the temperature 273.16 °K
exactly. This changes the numerical value of the gas constant, R,, slightly
from that used in earlier evaluations and gives the value of the ice point as
(273.150 0 - 0.0002) °K. Absolute electrical units are used exclusively, the
«international » electrical units having been abolished in 1948.

Tasir V. — Auxiliory constants.

Rydberg wave number for infinite mass
Re = (109737.309 -0.012) cm-1

Rydberg wave numbers for the light nueclei
Ry = (109 677.5764-0.012) cm-1
RBp = (109707.419 4+-0.012) em—?
Rog, = (109717.345--0.012) cm—!
Rige = (109722.267 +0.012) em—?
Velocity of light

¢ = (299793.01-0.3) km s

i

Atomic mass of neutron
M, = 1.008982 £0.000003 (physical scale)

Atomic mass of hydrogen
H = 1.008142--0.000003 (physical scale)

Atomic mass ratio of hydrogen to proton
H/M, = 1.00054461 (computed using atomic mass of electron
N = 0.00054875) (physical scale)
Atomic mass of the proton
M, = 1.007593 4-0.000003 (physical scale)

Atomic mass of deuterium
D = 2.0147354-0.000006 (physical scale)
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“TaBLE V: continued.

i Atomic mass ratio of deuterium to denteron

D/M, = 1.00027244 (computed using atomic mass of electron,
\ N = 0.00054875) (physical scale)).

| Ratio of electron magnetic moment to proton magnetic moment without diama-
gnetic correction
[ /(Nmp')H1 + of2m — 2.97302[n%) = 658.228 8 + 0.000 4
Anomalous magnetic moment of electron
Uoltto = (1 + /2 — 2.973a2/7?) = 1.001 145 36
(computed using the value 1/o = 137.037)
Gas constant per mole
Iy = (8.316 96--0.00034) - 107 erg mole~! deg—* (physicalscale)

Standard volume of a perfect gas
Vo = (22420.7--0.6) cm? atm mole-* (physical scale)

Tasre VI. — Least squares adjusted output values, 1955.

The quantity following each - sign is the standard error. Attention is called
to the fact that the guantities in this Table are observationally correlated so that
in the computation of the error measures of derived values dependent on two
or more of the values in this Table the error matrix of Table III must be used.

Avogadro’s constant

N = (6.024 86 4+0.000 16) - 1023 mole~! (physical scale)
Loschmidt’s constant

Ly = N/V,=(2.687 1940.000 10) 10 cm—3 (physical scale)

Electronic charge

= (4.802 86 4-0.000 09) - 10-1° esu
"= efc = (1.602 064-0.000 03)- 10-2 emu

@ D

Electron rest mass
2

=

= (9.108 34-0.000 3)-10-28 g

Proton rest mass
m_ = MD/N = (1.672394-0.000 04)-10%* ¢

Neutron rest mass
my, = M, /N = (1.674704-0.000 04)-10~%¢ g

Planck’s constant

&

I = (6.625 174£0.000 23)-10-27 erg s
hf2m = (1.054 43 40,000 04)-10-27 exg s
Conversion factor from Siegbahn X-units to milliangstroms
A == Z4/2s = 1.002 039 -L0.000014
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TasLe VI: continued.

Faraday constant
F = Ne=(2.89366--0.000 03)- 104 esu mole-?! .
F'= Nefe=(9652.19+-0.11) emu mole* (physical scale)
Charge-to-mass ratio of the electron
e/m = (5.273 0540.000 07)- 1017 esu gt
e/me = (1.758 904-0.000 02)-107 emu g—*
Ratio hfe
hje = (1.379 424-0.000 02)-10-17 erg s esu~?
Fine structure constant
o = e2[he = (7.297 29 40.000 03)-10-3
1/ = 137.037 3£0.000 6
«/27 = (1.161 398 £+0.000 005)- 102
o = (5.325 04 +0.000 05)-10-5
1 — (1 —o®)¥ = (0.266 252 +0.000 002)-10-*

Atomic mass of the electron
Nm = (5.487 63 --0.000 06)-10-¢ (physical scale)

Ratio of mass of hydrogen to mass of proton (¥)

N 1 A\
H/MD=[1—Hm(1—§a2)} =

= 1.000 544 613--0.000 000 006

Atomic mass of proton
M, =H—Nm= 1.007593 4-0.000003 (physical scale)
Ratio proton mass to electron mass
M_J(Nm) = 1836.1240.02
Reduced mass of electron in hydrogen atom
po=mM [H = (9.103 40.000 3)- 1023 g
Schrodinger constant for a fixed nucleus
2m/#2 = (1.638 36 +-0.00007)-10%? erg~t cm—2
Schrodinger constant for the hydrogen atom
2/t = (1.637 48 4-0.000 07)- 1027 erg~? em—2
First Bohr radius
ay = 72/(me?) = af/(4nR ) =
— (5.291 72--0.000 02)-10-° cm
Radius of electron orbit in normal H, referred to center of mass
ay = ag(1 — a?)t = (5.291 58 +-0.000 02)-10-° em
Separation of proton and electron in normal 1
dy = @yRo/Ra = (5.294 464:0.000 02)-10-° em

(*) The binding energy of the electron in the hydrogen atom has been included in the
quantity. The mass of the electron when found in the hydrogen atom is mnot m, bub
more correctly m(l — 1/2«% + ...).
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TaBLE VI: continued.

Compton wavelength of the clectron
Aeo = hf(me) = o?/2Rs = (24.262 64-0.000 2)-10-1 em
Ree = Ao /27 = (3.861 514-0.000 04)-10-11 em
Compton wavelength of the proton
Ac.p = Rjmye = (13.214 14-0.000 2) - 10 em
RKep == Ag /27 = (2.103 084-0.000 03)-10-* cm
Compton wavelength of the neutron
Aom = hfmue = (13.195 9-20.000 2)-10- % ¢m
Ron = Aca/27 = (2.100 19 -0.000 03)- 10-1* ¢m
Classical electron radius
7y = e2[(me?) = oP/(4nRo) =
= (2.817 85--0.000 04)-10-*% cm
75 = (7.940 30 40.000 21)- 10-2¢ em
Thomson cross section
(8/3)mr2 = (6.652 05--0.00018)-10~25 cm?
Fine structure doublet separation in hydrogen
AEg = (1/16)Rgo?[1l + a/n + (5/8 — 5.946/n2)02] =
= (0.3658714-0.000003) ¢m~*
= (10968.56 10.10) Hz-!
Fine structure separation in deuterium

Aby = AEgRp /Ry = (0.3659704-0.000003) cm—?
= (10971.544-0.10) Hz1
Zeeman displacement per gauss
e/dmme? = (4.66885-+0.00006)-10-% et G-1

Boltzmann’s constant

k= Ry/N = (1.38044+0.00007)- 101 erg deg !
(8.61674+0.0004)-10-% eV deg-!
1/k = (11605.4-40.5) deg eV

First radiation constant
¢;=8ahc = (4.99180.0002)-10-15 erg cm
Second radiation constant
¢y = he/k = (1.43880--0.00007) cm deg

Atomic specific heat constant
eofe=hk = (4.7993140.00023)- 10-11 5 deg
Wien displacement law constant (¥)
Aoz T = €5/4.96511423 = (0.289782+0.000013) cm deg
Stefan-Boltzmann constant
o = (n%/60)(k*/A3?) = (0.56687-+0.00010) 10~ erg cm-2 deg—4 51

(*) The numerical constant 1.96511423 is the root of the transcendental equation
=51 — exp [— al).
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Tasre VI: continued.

Sackur-Tetrode constant
So/By = § +In [(2nR)3N-4] =
= — 5.573241-0.00007

Sp = — (46.3562440.0020)- 10 erg mole-1deg—*
(physical scale)
Sackur-Tetrode constant
8o/ Rocp, = — 5.57256--0.00007
Sy = — (46.346740.0020) - 107 erg mole-* deg?

(chemical scale)
Bohr magneton

Yo = hefdmme = JeAc ,
= (0.92731-0.00002)-10-20 erg G-1
Anomalous electron moment correction
1 4+ of20 — 2.97302 /7 = pefpy = 1.00114535840.000000005
(computed using adjusted value 1/o = 137.037340.6000)

Magnetic moment of the electron
te= (0.9283740.00002)-1020 erg G

Nuclear magneton
Ho = he/(dmmye) = pNm/H+ =
= (0.505038-40.000018)-10-2% erg G
Proton moment

ty = (2.792754-0.00003) nuclear magnetons
= (1.41044 4 0.00004)-10-2 erg G

Gyromagnetic ratio of the proton in hydrogen (uncorrected for diamagnetism)
y'= (2.67523+0.00004)-10* rad s~ G-
Gyromagnetic ratio of the proton (corrected)
= (2.675304-0.00004)-10* rad s~ G
Multiplier of (Curie constant)¥ %, to give magnetic moment per molecule
(3%/N ()} = 2.6178--0.00010)- 102 (erg mole deg-1)}
Mass-energy conversion factors
1g = (5.610004-0.00011)-102¢ MeV
1 electron mass = (0.510976 40.000007) MeV
1 atomic mass unit = (931.1414-0.010) MeV
(

1 proton mass = (938.211+0.010) MeV
1 neutron mass = (939.5054-0.010) MeV

Quantum energy, F, conversion factors
1eV = (1.602064.0.00003)-10-12 erg
By = he = (1.98618--0.00007)-10- erg cm.
E, = (12397.67-0.22)-10-8 eV cm
BA, = (12372.4440.16) kV X-units
Ejv = (6.625174£0.00023)-10-27 erg 5
= (4.135414-0.00007)- 10~ eV s
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TapLr VI: continued.

I

5/E = (5.034791.0.00017)-10% cm~* erg*

8066.0340.14) cm-t eV-1
1.50940--0.00005)-1026 s~ erg~?
2.418144-0.00004)-101 g1 eV-1

/B =

AA —_—

de Broglie wavelengths g . of elementary particles (*)

Electrons
= (7.2737740.00008)cm? s~ 1/V
— (1.552257--0.000016)-10-13 cm (erg)}/(E)}
= (1.22637840.000010)-10-7 cm (eV)}/(E)?

Protons

A p = (3.9614940.00005)-10-% cm? 57/V
(3.62253 4£0.00008)-10-15 em (erg)¥/(E)E
(2.8620240.00004)-10-2 cm (eV)}/(E)*

Neutrons

As.n = (3.956034-0.00005)-10-2 cm? s~1/V
(3.6020440.00008) - 10-15 cm (ergh/(H)?
(2.86005-0.00004)-10~% em (eV)¥/(E)?

I

Energy of 2200 m/s neutron
Eosge = (0.025297340.0000003) eV
To900 = (293.585--0.012) °K
= (20.4354-0.012) oC

The Rydberg and related derived constants

Re = (109737.309 +0.012) cm—1
Rec = (3.289 848 1-0.000 003) - 105 g1
Rohe = (2.17958--0.00007) 1011 erg
Rhe?e-1-10-% = (13.60488+0.00022) eV

Hydrogen ionization potential
I, = Ru(he?fe)(1 + o2 4 ...)-10-8 =
= (13.59765--0.00022) eV

(*) These formulae apply only to nonrelativistic velocities. If the velocity of the particle
is not negligible compared to the velocity of light, ¢, or the energy not negligible compared to the
rest mass energy, we must use Ap,p=24,6(6--2)] -t where 4~is the appropriate Compton, wavelenght
of the particle in question and e is the kinetic energy measurced in units of the particle rest-mass,
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