
Nonstandard Set Theories andInformation ManagementVAROL AKMANakman@troy.cs.bilkent.edu.trDepartment of Computer Engineering and Information Science, Bilkent University, Bilkent,Ankara 06533, TurkeyM�UJDAT PAKKANpakkan@trboun.bitnetDepartment of Computer Engineering, Bosphorus University, Bebek, Istanbul 80815, TurkeyAbstract. The merits of set theory as a foundational tool in mathematics stimulate its use invarious areas of arti�cial intelligence, in particular intelligent information systems. In this paper, astudy of various nonstandard treatments of set theory from this perspective is o�ered. Applicationsof these alternative set theories to information or knowledge management are surveyed.Keywords: set theory, knowledge representation, information management, commonsense rea-soning, nonwellfounded sets (hypersets)1. IntroductionSet theory is a branch of modern mathematics with a unique place because various otherbranches can be formally de�ned within it. For example, Book 1 of the in
uential works ofN. Bourbaki is devoted to the theory of sets and provides the framework for the remainingvolumes. Bourbaki said in 1949 (Goldblatt, 1984) 1:\[A]ll mathematical theories may be regarded as extensions of the generaltheory of sets : : : [O]n these foundations I can state that I can build up thewhole of the mathematics of the present day."This brings up the possibility of using set theory in foundational studies in AI. Mc-Carthy (1983, 1984) has emphasized the need for fundamental research in AI and claimedthat AI needs mathematical and logical theory involving conceptual innovations. In anopening address (McCarthy, 1985), he stressed the feasibility of using set theory in AI be-cause there is considerable beauty, economy, and naturalness in using sets for informationmodeling and knowledge representation.In this paper, we �rst give a brief review of \classical" set theory. We avoid the technicaldetails|which the reader can �nd in texts like (Halmos, 1974), (Fraenkel et al., 1973), and(Suppes, 1972)|and instead focus on the underlying concepts. While we assume little orno technical background in set theory per se, we hope that the reader is interested in theapplications of this formal theory to the problems of intelligent information management.We then consider the alternative set theories which have been proposed to overcome thelimitations of the standard theory. Finally, we survey various \nonstandard" treatmentsof set theory, each innovating di�erent aspects such as urelements, cumulative hierarchy,self-reference, cardinality, well-orderings, and so on. It is shown that such treatments|which are all very recent and sometimes esoteric|are quite useful to the IIS community,1



for there are assorted technical problems in information management (e.g., commonsensereasoning, terminological logics, etc.) that may pro�t from such nonstandard approaches.2. Early developments in set theoryG. Cantor's work on the theory of in�nite series should be considered as the foundationof the research in set theory. In Cantor's conception, a set is a collection into a whole ofde�nite, distinct objects of our perception or our thought (the elements of the set). Thisproperty of de�niteness implies that given a set and an object, it is possible to determineif the object is a member of that set. In other words, a set is completely determined byits members.In the initial stages of his research, Cantor did not work from axioms. However, all ofhis theorems can be derived from three axioms: Extensionality which states that two setsare identical if they have the same members, Abstraction which states that for any givenproperty there is a set whose members are just those entities having that property, andChoice which states that if b is a set, all of whose elements are nonempty sets no two ofwhich have any elements in common, then there is a set c which has precisely one elementin common with each element of b.The theory was soon threatened by the introduction of some paradoxes which led toits evolution. In 1902, B. Russell found a contradiction in G. Frege's foundational systemwhich was developed on Cantor's naive conception (van Heijenhoort, 1967). This contra-diction could be derived from the Axiom of Abstraction|Axiom V in Frege's system|byconsidering \the set of all things which have the property of not being members of them-selves." This property can be denoted as :(x 2 x) (or simply x 62 x) in the language of�rst order logic. The Axiom of Abstraction itself can be formulated as8x9y[x 2 y $ '(x)];where '(x) is a formula in which y is free. In the case of Russell's Paradox '(x) = x 62 xand we have: 8x9y[x 2 y $ x 62 x]. Substituting y for x, we reach the contradictiony 2 y $ y 62 y.Another antinomy occurred with the \set of all sets," V = fx : x = xg. The well-known Cantor's Theorem states that the power set of V has a greater cardinality than Vitself. This is paradoxical since V by de�nition is the most inclusive set. This is the so-called Cantor's Paradox and led to discussions on the size of comprehensible sets. Strictlyspeaking, it was Frege's foundational system that was overthrown by Russell's Paradox,not Cantor's naive set theory. The latter came to grief precisely because of the preceding\limitation of size" constraint. Later, J. von Neumann would clarify this problem as follows(Goldblatt, 1984): \Some predicates have extensions that are too large to be successfullyencompassed as a whole and treated as a mathematical object."Paradoxes of the preceding sort were instrumental in new axiomatizations of the settheory and in alternate approaches. However, it is believed that axiomatic set theorywould still have evolved in the absence of paradoxes because of the continuous search forfoundational principles.2.1. Alternate axiomatizationsThe new axiomatizations took a common step for overcoming the de�ciencies of the naiveapproach by introducing classes . NBG, which was proposed by von Neumann (1925) and2



later revised and simpli�ed by P. Bernays (1937) and G�odel (1940), was the most popularof these. In NBG, there are three primitive notions: set, class, and membership. Classesare considered as totalities corresponding to some, but not necessarily all, properties. Theclassical paradoxes are avoided by recognizing two types of classes: sets and proper classes.A class is a set if it is a member of some class. Otherwise, it is a proper class. Russell'sParadox is avoided by showing that the class Y = fx : x 62 xg is a proper class, not a set.V is also considered as a proper class. The axioms of NBG are simply chosen with respectto the limitation of size constraint.Other approaches against the de�ciencies of the naive approach alternatively playedwith its language and are generally dubbed type-theoretical . Russell and Whitehead'sTheory of Types is the earliest and most popular of these (Whitehead & Russell, 1910).In this theory, a hierarchy of types is established to forbid circularity and hence avoidparadoxes. For this purpose, the universe is divided into types, starting with a collectionM of individuals . The elements of M are of type 0. Sets whose members are of type 0are said to be of type 1, sets whose elements are of type 1 are said to be of type 2, and soon. The membership relation is de�ned between sets of di�erent types, e.g., xn 2 yn+1.Therefore, x 62 x is not even a valid formula in this theory and Russell's Paradox is triviallyavoided.Similar to the Theory of Types is Quine's New Foundations (NF) which he invented toovercome some unpleasant aspects of the former (Quine, 1937). NF uses only one kind ofvariable and a binary predicate letter 2 for membership. A notion called strati�cation isintroduced to maintain the hierarchy of types 2. In NF, Russell's Paradox is avoided as inthe Theory of Types, since the problematic w� is not strati�ed.2.2. ZF set theoryZermelo-Fraenkel (ZF) is the earliest axiomatic system in set theory. The �rst axiomati-zation was by E. Zermelo (1908). A. A. Fraenkel (1922) observed a weakness of Zermelo'ssystem and proposed a way to overcome it. His proposal was reformulated by T. Skolem(1922) by introducing a new axiom. ZF is carried out in a language which includes setsas objects and 2 for membership. Equality is de�ned externally by the Axiom of Ex-tensionality which states that two sets are equal if and only if (i�) they have the sameelements.ZF's essential feature is the cumulative hierarchy it proposes (Parsons, 1977). Theintention is to build up mathematics by starting with ; and then construct further sets in astepwise manner by various de�ned operators. Hence there are no individuals (urelements)in the universe of this theory. The cumulative hierarchy works as follows (Tiles, 1989).The Null Set Axiom guarantees that there is a set with no elements, i.e., ;. This is theonly set whose existence is explicitly stated. The Pair Set Axiom states the existence of aset which has a member when the only existing set is ;. So the set f;g can now be formednow and we have two objects ; and f;g. The application of the axiom repetitively yieldsany �nite number of sets, each with only one or two elements. It is the Sum Set Axiomwhich states the existence of sets containing any �nite number of elements by de�ning theunion of already existing sets. Thus S ff;; f;gg; ff;; f;gggg= f;; f;g; f;; f;ggg. Howeverit should be noted that all these sets will be �nite because only �nitely many sets can beformed by applying Pair Set and Sum Set �nitely many times. It is the Axiom of In�nitywhich states the existence of at least one in�nite set, from which other in�nite sets can beformed. The set which the axiom asserts to exist is f;; f;g; f;; f;gg; f;; f;g; f;; f;ggg; : : :g.3



Figure 1: The cumulative hierarchyThe cumulative hierarchy is depicted in Figure 1. Thus, the ZF universe simply startswith the ; and extends to in�nity. It can be noticed that cumulative hierarchy producesall �nite sets and many in�nite ones, but it does not produce all in�nite sets (e.g., V).While the �rst �ve axioms of ZF are quite obvious, the Axiom of Foundation cannotbe considered so. The axiom states that every set has elements which are minimal withrespect to membership, i.e., no in�nite set can contain an in�nite sequence of members: : : 2 x3 2 x2 2 x1 2 x0. In�nite sets can only contain sets which are formed by a �nitenumber of iterations of set formation. Hence this axiom forbids the formation of setswhich require an in�nity of iterations of an operation to form sets. It also forbids setswhich are members of themselves, i.e., circular sets. Russell's Paradox is avoided sincethe problematic set x = fxg cannot be shown to exist 3. The Axiom of Separation makesit possible to collect together all the sets belonging to a set whose existence has alreadybeen guaranteed by the previous axioms and which satisfy a property ':8x9u[x 2 u$ x 2 v & '(x)]:The axiom does not allow to simply collect all the things satisfying a given meaningfuldescription together into a set, as assumed by Cantor. It only gives permission to formsubsets of a set whose existence is already guaranteed. It also forbids the universe of setsto be considered as a set, hence avoiding the Cantor's Paradox of the set of all sets. TheAxiom of Replacement is a stronger version of the Axiom of Separation. It allows the useof functions for the formation of sets but still has the restriction of the original Axiom ofSeparation. It should be noted that these two axioms are in fact not single axioms butaxiom schemes . Therefore, ZF is not �nitely axiomatizable 4.The Power Axiom states the existence of the set of all subsets of a previously de�nedset. The formal de�nition of the power operation, P , is P (x) = fy : y � xg. The PowerAxiom is an important axiom, because Cantor's notion of an in�nite number was inspiredby showing that for any set, the cardinality of its power set must be greater than itscardinality.The Axiom of Choice is not considered as a basic axiom and is explicitly stated whenused in a proof. ZF with the Axiom of Choice is known as ZFC.It should be noted that the informal notion of cumulative hierarchy summarized abovehas a formal treatment. The class WF of wellfounded sets is de�ned recursively in ZFstarting with ; and iterating the power set operation P where a rank function R(�) isde�ned for � 2 Ord, the class of all ordinals 5:� R(0) = ;, 4
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2Figure 2: The WF universe in terms of ordinals� R(�+ 1) = P (R(�)),� R(�) = S�<�R(�) when � is a limit ordinal,� WF = SfR(�) : � 2 Ordg.The WF universe is depicted in Figure 2 which bears a resemblance to Figure 1. This isjusti�ed by the common acceptance of the statement that the universe of ZF is equivalentto the universe of WF.ZF and NBG produce essentially equivalent set theories, since it can be shown thatNBG is a conservative extension of ZF, i.e., for any sentence ', if ZF j= ', then NBGj= '. The main di�erence between the two is that NBG is �nitely axiomatizable, whereasZF is not. Still, most of the current research in set theory is being carried out in ZF.Nevertheless, ZF has its own drawbacks (Barwise, 1975). While the cumulative hierarchyprovides a precise formulation of many mathematical concepts, it may be asked whetherit is limiting, in the sense that it might be omitting some interesting sets one would liketo have around, e.g., circular sets. Clearly, the theory is weak in applications involvingself-reference because circular sets are prohibited by the Axiom of Foundation.Strangely enough, ZF is too strong in some ways. Important di�erences on the na-ture of the sets de�ned in it are occasionally lost. For example, being a prime numberbetween 6 and 12 is a di�erent property than being a solution to x2 � 18x+ 77 = 0, butthis distinction disappears in ZF. Besides, the Principle of Parsimony , which states thatsimple facts should have simple proofs, is quite often violated in ZF (Barwise, 1975). Forexample, veri�cation of a trivial fact like the existence in ZF of a�b, the set of all orderedpairs hx; yi such that x 2 a and y 2 b, relies on the Power Set Axiom 6.3. Alternate approaches3.1. Admissible setsAdmissible sets are formalized in a �rst order set theory called Kripke-Platek (KP). Bar-wise weakened KP by readmitting the urelements and called the resulting system KPU(Barwise, 1975). Urelements are the objects (or individuals) with no elements, i.e., theycan occur on the left of 2, but not on the right. They are not considered in ZF because ZF5
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MFigure 3: The universe of admissible setsis strong enough to live without them. But since KPU is a weak version of KP, Barwisedecided to include them.KPU is formulated in a �rst order language L with equality and 2. It has six axioms.The axioms of Extensionality and Foundation are about the basic nature of sets. Theaxioms Pair , Union, and �0-Separation 7 treat the principles of set construction. These�ve axioms can be taken as corresponding to ZF axioms of the same interpretation. Theimportant axiom of �0-Collection assures that there are enough stages in the (hierarchical)construction process.The universe of admissible sets over an arbitrary collection M of urelements is de�nedrecursively:� VM(0) = ;,� VM(�+ 1) = P (M [ VM(�)),� VM(�) = S�<� VM(�), if � is a limit ordinal,� VM = S� VM(�).This universe is depicted in Figure 3, adapted from Barwise (1977). It should be noticedthat the KPU universe is like the ZF universe (excluding the existence of urelements), sinceit supports the same idea of cumulative hierarchy.If M is a structure 8 for L, then an admissible set over M is a model UM of KPU ofthe form UM = (M ;A;2), where A is a nonempty set of nonurelements and 2 is de�nedin M �A. A pure admissible set is an admissible set with no urelements, i.e., it is a modelof KP.KPU is an elegant theory which supports the concept of cumulative hierarchy and re-spects the principle of parsimony. (The latter claim will be proved in the sequel.) But itstill cannot deal with self-reference because of its hierarchical nature.3.2. HypersetsIt was D. Mirimano� (1917) who �rst stated the fundamental di�erence between well-founded and nonwellfounded sets. He called sets with no in�nite descending membershipsequence wellfounded and others nonwellfounded. Nonwellfounded sets have been exten-sively studied through decades, but did not show up in notable applications until Aczel(1988). This is probably due to the fact that the classical wellfounded universe was arather satisfying domain for the practicing mathematician|\the mathematician in thestreet" (Barwise, 1985). Aczel's work on nonwellfounded sets evolved from his interest in6
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Figure 4: a = fb; fc; dgg in hyperset notation
ΩFigure 5: The Aczel picture of 
modeling concurrent processes. He adopted the graph representation for sets to use in histheory. A set a = fb; fc; dgg can be unambiguously depicted as in Figure 4 in this repre-sentation (Aczel, 1988), where an arrow from a node x to a node y denotes the membershiprelation between x and y (i.e., x 2 y).A set (pictured by a graph) is called wellfounded if it has no in�nite paths or cycles,and nonwellfounded otherwise. Aczel's Anti-Foundation Axiom (AFA) states that everygraph, wellfounded or not, pictures a unique set. Removing the Axiom of Foundation (FA)from the ZFC and adding the AFA results in the Hyperset Theory or ZFC�/AFA. (ZFCwithout the FA is denoted as ZFC�.) What is advantageous with the new theory is thatsince graphs of arbitrary form are allowed, including the ones containing proper cycles,one can represent self-referring sets (Barwise, 1992). For example, the graph in Figure 5is the picture of the unique set 
 = f
g.The picture of a set can be unfolded into a tree picture of the same set. The tree whosenodes are the �nite paths of the apg 9 which start from the point of the apg, whose edgesare pairs of paths hn0 �! � � � �! n ; n0 �! � � � �! n �! n0i, and whose root is thepath n0 of length one is called the unfolding of that apg. The unfolding of an apg alwayspictures any set pictured by that apg. Unfolding the apg in Figure 5 results in an in�nitetree, analogous to 
 = fff� � �ggg.According to Aczel's conception, for two sets to be di�erent, there should be a genuinestructural di�erence between them. Therefore, all of the three graphs in Figure 6 depictthe unique nonwellfounded set 
.Aczel develops his own Extensionality concept by introducing the notion of bisimula-7
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universeFigure 7: The AFA universetion. A bisimulation between two apg's, G1 with point p1 and G2 with point p2, is arelation R � G1 �G2 satisfying the following conditions:1. p1Rp22. if nRm then� for every edge n �! n0 of G1, there exists an edge m �! m0 of G2 such thatn0Rm0� for every edge m �! m0 of G2, there exists an edge n �! n0 of G1 such thatn0Rm0Two apg's G1 and G2 are said to be bisimilar , if a bisimulation exists between them;this means that they picture the same sets. It can be concluded that a set is completelydetermined by any graph which pictures it 10.The AFA universe can be depicted as in Figure 7, extending around the wellfoundeduniverse, because it includes the nonwellfounded sets which are not covered by the latter.3.2.1. Equations in the AFA universe. Aczel's theory includes another importantuseful feature: equations in the universe of Hypersets.Let VA be the universe of hypersets with atoms from a given set A and let VA0 be theuniverse of hypersets with atoms from another given set A0 such that A � A0 and X isde�ned as A0 � A. The elements of X can be considered as indeterminates ranging overthe universe VA. The sets which can contain atoms from X in their construction are calledX-sets . A system of equations is a set of equationsfx = ax : x 2 X ^ ax is anX-set g8



for each x 2 X . For example, choosing X = fx; y; zg and A = fC;Mg (thus A0 =fx; y; z;C;Mg), consider the system of equationsx = fC; yg;y = fC; zg;z = fM; xg:A solution to a system of equations is a family of pure sets bx (sets which can have onlysets but no atoms as elements), one for each x 2 X , such that for each x 2 X , bx = �ax.Here, � is a substitution operation (de�ned below) and �a is the pure set obtained from aby substituting bx for each occurrence of an atom x in the construction of a.The Substitution Lemma states that for each family of pure sets bx, there exists a uniqueoperation � which assigns a pure set �a to each X-set a, viz.�a = f�b : b is anX-set such that b 2 ag [ f�x : x 2 a \Xg:The Solution Lemma can now be stated (Barwise & Moss, 1991) 11. If ax is an X-set,then the system of equations x = ax has a unique solution, i.e., a unique family of puresets bx such that for each x 2 X , bx = �ax.This lemma can be stated somewhat di�erently (Pakkan, 1993). Letting X again bethe set of indeterminates, g a function from X to P (X), and h a function from X to A,there exists a unique function f for all x 2 X such thatf(x) = ff(y) : y 2 g(x)g [ h(x):Obviously, g(x) is the set of indeterminates and h(x) is the set of atoms in each X-set axof an equation x = ax. In the above example, g(x) = fyg, g(y) = fzg, g(z) = fxg, andh(x) = fCg, h(y) = fCg, h(z) = fMg, and one can compute the solutionf(x) = fC; fC; fM; xggg;f(y) = fC; fM; fC; yggg;f(z) = fM; fC; fC; zggg:As another example due to (Barwise & Etchemendy, 1987), it may be veri�ed that thesystem of equations x = fC;M; yg;y = fM;xg;z = fx; yg:has a unique solution in the universe of Hypersets depicted in Figure 8 with x = a, y = b,and z = c.This technique of solving equations in the universe of hypersets can be useful in model-ing information which can be cast in the form of equations (Akman & Pakkan, 1993), e.g.,situation theory (Barwise & Perry, 1983), databases, etc. since it allows us to assert theexistence of some graphs (the solutions of the equations) without having to depict themwith graphs. We now give an example from databases.3.2.2. AFA and relational databases. Relational databases embody data in tabularforms and show how certain objects stand in certain relations to other objects. As an9
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FatherOf 3

MotherOf 3

BrotherOf 1

SizeOf 4

SizeOfFigure 10: The SizeOf relation for the preceding databaseexample adapted from (Barwise, 1990), the database in Figure 9 includes three binaryrelations: FatherOf, MotherOf, and BrotherOf. A database model is a function M withdomain some set Rel of binary relation symbols such that for each relation symbol R 2 Rel,RM is a �nite binary relation that holds in model M .If one wants to add a new relation symbol SizeOf to this database, then Rel0 = Rel [fSizeOfg. A database model M for Rel0 is correct if the relation SizeOfM contains allpairs hR; ni where R 2 Rel and n = jRj, the cardinality of R. Such a relation can be seenin Figure 10. It may appear that every database for Rel can be extended in a unique wayto a correct database for Rel0. Unfortunately, this is not so.Assuming the FA, it can be shown that there are no correct database models. Be-cause if M is correct, then the relation SizeOf stands in relation SizeOf to n, denoted bySizeOf SizeOf n. But this is not true in ZFC because otherwise hSizeOf; ni 2 SizeOf.If Hyperset Theory is used as the meta-theory instead of ZFC in modeling suchdatabases, then the solution of the equationx = fhRM ; jRM ji : R 2 Relg [ fhx; jRelj+ 1ig(which can be found by applying the Solution Lemma) is the desired SizeOf relation.4. Commonsense set theoryIf we want to design arti�cial systems which will work in the real world, they must have agood knowledge of that world and be able to make inferences out of their knowledge. Thecommon knowledge which is possessed by any child and the methods of making inferencesfrom this knowledge are known as common sense. Any intelligent task requires it to somedegree and designing programs with common sense is one of the most important problemsin AI. McCarthy (1959) claims that the �rst task in the construction of a general intelligentprogram is to de�ne a naive commonsense view of the world precisely enough, but alsoadds that this is a very di�cult thing. He states that \a program has common sense ifit automatically deduces for itself a su�ciently wide class of immediate consequences ofanything it is told and what it already knows."It appears that in commonsense reasoning a concept can be considered as an indivis-ible unit, or as composed of other parts, as in mathematics. Relationships, again as inmathematics, can also be represented with sets. For example, the notion of \society" canbe considered to be a relationship between a set of people, rules, customs, traditions, etc.What is problematic here is that commonsense ideas do not have very precise de�nitionssince the real world is too imprecise. For example, consider the de�nition of \society"(adapted from Webster's Ninth New Collegiate Dictionary):11



\Society gives people having common traditions, institutions, and collectiveactivities and interests a choice to come together to give support to and besupported by each other and continue their existence."It should be noted that the notions \tradition," \institution," and \existence" alsoappear to be as complex as the de�nition itself. So this de�nition should probably betterbe left to the experience of the reader with all these complex entities.Nevertheless, whether or not a set theoretical de�nition is given, sets are useful forconceptualizing commonsense terms. For example, we may want to consider the set of\traditions" disjoint from the set of \laws" (one can quickly imagine two separate circlesof a Venn diagram). We may not have a wellformed formula (w�) which de�nes eitherof these sets. Such a formation process of collecting entities for further thought is stillimportant and simply corresponds to the set formation process of formal set theories, i.e.,the comprehension principle.Having decided to investigate the use of sets in commonsense reasoning, we have toconcentrate on the properties of such a theory. Instead of directly checking if certainset-theoretic technicalities have a place in our theory, we �rst look from the commonsensereasoning point of view and examine the set-theoretic principles which cannot be excludedfrom such reasoning.4.1. Desirable propertiesWe �rst begin with the general principles of set formation. The �rst choice is whetherto allow urelements. This seems like the right thing to do because in a naive sense, aset is a collection of individuals satisfying a property. This is what exactly correspondsto the unrestricted Comprehension Axiom of Cantor. However, we have seen that thisleads to Russell's Paradox in ZF. The problem arises when we use a set whose completionis not over yet in the formation of another set, or even in its own formation. Then weare led to the question when the collection of all individuals satisfying an expression canbe considered an individual itself. Since we are talking about the individuals as entitiesformed out of previously formed entities, the notion of cumulative hierarchy immediatelycomes to mind.The cumulative hierarchy is one of the most common construction mechanisms of ourintuition and is supported by many existing theories, viz. ZF and KPU. It can be illus-trated by the hierarchical construct in Figure 11, where we have bricks as individuals, andmake towers out of bricks, and then make walls out of towers, and so on (Perlis, 1988).In the cumulative hierarchy, any set formed at some stage must be consisting of the ure-lements (if included in the theory) and the sets which have been formed at some previousstage (Shoen�eld, 1977) (but not necessarily at the preceding stage, as in Russell's TypeTheory).At this point, the problem of sets which can be members of themselves arises, sincesuch sets are used in their own formation. Circularity is obviously a common means ofcommonsense knowledge representation. For example, nonpro�t organizations are sets ofindividuals and the set of all nonpro�t organizations is also a set; all these are expressiblein the cumulative hierarchy. But what if the set of all nonpro�t organizations wants tobe a member of itself, since it also is a nonpro�t organization? This is not an unexpectedevent (Figure 12) because this umbrella organization may bene�t from having the statusof a nonpro�t organization (e.g., tax exemption, etc.) (Perlis, 1988).12
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Thus we conclude that a possible commonsense set theory should also allow circularsets. This is an important issue in representation of meta-knowledge and is addressed in(Feferman, 1984) and (Perlis, 1985). In these references, a method which rei�es|createsa syntactic term from a predicate expression|a w� into a name for the w� asserting thatthe name has strong relationship with the formula, is presented. In this way, any set ofw� are matched with a set of names of w�, thereby allowing self-reference by the use ofnames. In (Feferman, 1984), the need for type-free (admitting instances of self-application)frameworks for semantics is especially emphasized. However, such formalizations whichalso capture the cumulative hierarchy principle are not very common. Among theoriesrevised so far, Aczel's theory is the only one which allows circularity. By proposing hisAnti-Foundation Axiom, Aczel overrode the FA of ZF which prohibits circular sets, butpreserved the hierarchical nature of the original axiomatization.4.2. Applications4.2.1. Situations for knowledge representation. Situations are parts of the realitythat can enter into relations with other parts (Barwise & Perry, 1983). Their internalstructures are sets of facts and hence they can be modeled by sets. There has been aconsiderable deal of work on this especially by Barwise himself (Barwise, 1989a). Heused his Admissible Set Theory (Barwise, 1975) as the principal mathematical tool inthe beginning. However, in the handling of circular situations, he was confronted withproblems and then discovered that Aczel's theory could be a solution (Barwise, 1989c).Circular situations are common in our daily life. For example consider the situation inwhich we utter the statement \This is a boring situation." While we are referring to asituation, say s, by saying \this situation," our utterance is also a part of that situation.As another example, one sometimes hears radio announcements concluding with \Thisannouncement will not be repeated." If announcements are assumed to be situations,then this one surely contains itself.Barwise de�ned the operation M (to model situations with sets) taking values in hy-persets and satisfying 12:� if b is not a situation or state of a�airs, then M(b) = b,� if � = hR; a; ii, then M(�) = hR; b; ii (which is called a state model), where b is afunction on the domain of a satisfying b(x) =M(a(x)),� if s is a situation, then M(s) = fM(�) : s j= �g.Using this operation, Barwise proves that there is no largest situation (correspondingto the absence of a universal set in ZF).We also see a treatment of self-reference in (Barwise & Etchemendy, 1987), where theauthors concentrate on the concept of truth. In this study, two conceptions of truth areexamined, primarily on the basis of the notorious Liar Paradox 13. The authors make useof Aczel's theory for this purpose. A statement like \This sentence is not expressible inEnglish in ten words" would be represented in Aczel's theory as in Figure 13 (adaptedfrom (Barwise & Etchemendy, 1987)), where hE; p; ii denotes that the proposition p hasthe property E if i = 1, and it does not have it if i = 0 (which is the case in Figure 13 ifwe take E to be the property of \being expressible in English in ten words").14
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0Figure 13: The Aczel picture of \This sentence is not expressible in English in ten words"4.2.2. Common knowledge (mutual information). Two card players P1 and P2are given some cards such that each gets an ace. Thus, both P1 and P2 know that thefollowing is a fact: � : Either P1 or P2 has an ace.When asked whether they knew if the other one had an ace or not, they both wouldanswer \no." If they are told that at least one of them has an ace and asked the abovequestion again, �rst they both would answer \no." But upon hearing P1 answer \no," P2would know that P1 has an ace. Because, if P1 does not know P2 has an ace, having heardthat at least one of them does, it can only be because P1 has an ace. Obviously, P1 wouldreason the same way, too. So, they would conclude that each has an ace. Therefore,being told that at least one of them has an ace must have added some information tothe situation. How can being told a fact that each of them already knew increase theirinformation? This is known as Conway's Paradox . The solution relies on the fact thatinitially � was known by each of them, but it was not common knowledge. Only after itbecame common knowledge, it gave more information (Barwise, 1989d).Hence, common knowledge can be viewed as iterated knowledge of � of the followingform: P1 knows �, P2 knows �, P1 knows P2 knows �, P2 knows P1 knows �, and soon. This iteration can be represented by an in�nite sequence of facts (where K is therelation \knows" and s is the situation in which the above game takes place, hence � 2 s):hK;P1; si, hK;P2; si, hK;P1; hK;P2; sii, hK;P2; hK;P1; sii, : : : However, considering thesystem of equations x = fhK;P1; yi; hK;P2; yig;y = s [ fhK;P1; yi; hK;P2; yig;the Solution Lemma asserts the existence of the unique sets s0 ands [ s0 satisfying these15



Figure 14: Finite cardinality without well-orderingequations, respectively, wheres0 = fhK;P1; s[ s0i; hK;P2; s[ s0ig:Then, the fact that s is common knowledge can more e�ectively be represented by s0which contains just two infons and is circular.4.2.3. Possible membership. One further aspect to be considered is \possible" mem-bership which might have many applications, mainly in language oriented problems. Thisconcept can be handled by introducing partial functions|functions which might not havecorresponding values for some of their arguments. A commonsense set theory may behelpful in providing representations for dynamic aspects of language by making use ofpartiality. For example, partiality has applications in modality (the part of linguisticswhich deals with modal sentences, i.e., sentences of necessity and possibility), dynamicprocessing of syntactic information, and situation semantics (Mislove et al., 1990).We had mentioned above that situations can be modeled by sets. Consider a situations in which you have to guess the name of a boy, viz.s j= The boy's name is Jon or the boy's name is John.This situation can be modeled by a set of two states of a�airs. The problem here is thatneither assertion about the name of the boy can be assured on the basis of s (because of thedisjunction). A solution to this problem is to represent this situation as a partial set , onewith two \possible" members. In this case s still supports the disjunction above but doesnot have to support either speci�c assertion. Another notion called clari�cation, which isa kind of general information-theoretic ordering, helps determine the real members amongpossible ones. If there exists another situation s0, where s0 j= The boy's name is Jon, thens0 is called a clari�cation of s.4.2.4. Cardinality and well-ordering. Imagine a box of 16 black and 10 white balls(Figure 14). We know that there are 26 balls in the box, or formally, the cardinality ofthe set of balls in the box is 26. After shaking the box, we would say that that the ballsin the box are not ordered any more, or again formally, the set of the balls does not havea well-ordering. This, however, is not true in classical set theory, because a set with �nitecardinality must have a well-ordering (Zadrozny, 1989).While the formal principles of counting are precise enough for mathematics, we canobserve that people also use other quanti�ers like \many" or \more than half" for countingpurposes in daily speech. For example, if asked about the number of balls in the box inFigure 14, one might have simply answered \Many balls!" So, at least in principle, di�erent16



counting methods can be developed for commonsense reasoning. It is natural to expect,for example, that a system which can represent a statement like \A group of kids areshouting" should probably decline to answer questions such as \Who is the �rst one?"(Zadrozny, 1989).We also expect our theory to obey the parsimony principle. This is a very naturalexpectation from a commonsense set theory. We have observed that the proof of the ex-istence of a simple fact like the Cartesian product of two sets a � b, required the use ofthe Power Axiom in ZF 6. The set obtained in this manner just consists of pairs formedof one element of the set a and one element of the set b. To prove this, the strong PowerAxiom should not be necessary. We observe this in KPU set theory where the proof isobtained via de�nitions and simple axioms 14 (Barwise, 1975).5. Applications of nonstandard theories in IISCowen (1993) showed, in a landmark paper, that researchers in both set theory and com-puter science are studying similar objects: graphs, conjunctive normal forms, set systems,etc. and their interrelations. The moral is, he believes, advances in one area can thenoften be of use in the other. Gilmore (1993) provides evidence, within the framework of hisNaDSet theory, that the absolute character of ZF or NBG set theories is not easy to sup-port, cf. his remark: \The ad hoc character of the axioms of Zermelo-Fraenkel set theoryand the equivalent class-set theory of G�odel-Bernays naturally leads to skepticism abouttheir fundamental role in mathematics." Set theory has also been the subject of researchin automated theorem proving. Brown (1978) gave a deductive system for elementary settheory which is based on truth-value preserving transformations. Quaife (1992) presenteda new clausal version of NBG, comparing it with the one given in (Boyer et al., 1986),and claimed that automated development of set theory could be improved. We will nowreview some essential research e�orts, by Perlis, Zadrozny, Mislove et al., Dionne et al.,Barwise, and Yasukawa and Yokota.5.1. Perlis's workPerlis's approach was to develop a series of theories towards a complete commonsense settheory (Perlis, 1988). He �rst proposed an axiom scheme of set formation for a naive settheory which he named CST0:9y8x[x 2 y $ �(x) & Ind(x)]:Here � is any formula and Ind is a predicate symbol with the intended extension \indi-viduals." However, Ind can sometimes be critically rich, i.e., if � is the same with Inditself, then y may be too large to be an individual. (This is the case of Cantor's Axiomof Abstraction.) Therefore, a theory for a hierarchical extension for Ind is required. Tosupport the cumulative hierarchy, Perlis extended this theory to a new one called CST1using the so-called Ackermann's Scheme:HC(y1)& : : :&HC(yn) & 8x[�(x)! HC(x)]! 9z[HC(z) & 8x[x 2 z $ �(x)]]Here HC(x) can be interpreted as \x can be built up as a collection from previouslyobtained entities." CST1 is consistent with respect to ZF. Unfortunately, it cannot dealwith self-referring sets. 17



Perlis �nally proposed CST2 which is a synthesis of the universal re
ection theory ofGilmore-Kripke (Gilmore, 1974), which forms entities regardless of their origins and self-referential aspects. GK set theory has the following axiom scheme where each w� �(x)has a rei�cation [�(x)] with variables free as in � and distinguished variable xy 2 [�(x)]$ ��(y)where y does not appear in � 15. There is also a de�nitional equivalence (denoted by �)axiom: w � z $ 8x(x 2 w$ x 2 z):GK is consistent with respect to ZF (Perlis, 1985). Perlis then proposed the followingaxioms to augment GK: (Ext1) x � y $ ext x = ext y(Ext2) x � ext x(Ext3) x 2 HC ! 9y(x = ext y)(Aext) y1; : : : ; yn 2 HC& 8x(�x! x 2 HC)! ext[�] 2 HC& 8x(x 2 [�]$ �(x))These axioms provide extensional constructions, i.e., collections determined only bytheir members. Thus, while GK provides the representation of circularity, these axiomssupport the cumulative construction mechanism. This theory can deal with problems likenonpro�t organization membership described earlier (Perlis, 1988).5.2. Zadrozny's workZadrozny does not believe in a \super theory" of commonsense reasoning about sets, butrather in commonsense theories involving di�erent aspects of sets. He thinks that these canbe separately modeled in an existing set theory. In particular, he proposed a representationscheme based on Barwise's KPU for cardinality functions, hence distinguishing reasoningabout well-orderings from reasoning about cardinalities and avoiding the box problemmentioned earlier (Zadrozny, 1989).Zadrozny interprets sets as directed graphs and does not assume the FA. A graph inhis conception is a triple hV; SE;Ei where V is a set of vertices, SE is a set of edges, andE is a function from a subset of SE into V � V . It is assumed that x 2 y i� there existsan edge between x and y. He de�nes the edges corresponding to the members of a set asEM(s) = fe 2 ES : 9v[E(e) = (v; s)]g:In classical set theory, the cardinality of a �nite set s is a one-to-one function froma natural number n onto a set, i.e., a function from a number onto the nodes of thegraph of the set. However, Zadrozny de�nes the cardinality function as a one-to-one orderpreserving mapping from the edges EM(s) of a set s into the numerals Nums (an entityof numerals which is linked with sets by existence of a counting routine denoted by #, andwhich can take values like 1; 2; 3; 4, or 1; 2; 3; about-�ve, or 1; 2; 3;many). The last elementof the range of the function is the cardinality. The representation of the four element setk = fa; b; fx; yg; dg with three atoms and one two-atom set is shown in Figure 15, adaptedfrom (Zadrozny, 1989). The cardinality of the set is about{�ve, i.e., the last elementof Nums which is the range of the mapping function from the edges of the set. (Thecardinality might well be 4 if Nums was de�ned as 1; 2; 3; 4.) Zadrozny then proves two18
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c Figure 15: One-to-one order preservationimportant theorems in which he shows that there exists a set x with n elements which doesnot have a well-ordering and there exists a well-ordering of type n, i.e., with n elements,the elements of which do not form a set.More recent work of Zadrozny treating di�erent aspects of computational mereologyvis-�a-vis set theory can be found in (Zadrozny & Kim, 1993). In this work, it is shownthat it is possible to write formal speci�cations for the process of indexing or retrievingmultimedia objects using set theory and mereology. Mereology is understood as a theoryof parts and wholes, viz. it tries to axiomatize the properties of the relation PartOf. Thepaper argues that both set theory and mereology have speci�c roles to play in the theoryof multimedia, for they both provide us with a language to address multimedia objects,albeit with complementary roles: the former is used to index, the latter to describe knowl-edge about indexes. This observation leads to a simple formalism regarding the storageand retrieval of multimedia material.5.3. Mislove et al.'s workMislove, Moss, and Oles (1990, 1991) developed a partial set theory, ZFAP, based onprotosets , which is a generalization of HF|the set of wellfounded hereditarily �nite sets16. A protoset is like a wellfounded set except that it has some kind of packaging which canhide some of its elements. There exists a protoset ? which is empty except for packaging.From a �nite collection x1; : : : ; xn, one can construct the clear protoset fx1; : : : ; xng whichhas no packaging, and the murky protoset [x1; : : : ; xn] which has some elements, but alsopackaging. For example, a murky set like [2; 3] contains 2 and 3 as elements, but it mightcontain other elements, too. We say that x is clari�ed by y, x v y, if one can obtain yfrom x by taking some packaging inside x and replacing this by other protosets.Partial set theory has a �rst order language L with three relation symbols, 2 (for ac-tual membership), 2� (for possible membership), and set (for set existence). The theoryconsists of two axioms and ZFAset, the relativization of all axioms of ZFA (ZF + Aczel'sAFA) to the relation set. The two axioms are (i) Pict, which states that every partial sethas a picture, a set G which is a partial set graph (corresponding to the accessible pointedgraph of Aczel) and such that there is a decoration d of G with the root decorated as x,19



and (ii) PSA, which states that every such G has a unique decoration. Partial set theoryZFAP is the set of all these axioms. ZFAP is a conservative extension of ZFA.5.4. Dionne et al.'s workDionne, Mays, and Oles (1992) propose a new approach to intensional semantics of termsubsumption languages. Their work is inspired by the research of Woods (1991) whosuggested that a more intensional view of concept descriptions should be taken. In general,most of the work in semantics of term subsumption languages adopts an extensional view.Thus, concepts are interpreted as sets of objects from some universe. Roles of conceptsare interpreted as binary relations over the universe. Concept descriptions are complexpredicates and one inquires whether a given instance satis�es a complex predicate.Dionne et al. consider a small subset of K-REP, a KL-ONE style of language (Brach-man & Schmolze, 1985). They o�er a general discussion of cycles, viz. how they arise, andhow they are handled in K-REP. The restricted language they use allows simple concepts,concepts formed by conjunctions, and roles of concepts whose value restrictions are otherconcepts. In their vision, a knowledge base is a set of possibly mutually recursive equa-tions, involving terms of this concept language. Essential use is made of Aczel's theoryof nonwellfounded sets, especially the bisimulation relation. A so-called concept algebrais developed as a new approach to semantics of term subsumption languages. It is shownthat for the above subset of K-REP, these algebras accurately model the process of sub-sumption testing|even in the presence of cycles. Concept algebras also allow for multiplede�nitions, i.e., concepts with di�erent names that semantically stand for the same con-cept.5.5. Barwise's workBarwise (1989b) attempted to propose a set theory, Situated Set Theory , not just for usein AI, but for general use. He mentioned the problems caused by the common view of settheory with a universal set V, but at the same time trying to treat this universe as anextensional whole, looking from outside (which he names \unsituated set theory"). Hisproposal is a hierarchy of universes V0 � V1 � V2 � : : : which allows for a universe ofa lower level to be considered as an object of a universe of a higher level. He leaves theaxioms which these universes have to satisfy to one's conception of set, be it cumulativeor circular. There are no paradoxes in this view since there is always a larger universe onecan step back and work in. Therefore, the notions of \set," \proper class," and the set-theoretic notions \ordinal," \cardinal" are all context sensitive, depending on the universeone is currently working in. This proposal supports the Re
ection Principle which statesthat for any given description of the sets of all sets V, there will always be a partialuniverse satisfying that description.Barwise (1989c) also studied the modeling of partial information and again exploitedHyperset Theory for this purpose. For this purpose, he used the objects of the universeVA of hypersets over a set A of atoms to model nonparametric objects, i.e., objects withcomplete information and the set X of indeterminates to represent parametric objects,i.e., objects with partial information. (The universe of hypersets on A [X is denoted asVA[X ], analogous to the adjunction of indeterminates in algebra.)20



object[ref=`Akman et al. (1993)']/[date=1993/4/24,kind=paper,authors={`V. Akman', `M. Pakkan', `M. Surav'},title=`Lectures in Commonsense Set Theory',journal=`Proc. Natl. Acad. Sci. Utopia',volume=78,pages=405-409,year=1993].Figure 16: An object in QUIXOT EFor any object a 2 VA[X ], Barwise calls the setpar (a) = fx 2 X : x 2 TC(a)g;where TC(a) denotes the transitive closure of a, the set of parameters of a. If a 2 VA,then par (a) = ; since a does not have any parameters. Barwise then de�nes an anchoras a function f with domain(f) � X and range(f) � VA � A which assigns sets toindeterminates. For any a 2 VA[X ] and anchor f , a(f) is the object obtained by replacingeach indeterminate x 2 par (a)\ domain(f) by the set f(x) in a. This is accomplished bysolving the resulting equations by the Solution Lemma.Parametric anchors can also be de�ned as functions from a subset of X into VA[X ] toassign parametric objects, not just sets, to indeterminates. For example, if a(x) is a para-metric object representing partial information about some nonparametric object a 2 VAand if one does not know the value to which x is to be anchored, but knows that it is ofthe form b(y) (another parametric object), then anchoring x to b(y) results in the objecta(b(y)) which does not give the ultimate object perhaps, but is at least more informativeabout its structure.5.6. Yasukawa and Yokota's workYokota and Yasukawa (1992) proposed a knowledge representation language, calledQUIXOT E for deductive and object-oriented databases. In QUIXOT E , an ob-ject consists of an identi�er (oid) and properties, each attribute of which is a triplehlabel; operator; valuei.In (Yasukawa & Yokota, 1991), a partial semantics for the semantics of objects inQUIXOT E is given. This work is along the lines of (Dionne et al., 1992) and will now besummarized. Consider Figure 16 where the left hand side of \/" is an oid and the righthand side is the related properties. An object consists of an oid and its properties, andcan be written as a set of attribute terms with the same oid as follows:o=[l1 = a; l2 = b]() o=[l1 = a]; o=[l2 = b]An oid can be de�ned intensionally by a set of rules as follows (note the Prolog-like style):path[from = X; to = Y ]( arc[from = X; to = Y ]21



path[from = X; to = Y ]( arc[from = X; to = Z]; path[from = Z; to = Y ]Here, path[from = X; to = Y ] is transitively de�ned from a set of facts such asarc[from = a; to = b], etc., and the oid is generated by instantiating X and Y as aresult of the execution of the program. This guarantees that an object has a unique oideven if it is generated in di�erent environments. Furthermore, circular paths can be de-�ned: X@o[l = X ]() X jfX = o[l = X ]g. This denotes that a variable X is an oid withthe constraint X = o[[l = X ]. The semantics of oids is de�ned on a set of labeled graphsas a subclass of hypersets. Thus, an oid is mapped to a labeled graph and an attributeis related to a function on a set of labeled graphs. Since the metatheory is ZFC�/AFA,all of the familiar set-theoretic techniques to deal with circular phenomena are brought tobear.6. ConclusionSet theory can be useful in intelligent information management. The methodology maychange, of course. A universal set theory, answering many technical questions in infor-mation management, can be developed by means of proposing new axioms or modifyingexisting ones. Alternatively and more conservatively, di�erent set-theoretic concepts maybe examined and modi�ed based on existing set theories. No matter what proposal isfollowed, we believe that further research in this �eld should be to the advantage of theIIS community.AcknowledgmentsWe would like to thank an anonymous referee of the Journal of Intelligent InformationSystems for critical comments which were crucial in revising the original manuscript. LarryKerschberg and Maria Zemankova, two of the Editors-in-Chief of JIIS , were extremely kindand accommodating when we �rst submitted the paper. We are also indebted to WlodekZadrozny (IBM T. J. Watson Research Center) for moral support and technical advice.As usual, we are solely responsible for this �nal version.The �rst author's research is supported in part by the Scienti�c and Technical ResearchCouncil of Turkey under grant no. TBAG{992.
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Notes1. On the other hand, another great mathematicianof this century, R. Thom, said in 1971: \Theold hope of Bourbaki, to see mathematical structures arise naturally from a hierarchy of sets,from their subsets, and from their combination, is doubtless, only an illusion" (Goldblatt,1984).2. A w� w is said to be strati�ed if integers are assigned to the variables of w such that alloccurrences of the same free variable are assigned the same integer, all bound occurrencesof a variable that are bound by the same quanti�er are assigned the same integer, and forevery subformula x 2 y, the integer assigned to y is equal to the integer assigned to x+ 1.For example, (x 2 y) & (z 2 x) is strati�ed as (x1 2 y2) & (z0 2 x1).3. Let us recall Russell's Paradox. We let r be the set whose members are all sets x such thatx is not a member of x. Then for every set x, x 2 r i� x 62 x. Substituting r for x, weobtained the contradiction.The explanation is not di�cult. When we are forming a set z by choosing its members, wedo not yet have the object z, and hence cannot use it as a member of z. The same reasoningshows that certain other sets cannot be members of z. For example, suppose that z 2 y.Then we cannot form y until we have formed z. Hence y is not available and therefore cannotbe a member of z. Carrying this analysis a bit further, we arrive at the following. Sets areformed in \stages." For each stage S, there are certain stages which are before S.Stages are important because they enable us to form sets. Suppose that x is a collection ofsets and � is a collection of stages such that each member of x is formed at a stage which isa member of �. If there is a stage after all of the members of �, then we can form x at thisstage. Now the question becomes: Given a collection � of stages, is there a stage after allof the members of �? We would like to have an a�rmative answer to this question. Still,the answer cannot always be \yes"; if � is the collection of all stages, then there is no stageafter every stage in �.4. A theory T (any set of formulas closed under implication, i.e., for any ', if T j= ', then' 2 T ) is �nitely axiomatizable i� there is a �nite T 0 � T such that for every  in T , T 0 j=  .5. A linear ordering < of a set a is a well-ordering if every nonempty subset of a has a leastelement. Informally, an ordered set is said to be well-ordered if the set itself, and all itsnonempty subsets have a �rst element under the order prescribed for its elements by thatset. An ordinal number stands for an order type which is represented by well-ordered sets.First, call a set a transitive if 8x(x 2 a ! x � a). Then, a set is an ordinal number (orordinal) if it is transitive and well-ordered by 2. It should be noted that in case of �nite sets,the notions of cardinal number and ordinal number are the same. The class of all ordinalnumbers is denoted by Ord. The relationship < between two ordinals � and �, � < �, isde�ned i� � 2 �. If � = � + 1, then � is called a successor ordinal ; else it is a limit ordinal .The Axiom of In�nity guarantees the existence of limit ordinals other than 0. In fact, !, theset of natural numbers, is the next limit ordinal (Figure 2).6. We have to prove the theorem9c8x[x 2 c$ 9y9z(y 2 a& z 2 b& x = hy; zi)]to show that the Cartesian product set exists. The main point of the proof is that if x = hy; zi,and if y 2 a and z 2 b, then x 2 P (P (a[ b)). Then, by the Axiom of Separation,9c8x[x 2 c$ x 2 P (P (a[ b)) & 9y9z(y 2 a& z 2 b& x = hy; zi)]: (1)The theorem to be proved is equivalent to (1) without the statement x 2 P (P (a[ b)). Thenwe must show that the equivalence in (1) still holds when that statement is eliminated.Given (1), it follows that x 2 c (2)23



implies 9y9z[y 2 a& z 2 b& x = hy; zi]: (3)To prove the converse implication, we must show that (3) implies x 2 P (P (a [ b)), sinceit is obvious by (1) that (3) implies (2). By (3) and the de�nition of ordered pairs x =ffyg; fy; zgg, and by the hypotheses y 2 a and z 2 b, we have:fyg � fa[ bg and fy; zg � fa [ bg:Then by the following theorem (which can be proved by the Power Axiom):b 2 P (a)$ b � a; (4)we conclude: fyg 2 P (a [ b) and fy; zg 2 P (a [ b):Thus, ffyg; fy; zgg � P (a[ b), i.e., x � P (a[ b), and again by (4), we have x 2 P (P (a[ b)).7. The collection of �0 formulas of a language L is the smallest collection � containing theatomic formulas of L and inductively de�ned as:(a) If ' in in �, then :' is also in �.(b) If ';  are in �, then (' ^  ) and (' _  ) are also in �.(c) If ' is in �, then 8u 2 v ' and 9u 2 v ' are also in � for all variables u and v.8. A structure for a �rst order language L is a pair hM; Ii, where M is a nonempty set calledthe domain of the structure and I is an interpretation function assigning functions andpredicates over M to the symbols in L.9. Aczel uses tagged graphs to represent sets, i.e., each childless node in the graph is taggedby an atom or ;. A pointed graph is a tagged graph with a speci�c node n0 called itspoint . A pointed graph is accessible (denoted as apg) if for every node n there is a pathn0 �! n1 �! � � � �! n. A decoration of a graph is a function D(n) for each node n, de�nedas: D(n) = � tag(n); if n has no children,fD(m) : m is a child of ng; otherwise.A picture of a set is an apg which has a decoration in which the set is assigned to the point.10. The uniqueness property of AFA leads to an intriguing concept of extensionality for hy-persets. The classical extensionality paradigm, that sets are equal i� they have the samemembers, works �ne with wellfounded sets. However, this is not of use in deciding the equal-ity of say, a = f1; ag and b = f1; bg because it just asserts that a = b i� a = b, a triviality(Barwise & Etchemendy, 1987). However, in the universe of hypersets, a is indeed equal to bsince they are depicted by the same graph. To see this, consider a graph G and a decorationD assigning a to a node x of G, i.e., D(x) = a. Now consider the decoration D0 exactlythe same as D except that D0(x) = b. D0 must also be a decoration for G. But by theuniqueness property of AFA, D = D0, so D(x) = D0(x), and therefore a = b.11. The Solution Lemma is an elegant result, but not every system of equations has a solution.First of all, the equations have to be in the form suitable for the Solution Lemma. Forexample, the pair x = fy; zg;y = f1; xg;24



cannot be solved since it requires the solution to be stated in terms of the indeterminate z.As another example, the equation x = P (x) cannot be solved because Cantor has proved (inZFC�) that there is no set which contains its own power set|no matter what axioms areadded to ZFC�.12. A state of a�air (a.k.a. infon) hR; a; ii is a triple where R is an n-ary relation, a is anappropriate assignment of objects, and i is the polarity, 1 if there is at least one instance ofR holding of a, and 0 otherwise. By a state of a�air, a state that a�airs may or may notbe in is meant. When i = 1, that state of a�air is called a fact and the polarity is usuallyomitted. For example, the state of a�air hsleeping; Tom; gardeni is a fact if Tom is sleepingin the garden.13. According to the Liar Paradox (also known as the Epimenides Paradox ), Epimenides, theCretan, said \All Cretans are liars." Now this statement cannot be true since this wouldmake Epimenides a liar, leading to the falsity of his statement. The statement cannot befalse either, since this would imply that Cretans are not liars, hence what Epimenides saysshould be true, leading to a contradiction.14. The predicate of a; b; u, which is de�ned as \u is an ordered pair hy; zi with y 2 a and z 2 b"in KPU, is �0. Hence, �0-Separation can be used once it is known that there exists a setc with hy; zi 2 c for all y 2 a and z 2 b. This follows from �0-Collection as follows. Giveny 2 b, there exists a set d = hy; zi. So, by �0-Collection, there exists a set wy such thathy; zi 2 wy for all z 2 b. Applying �0-Collection again, we have:8y 2 a 9w 8z 2 b 9d 2 w (d = hy; zi)so there is a c1 such that for all y 2 a, z 2 b, hy; zi 2 w for some w 2 c1. Thus, if c = S c1,then hy; zi 2 c for all y 2 a and z 2 b.15. The � is the notation for �rst writing all! symbols in terms of & and :, then passing nega-tions in � through to predicate letters, and �nally replacing each occurrence of a subformula:x 2 [y] in the result by x 2 [:y].16. The transitive closure of a set, denoted by TC(a), is de�ned by recursion as follows:� S0a = a,� Sn+1a = S(Sna),� TC(a) = SfSna : n = 1; 2; : : :g.Hence, TC(a) = a [ S a [ S2a : : : For any in�nite cardinal m, the set H(m) is de�ned asH(m) = fx : jTC(x)j < mg. The elements of H(m) are said to be hereditarily of cardinalityless than m. fH(n) : n = 1; 2; : : :g is the set of hereditarily �nite sets. Hence, every elementof a hereditary set is a hereditary set.
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