10

Approxnnate

A central task in the application of probabilistic models is the evaluation of the pos-
terior distribution p(Z|X) of the latent variables Z given the observed (visible) data
variables X, and the evaluation of expectations computed with respect to this dis-
tribution. The model might also contain some deterministic parameters, which we
will leave implicit for the moment, or it may be a fully Bayesian model in which any
unknown parameters are given prior distributions and are absorbed into the set of
latent variables denoted by the vector Z. For instance, in the EM algorithm we need
to evaluate the expectation of the complete-data log likelihood with respect to the
posterior distribution of the latent variables. For many models of practical interest, it
will be infeasible to evaluate the posterior distribution or indeed to compute expec-
tations with respect to this distribution. This could be because the dimensionality of
the latent space is too high to work with directly or because the posterior distribution
has a highly complex form for which expectations are not analytically tractable. In
the case of continuous variables, the required integrations may not have closed-form
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10.1.

analytical solutions, while the dimensionality of the space and the complexity of the
integrand may prohibit numerical integration. For discrete variables, the marginal-
izations involve summing over all possible configurations of the hidden variables,
and though this is always possible in principle, we often find in practice that there
may be exponentially many hidden states so that exact calculation is prohibitively
expensive.

In such situations, we need to resort to approximation schemes, and these fall
broadly into two classes, according to whether they rely on stochastic or determin-
istic approximations. Stochastic techniques such as Markov chain Monte Carlo, de-
scribed in Chapter 11, have enabled the widespread use of Bayesian methods across
many domains. They generally have the property that given infinite computational
resource, they can generate exact results, and the approximation arises from the use
of a finite amount of processor time. In practice, sampling methods can be compu-
tationally demanding, often limiting their use to small-scale problems. Also, it can
be difficult to know whether a sampling scheme is generating independent samples
from the required distribution.

In this chapter, we introduce a range of deterministic approximation schemes,
some of which scale well to large applications. These are based on analytical ap-
proximations to the posterior distribution, for example by assuming that it factorizes
in a particular way or that it has a specific parametric form such as a Gaussian. As
such, they can never generate exact results, and so their strengths and weaknesses
are complementary to those of sampling methods.

In Section 4.4, we discussed the Laplace approximation, which is based on a
local Gaussian approximation to a mode (i.e., a maximum) of the distribution. Here
we turn to a family of approximation techniques called variational inference or vari-
ational Bayes, which use more global criteria and which have been widely applied.
We conclude with a brief introduction to an alternative variational framework known
as expectation propagation.

Variational Inference

Variational methods have their origins in the 18" century with the work of Euler,
Lagrange, and others on the calculus of variations. Standard calculus is concerned
with finding derivatives of functions. We can think of a function as a mapping that
takes the value of a variable as the input and returns the value of the function as the
output. The derivative of the function then describes how the output value varies
as we make infinitesimal changes to the input value. Similarly, we can define a
functional as a mapping that takes a function as the input and that returns the value
of the functional as the output. An example would be the entropy H|[p], which takes
a probability distribution p(x) as the input and returns the quantity

Hlp| = /p(z)lnp(z) dx (10.1)
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as the output. We can the introduce the concept of a functional derivative, which ex-
presses how the value of the functional changes in response to infinitesimal changes
to the input function (Feynman et al., 1964). The rules for the calculus of variations
mirror those of standard calculus and are discussed in Appendix D. Many problems
can be expressed in terms of an optimization problem in which the quantity being
optimized is a functional. The solution is obtained by exploring all possible input
functions to find the one that maximizes, or minimizes, the functional. Variational
methods have broad applicability and include such areas as finite element methods
(Kapur, 1989) and maximum entropy (Schwarz, 1988).

Although there is nothing intrinsically approximate about variational methods,
they do naturally lend themselves to finding approximate solutions. This is done
by restricting the range of functions over which the optimization is performed, for
instance by considering only quadratic functions or by considering functions com-
posed of a linear combination of fixed basis functions in which only the coefficients
of the linear combination can vary. In the case of applications to probabilistic in-
ference, the restriction may for example take the form of factorization assumptions
(Jordan et al., 1999; Jaakkola, 2001).

Now let us consider in more detail how the concept of variational optimization
can be applied to the inference problem. Suppose we have a fully Bayesian model in
which all parameters are given prior distributions. The model may also have latent
variables as well as parameters, and we shall denote the set of all latent variables
and parameters by Z. Similarly, we denote the set of all observed variables by X.
For example, we might have a set of N independent, identically distributed data,
for which X = {xy,...,xny} and Z = {zy,...,zn}. Our probabilistic model
specifies the joint distribution p(X, Z), and our goal is to find an approximation for
the posterior distribution p(Z|X) as well as for the model evidence p(X). As in our
discussion of EM, we can decompose the log marginal probability using

In p(X) = L(q) + KL(q]lp) (10.2)

where we have defined

L(g) = /q(Z)ln{p<X’Z>}dZ (10.3)

q(Z)

KL(qllp) = —/q(Z)ln{%} dZ. (10.4)

This differs from our discussion of EM only in that the parameter vector 8 no longer
appears, because the parameters are now stochastic variables and are absorbed into
Z. Since in this chapter we will mainly be interested in continuous variables we have
used integrations rather than summations in formulating this decomposition. How-
ever, the analysis goes through unchanged if some or all of the variables are discrete
simply by replacing the integrations with summations as required. As before, we
can maximize the lower bound £(q) by optimization with respect to the distribution
q(Z), which is equivalent to minimizing the KL divergence. If we allow any possible
choice for ¢(Z), then the maximum of the lower bound occurs when the KL diver-
gence vanishes, which occurs when ¢(Z) equals the posterior distribution p(Z|X).



464

10. APPROXIMATE INFERENCE

1 40
08r 301
061

201

04r

0 0

-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4

Figure 10.1 lllustration of the variational approximation for the example considered earlier in Figure 4.14. The

left-hand plot shows the original distribution (yellow) along with the Laplace (red) and variational (green) approx-
imations, and the right-hand plot shows the negative logarithms of the corresponding curves.

However, we shall suppose the model is such that working with the true posterior
distribution is intractable.

We therefore consider instead a restricted family of distributions ¢(Z) and then
seek the member of this family for which the KL divergence is minimized. Our goal
is to restrict the family sufficiently that they comprise only tractable distributions,
while at the same time allowing the family to be sufficiently rich and flexible that it
can provide a good approximation to the true posterior distribution. It is important to
emphasize that the restriction is imposed purely to achieve tractability, and that sub-
ject to this requirement we should use as rich a family of approximating distributions
as possible. In particular, there is no ‘over-fitting” associated with highly flexible dis-
tributions. Using more flexible approximations simply allows us to approach the true
posterior distribution more closely.

One way to restrict the family of approximating distributions is to use a paramet-
ric distribution ¢(Z|w) governed by a set of parameters w. The lower bound £(q)
then becomes a function of w, and we can exploit standard nonlinear optimization
techniques to determine the optimal values for the parameters. An example of this
approach, in which the variational distribution is a Gaussian and we have optimized
with respect to its mean and variance, is shown in Figure 10.1.

10.1.1 Factorized distributions

Here we consider an alternative way in which to restrict the family of distri-
butions ¢(Z). Suppose we partition the elements of Z into disjoint groups that we
denote by Z; where ¢ = 1, ..., M. We then assume that the ¢ distribution factorizes
with respect to these groups, so that

9(Z) =[] w:(2). (10.5)
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It should be emphasized that we are making no further assumptions about the distri-
bution. In particular, we place no restriction on the functional forms of the individual
factors ¢;(Z;). This factorized form of variational inference corresponds to an ap-
proximation framework developed in physics called mean field theory (Parisi, 1988).

Amongst all distributions ¢(Z) having the form (10.5), we now seek that distri-
bution for which the lower bound £(q) is largest. We therefore wish to make a free
form (variational) optimization of £(q) with respect to all of the distributions ¢;(Z;),
which we do by optimizing with respect to each of the factors in turn. To achieve
this, we first substitute (10.5) into (10.3) and then dissect out the dependence on one
of the factors g;(Z ;). Denoting ¢;(Z;) by simply g; to keep the notation uncluttered,
we then obtain

L(g) = /HQi{lnp(Xv Z)—Zlnqz} dz
/qj {/lnp(X,Z)HqidZZ} dz, —/qj Ing; dZ; + const

i#j

=S /q]‘ hl};(X, Zj> de - /q]‘ In q; de + const (106)

where we have defined a new distribution p(X, Z ) by the relation
Inp(X,Z;) = Eixj[lnp(X, Z)] + const. (10.7)

Here the notation E;;[- - - | denotes an expectation with respect to the ¢ distributions
over all variables z; for 7 # 7, so that

Eizjlnp(X, Z)] = / np(X,Z) [ [ ¢ d2:. (10.8)
i

Now suppose we keep the {¢;,;} fixed and maximize £(q) in (10.6) with re-
spect to all possible forms for the distribution ¢;(Z;). This is easily done by rec-
ognizing that (10.6) is a negative Kullback-Leibler divergence between ¢;(Z;) and
p(X, Z;). Thus maximizing (10.6) is equivalent to minimizing the Kullback-Leibler

Leonhard Euler contributions, he formulated the modern theory of the
1707—1783 function, he developed (together with Lagrange) the

calculus of variations, and he discovered the formula
Euler was a Swiss mathematician ¢*™ = —1, which relates four of the most important

and physicist who worked in St. numbers in mathematics. During the last 17 years of
Petersburg and Berlin and who is his life, he was almost totally blind, and yet he pro-
widely considered to be one of the duced nearly half of his results during this period.
greatest mathematicians of all time.

He is certainly the most prolific, and

his collected works fill 75 volumes. Amongst his many
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divergence, and the minimum occurs when ¢;(Z;) = p(X, Z;). Thus we obtain a
general expression for the optimal solution qj*»(Z ;j) given by

In g} (Z;) = Eiz;[In p(X, Z)] + const. (10.9)

It is worth taking a few moments to study the form of this solution as it provides the
basis for applications of variational methods. It says that the log of the optimal so-
lution for factor g; is obtained simply by considering the log of the joint distribution
over all hidden and visible variables and then taking the expectation with respect to
all of the other factors {¢;} for i # j.

The additive constant in (10.9) is set by normalizing the distribution g7 (Z;).
Thus if we take the exponential of both sides and normalize, we have

0(Z) - exp (Eigj[In p(X, Z)]) .
/exp (Eizj[Inp(X, Z)]) dZ;

In practice, we shall find it more convenient to work with the form (10.9) and then re-
instate the normalization constant (where required) by inspection. This will become
clear from subsequent examples.

The set of equations given by (10.9) for j = 1,..., M represent a set of con-
sistency conditions for the maximum of the lower bound subject to the factorization
constraint. However, they do not represent an explicit solution because the expres-
sion on the right-hand side of (10.9) for the optimum ¢ (Z;) depends on expectations
computed with respect to the other factors g;(Z;) for i # j. We will therefore seek
a consistent solution by first initializing all of the factors ¢;(Z;) appropriately and
then cycling through the factors and replacing each in turn with a revised estimate
given by the right-hand side of (10.9) evaluated using the current estimates for all of
the other factors. Convergence is guaranteed because bound is convex with respect
to each of the factors ¢;(Z;) (Boyd and Vandenberghe, 2004).

10.1.2 Properties of factorized approximations

Our approach to variational inference is based on a factorized approximation to
the true posterior distribution. Let us consider for a moment the problem of approx-
imating a general distribution by a factorized distribution. To begin with, we discuss
the problem of approximating a Gaussian distribution using a factorized Gaussian,
which will provide useful insight into the types of inaccuracy introduced in using
factorized approximations. Consider a Gaussian distribution p(z) = N (z|u, A™")
over two correlated variables z = (21, 22) in which the mean and precision have

elements
h Air A
= , A= 10.10
H (,U2> <A21 A22> ( )
and Ay; = Ao due to the symmetry of the precision matrix. Now suppose we

wish to approximate this distribution using a factorized Gaussian of the form ¢(z) =
q1(21)q2(z2). We first apply the general result (10.9) to find an expression for the
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optimal factor ¢} (z1). In doing so it is useful to note that on the right-hand side we
only need to retain those terms that have some functional dependence on z; because
all other terms can be absorbed into the normalization constant. Thus we have

Ingi(z) = E.,[Inp(z)] + const

= E, z1 — ,U1)2A11 - (2’1 - ,U1)A12<22 - ,U2> + const

_§<

= —%Z%AU + zl,ulAn — 21A12 (]E[ZQ] — ,UQ) -+ const. (1011)
Next we observe that the right-hand side of this expression is a quadratic function of
z1, and so we can identify ¢*(z1) as a Gaussian distribution. It is worth emphasizing
that we did not assume that ¢(z;) is Gaussian, but rather we derived this result by
variational optimization of the KL divergence over all possible distributions ¢(z;).
Note also that we do not need to consider the additive constant in (10.9) explicitly
because it represents the normalization constant that can be found at the end by
inspection if required. Using the technique of completing the square, we can identify
the mean and precision of this Gaussian, giving

¢*(z1) = N(z1|my, AY') (10.12)
where
my = 1 — A1_11A12 (]E[ZQ] - ,LL2> . (1013)
By symmetry, ¢5(22) is also Gaussian and can be written as
q;(zz) = N(z2|m2, A2_21> (1014)
in which
Mo = o — A2_21A21 (]E[Zl] - ,LL1> . (1015)

Note that these solutions are coupled, so that ¢*(z;) depends on expectations com-
puted with respect to ¢*(z5) and vice versa. In general, we address this by treating
the variational solutions as re-estimation equations and cycling through the variables
in turn updating them until some convergence criterion is satisfied. We shall see
an example of this shortly. Here, however, we note that the problem is sufficiently
simple that a closed form solution can be found. In particular, because E[z;] = m;
and E[z3] = mao, we see that the two equations are satisfied if we take E[z;] = p;
and E[z2] = pe, and it is easily shown that this is the only solution provided the dis-
tribution is nonsingular. This result is illustrated in Figure 10.2(a). We see that the
mean is correctly captured but that the variance of ¢(z) is controlled by the direction
of smallest variance of p(z), and that the variance along the orthogonal direction is
significantly under-estimated. It is a general result that a factorized variational ap-
proximation tends to give approximations to the posterior distribution that are too
compact.

By way of comparison, suppose instead that we had been minimizing the reverse
Kullback-Leibler divergence KL(p||q). As we shall see, this form of KL divergence
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Figure 10.2 Comparison of
the two alternative forms for the
Kullback-Leibler divergence. The
green contours corresponding to
1, 2, and 3 standard deviations for
a correlated Gaussian distribution
p(z) over two variables z; and zz,
and the red contours represent
the corresponding levels for an
approximating  distribution  ¢(z)
over the same variables given by
the product of two independent
univariate Gaussian distributions
whose parameters are obtained by
minimization of (a) the Kullback-
Leibler divergence KL(¢||p), and
(b) the reverse Kullback-Leibler
divergence KL(p||q).
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is used in an alternative approximate inference framework called expectation prop-
agation. We therefore consider the general problem of minimizing KL(p||¢) when
q(Z) is a factorized approximation of the form (10.5). The KL divergence can then
be written in the form

KL(p|q) = — /p(Z) [Z lnqi(Zi)] dZ + const (10.16)

where the constant term is simply the entropy of p(Z) and so does not depend on
q(Z). We can now optimize with respect to each of the factors ¢;(Z;), which is
easily done using a Lagrange multiplier to give

q;(Z;) = /P(Z)H dZ; = p(Z;). (10.17)

i#]

In this case, we find that the optimal solution for g;(Z;) is just given by the corre-
sponding marginal distribution of p(Z). Note that this is a closed-form solution and
so does not require iteration.

To apply this result to the illustrative example of a Gaussian distribution p(z)
over a vector z we can use (2.98), which gives the result shown in Figure 10.2(b).
We see that once again the mean of the approximation is correct, but that it places
significant probability mass in regions of variable space that have very low probabil-
ity.

The difference between these two results can be understood by noting that there
is a large positive contribution to the Kullback-Leibler divergence

KL(q|p) = — /q(Z) In {%} dZ (10.18)
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Figure 10.3 Another comparison of the two alternative forms for the Kullback-Leibler divergence. (a) The blue
contours show a bimodal distribution p(Z) given by a mixture of two Gaussians, and the red contours correspond
to the single Gaussian distribution ¢(Z) that best approximates p(Z) in the sense of minimizing the Kullback-
Leibler divergence KL(p||q). (b) As in (a) but now the red contours correspond to a Gaussian distribution ¢(Z)
found by numerical minimization of the Kullback-Leibler divergence KL(q|p). (c) As in (b) but showing a different
local minimum of the Kullback-Leibler divergence.

Section 10.7

from regions of Z space in which p(Z) is near zero unless ¢(Z) is also close to
zero. Thus minimizing this form of KL divergence leads to distributions ¢(Z) that
avoid regions in which p(Z) is small. Conversely, the Kullback-Leibler divergence
KL(pl||q) is minimized by distributions ¢(Z) that are nonzero in regions where p(Z)
is nonzero.

We can gain further insight into the different behaviour of the two KL diver-
gences if we consider approximating a multimodal distribution by a unimodal one,
as illustrated in Figure 10.3.  In practical applications, the true posterior distri-
bution will often be multimodal, with most of the posterior mass concentrated in
some number of relatively small regions of parameter space. These multiple modes
may arise through nonidentifiability in the latent space or through complex nonlin-
ear dependence on the parameters. Both types of multimodality were encountered in
Chapter 9 in the context of Gaussian mixtures, where they manifested themselves as
multiple maxima in the likelihood function, and a variational treatment based on the
minimization of KL(¢||p) will tend to find one of these modes. By contrast, if we
were to minimize KL(p||¢), the resulting approximations would average across all
of the modes and, in the context of the mixture model, would lead to poor predictive
distributions (because the average of two good parameter values is typically itself
not a good parameter value). It is possible to make use of KL(p||q) to define a useful
inference procedure, but this requires a rather different approach to the one discussed
here, and will be considered in detail when we discuss expectation propagation.

The two forms of Kullback-Leibler divergence are members of the alpha family
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of divergences (Ali and Silvey, 1966; Amari, 1985; Minka, 2005) defined by

Da(plla) = 5 _40[2 (1 — /p(fv)(H“)/Qq(x)(l_“)/Q d:c> (10.19)

where —oo < v < o0 is a continuous parameter. The Kullback-Leibler divergence
KL(p||q) corresponds to the limit &« — 1, whereas KL(q||p) corresponds to the limit
a — —1. For all values of & we have D, (p||¢) > 0, with equality if, and only if,
p(x) = q(z). Suppose p(z) is a fixed distribution, and we minimize D, (p||¢) with
respect to some set of distributions ¢(x). Then for o < —1 the divergence is zero
forcing, so that any values of  for which p(x) = 0 will have ¢(z) = 0, and typically
¢(z) will under-estimate the support of p(z) and will tend to seek the mode with the
largest mass. Conversely for o > 1 the divergence is zero-avoiding, so that values
of x for which p(z) > 0 will have ¢(z) > 0, and typically ¢(z) will stretch to cover
all of p(x), and will over-estimate the support of p(z). When o = 0 we obtain a
symmetric divergence that is linearly related to the Hellinger distance given by

Di(pllg) = / (p(@)/? — q(2)'"?) de. (10.20)

The square root of the Hellinger distance is a valid distance metric.

10.1.3 Example: The univariate Gaussian

We now illustrate the factorized variational approximation using a Gaussian dis-
tribution over a single variable x (MacKay, 2003). Our goal is to infer the posterior
distribution for the mean y and precision 7, given a data set D = {xy,...,xn} of
observed values of = which are assumed to be drawn independently from the Gaus-
sian. The likelihood function is given by

T\ V/2 T
p(D|p, ) = (%) exp § —3 Z(zn — ). (10.21)

n=1

We now introduce conjugate prior distributions for ;4 and 7 given by

p(ulr) = N (plpo, (hor)™") (10.22)
p(r) = Gam(rlag,bo) (10.23)

where Gam(7|ag, by) is the gamma distribution defined by (2.146). Together these
distributions constitute a Gaussian-Gamma conjugate prior distribution.

For this simple problem the posterior distribution can be found exactly, and again
takes the form of a Gaussian-gamma distribution. However, for tutorial purposes
we will consider a factorized variational approximation to the posterior distribution
given by

a(p,7) = qup)ar (7). (10.24)
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Note that the true posterior distribution does not factorize in this way. The optimum
factors g, (1) and ¢, (7) can be obtained from the general result (10.9) as follows.
For ¢, (1) we have

Ing;(p) = E[Inp(Dlu,7)+Inp(ulr)] + const

Efr] 3
- {)\O(u — 1o)® + ; () — u)Q} + const. (10.25)

Completing the square over p we see that ¢, (1) is a Gaussian N (,u| LN, )\]_Vl) with
mean and precision given by

_ Aopo+ Nz
EN- = TN N
A = (ho+ NE[]. (10.27)

(10.26)

Note that for N — oo this gives the maximum likelihood result in which uy ==
and the precision is infinite.
Similarly, the optimal solution for the factor ¢, (7) is given by

Ingi(r) = Eu[np(D|p,7)+Inp(ulr)] +Inp(r) + const

N
= (ap—1)InT —bo7 + EIHT

N
-
—5Eu [Z(zn — )%+ Xo(p — MO)Q] + const  (10.28)
n=1
and hence ¢, (7) is a gamma distribution Gam(7|ax, by ) with parameters
N
av = apt (10.29)
1 N
by = bo+ B, [Z(zn — )2+ Ao(p — MO)Q] . (10.30)
n=1

Again this exhibits the expected behaviour when N — oo.

It should be emphasized that we did not assume these specific functional forms
for the optimal distributions g,, (1) and ¢, (7). They arose naturally from the structure
of the likelihood function and the corresponding conjugate priors.

Thus we have expressions for the optimal distributions ¢, (1) and ¢, (7) each of
which depends on moments evaluated with respect to the other distribution. One ap-
proach to finding a solution is therefore to make an initial guess for, say, the moment
E[7] and use this to re-compute the distribution g,,(11). Given this revised distri-
bution we can then extract the required moments E[u] and E[u?], and use these to
recompute the distribution ¢ (7), and so on. Since the space of hidden variables for
this example is only two dimensional, we can illustrate the variational approxima-
tion to the posterior distribution by plotting contours of both the true posterior and
the factorized approximation, as illustrated in Figure 10.4.
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Figure 10.4 lllustration of variational inference for the mean p and precision 7 of a univariate Gaussian distribu-
tion. Contours of the true posterior distribution p(u, 7| D) are shown in green. (a) Contours of the initial factorized
approximation ¢, (u)q-(7) are shown in blue. (b) After re-estimating the factor q,.(1). (c) After re-estimating the
factor ¢- (7). (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are
shown in red.

In general, we will need to use an iterative approach such as this in order to
solve for the optimal factorized posterior distribution. For the very simple example
we are considering here, however, we can find an explicit solution by solving the
simultaneous equations for the optimal factors ¢, (1) and g, (7). Before doing this,
we can simplify these expressions by considering broad, noninformative priors in
which pp = ag = by = Ao = 0. Although these parameter settings correspond to
improper priors, we see that the posterior distribution is still well defined. Using the

Appendix B standard result E[7] = an /by for the mean of a gamma distribution, together with
(10.29) and (10.30), we have

ﬁ -k [% ;@" _“>2] = 2% — 27E[u] + E[?]. (10.31)

Then, using (10.26) and (10.27), we obtain the first and second order moments of
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qu(p) in the form

1
NE[r]

>+

=
E
I
Bl
=
=
N
I
5l

(10.32)

We can now substitute these moments into (10.31) and then solve for E[7] to give

E[r] N -1
1 N
= w1 > (@n—7)% (10.33)
n=1

We recognize the right-hand side as the familiar unbiased estimator for the variance
of a univariate Gaussian distribution, and so we see that the use of a Bayesian ap-
proach has avoided the bias of the maximum likelihood solution.

10.1.4 Model comparison

As well as performing inference over the hidden variables Z, we may also
wish to compare a set of candidate models, labelled by the index m, and having
prior probabilities p(m). Our goal is then to approximate the posterior probabilities
p(m|X), where X is the observed data. This is a slightly more complex situation
than that considered so far because different models may have different structure
and indeed different dimensionality for the hidden variables Z. We cannot there-
fore simply consider a factorized approximation ¢(Z)q(m), but must instead recog-
nize that the posterior over Z must be conditioned on m, and so we must consider
q(Z,m) = q(Z|m)q(m). We can readily verify the following decomposition based
on this variational distribution

mp(X) = Lo — Y Y a(Zm)q(m)In {%} (10.34)

where the £, is a lower bound on In p(X) and is given by

L= EZ: q(Z|m)q(m) In {%} . (10.35)

Here we are assuming discrete Z, but the same analysis applies to continuous latent
variables provided the summations are replaced with integrations. We can maximize
L, with respect to the distribution ¢(m) using a Lagrange multiplier, with the result

qg(m) < p(m)exp{ L} (10.36)

However, if we maximize £,,, with respect to the ¢(Z|m), we find that the solutions
for different m are coupled, as we expect because they are conditioned on m. We
proceed instead by first optimizing each of the ¢(Z|m) individually by optimization
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10.2.

of (10.35), and then subsequently determining the ¢(m) using (10.36). After nor-
malization the resulting values for ¢(m) can be used for model selection or model
averaging in the usual way.

lllustration: Variational Mixture of Gaussians

Section 10.4.1

We now return to our discussion of the Gaussian mixture model and apply the vari-
ational inference machinery developed in the previous section. This will provide a
good illustration of the application of variational methods and will also demonstrate
how a Bayesian treatment elegantly resolves many of the difficulties associated with
the maximum likelihood approach (Attias, 1999b). The reader is encouraged to work
through this example in detail as it provides many insights into the practical appli-
cation of variational methods. Many Bayesian models, corresponding to much more
sophisticated distributions, can be solved by straightforward extensions and general-
izations of this analysis.

Our starting point is the likelihood function for the Gaussian mixture model, il-
lustrated by the graphical model in Figure 9.6. For each observation x,, we have
a corresponding latent variable z,, comprising a 1-of-K binary vector with ele-
ments z,; for k = 1,..., K. As before we denote the observed data set by X =
{x1,...,xn}, and similarly we denote the latent variables by Z = {z,...,znx}.
From (9.10) we can write down the conditional distribution of Z, given the mixing
coefficients 7, in the form

N K
p(zZl=) = [T T~ (10.37)

n=1k=1

Similarly, from (9.11), we can write down the conditional distribution of the ob-
served data vectors, given the latent variables and the component parameters

N K
p(X|Z, . A) = T TN (xnlpa AL (10.38)

n=1k=1

where p = {p;,} and A = {A;}. Note that we are working in terms of precision
matrices rather than covariance matrices as this somewhat simplifies the mathemat-
ics.

Next we introduce priors over the parameters g, A and 7. The analysis is con-
siderably simplified if we use conjugate prior distributions. We therefore choose a
Dirichlet distribution over the mixing coefficients 7

K
p(m) = Dir(w|exy) = Clao) [[ oo™ (10.39)
k=1

where by symmetry we have chosen the same parameter oy, for each of the compo-
nents, and C(ay) is the normalization constant for the Dirichlet distribution defined
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Figure 10.5 Directed acyclic graph representing the Bayesian mix- an ) A

Section 2.2.1

Section 2.3.6

ture of Gaussians model, in which the box (plate) de- O—

notes a set of NV i.i.d. observations. Here p denotes
{p,.} and A denotes {Ay}.

X, %

N

—

by (B.23). As we have seen, the parameter ¢ can be interpreted as the effective
prior number of observations associated with each component of the mixture. If the
value of «y is small, then the posterior distribution will be influenced primarily by
the data rather than by the prior.

Similarly, we introduce an independent Gaussian-Wishart prior governing the
mean and precision of each Gaussian component, given by

p(e, A) = p(u|A)p(A)

K
= [V (milmo, (BoAx) ™) W(AL[Wo,0)  (10.40)
k=1

because this represents the conjugate prior distribution when both the mean and pre-
cision are unknown. Typically we would choose my = 0 by symmetry.

The resulting model can be represented as a directed graph as shown in Fig-
ure 10.5. Note that there is a link from A to p since the variance of the distribution
over p in (10.40) is a function of A.

This example provides a nice illustration of the distinction between latent vari-
ables and parameters. Variables such as z,, that appear inside the plate are regarded
as latent variables because the number of such variables grows with the size of the
data set. By contrast, variables such as p that are outside the plate are fixed in
number independently of the size of the data set, and so are regarded as parameters.
From the perspective of graphical models, however, there is really no fundamental
difference between them.

10.2.1 Variational distribution

In order to formulate a variational treatment of this model, we next write down
the joint distribution of all of the random variables, which is given by

p(X,Z,m, p, A) = p(X[Z, p, A)p(Z|7)p(m)p(p|A)p(A) (10.41)

in which the various factors are defined above. The reader should take a moment to
verify that this decomposition does indeed correspond to the probabilistic graphical
model shown in Figure 10.5. Note that only the variables X = {x;,...,xy} are
observed.
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Exercise 10.12

‘We now consider a variational distribution which factorizes between the latent
variables and the parameters so that

Q(Z,w, p, A) = q(Z)q(m, 1, A). (10.42)

It is remarkable that this is the only assumption that we need to make in order to
obtain a tractable practical solution to our Bayesian mixture model. In particular, the
functional form of the factors ¢(Z) and g(7, pt, A) will be determined automatically
by optimization of the variational distribution. Note that we are omitting the sub-
scripts on the ¢ distributions, much as we do with the p distributions in (10.41), and
are relying on the arguments to distinguish the different distributions.

The corresponding sequential update equations for these factors can be easily
derived by making use of the general result (10.9). Let us consider the derivation of
the update equation for the factor ¢(Z). The log of the optimized factor is given by

Ing*(Z) = Ex ya[lnp(X,Z,m, p, A)] + const. (10.43)

We now make use of the decomposition (10.41). Note that we are only interested in
the functional dependence of the right-hand side on the variable Z. Thus any terms
that do not depend on Z can be absorbed into the additive normalization constant,
giving

Ing¢*(Z) = Ex[Inp(Z|7)] + Eyallnp(X|Z, p, A)] + const. (10.44)

Substituting for the two conditional distributions on the right-hand side, and again
absorbing any terms that are independent of Z into the additive constant, we have

N K
Ing*(Z) = Z Z Znk I pp i + const (10.45)

n=1 k=1

where we have defined

1 D
Inppr = E[llnwg] + 5[[*] In|Ag|] — 0} In(27)
1
_gEuk,Ak [(Xn — ) T Ak (xn — Mk)] (10.46)

where D is the dimensionality of the data variable x. Taking the exponential of both
sides of (10.45) we obtain

N K
¢ (2) < [ ] i (10.47)
n=1k=1

Requiring that this distribution be normalized, and noting that for each value of n
the quantities z, are binary and sum to 1 over all values of &, we obtain

N K
¢ 2Z) =] 11 (10.48)

n=1k=1
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where
Pnk

= :
D P
j=1

We see that the optimal solution for the factor ¢(Z) takes the same functional form

as the prior p(Z|m). Note that because py is given by the exponential of a real

quantity, the quantities 7,5 will be nonnegative and will sum to one, as required.
For the discrete distribution ¢*(Z) we have the standard result

E[znk] = Tnk (1050)

from which we see that the quantities r,, are playing the role of responsibilities.
Note that the optimal solution for ¢*(Z) depends on moments evaluated with respect
to the distributions of other variables, and so again the variational update equations
are coupled and must be solved iteratively.

At this point, we shall find it convenient to define three statistics of the observed
data set evaluated with respect to the responsibilities, given by

(10.49)

Tnk =

N, = irnk (10.51)
n;l N

X = E;rnkxn (10.52)
1 N

S, = E;rnk(xn—ik)(xn—ik)T. (10.53)

Note that these are analogous to quantities evaluated in the maximum likelihood EM
algorithm for the Gaussian mixture model.

Now let us consider the factor g(7, t, A) in the variational posterior distribu-
tion. Again using the general result (10.9) we have

K
Ing*(m, p, A) = Inp(w) + > Inp(py, Ay) + Bz [In p(Z|7)]
k=1
K N
+3 S Eleni] N (xnlpy, A t) + const. (10.54)

k=1 n=1
We observe that the right-hand side of this expression decomposes into a sum of
terms involving only 7 together with terms only involving p and A, which implies
that the variational posterior ¢(7, p, A) factorizes to give ¢(7)q(u, A). Further-
more, the terms involving p and A themselves comprise a sum over k of terms
involving p;, and Ay leading to the further factorization

K
g(m, 1, A) = g(m) [ ] aln Aw). (10.55)
k=1
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Exercise 10.13

Exercise 10.14

Identifying the terms on the right-hand side of (10.54) that depend on 7, we have

K K N
Ing*(w) = (ap — 1) Zln i + Z Zrnk In 7j, + const (10.56)
k=1

k=1n=1

where we have used (10.50). Taking the exponential of both sides, we recognize
q*(m) as a Dirichlet distribution

q*(m) = Dir(7|ax) (10.57)
where o has components oy, given by
ap = ag + Ng. (10.58)

Finally, the variational posterior distribution ¢*(p;,, Aj) does not factorize into
the product of the marginals, but we can always use the product rule to write it in the
form ¢* (py,, Ax) = ¢* (] Ax)q* (Agx). The two factors can be found by inspecting
(10.54) and reading off those terms that involve pt;, and Aj. The result, as expected,
is a Gaussian-Wishart distribution and is given by

¢ (s Ak) = N (g Jmy, (BeAr) ") W(ALIW ., k) (10.59)
where we have defined
B = Bo+ Np (10.60)
m; = % (Bomg + NiXy) (10.61)
W' = Wi+ NSi+ %(ik —my)(X —mg)"  (10.62)
v, = vo+ Nk. (10.63)

These update equations are analogous to the M-step equations of the EM algorithm
for the maximum likelihood solution of the mixture of Gaussians. We see that the
computations that must be performed in order to update the variational posterior
distribution over the model parameters involve evaluation of the same sums over the
data set, as arose in the maximum likelihood treatment.

In order to perform this variational M step, we need the expectations E[z,,;] =
rnk representing the responsibilities. These are obtained by normalizing the p,,j that
are given by (10.46). We see that this expression involves expectations with respect
to the variational distributions of the parameters, and these are easily evaluated to
give

Ep,,Ax [(Xn - Mk)TAk(Xn - Mk)]
= DB+ vi(xn —myp) TWi(x, —my)  (10.64)

D
~ 1—34
WA, =E(Al] = ¢<%> +DIn2+In[Wy| (10.65)
i=1

Inm,=E[nm] = ¥(ar) — (@) (10.66)
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where we have introduced definitions of Ay and 7y, and ¢(+) is the digamma function
defined by (B.25), with @ = ", ay,. The results (10.65) and (10.66) follow from
the standard properties of the Wishart and Dirichlet distributions.

If we substitute (10.64), (10.65), and (10.66) into (10.46) and make use of
(10.49), we obtain the following result for the responsibilities

Tnk X %kK;/Q exp {—2 - ﬁ(Xn - mk)TWk(xn - mk)} . (1067)

Notice the similarity to the corresponding result for the responsibilities in maximum
likelihood EM, which from (9.13) can be written in the form

1
Tk OC 7rk|Ak|1/2 exp {—§<Xn — uk)TAk(xn — ,uk)} (10.68)

where we have used the precision in place of the covariance to highlight the similarity
to (10.67).

Thus the optimization of the variational posterior distribution involves cycling
between two stages analogous to the E and M steps of the maximum likelihood EM
algorithm. In the variational equivalent of the E step, we use the current distributions
over the model parameters to evaluate the moments in (10.64), (10.65), and (10.66)
and hence evaluate E[z,x] = 7rnr. Then in the subsequent variational equivalent
of the M step, we keep these responsibilities fixed and use them to re-compute the
variational distribution over the parameters using (10.57) and (10.59). In each case,
we see that the variational posterior distribution has the same functional form as the
corresponding factor in the joint distribution (10.41). This is a general result and is
a consequence of the choice of conjugate distributions.

Figure 10.6 shows the results of applying this approach to the rescaled Old Faith-
ful data set for a Gaussian mixture model having ' = 6 components. We see that
after convergence, there are only two components for which the expected values
of the mixing coefficients are numerically distinguishable from their prior values.
This effect can be understood qualitatively in terms of the automatic trade-off in a
Bayesian model between fitting the data and the complexity of the model, in which
the complexity penalty arises from components whose parameters are pushed away
from their prior values. Components that take essentially no responsibility for ex-
plaining the data points have r,; ~ 0 and hence N ~ 0. From (10.58), we see
that o, >~ o and from (10.60)—(10.63) we see that the other parameters revert to
their prior values. In principle such components are fitted slightly to the data points,
but for broad priors this effect is too small to be seen numerically. For the varia-
tional Gaussian mixture model the expected values of the mixing coefficients in the
posterior distribution are given by

oy + N

E[my] = Ko i N

(10.69)

Consider a component for which N;, ~ 0 and a =~ «g. If the prior is broad so that
ap — 0, then E[n;] — 0 and the component plays no role in the model, whereas if
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Figure 10.6 Variational Bayesian
mixture of K = 6 Gaussians ap-
plied to the Old Faithful data set, in
which the ellipses denote the one
standard-deviation density contours
for each of the components, and the
density of red ink inside each ellipse
corresponds to the mean value of
the mixing coefficient for each com-
ponent. The number in the top left
of each diagram shows the num-
ber of iterations of variational infer-
ence. Components whose expected
mixing coefficient are numerically in-
distinguishable from zero are not
plotted.

60 120

the prior tightly constrains the mixing coefficients so that oy — oo, then E[ny] —
1/K.

In Figure 10.6, the prior over the mixing coefficients is a Dirichlet of the form
(10.39). Recall from Figure 2.5 that for oy < 1 the prior favours solutions in which
some of the mixing coefficients are zero. Figure 10.6 was obtained using oy = 1073,
and resulted in two components having nonzero mixing coefficients. If instead we
choose ap = 1 we obtain three components with nonzero mixing coefficients, and
for o = 10 all six components have nonzero mixing coefficients.

As we have seen there is a close similarity between the variational solution for
the Bayesian mixture of Gaussians and the EM algorithm for maximum likelihood.
In fact if we consider the limit N — co then the Bayesian treatment converges to the
maximum likelihood EM algorithm. For anything other than very small data sets,
the dominant computational cost of the variational algorithm for Gaussian mixtures
arises from the evaluation of the responsibilities, together with the evaluation and
inversion of the weighted data covariance matrices. These computations mirror pre-
cisely those that arise in the maximum likelihood EM algorithm, and so there is little
computational overhead in using this Bayesian approach as compared to the tradi-
tional maximum likelihood one. There are, however, some substantial advantages.
First of all, the singularities that arise in maximum likelihood when a Gaussian com-
ponent ‘collapses’ onto a specific data point are absent in the Bayesian treatment.
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Indeed, these singularities are removed if we simply introduce a prior and then use a
MAP estimate instead of maximum likelihood. Furthermore, there is no over-fitting
if we choose a large number K of components in the mixture, as we saw in Fig-
ure 10.6. Finally, the variational treatment opens up the possibility of determining
the optimal number of components in the mixture without resorting to techniques
such as cross validation.

10.2.2 Variational lower bound

We can also straightforwardly evaluate the lower bound (10.3) for this model.
In practice, it is useful to be able to monitor the bound during the re-estimation in
order to test for convergence. It can also provide a valuable check on both the math-
ematical expressions for the solutions and their software implementation, because at
each step of the iterative re-estimation procedure the value of this bound should not
decrease. We can take this a stage further to provide a deeper test of the correctness
of both the mathematical derivation of the update equations and of their software im-
plementation by using finite differences to check that each update does indeed give
a (constrained) maximum of the bound (Svensén and Bishop, 2004).

For the variational mixture of Gaussians, the lower bound (10.3) is given by

_ p(X,Z, 7,1, A)
L = Z/// (Z,7, 1, A m{ AN dr dpdA

= Elnp(X,Z,7, p,A)] - E[lng(Z,m, p,A)]
Ellnp(X|Z, p, A)] + E[ln p(Z|m)] + E[ln p(7)] + E[ln p(pe, A)]
—E[lng(Z)] — E[lng(m)] — E[ln g(, A)] (10.70)

where, to keep the notation uncluttered, we have omitted the % superscript on the
q distributions, along with the subscripts on the expectation operators because each
expectation is taken with respect to all of the random variables in its argument. The
various terms in the bound are easily evaluated to give the following results

K
1 .
E[lnp(X|Z, u, A)] = 3 E Ny, {ln Ay — D[i’;l — v Tr(SE W)

—l/k<ik — mk)TWk(ik — mk) — Dln(27r)} (10.71)
N K
E[lnp(Z|w)] = Z Z Pk IN 7, (10.72)

Ellnp(r)] = InCleag)+(ag— 1)) In7y (10.73)
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1w Dso
E[lnp(p, A =3 Z DIn(By/27) +In Ay, — B
k=1

—ﬁol/k(mk — m0>TWk(mk — m0>} + K]HB(Wo,l/0>

Den, ~ 1
z_;ln k=3 > w (W' Wy) (10.74)
N K
Ellng(Z)] = > > raxnr (10.75)
n=1 k=1
K
Ellng(m)] = ) (ax — 1) In7y + InC(e) (10.76)
k=1
1.~ D D
E[lng(p, A)] = Z{ﬁln/\k—i-?ln <§—;> —E—H[Q(Akﬂ} (10.77)
k=1

where D is the dimensionality of x, H[g(A)] is the entropy of the Wishart distribu-
tion given by (B.82), and the coefficients C'(a) and B(W,v) are defined by (B.23)
and (B.79), respectively. Note that the terms involving expectations of the logs of the
q distributions simply represent the negative entropies of those distributions. Some
simplifications and combination of terms can be performed when these expressions
are summed to give the lower bound. However, we have kept the expressions sepa-
rate for ease of understanding.

Finally, it is worth noting that the lower bound provides an alternative approach
for deriving the variational re-estimation equations obtained in Section 10.2.1. To do
this we use the fact that, since the model has conjugate priors, the functional form of
the factors in the variational posterior distribution is known, namely discrete for Z,
Dirichlet for 7, and Gaussian-Wishart for (g, Ag). By taking general parametric
forms for these distributions we can derive the form of the lower bound as a function
of the parameters of the distributions. Maximizing the bound with respect to these
parameters then gives the required re-estimation equations.

10.2.3 Predictive density

In applications of the Bayesian mixture of Gaussians model we will often be
interested in the predictive density for a new value X of the observed variable. As-
sociated with this observation will be a corresponding latent variable z, and the pre-
dictive density is then given by

p(X|X) = Z/// (X[Z, , A)p(Z|m)p(m, p, A|X)dw dpdA  (10.78)
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where p(7r, pu, A|X) is the (unknown) true posterior distribution of the parameters.
Using (10.37) and (10.38) we can first perform the summation over z to give

K
P(X|X) = Z///m\/ (R, A Y) p(m, p, A|X) dwdppdA. (10.79)
k=1

Because the remaining integrations are intractable, we approximate the predictive
density by replacing the true posterior distribution p(7v, p, A|X) with its variational
approximation q(7)q (g, A) to give

K
b7 = Y [ [ [ 7 (R ) oy, A am g aas - (1080)
k=1

where we have made use of the factorization (10.55) and in each term we have im-
plicitly integrated out all variables {g;, A;} for j # k The remaining integrations
can now be evaluated analytically giving a mixture of Student’s t-distributions

K
_ 1 _
P(RIX) = = > " apSt(R[my, Ly, v + 1 — D) (10.81)
k=1

in which the &' component has mean my, and the precision is given by

(v +1—D)B
(1+ Bk)

in which v, is given by (10.63). When the size N of the data set is large the predictive
distribution (10.81) reduces to a mixture of Gaussians.

L, = Wi (10.82)

10.2.4 Determining the number of components

We have seen that the variational lower bound can be used to determine a pos-
terior distribution over the number K of components in the mixture model. There
is, however, one subtlety that needs to be addressed. For any given setting of the
parameters in a Gaussian mixture model (except for specific degenerate settings),
there will exist other parameter settings for which the density over the observed vari-
ables will be identical. These parameter values differ only through a re-labelling of
the components. For instance, consider a mixture of two Gaussians and a single ob-
served variable z, in which the parameters have the values 7; = a, T = b, 1y = ¢,
e = d, o1 = e, 0o = f. Then the parameter values m; = b, 1 = a, p1 = d,
e = ¢, 01 = f, 0o = e, in which the two components have been exchanged, will
by symmetry give rise to the same value of p(z). If we have a mixture model com-
prising K components, then each parameter setting will be a member of a family of
K equivalent settings.

In the context of maximum likelihood, this redundancy is irrelevant because the
parameter optimization algorithm (for example EM) will, depending on the initial-
ization of the parameters, find one specific solution, and the other equivalent solu-
tions play no role. In a Bayesian setting, however, we marginalize over all possible
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Figure 10.7 Plot of the variational lower bound
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L versus the number K of com-
ponents in the Gaussian mixture
model, for the Old Faithful data,
showing a distinct peak at K =
2 components. For each value
of K, the model is trained from g -
100 different random starts, and .- .-
the results shown as ‘+’ symbols p(D|K) I
plotted with small random hori- L -
zontal perturbations so that they 4
can be distinguished. Note that F
some solutions find suboptimal
local maxima, but that this hap-
pens infrequently.

parameter values. We have seen in Figure 10.2 that if the true posterior distribution
is multimodal, variational inference based on the minimization of KL(g/||p) will tend
to approximate the distribution in the neighbourhood of one of the modes and ignore
the others. Again, because equivalent modes have equivalent predictive densities,
this is of no concern provided we are considering a model having a specific number
K of components. If, however, we wish to compare different values of K, then we
need to take account of this multimodality. A simple approximate solution is to add
a term In K'! onto the lower bound when used for model comparison and averaging.
Figure 10.7 shows a plot of the lower bound, including the multimodality fac-
tor, versus the number K of components for the Old Faithful data set. It is worth
emphasizing once again that maximum likelihood would lead to values of the likeli-
hood function that increase monotonically with K (assuming the singular solutions
have been avoided, and discounting the effects of local maxima) and so cannot be
used to determine an appropriate model complexity. By contrast, Bayesian inference
automatically makes the trade-off between model complexity and fitting the data.
This approach to the determination of K requires that a range of models having
different K values be trained and compared. An alternative approach to determining
a suitable value for K is to treat the mixing coefficients 7 as parameters and make
point estimates of their values by maximizing the lower bound (Corduneanu and
Bishop, 2001) with respect to 7 instead of maintaining a probability distribution
over them as in the fully Bayesian approach. This leads to the re-estimation equation

1 N
T = Z:lrnk (10.83)

and this maximization is interleaved with the variational updates for the g distribution
over the remaining parameters. Components that provide insufficient contribution



Section 7.2.2

10.2. IMustration: Variational Mixture of Gaussians 485

to explaining the data will have their mixing coefficients driven to zero during the
optimization, and so they are effectively removed from the model through automatic
relevance determination. This allows us to make a single training run in which we
start with a relatively large initial value of K, and allow surplus components to be
pruned out of the model. The origins of the sparsity when optimizing with respect to
hyperparameters is discussed in detail in the context of the relevance vector machine.

10.2.5 Induced factorizations

In deriving these variational update equations for the Gaussian mixture model,
we assumed a particular factorization of the variational posterior distribution given
by (10.42). However, the optimal solutions for the various factors exhibit additional
factorizations. In particular, the solution for ¢*(u, A) is given by the product of an
independent distribution ¢* (., Aj) over each of the components & of the mixture,
whereas the variational posterior distribution ¢*(Z) over the latent variables, given
by (10.48), factorizes into an independent distribution ¢*(z,,) for each observation n
(note that it does not further factorize with respect to k because, for each value of n,
the 2, are constrained to sum to one over k). These additional factorizations are a
consequence of the interaction between the assumed factorization and the conditional
independence properties of the true distribution, as characterized by the directed
graph in Figure 10.5.

We shall refer to these additional factorizations as induced factorizations be-
cause they arise from an interaction between the factorization assumed in the varia-
tional posterior distribution and the conditional independence properties of the true
joint distribution. In a numerical implementation of the variational approach it is
important to take account of such additional factorizations. For instance, it would
be very inefficient to maintain a full precision matrix for the Gaussian distribution
over a set of variables if the optimal form for that distribution always had a diago-
nal precision matrix (corresponding to a factorization with respect to the individual
variables described by that Gaussian).

Such induced factorizations can easily be detected using a simple graphical test
based on d-separation as follows. We partition the latent variables into three disjoint
groups A, B, C and then let us suppose that we are assuming a factorization between
C and the remaining latent variables, so that

q(A,B,C) = ¢(A,B)q(C). (10.84)

Using the general result (10.9), together with the product rule for probabilities, we
see that the optimal solution for ¢(A, B) is given by

Ing*(A,B) = Ec[lnp(X,A,B,C)]+ const
= Ec[lnp(A,B|X, C)] + const. (10.85)

We now ask whether this resulting solution will factorize between A and B, in
other words whether ¢*(A,B) = ¢*(A)¢*(B). This will happen if, and only if,
Inp(A,B|X,C) = Inp(A|X, C) + Inp(B|X, C), that is, if the conditional inde-
pendence relation

Al B|X,C (10.86)
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10.3.

is satisfied. We can test to see if this relation does hold, for any choice of A and B
by making use of the d-separation criterion.

To illustrate this, consider again the Bayesian mixture of Gaussians represented
by the directed graph in Figure 10.5, in which we are assuming a variational fac-
torization given by (10.42). We can see immediately that the variational posterior
distribution over the parameters must factorize between 7r and the remaining param-
eters o and A because all paths connecting 7 to either p or A must pass through
one of the nodes z,, all of which are in the conditioning set for our conditional inde-
pendence test and all of which are head-to-tail with respect to such paths.

Variational Linear Regression

Exercise 10.26

As a second illustration of variational inference, we return to the Bayesian linear
regression model of Section 3.3. In the evidence framework, we approximated the
integration over « and 3 by making point estimates obtained by maximizing the log
marginal likelihood. A fully Bayesian approach would integrate over the hyperpa-
rameters as well as over the parameters. Although exact integration is intractable,
we can use variational methods to find a tractable approximation. In order to sim-
plify the discussion, we shall suppose that the noise precision parameter /3 is known,
and is fixed to its true value, although the framework is easily extended to include
the distribution over 3. For the linear regression model, the variational treatment
will turn out to be equivalent to the evidence framework. Nevertheless, it provides a
good exercise in the use of variational methods and will also lay the foundation for
variational treatment of Bayesian logistic regression in Section 10.6.
Recall that the likelihood function for w, and the prior over w, are given by

N

pitlw) = [[N(talw"e,.87") (10.87)
n=1

p(wla) = N(w|0,a7'T) (10.88)

where ¢,, = ¢(x,). We now introduce a prior distribution over . From our dis-
cussion in Section 2.3.6, we know that the conjugate prior for the precision of a
Gaussian is given by a gamma distribution, and so we choose

p(a) = Gam(a|ag, by) (10.89)

where Gam(+|-, -) is defined by (B.26). Thus the joint distribution of all the variables
is given by
plt,w, a) = pltw)p(wla)p(a). (1090)

This can be represented as a directed graphical model as shown in Figure 10.8.

10.3.1 Variational distribution

Our first goal is to find an approximation to the posterior distribution p(w, «|t).
To do this, we employ the variational framework of Section 10.1, with a variational
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Figure 10.8 Probabilistic graphical model representing the joint dis- -
tribution (10.90) for the Bayesian linear regression On
model.
w
B
—
12
N
N——

posterior distribution given by the factorized expression

q(w,a) = q(w)q(a). (10.91)

We can find re-estimation equations for the factors in this distribution by making use
of the general result (10.9). Recall that for each factor, we take the log of the joint
distribution over all variables and then average with respect to those variables not in
that factor. Consider first the distribution over .. Keeping only terms that have a
functional dependence on «, we have

In g% (o) = Inp(e) + Ey, [In p(w|a)] + const
M
= (ap—1)Ina—bya+ 5 Ina — %E[WTW] +const.  (10.92)

We recognize this as the log of a gamma distribution, and so identifying the coeffi-
cients of & and In o we obtain

q* (o) = Gam(a|an, by) (10.93)
where

an = ag+ % (10.94)

by = b+ %E[WTW]. (10.95)

Similarly, we can find the variational re-estimation equation for the posterior
distribution over w. Again, using the general result (10.9), and keeping only those
terms that have a functional dependence on w, we have

Ing*(w) = Inp(tjw) +E, [Inp(w|a)] 4 const (10.96)
N
= —g ;{WT(}')H —tn}? — %E[OA]WTW + const (10.97)

1
—= _ﬁwT (E[)I + %" ®) w+ Sw & "t + const.  (10.98)

Because this is a quadratic form, the distribution ¢*(w) is Gaussian, and so we can
complete the square in the usual way to identify the mean and covariance, giving

¢ (w) = N(wjmpy,Sy) (10.99)
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where

my = [Syd't (10.100)
Sy = (E[JI+387®) . (10.101)

Note the close similarity to the posterior distribution (3.52) obtained when « was
treated as a fixed parameter. The difference is that here « is replaced by its expecta-
tion E[a] under the variational distribution. Indeed, we have chosen to use the same
notation for the covariance matrix S in both cases.

Using the standard results (B.27), (B.38), and (B.39), we can obtain the required
moments as follows

Ela] = an/by (10.102)

Eww?'] = mymy + Sy. (10.103)
The evaluation of the variational posterior distribution begins by initializing the pa-
rameters of one of the distributions ¢(w) or ¢(«), and then alternately re-estimates
these factors in turn until a suitable convergence criterion is satisfied (usually speci-
fied in terms of the lower bound to be discussed shortly).

It is instructive to relate the variational solution to that found using the evidence
framework in Section 3.5. To do this consider the case ag = by = 0, corresponding
to the limit of an infinitely broad prior over «. The mean of the variational posterior
distribution ¢(«) is then given by

_an _ M2 M
Elo] = by EwTw]/2 mimpy + Tr(Sn)’ (10.104)

Comparison with (9.63) shows that in the case of this particularly simple model,
the variational approach gives precisely the same expression as that obtained by
maximizing the evidence function using EM except that the point estimate for o
is replaced by its expected value. Because the distribution ¢(w) depends on ¢(«)
only through the expectation E[c], we see that the two approaches will give identical
results for the case of an infinitely broad prior.

10.3.2 Predictive distribution

The predictive distribution over ¢, given a new input x, is easily evaluated for
this model using the Gaussian variational posterior for the parameters

Pt t) = / p(t}x, w)p(wlt) dw
= [ pltbe w(w) dw

= /N(t|WT¢(x),ﬁ_1)N(W|mN,SN)dW
= N(tm}¢(x),0%(x)) (10.105)



Exercise 10.27

10.3. Variational Linear Regression 489

where we have evaluated the integral by making use of the result (2.115) for the
linear-Gaussian model. Here the input-dependent variance is given by

o2(x) = % + (x) Sy (). (10.106)

Note that this takes the same form as the result (3.59) obtained with fixed o except
that now the expected value E[«] appears in the definition of Sy.

10.3.3 Lower bound
Another quantity of importance is the lower bound £ defined by

L(g) = E[np(w,a.t)] - E[lng(w, )]
— Ew[Inp{w)] + Eu,a[In p(w|a)] + Ea[inp(a)
—E,[Ing(w)]w — E[lng(e)]. (10.107)

Evaluation of the various terms is straightforward, making use of results obtained in
previous chapters, and gives

E[lnp(tjw)lw = gln (%) — gtTt-i- fm},dTt
—gTr ["®(mym} + Sy)] (10.108)
M M
Elnp(w|a)|w,a = 5 In(27) + ?<1/J<CLN> —1Inby)
— N [mEmy + Tr(Sy)] (10.109)
2bn
Elnp(e)]la = aolnby+ (ag—1) [¢(an) — Inby]
b _InT(ay) (10.110)
by
1 M
—E[lng(w)ly = 3 In|Sy|+ - [1+ In(27)] (10.111)
—E[lng(a)la = InT'(an)— (an —1¢(an) —Inby +an. (10.112)

Figure 10.9 shows a plot of the lower bound £(q) versus the degree of a polynomial
model for a synthetic data set generated from a degree three polynomial. Here the
prior parameters have been set to ay = by = 0, corresponding to the noninformative
prior p(«) o 1/c, which is uniform over In « as discussed in Section 2.3.6. As
we saw in Section 10.1, the quantity £ represents lower bound on the log marginal
likelihood p(t| M) for the model. If we assign equal prior probabilities p(M) to the
different values of M, then we can interpret £ as an approximation to the poste-
rior model probability p(M |t). Thus the variational framework assigns the highest
probability to the model with M = 3. This should be contrasted with the maximum
likelihood result, which assigns ever smaller residual error to models of increasing
complexity until the residual error is driven to zero, causing maximum likelihood to
favour severely over-fitted models.
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Figure 10.9 Plot of the lower bound L ver-

10.4.

sus the order M of the polyno-
mial, for a polynomial model, in
which a set of 10 data points is
generated from a polynomial with
M = 3 sampled over the inter-
val (—5, 5) with additive Gaussian
noise of variance 0.09. The value
of the bound gives the log prob-
ability of the model, and we see
that the value of the bound peaks
at M = 3, corresponding to the
true model from which the data
set was generated.

Exponential Family Distributions

In Chapter 2, we discussed the important role played by the exponential family of
distributions and their conjugate priors. For many of the models discussed in this
book, the complete-data likelihood is drawn from the exponential family. However,
in general this will not be the case for the marginal likelihood function for the ob-
served data. For example, in a mixture of Gaussians, the joint distribution of obser-
vations x,, and corresponding hidden variables z,, is a member of the exponential
family, whereas the marginal distribution of x,, is a mixture of Gaussians and hence
is not.

Up to now we have grouped the variables in the model into observed variables
and hidden variables. We now make a further distinction between latent variables,
denoted Z, and parameters, denoted 8, where parameters are intensive (fixed in num-
ber independent of the size of the data set), whereas latent variables are extensive
(scale in number with the size of the data set). For example, in a Gaussian mixture
model, the indicator variables z,, (which specify which component & is responsible
for generating data point x,,) represent the latent variables, whereas the means g,
precisions A and mixing proportions 7 represent the parameters.

Consider the case of independent identically distributed data. We denote the
data values by X = {x,}, where n = 1,... N, with corresponding latent variables
Z = {z,}. Now suppose that the joint distribution of observed and latent variables
is a member of the exponential family, parameterized by natural parameters 7 so that

N
p(X,Z|n) = H h(Xn,2n)g(m) exp {n"u(xn, 2n) } - (10.113)
n=1

We shall also use a conjugate prior for 7, which can be written as

PN, vo) = F(vo, X0)9(m)” exp {von™x, } - (10.114)

Recall that the conjugate prior distribution can be interpreted as a prior number 14
of observations all having the value x, for the u vector. Now consider a variational
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distribution that factorizes between the latent variables and the parameters, so that
q(Z,m) = q(Z)q(n). Using the general result (10.9), we can solve for the two
factors as follows

Ing*(Z) = E,llnp(X,Z|n)]+ const

N
— Z {Inh(xn,2,) + E[n"u(x,, z,) } + const. (10.115)
n=1

Thus we see that this decomposes into a sum of independent terms, one for each
value of n, and hence the solution for ¢*(Z) will factorize over n so that ¢*(Z) =
L, ¢*(2zy). This is an example of an induced factorization. Taking the exponential
of both sides, we have

q*(zn) = h(xn,zn)g (E[n]) exp {E[nT]u(xn, zn)} (10.116)

where the normalization coefficient has been re-instated by comparison with the
standard form for the exponential family.
Similarly, for the variational distribution over the parameters, we have

Ing¢*(n) = lnp(n|vo, xo) + Ez[ln p(X, Z|n)] + const (10.117)
N
= wgm) +n"xy+ Y _ {Ing(n) +n"E,, [u(xn,2,)]} + const. (10.118)
n=1

Again, taking the exponential of both sides, and re-instating the normalization coef-
ficient by inspection, we have

7" (n) = flvn,xn)9(m)" exp {n"xn} (10.119)

where we have defined

v o= v+ N (10.120)
N

Xv = Xo+ D Ea[u(xn,z,)): (10.121)
n=1

Note that the solutions for ¢*(z,,) and ¢*(n) are coupled, and so we solve them iter-
atively in a two-stage procedure. In the variational E step, we evaluate the expected
sufficient statistics E[u(xy, z,,)] using the current posterior distribution ¢(z,,) over
the latent variables and use this to compute a revised posterior distribution ¢(1) over
the parameters. Then in the subsequent variational M step, we use this revised pa-
rameter posterior distribution to find the expected natural parameters E[nT], which
gives rise to a revised variational distribution over the latent variables.

10.4.1 Variational message passing

We have illustrated the application of variational methods by considering a spe-
cific model, the Bayesian mixture of Gaussians, in some detail. This model can be
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described by the directed graph shown in Figure 10.5. Here we consider more gen-
erally the use of variational methods for models described by directed graphs and
derive a number of widely applicable results.

The joint distribution corresponding to a directed graph can be written using the
decomposition

p(x) = [ [ p(xilpa,) (10.122)

where x; denotes the variable(s) associated with node 7, and pa, denotes the parent
set corresponding to node . Note that x; may be a latent variable or it may belong
to the set of observed variables. Now consider a variational approximation in which
the distribution ¢(x) is assumed to factorize with respect to the x; so that

q(x) = H gi(%,). (10.123)

Note that for observed nodes, there is no factor ¢(x;) in the variational distribution.
We now substitute (10.122) into our general result (10.9) to give

Ingi(x;) = Eiy; [Z lnp(xi|pai)] + const. (10.124)

7

Any terms on the right-hand side that do not depend on x; can be absorbed into
the additive constant. In fact, the only terms that do depend on x; are the con-
ditional distribution for x; given by p(x;|pa;) together with any other conditional
distributions that have x; in the conditioning set. By definition, these conditional
distributions correspond to the children of node j, and they therefore also depend on
the co-parents of the child nodes, i.e., the other parents of the child nodes besides
node x; itself. We see that the set of all nodes on which ¢* (x;) depends corresponds
to the Markov blanket of node x;, as illustrated in Figure 8.26. Thus the update
of the factors in the variational posterior distribution represents a local calculation
on the graph. This makes possible the construction of general purpose software for
variational inference in which the form of the model does not need to be specified in
advance (Bishop et al., 2003).

If we now specialize to the case of a model in which all of the conditional dis-
tributions have a conjugate-exponential structure, then the variational update proce-
dure can be cast in terms of a local message passing algorithm (Winn and Bishop,
2005). In particular, the distribution associated with a particular node can be updated
once that node has received messages from all of its parents and all of its children.
This in turn requires that the children have already received messages from their co-
parents. The evaluation of the lower bound can also be simplified because many of
the required quantities are already evaluated as part of the message passing scheme.
This distributed message passing formulation has good scaling properties and is well
suited to large networks.
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Local Variational Methods

Section 1.6.1

Figure 10.10 In the left-hand fig-

The variational framework discussed in Sections 10.1 and 10.2 can be considered a
‘global’ method in the sense that it directly seeks an approximation to the full poste-
rior distribution over all random variables. An alternative ‘local’ approach involves
finding bounds on functions over individual variables or groups of variables within
a model. For instance, we might seek a bound on a conditional distribution p(y|x),
which is itself just one factor in a much larger probabilistic model specified by a
directed graph. The purpose of introducing the bound of course is to simplify the
resulting distribution. This local approximation can be applied to multiple variables
in turn until a tractable approximation is obtained, and in Section 10.6.1 we shall
give a practical example of this approach in the context of logistic regression. Here
we focus on developing the bounds themselves.

We have already seen in our discussion of the Kullback-Leibler divergence that
the convexity of the logarithm function played a key role in developing the lower
bound in the global variational approach. We have defined a (strictly) convex func-
tion as one for which every chord lies above the function. Convexity also plays a
central role in the local variational framework. Note that our discussion will ap-
ply equally to concave functions with ‘min’ and ‘max’ interchanged and with lower
bounds replaced by upper bounds.

Let us begin by considering a simple example, namely the function f(z) =
exp(—x), which is a convex function of z, and which is shown in the left-hand plot
of Figure 10.10. Our goal is to approximate f(x) by a simpler function, in particular
a linear function of z. From Figure 10.10, we see that this linear function will be a
lower bound on f(z) if it corresponds to a tangent. We can obtain the tangent line
y(x) at a specific value of x, say x = &, by making a first order Taylor expansion

y(x) = f(&) + [z = &) (10.125)

so that y(x) < f(x) with equality when z = . For our example function f(x) =

ure the red curve shows the function
exp(—x), and the blue line shows
the tangent at + = ¢ defined by
(10.125) with £ = 1. This line has
slope A = f/(£) = —exp(—£). Note
that any other tangent line, for ex-
ample the ones shown in green, will
have a smaller value of y at z =
&. The right-hand figure shows the
corresponding plot of the function
A¢ — g(A), where g()) is given by
(10.131), versus X for £ = 1, in
which the maximum corresponds to
A=—exp(—§) =—-1/e.

1 0.4
Aé—g(N)
0.5 0.2
\
0 0




494

Figure 10.11

10. APPROXIMATE INFERENCE

Az —g(A)

In the left-hand plot the red curve shows a convex function f(x), and the blue line represents the

linear function Az, which is a lower bound on f(x) because f(z) > Az for all z. For the given value of slope X the
contact point of the tangent line having the same slope is found by minimizing with respect to « the discrepancy
(shown by the green dashed lines) given by f(z) — Az. This defines the dual function g(X), which corresponds
to the (negative of the) intercept of the tangent line having slope A.

exp(—x), we therefore obtain the tangent line in the form

y(x) = exp(=¢) — exp(=&)(z = §) (10.126)
which is a linear function parameterized by £&. For consistency with subsequent
discussion, let us define A = — exp(—¢) so that

y(x,A) = Az — A+ An(=N). (10.127)

Different values of A correspond to different tangent lines, and because all such lines
are lower bounds on the function, we have f(z) > y(z,X). Thus we can write the
function in the form

f(z) = max {Az = A+ An(—=N)}. (10.128)

We have succeeded in approximating the convex function f(z) by a simpler, lin-
ear function y(z, ). The price we have paid is that we have introduced a variational
parameter A, and to obtain the tightest bound we must optimize with respect to .

We can formulate this approach more generally using the framework of convex
duality (Rockafellar, 1972; Jordan et al., 1999). Consider the illustration of a convex
function f(z) shown in the left-hand plot in Figure 10.11. In this example, the
function Az is a lower bound on f(x) but it is not the best lower bound that can
be achieved by a linear function having slope A, because the tightest bound is given
by the tangent line. Let us write the equation of the tangent line, having slope A as
Az — g(\) where the (negative) intercept g() clearly depends on the slope A of the
tangent. To determine the intercept, we note that the line must be moved vertically by
an amount equal to the smallest vertical distance between the line and the function,
as shown in Figure 10.11. Thus

o) = —min{f(z)— o)
= max {Ae — f(x)}. (10.129)
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Now, instead of fixing A and varying x, we can consider a particular = and then
adjust A until the tangent plane is tangent at that particular x. Because the y value
of the tangent line at a particular = is maximized when that value coincides with its
contact point, we have

f(z) = max {Ax—g(N)}. (10.130)

We see that the functions f(z) and g(A) play a dual role, and are related through
(10.129) and (10.130).

Let us apply these duality relations to our simple example f(z) = exp(—x).
From (10.129) we see that the maximizing value of x is given by £ = — In(—\), and
back-substituting we obtain the conjugate function g(\) in the form

g(A) = A= Aln(=X) (10.131)

as obtained previously. The function A — g(A) is shown, for & = 1 in the right-hand
plot in Figure 10.10. As a check, we can substitute (10.131) into (10.130), which
gives the maximizing value of A = — exp(—x), and back-substituting then recovers
the original function f(z) = exp(—x).

For concave functions, we can follow a similar argument to obtain upper bounds,
in which max’ is replaced with ‘min’, so that

flz) = m/\in{)\x—g()\)} (10.132)
g(N) = mzin {Ae — f(x)}. (10.133)

If the function of interest is not convex (or concave), then we cannot directly
apply the method above to obtain a bound. However, we can first seek invertible
transformations either of the function or of its argument which change it into a con-
vex form. We then calculate the conjugate function and then transform back to the
original variables.

An important example, which arises frequently in pattern recognition, is the
logistic sigmoid function defined by

B 1
C 14e

o(x) (10.134)
As it stands this function is neither convex nor concave. However, if we take the
logarithm we obtain a function which is concave, as is easily verified by finding the
second derivative. From (10.133) the corresponding conjugate function then takes
the form

g(A) = mzin {Ae— f(x)} =—-AlnA— (1 —=X)In(1 —X) (10.135)

which we recognize as the binary entropy function for a variable whose probability
of having the value 1 is A. Using (10.132), we then obtain an upper bound on the log
sigmoid

Ino(z) < Az —g(A) (10.136)
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Figure 10.12 The left-hand plot shows the logistic sigmoid function o(z) defined by (10.134) in red, together
with two examples of the exponential upper bound (10.137) shown in blue. The right-hand plot shows the logistic
sigmoid again in red together with the Gaussian lower bound (10.144) shown in blue. Here the parameter
¢ = 2.5, and the bound is exact at = = £ and x = —¢, denoted by the dashed green lines.

and taking the exponential, we obtain an upper bound on the logistic sigmoid itself

of the form
o(z) < exp(Az — g(N)) (10.137)

which is plotted for two values of A on the left-hand plot in Figure 10.12.

We can also obtain a lower bound on the sigmoid having the functional form of
a Gaussian. To do this, we follow Jaakkola and Jordan (2000) and make transforma-
tions both of the input variable and of the function itself. First we take the log of the
logistic function and then decompose it so that

Ino(z) = —In(l4+e*)=—In {(3_3”/2(656/2 + e_z/Q)}
= 2/2 —In(e®/? 4 e7%/2), (10.138)

We now note that the function f(x) = —In(e®/? + e~*/2) is a convex function of

Exercise 10.31 the variable z?, as can again be verified by finding the second derivative. This leads
to a lower bound on f(z), which is a linear function of z? whose conjugate function
is given by

g(\) = max {A:ﬁ ¥ (\/ﬁ) } . (10.139)
The stationarity condition leads to

dr d 1 x

If we denote this value of z, corresponding to the contact point of the tangent line
for this particular value of A, by &, then we have

Ag) = —4—15 tanh (g) = —2—15 {0(5) — 1} : (10.141)
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Instead of thinking of A as the variational parameter, we can let £ play this role as
this leads to simpler expressions for the conjugate function, which is then given by

gN) = A(€)E2 — f(€) = M(©)&% + In(e/? + e7¢/?). (10.142)
Hence the bound on f(x) can be written as

f(@) = Xz — g(\) = Az® — A2 —In(e8/2 + e4/2). (10.143)
The bound on the sigmoid then becomes

o(x) = o(&)exp{(z —&)/2 = A¢&)(z* — &)} (10.144)

where A(¢) is defined by (10.141). This bound is illustrated in the right-hand plot of
Figure 10.12. We see that the bound has the form of the exponential of a quadratic
function of x, which will prove useful when we seek Gaussian representations of
posterior distributions defined through logistic sigmoid functions.

The logistic sigmoid arises frequently in probabilistic models over binary vari-
ables because it is the function that transforms a log odds ratio into a posterior prob-
ability. The corresponding transformation for a multiclass distribution is given by
the softmax function. Unfortunately, the lower bound derived here for the logistic
sigmoid does not directly extend to the softmax. Gibbs (1997) proposes a method
for constructing a Gaussian distribution that is conjectured to be a bound (although
no rigorous proof is given), which may be used to apply local variational methods to
multiclass problems.

We shall see an example of the use of local variational bounds in Sections 10.6.1.
For the moment, however, it is instructive to consider in general terms how these
bounds can be used. Suppose we wish to evaluate an integral of the form

I= /U(a)p(a) da (10.145)

where o (a) is the logistic sigmoid, and p(a) is a Gaussian probability density. Such
integrals arise in Bayesian models when, for instance, we wish to evaluate the pre-
dictive distribution, in which case p(a) represents a posterior parameter distribution.
Because the integral is intractable, we employ the variational bound (10.144), which
we write in the form o(a) > f(a,{) where ¢ is a variational parameter. The inte-
gral now becomes the product of two exponential-quadratic functions and so can be
integrated analytically to give a bound on

I> / f(a,)p(a) da = F(€). (10.146)

We now have the freedom to choose the variational parameter £, which we do by
finding the value &* that maximizes the function F'(¢). The resulting value F'(&*)
represents the tightest bound within this family of bounds and can be used as an
approximation to /. This optimized bound, however, will in general not be exact.
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Although the bound o (a) > f(a, &) on the logistic sigmoid can be optimized exactly,
the required choice for £ depends on the value of a, so that the bound is exact for one
value of a only. Because the quantity F'(£) is obtained by integrating over all values
of a, the value of &* represents a compromise, weighted by the distribution p(a).

Variational Logistic Regression

We now illustrate the use of local variational methods by returning to the Bayesian
logistic regression model studied in Section 4.5. There we focussed on the use of
the Laplace approximation, while here we consider a variational treatment based on
the approach of Jaakkola and Jordan (2000). Like the Laplace method, this also
leads to a Gaussian approximation to the posterior distribution. However, the greater
flexibility of the variational approximation leads to improved accuracy compared
to the Laplace method. Furthermore (unlike the Laplace method), the variational
approach is optimizing a well defined objective function given by a rigourous bound
on the model evidence. Logistic regression has also been treated by Dybowski and
Roberts (2005) from a Bayesian perspective using Monte Carlo sampling techniques.

10.6.1 Variational posterior distribution

Here we shall make use of a variational approximation based on the local bounds
introduced in Section 10.5. This allows the likelihood function for logistic regres-
sion, which is governed by the logistic sigmoid, to be approximated by the expo-
nential of a quadratic form. It is therefore again convenient to choose a conjugate
Gaussian prior of the form (4.140). For the moment, we shall treat the hyperparam-
eters mg and Sy as fixed constants. In Section 10.6.3, we shall demonstrate how the
variational formalism can be extended to the case where there are unknown hyper-
parameters whose values are to be inferred from the data.

In the variational framework, we seek to maximize a lower bound on the marginal
likelihood. For the Bayesian logistic regression model, the marginal likelihood takes
the form

p(t) = / ptlw)p(w) dw = / [H p(tn|W)] p(w) dw. (10.147)

‘We first note that the conditional distribution for ¢ can be written as

pltlw) = o) {1 - o(a)}'"

1 t 1 1—t
= 1—
(1—}—6_“) < 1—|—e‘“>

_ at e __at _
= e o(—a) (10.148)

where a = wT¢. In order to obtain a lower bound on p(t), we make use of the
variational lower bound on the logistic sigmoid function given by (10.144), which
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we reproduce here for convenience

a(2) 2 o(€)exp{(z —€)/2 = A&)(z* =€)} (10.149)
where
) = % {0(5) — %} : (10.150)

‘We can therefore write

p(t|w) = e"o(—a) > eo(&)exp {—(a+£)/2 — A(€)(a® — &)} . (10.151)

Note that because this bound is applied to each of the terms in the likelihood function
separately, there is a variational parameter &,, corresponding to each training set
observation (¢,,,t,). Using a = w™ ¢, and multiplying by the prior distribution, we
obtain the following bound on the joint distribution of t and w

p(t,w) = p(tjw)p(w) > h(w,&)p(w) (10.152)

where £ denotes the set {£,,} of variational parameters, and

h(w,§) = H o(&n)exp{w @ t, — (W', +&,)/2
— A& (W', ]? =€)} (10.153)

Evaluation of the exact posterior distribution would require normalization of the left-
hand side of this inequality. Because this is intractable, we work instead with the
right-hand side. Note that the function on the right-hand side cannot be interpreted
as a probability density because it is not normalized. Once it is normalized to give a
variational posterior distribution ¢(w ), however, it no longer represents a bound.

Because the logarithm function is monotonically increasing, the inequality A >
B implies In A > In B. This gives a lower bound on the log of the joint distribution
of t and w of the form

In {p(tw)p(w)} = Inp(w) + > {Ino(&) +w" ¢, tn
— (W', +6.)/2=AN&) (W e, )" =€)} (10.154)

Substituting for the prior p(w), the right-hand side of this inequality becomes, as a
function of w

1 _
—§(W — mO)TSO 1(W —1mg)

N
+ 3 AW B, (tn — 1/2) = M)W (¢, ¢0) W} + const.  (10.155)
n=1
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Exercise 10.32

This is a quadratic function of w, and so we can obtain the corresponding variational
approximation to the posterior distribution by identifying the linear and quadratic
terms in w, giving a Gaussian variational posterior of the form

q(w) = N(wimy,Sy) (10.156)
where
N
my = Sy <So_1m0 + Z(tn - 1/2)¢n> (10.157)
n=1
N
Sy = ST H2> A& dud (10.158)
n=1

As with the Laplace framework, we have again obtained a Gaussian approximation
to the posterior distribution. However, the additional flexibility provided by the vari-
ational parameters {¢,, } leads to improved accuracy in the approximation (Jaakkola
and Jordan, 2000).

Here we have considered a batch learning context in which all of the training
data is available at once. However, Bayesian methods are intrinsically well suited
to sequential learning in which the data points are processed one at a time and then
discarded. The formulation of this variational approach for the sequential case is
straightforward.

Note that the bound given by (10.149) applies only to the two-class problem and
so this approach does not directly generalize to classification problems with K > 2
classes. An alternative bound for the multiclass case has been explored by Gibbs
(1997).

10.6.2 Optimizing the variational parameters

We now have a normalized Gaussian approximation to the posterior distribution,
which we shall use shortly to evaluate the predictive distribution for new data points.
First, however, we need to determine the variational parameters {&,, } by maximizing
the lower bound on the marginal likelihood.

To do this, we substitute the inequality (10.152) back into the marginal likeli-
hood to give

Inp(t) = ln/p(t|w)p(w) dw > ln/h(w,{)p(w) dw = £(&). (10.159)

As with the optimization of the hyperparameter « in the linear regression model of
Section 3.5, there are two approaches to determining the &,,. In the first approach, we
recognize that the function £(&) is defined by an integration over w and so we can
view w as a latent variable and invoke the EM algorithm. In the second approach,
we integrate over w analytically and then perform a direct maximization over &. Let
us begin by considering the EM approach.

The EM algorithm starts by choosing some initial values for the parameters
{€,}, which we denote collectively by £°'!. In the E step of the EM algorithm,
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we then use these parameter values to find the posterior distribution over w, which
is given by (10.156). In the M step, we then maximize the expected complete-data
log likelihood which is given by

Q(&,€) =E [Inh(w, &)p(w)] (10.160)

where the expectation is taken with respect to the posterior distribution ¢(w) evalu-
ated using £°'. Noting that p(w) does not depend on &, and substituting for (w, &)
we obtain

N

Q€M) =) {no(&n) — /2 = A& (BrElww ], — &)} + const
n=1
(10.161)
where ‘const’ denotes terms that are independent of §. We now set the derivative with
respect to &, equal to zero. A few lines of algebra, making use of the definitions of
o(&) and A(€), then gives

0=N(&) (P Elww']e, —€7). (10.162)

We now note that X' (£) is a monotonic function of & for £ > 0, and that we can
restrict attention to nonnegative values of £ without loss of generality due to the
symmetry of the bound around { = 0. Thus X (&) # 0, and hence we obtain the
following re-estimation equations

<£2cw>2 _ (;SEE[WWT]QSH _ ¢;1; (SN + mNm}fV> b, (10.163)

where we have used (10.156).

Let us summarize the EM algorithm for finding the variational posterior distri-
bution. We first initialize the variational parameters £°'¢. In the E step, we evaluate
the posterior distribution over w given by (10.156), in which the mean and covari-
ance are defined by (10.157) and (10.158). In the M step, we then use this variational
posterior to compute a new value for £ given by (10.163). The E and M steps are
repeated until a suitable convergence criterion is satisfied, which in practice typically
requires only a few iterations.

An alternative approach to obtaining re-estimation equations for £ is to note
that in the integral over w in the definition (10.159) of the lower bound L£(£), the
integrand has a Gaussian-like form and so the integral can be evaluated analytically.
Having evaluated the integral, we can then differentiate with respect to &,,. It turns
out that this gives rise to exactly the same re-estimation equations as does the EM
approach given by (10.163).

As we have emphasized already, in the application of variational methods it is
useful to be able to evaluate the lower bound £(£) given by (10.159). The integration
over w can be performed analytically by noting that p(w) is Gaussian and h(w, £)
is the exponential of a quadratic function of w. Thus, by completing the square
and making use of the standard result for the normalization coefficient of a Gaussian
distribution, we can obtain a closed form solution which takes the form
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Figure 10.13 lllustra
set. The plot on the left shows the predictive distribution obtained using variational inference. We see that
the decision boundary lies roughly mid way between the clusters of data points, and that the contours of the
predictive distribution splay out away from the data reflecting the greater uncertainty in the classification of such
regions. The plot on the right shows the decision boundaries corresponding to five samples of the parameter
vector w drawn from the posterior distribution p(wi|t).

tion of the Bayesian approach to logistic regression for a simple linearly separable data

1. IS 1 1
1 Sn| — —m?VSj}lmN + §m0T

Z S
2 S, 2 o Mo

L) =

N
#3- a6 - 56 - Mee | (10.164)
n=1

This variational framework can also be applied to situations in which the data
is arriving sequentially (Jaakkola and Jordan, 2000). In this case we maintain a
Gaussian posterior distribution over w, which is initialized using the prior p(w). As
each data point arrives, the posterior is updated by making use of the bound (10.151)
and then normalized to give an updated posterior distribution.

The predictive distribution is obtained by marginalizing over the posterior dis-
tribution, and takes the same form as for the Laplace approximation discussed in
Section 4.5.2. Figure 10.13 shows the variational predictive distributions for a syn-
thetic data set. This example provides interesting insights into the concept of ‘large
margin’, which was discussed in Section 7.1 and which has qualitatively similar be-
haviour to the Bayesian solution.

10.6.3 Inference of hyperparameters

So far, we have treated the hyperparameter « in the prior distribution as a known
constant. We now extend the Bayesian logistic regression model to allow the value of
this parameter to be inferred from the data set. This can be achieved by combining
the global and local variational approximations into a single framework, so as to
maintain a lower bound on the marginal likelihood at each stage. Such a combined
approach was adopted by Bishop and Svensén (2003) in the context of a Bayesian
treatment of the hierarchical mixture of experts model.
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Specifically, we consider once again a simple isotropic Gaussian prior distribu-
tion of the form
p(wla) = N(w|0,a™'T). (10.165)

Our analysis is readily extended to more general Gaussian priors, for instance if we
wish to associate a different hyperparameter with different subsets of the parame-
ters w;. As usual, we consider a conjugate hyperprior over o given by a gamma
distribution

p(a) = Gam(e|ag, by) (10.166)

governed by the constants ay and by.
The marginal likelihood for this model now takes the form

= / p(w,a,t) dw da (10.167)

where the joint distribution is given by
p(w, a, t) = p(tjw)p(w|a)p(a). (10.168)

We are now faced with an analytically intractable integration over w and «, which
we shall tackle by using both the local and global variational approaches in the same
model

To begin with, we introduce a variational distribution ¢(w, ), and then apply
the decomposition (10.2), which in this instance takes the form

Inp(t) = L(q) + KL(q[lp) (10.169)

where the lower bound £(g) and the Kullback-Leibler divergence KL(g||p) are de-
fined by

L(q) = / (W, ln{ <<W & ;>} dw da (10.170)

KL(q|p) = / (W, o m{ <:V a|t>>>}dwda. (10.171)

At this point, the lower bound £(q) is still intractable due to the form of the
likelihood factor p(t|w). We therefore apply the local variational bound to each of
the logistic sigmoid factors as before. This allows us to use the inequality (10.152)
and place a lower bound on £(q), which will therefore also be a lower bound on the
log marginal likelihood

lnp(t) > L(q,€)

/ (W, m{ h(w, Q( <W|§‘> pla >} dwde. (10.172)

Next we assume that the variational distribution factorizes between parameters and
hyperparameters so that

q(w,a) = q(w)q(a). (10.173)
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With this factorization we can appeal to the general result (10.9) to find expressions
for the optimal factors. Consider first the distribution ¢(w). Discarding terms that
are independent of w, we have

Ing(w) = Eq[In{h(w,&)p(wla)p(a)}] + const
Inh(w, &)+ E, [Inp(w|a)] + const.

We now substitute for In h(w, €) using (10.153), and for In p(w|a) using (10.165),

giving
N

Ing(w) = —@Mw + Z {(t, —1/2)w" ¢, — M&) W ¢, W} + const.
n=1

We see that this is a quadratic function of w and so the solution for ¢(w) will be
Gaussian. Completing the square in the usual way, we obtain

q(w) =N(wl|py, EN) (10.174)
where we have defined
N
SVey = ) (tn—1/2)¢, (10.175)
n=1
N
Xy = ElI+2) AMé)e,en. (10.176)
n=1

Similarly, the optimal solution for the factor ¢(«) is obtained from
Ing(a) = Ey [Inp(w|a)] + In p(a) 4 const.
Substituting for In p(w]|«) using (10.165), and for In p(«) using (10.166), we obtain
M
Ing(a) = - Ina — %E [WTW] + (ap — 1) In v — byex + const.

We recognize this as the log of a gamma distribution, and so we obtain

¢(a) = Gam(alay,by) = a >a8°a“°‘1e‘b°“ (10.177)
0
where
M
aN = CLO‘*‘? (10.178)

1
by = bot 5Ew [wiw]. (10.179)
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We also need to optimize the variational parameters &,,, and this is also done by

maximizing the lower bound Z(q, £). Omitting terms that are independent of £, and
integrating over «, we have

L(q,&) = /q(w)lnh(w,ﬁ)dw + const. (10.180)

Note that this has precisely the same form as (10.159), and so we can again appeal
to our earlier result (10.163), which can be obtained by direct optimization of the
marginal likelihood function, leading to re-estimation equations of the form

(&) = ¢, (BN + papy) b (10.181)

We have obtained re-estimation equations for the three quantities ¢(w), ¢(«),
and &, and so after making suitable initializations, we can cycle through these quan-
tities, updating each in turn. The required moments are given by

Elo] = X (10.182)
by
E[w'w] = Zn+pypy. (10.183)

Expectation Propagation

We conclude this chapter by discussing an alternative form of deterministic approx-
imate inference, known as expectation propagation or EP (Minka, 2001a; Minka,
2001b). As with the variational Bayes methods discussed so far, this too is based
on the minimization of a Kullback-Leibler divergence but now of the reverse form,
which gives the approximation rather different properties.

Consider for a moment the problem of minimizing KL(p||¢) with respect to ¢(z)
when p(z) is a fixed distribution and ¢(z) is a member of the exponential family and
so, from (2.194), can be written in the form

q(z) = h(z)g(n)exp {n"u(z)} . (10.184)
As a function of n, the Kullback-Leibler divergence then becomes
KL(pllq) = —Ing(n) — n" Ep [u(z)] + const (10.185)

where the constant terms are independent of the natural parameters 1. We can mini-
mize KL(p||q) within this family of distributions by setting the gradient with respect
to 1 to zero, giving

—Ving(n) =Epx [u(z)]. (10.186)

However, we have already seen in (2.226) that the negative gradient of In g(n) is
given by the expectation of u(z) under the distribution ¢(z). Equating these two
results, we obtain

Eq@ [u(2)] = Epz) [u(z)]. (10.187)
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We see that the optimum solution simply corresponds to matching the expected suf-
ficient statistics. So, for instance, if ¢(z) is a Gaussian NV (z|p, ) then we minimize
the Kullback-Leibler divergence by setting the mean p of ¢(z) equal to the mean of
the distribution p(z) and the covariance X equal to the covariance of p(z). This is
sometimes called moment matching. An example of this was seen in Figure 10.3(a).
Now let us exploit this result to obtain a practical algorithm for approximate
inference. For many probabilistic models, the joint distribution of data D and hidden
variables (including parameters) & comprises a product of factors in the form

p(D,0) =[] f:(6). (10.188)

This would arise, for example, in a model for independent, identically distributed
data in which there is one factor f,,(8) = p(x,|@) for each data point x,,, along
with a factor f,(@) = p(@) corresponding to the prior. More generally, it would also
apply to any model defined by a directed probabilistic graph in which each factor is a
conditional distribution corresponding to one of the nodes, or an undirected graph in
which each factor is a clique potential. We are interested in evaluating the posterior
distribution p(@|D) for the purpose of making predictions, as well as the model
evidence p(D) for the purpose of model comparison. From (10.188) the posterior is
given by

pwmzﬁgﬂmm (10.189)

and the model evidence is given by
mm:/Hﬁ@w. (10.190)

Here we are considering continuous variables, but the following discussion applies
equally to discrete variables with integrals replaced by summations. We shall sup-
pose that the marginalization over 8, along with the marginalizations with respect to
the posterior distribution required to make predictions, are intractable so that some
form of approximation is required.

Expectation propagation is based on an approximation to the posterior distribu-
tion which is also given by a product of factors

q@=%ﬂﬁ® (10.191)

in which each factor f;(@) in the approximation corresponds to one of the factors
£i(8) in the true posterior (10.189), and the factor 1/Z is the normalizing constant
needed to ensure that the left-hand side of (10.191) integrates to unity. In order to
obtain a practical algorithm, we need to constrain the factors f;(@) in some way,
and in particular we shall assume that they come from the exponential family. The
product of the factors will therefore also be from the exponential family and so can
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be described by a finite set of sufficient statistics. For example, if each of the ?i(é’)
is a Gaussian, then the overall approximation ¢(@) will also be Gaussian.

Ideally we would like to determine the f;(@) by minimizing the Kullback-Leibler
divergence between the true posterior and the approximation given by

1 R
KL (pllq) = KL <M H f:(0) 7 H fi(0)> . (10.192)

Note that this is the reverse form of KL divergence compared with that used in varia-
tional inference. In general, this minimization will be intractable because the KL di-
vergence involves averaging with respect to the true distribution. As a rough approx-
imation, we could instead minimize the KL divergences between the corresponding
pairs f;(@) and f;(0) of factors. This represents a much simpler problem to solve,
and has the advantage that the algorithm is noniterative. However, because each fac-
tor is individually approximated, the product of the factors could well give a poor
approximation.

Expectation propagation makes a much better approximation by optimizing each
factor in turn in the context of all of the remaining factors. It starts by initializing
the factors f;(@), and then cycles through the factors refining them one at a time.
This is similar in spirit to the update of factors in the variational Bayes framework

considered earlier. Suppose we wish to refine factor ?j(é’). We first remove this

factor from the product to give [ [, 2 1:(@). Conceptually, we will now determine a

revised form of the factor f;(@) by ensuring that the product

¢ (8) o f;(0) [ | £:(0) (10.193)
i#]
is as close as possible to N
fi@ ] i) (10.194)
i#]

in which we keep fixed all of the factors f;(@) for i # j. This ensures that the
approximation is most accurate in the regions of high posterior probability as defined
by the remaining factors. We shall see an example of this effect when we apply EP
to the ‘clutter problem’. To achieve this, we first remove the factor f;(@) from the
current approximation to the posterior by defining the unnormalized distribution

V() = %, (10.195)

Note that we could instead find ¢\/ (@) from the product of factors ¢ # j, although
in practice division is usually easier. This is now combined with the factor f;(8) to
give a distribution

- 11(0)(6) (10.196)
Zj
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Figure 10.14 lllustration of the expectation propagation approximation using a Gaussian distribution for the
example considered earlier in Figures 4.14 and 10.1. The left-hand plot shows the original distribution (yellow)
along with the Laplace (red), global variational (green), and EP (blue) approximations, and the right-hand plot
shows the corresponding negative logarithms of the distributions. Note that the EP distribution is broader than
that variational inference, as a consequence of the different form of KL divergence.

where Z; is the normalization constant given by
Z;= / f;(8)q\ (8)de. (10.197)

We now determine a revised factor ?j (0) by minimizing the Kullback-Leibler diver-

gence
/i(8)qV(8)
KL( j Zj ‘

anW(9)> . (10.198)

This is easily solved because the approximating distribution ¢"*% (@) is from the ex-
ponential family, and so we can appeal to the result (10.187), which tells us that the
parameters of ¢"°V (@) are obtained by matching its expected sufficient statistics to
the corresponding moments of (10.196). We shall assume that this is a tractable oper-
ation. For example, if we choose ¢(8) to be a Gaussian distribution N (8|, X), then
p is set equal to the mean of the (unnormalized) distribution f;(8)q\ (@), and X is
set to its covariance. More generally, it is straightforward to obtain the required ex-
pectations for any member of the exponential family, provided it can be normalized,
because the expected statistics can be related to the derivatives of the normalization
coefficient, as given by (2.226). The EP approximation is illustrated in Figure 10.14.

From (10.193), we see that the revised factor ?j(é’) can be found by taking
¢"*" (@) and dividing out the remaining factors so that

~ o 0"V(0)
fi(0) = Kq\j—w)

where we have used (10.195). The coefficient K is determined by multiplying both

(10.199)
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sides of (10.199) by ¢\*(8) and integrating to give

K = / 71(8)qV () de (10.200)

where we have used the fact that ¢"* (@) is normalized. The value of K can therefore
be found by matching zeroth-order moments

/E’(@)q\j(@) de = /fj(e)q\j<9)d9. (10.201)

Combining this with (10.197), we then see that ' = Z; and so can be found by
evaluating the integral in (10.197).

In practice, several passes are made through the set of factors, revising each
factor in turn. The posterior distribution p(@|D) is then approximated using (10.191),
and the model evidence p(D) can be approximated by using (10.190) with the factors

1:(@) replaced by their approximations f;(8).
Expectation Propagation

We are given a joint distribution over observed data D and stochastic variables
0 in the form of a product of factors

p(D,0) =[] £:(6) (10.202)

and we wish to approximate the posterior distribution p(@|D) by a distribution
of the form

1 ~
a9) = 1] (o). (10.203)
We also wish to approximate the model evidence p(D).

1. Initialize all of the approximating factors ?Z(B)

2. Initialize the posterior approximation by setting

q(0) < [ [ F:(0). (10.204)

3. Until convergence:
(a) Choose a factor ?j(b?) to refine.
(b) Remove ?j (8) from the posterior by division

V() = =—. (10.205)
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(c) Evaluate the new posterior by setting the sufficient statistics (moments)
of ¢"°¥(0) equal to those of ¢\ () f;(@), including evaluation of the
normalization constant

Z; = /q\j (0)£;(6)de. (10.206)
(d) Evaluate and store the new factor
— qncw (0)
fi(0) = Z,—— . (10.207)
J( ) J q\j <0>

4. Evaluate the approximation to the model evidence

p(D) ~ / H 1:(6)d6. (10.208)

A special case of EP, known as assumed density filtering (ADF) or moment
matching (Maybeck, 1982; Lauritzen, 1992; Boyen and Koller, 1998; Opper and
Winther, 1999), is obtained by initializing all of the approximating factors except
the first to unity and then making one pass through the factors updating each of them
once. Assumed density filtering can be appropriate for on-line learning in which data
points are arriving in a sequence and we need to learn from each data point and then
discard it before considering the next point. However, in a batch setting we have the
opportunity to re-use the data points many times in order to achieve improved ac-
curacy, and it is this idea that is exploited in expectation propagation. Furthermore,
if we apply ADF to batch data, the results will have an undesirable dependence on
the (arbitrary) order in which the data points are considered, which again EP can
overcome.

One disadvantage of expectation propagation is that there is no guarantee that
the iterations will converge. However, for approximations ¢(@) in the exponential
family, if the iterations do converge, the resulting solution will be a stationary point
of a particular energy function (Minka, 2001a), although each iteration of EP does
not necessarily decrease the value of this energy function. This is in contrast to
variational Bayes, which iteratively maximizes a lower bound on the log marginal
likelihood, in which each iteration is guaranteed not to decrease the bound. It is
possible to optimize the EP cost function directly, in which case it is guaranteed
to converge, although the resulting algorithms can be slower and more complex to
implement.

Another difference between variational Bayes and EP arises from the form of
KL divergence that is minimized by the two algorithms, because the former mini-
mizes KL(¢||p) whereas the latter minimizes KL(p||¢). As we saw in Figure 10.3,
for distributions p(@) which are multimodal, minimizing KL(p||¢q) can lead to poor
approximations. In particular, if EP is applied to mixtures the results are not sen-
sible because the approximation tries to capture all of the modes of the posterior
distribution. Conversely, in logistic-type models, EP often out-performs both local
variational methods and the Laplace approximation (Kuss and Rasmussen, 2006).
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lllustration of the clutter problem
for a data space dimensionality of
D = 1. Training data points, de-
noted by the crosses, are drawn
from a mixture of two Gaussians
with components shown in red
and green. The goal is to infer the
mean of the green Gaussian from
the observed data.

10.7.1 Example: The clutter problem

Following Minka (2001b), we illustrate the EP algorithm using a simple exam-
ple in which the goal is to infer the mean @ of a multivariate Gaussian distribution
over a variable x given a set of observations drawn from that distribution. To make
the problem more interesting, the observations are embedded in background clutter,
which itself is also Gaussian distributed, as illustrated in Figure 10.15. The distribu-
tion of observed values x is therefore a mixture of Gaussians, which we take to be
of the form

p(x]0) = (1 — w)N(x]6,I) + wN (x]0, al) (10.209)

where w is the proportion of background clutter and is assumed to be known. The
prior over @ is taken to be Gaussian

p(@) = N(0]0,0I) (10.210)
and Minka (2001a) chooses the parameter values ¢ = 10, b = 100 and w = 0.5.
The joint distribution of N observations D = {x1,...,xx} and @ is given by
N
p(D,8) = p(6) | [ p(x.10) (10.211)
n=1

and so the posterior distribution comprises a mixture of 2" Gaussians. Thus the
computational cost of solving this problem exactly would grow exponentially with
the size of the data set, and so an exact solution is intractable for moderately large
N.

To apply EP to the clutter problem, we first identify the factors fo(8) = p(0)
and f,,(0) = p(x,|@). Next we select an approximating distribution from the expo-
nential family, and for this example it is convenient to choose a spherical Gaussian

q(8) = N'(8|m, o). (10.212)
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Exercise 10.37

Exercise 10.38

Exercise 10.39

The factor approximations will therefore take the form of exponential-quadratic
functions of the form

10(68) = s, N(0m,,, v,1) (10.213)

where n = 1,..., N, and we set f(8) equal to the prior p(@). Note that the use of
N (8|, -) does not imply that the right-hand side is a well-defined Gaussian density
(in fact, as we shall see, the variance parameter v,, can be negative) but is simply a
convenient shorthand notation. The approximations f,, (@), forn = 1,..., N, can
be initialized to unity, corresponding to s, = (27w, )P /2 v, — oo and m,, = 0,
where D is the dimensionality of x and hence of 8. The initial ¢(@), defined by
(10.191), is therefore equal to the prior.

We then iteratively refine the factors by taking one factor f,, (@) at a time and
applying (10.205), (10.206), and (10.207). Note that we do not need to revise the
term f(@) because an EP update will leave this term unchanged. Here we state the
results and leave the reader to fill in the details.

First we remove the current estimate f,, (@) from ¢(8) by division using (10.205)
to give ¢\" (@), which has mean and inverse variance given by

m\” = m+0\"; (m—-m,) (10.214)
W\t = ot —pr (10.215)

n

Next we evaluate the normalization constant Z,, using (10.206) to give
Zn = (1 —w)N (x,/m\", (0\" + DI) + wN (x,]0, al). (10.216)

Similarly, we compute the mean and variance of ¢"*" (@) by finding the mean and
variance of ¢\"(8) f,,(8) to give

\n
m = m\"+ p"v\z 1 (%, — m\") (10.217)
\n)2 \n\2 _ \n |2
where the quantity
pn=1— Zﬂmxnm,al) (10.219)

has a simple interpretation as the probability of the point x,, not being clutter. Then
we use (10.207) to compute the refined factor f,, (@) whose parameters are given by

vt = (V)T = (v\) ! (10.220)
m, = m"+ (v, +0")(0\"")"H(m™ —m\") (10.221)
Sp = Zn (10.222)

(270,) P/2N (my [m\?, (v, + 0\?)I)

This refinement process is repeated until a suitable termination criterion is satisfied,
for instance that the maximum change in parameter values resulting from a complete
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Figure 10.16 Examples of the approximation of specific factors for a one-dimensional version of the clutter
problem, showing f,.(#) in blue, f,.(9) in red, and ¢'\" (¢) in green. Notice that the current form for ¢\" () controls
the range of & over which f,, (6) will be a good approximation to f,(8).

pass through all factors is less than some threshold. Finally, we use (10.208) to
evaluate the approximation to the model evidence, given by

N
p(D) = (2mv™") P2 exp(B/2) [ | {sn(2mvn) P72} (10.223)
n=1
where N
(mncw )T mncw mT m,
B=—+-— n . 10.224
. ; - ( )

Examples factor approximations for the clutter problem with a one-dimensional pa-
rameter space 6 are shown in Figure 10.16. Note that the factor approximations can
have infinite or even negative values for the ‘variance’ parameter v,,. This simply
corresponds to approximations that curve upwards instead of downwards and are not
necessarily problematic provided the overall approximate posterior ¢(€) has posi-
tive variance. Figure 10.17 compares the performance of EP with variational Bayes
(mean field theory) and the Laplace approximation on the clutter problem.

10.7.2 Expectation propagation on graphs

So far in our general discussion of EP, we have allowed the factors f;(@) in the
distribution p(@) to be functions of all of the components of @, and similarly for the

approximating factors f (@) in the approximating distribution ¢(@). We now consider
situations in which the factors depend only on subsets of the variables. Such restric-
tions can be conveniently expressed using the framework of probabilistic graphical
models, as discussed in Chapter 8. Here we use a factor graph representation because
this encompasses both directed and undirected graphs.
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Figure 10.17 Comparison of expectation propagation, variational inference, and the Laplace approximation on
the clutter problem. The left-hand plot shows the error in the predicted posterior mean versus the number of
floating point operations, and the right-hand plot shows the corresponding results for the model evidence.

We shall focus on the case in which the approximating distribution is fully fac-
torized, and we shall show that in this case expectation propagation reduces to loopy
belief propagation (Minka, 2001a). To start with, we show this in the context of a
simple example, and then we shall explore the general case.

First of all, recall from (10.17) that if we minimize the Kullback-Leibler diver-
gence KL(pl||¢) with respect to a factorized distribution ¢, then the optimal solution
for each factor is simply the corresponding marginal of p.

Now consider the factor graph shown on the left in Figure 10.18, which was

Section 8.4.4 introduced earlier in the context of the sum-product algorithm. The joint distribution
is given by
p(x) = fa(w1,22) fi (2, 23) fe(T2, 24). (10.225)

We seek an approximation ¢(x) that has the same factorization, so that

(%)  fa(r, 22) fo2, 23) fola, 24). (10.226)

Note that normalization constants have been omitted, and these can be re-instated at
the end by local normalization, as is generally done in belief propagation. Now sup-
pose we restrict attention to approximations in which the factors themselves factorize
with respect to the individual variables so that

q(x) o ?m (M)?az (@)?bz (@)?bs (iFs)}Ecz ($2>?c4($4> (10.227)

which corresponds to the factor graph shown on the right in Figure 10.18. Because
the individual factors are factorized, the overall distribution ¢(x) is itself fully fac-
torized.

Now we apply the EP algorithm using the fully factorized approximation. Sup-
pose that we have initialized all of the factors and that we choose to refine factor
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Figure 10.18 On the left is a simple factor graph from Figure 8.51 and reproduced here for convenience. On
the right is the corresponding factorized approximation.

?b(xz, x3) = Foe (.ﬁL’Q)}Ebg (z3). We first remove this factor from the approximating
distribution to give

¢\P(%) = fur (21) faz (22) fea () fea(24) (10.228)

and we then multiply this by the exact factor fi(x2, x3) to give

IA7(X) = q\b(x)fb(l”%if?,) = ?al(xl)?a2($2>?c2($2>?c4($4>fb<$27333)- (10.229)

We now find ¢"°"(x) by minimizing the Kullback-Leibler divergence KL(p||¢"*").
The result, as noted above, is that ¢"°¥(z) comprises the product of factors, one for
each variable z;, in which each factor is given by the corresponding marginal of
P(x). These four marginals are given by

Bla) o far(z1) (10.230)
B(r2) o far(22) fea(2) Y fola, 3) (10.231)
plas) o Z{fb(:cz,:cg)?az(u)?cz)(:cz)} (10.232)
Plaa) o foa(a) (10.233)

and ¢"°V(x) is obtained by multiplying these marginals together. We see that the
only factors in ¢(x) that change when we update fy (22, 23) are those that involve
the variables in f; namely x; and x3. To obtain the refined factor ?b(l'Q,.ﬁEg) =
Foa(2) fos (x3) we simply divide ¢"°% (x) by ¢\b(x), which gives

Fra(z2) o D fula,xs) (10.234)

Foa(s) o Z{fb(:cz,:cs)?az(:cz)?cz(:@)}. (10.235)

T2
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Section 8.4.4

These are precisely the messages obtained using belief propagation in which mes-
sages from variable nodes to factor nodes have been folded into the messages from

factor nodes to variable nodes. In particular, ?bg(l’g) corresponds to the message
U f,—z, (z2) sent by factor node fj, to variable node x» and is given by (8.81). Simi-

larly, if we substitute (8.78) into (8.79), we obtain (10.235) in which ?(L2<£IJ2> corre-
sponds to fif, .z, (x2) and feo(x2) corresponds to fif, ., (x2), giving the message
fv3(x3) which corresponds to fif, .z, (23).

This result differs slightly from standard belief propagation in that messages are

passed in both directions at the same time. We can easily modify the EP procedure
to give the standard form of the sum-product algorithm by updating just one of the

factors at a time, for instance if we refine only fy3(z3), then fyo(x2) is unchanged

by definition, while the refined version of fy3(x3) is again given by (10.235). If
we are refining only one term at a time, then we can choose the order in which the
refinements are done as we wish. In particular, for a tree-structured graph we can
follow a two-pass update scheme, corresponding to the standard belief propagation
schedule, which will result in exact inference of the variable and factor marginals.
The initialization of the approximation factors in this case is unimportant.

Now let us consider a general factor graph corresponding to the distribution

0) = H () (10.236)

where 8, represents the subset of variables associated with factor f;. We approximate
this using a fully factorized distribution of the form

0) o [ [ Fin(0s) (10.237)
ik

where 6}, corresponds to an individual variable node. Suppose that we wish to refine
the particular term f;;(6;) keeping all other terms fixed. We first remove the term

?j(é’j) from ¢(8) to give
70) oc [T T Fir(0r) (10.238)
i#j k
and then multiply by the exact factor f;(8;). To determine the refined term fﬂ(ﬁl)

we need only consider the functional dependence on 6, and so we simply find the
corresponding marginal of

aV(9)1;(0). (10.239)
Up to a multiplicative constant, this involves taking the marginal of f;(8;) multiplied
by any terms from ¢\’ (@) that are functions of any of the variables in 0. Terms that

correspond to other factors f;(0;) for i # j will cancel between numerator and
denominator when we subsequently divide by ¢\’ (@). We therefore obtain

Fu@) o< > FHO) T TT Fiom(Om) (10.240)

Om£1€0; k m#l
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We recognize this as the sum-product rule in the form in which messages from vari-
able nodes to factor nodes have been eliminated, as illustrated by the example shown
in Figure 8.50. The quantity f;,,(6,,) corresponds to the message jif; g, (0m),
which factor node j sends to variable node m, and the product over % in (10.240)
is over all factors that depend on the variables ¢, that have variables (other than
variable #;) in common with factor f;(€;). In other words, to compute the outgoing
message from a factor node, we take the product of all the incoming messages from
other factor nodes, multiply by the local factor, and then marginalize.

Thus, the sum-product algorithm arises as a special case of expectation propa-
gation if we use an approximating distribution that is fully factorized. This suggests
that more flexible approximating distributions, corresponding to partially discon-
nected graphs, could be used to achieve higher accuracy. Another generalization is
to group factors f;(8;) together into sets and to refine all the factors in a set together
at each iteration. Both of these approaches can lead to improvements in accuracy
(Minka, 2001b). In general, the problem of choosing the best combination of group-
ing and disconnection is an open research issue.

We have seen that variational message passing and expectation propagation op-
timize two different forms of the Kullback-Leibler divergence. Minka (2005) has
shown that a broad range of message passing algorithms can be derived from a com-
mon framework involving minimization of members of the alpha family of diver-
gences, given by (10.19). These include variational message passing, loopy belief
propagation, and expectation propagation, as well as a range of other algorithms,
which we do not have space to discuss here, such as tree-reweighted message pass-
ing (Wainwright et al., 2005), fractional belief propagation (Wiegerinck and Heskes,
2003), and power EP (Minka, 2004).

Exercises

10.1

10.2

10.3

10.4

(o) I Verify that the log marginal distribution of the observed data In p(X)
can be decomposed into two terms in the form (10.2) where £(q) is given by (10.3)
and KL(q/||p) is given by (10.4).

(x) Use the properties E[z1] = m; and E[z5] = ms to solve the simultaneous equa-
tions (10.13) and (10.15), and hence show that, provided the original distribution
p(z) is nonsingular, the unique solution for the means of the factors in the approxi-
mation distribution is given by E[z1] = p1 and E[25] = po.

(x%) m Consider a factorized variational distribution ¢(Z) of the form (10.5).
By using the technique of Lagrange multipliers, verify that minimization of the
Kullback-Leibler divergence KL(pl||q) with respect to one of the factors ¢;(Z;),
keeping all other factors fixed, leads to the solution (10.17).

(x*) Suppose that p(x) is some fixed distribution and that we wish to approximate
it using a Gaussian distribution ¢(x) = N (x|u, X). By writing down the form of
the KL divergence KL(p||q) for a Gaussian ¢(x) and then differentiating, show that



