
Parallel Tangent Methods with Variable Stepsize
Y.G Petalas, M.N Vrahatis

Department of Mathematics, University of Patras,
University of Patras Artificial Intelligence Research Center (UPAIRC),

GR 26110 Patras, Greece
E-mail: {petalas,vrahatis}@math.upatras.gr

Abstract— The most widely used algorithm for training Mul-
tilayer Feedforward Neural Networks is Backpropagation. Back-
propagation is an iterative gradient descent algorithm. Since its
appearance various methods which modify the conventional BP
have been created to improve its efficiency. One such algorithm
which uses an adaptive learning rate is backpropagation with
variable stepsize, proposed in [3]. Parallel Tangent methods are
used in global optimization to modify and improve the simple
gradient descent algorithm by using from time to time the
difference between the current point and the point before two
steps as a search direction, instead of using the gradient. In this
study, we investigate the combination of the BPVS method with
the Parallel Tangent approach for neural network training. We
perform experimental results on well–known test problems to
evaluate the efficiency of the method.

I. INTRODUCTION

The Backpropagation (BP) training algorithm is an iterative
gradient descent algorithm designed to minimize the mean
squared error between the actual output of a feedforward
neural network (FNN) and the desired output. It searches on
the error surface along the direction of the gradient in order
to minimize the error function of the network. Standard BP is
slow in practice because it gets easily trapped in local minima.
Numeral variations of BP have been proposed to improve the
performance of the conventional algorithm. These methods
usually include a variable learning rate or add a multiple of
the previous weight update to form the new search direction.

Backpropagation with Variable Stepsize (BPVS) [3] is a
BP variant that uses a variable learning rate. BPVS uses
a variable learning rate based on the Armijo line search
technique [1]. Following the approach of BPVS we propose
two new methods for neural network training which are based
on the Parallel Tangent methods, and the Armijo line search
technique.

In Section II we give background material relating to the
adaptation of the stepsize. In Section III we describe the
proposed method. Section IV is devoted to the presentation
of the experimental results, and finally, the paper ends in
Section V with concluding remarks.

II. BACKGROUND MATERIAL

There are two basic theorems due to Armijo [1] that
underpin the learning rate adaptation scheme proposed in
BPVS. The first theorem which guarantees the convergence
of the method is stated immediately below.

Theorem 1: (Armijo, 1966) If 0 < ρ 6 0.25K−1 then
for any w ∈ S(w0) the set S∗(w, ρ) = {wλ : wλ =
w−λ∇E(w), λ > 0, E(wλ)−E(w) 6 −ρ‖∇E(w)‖2} is
a non-empty set of S(w0) and any sequence of weight vectors
{wk}∞

k=0
such that wk+1 ∈ S∗(wk, ρ), k = 0, 1, 2, . . .

converges to the point w∗ which minimizes E.
The optimal value of the stepsize λ depends on the shape

of the error function and can be obtained by the value of the
Lipschitz constant K. So the weight update equation becomes:

wk+1 = wk − 0.5K−1∇E(wk), k = 0, 1, 2, . . .

The second theorem gives a procedure to tune the stepsize.

Theorem 2: (Armijo 1966) Suppose that η0 is an arbitrary
assigned positive number and consider the sequence ηm =
η02

1−m, m = 1, 2, Then the sequence of weight vectors
{wk}∞

k=0
defined by

wk+1 = wk − ηmk
∇E(wk), k = 0, 1, 2, . . .

where mk is the smallest positive integer for which:

E(wk−ηmk
∇E(wk))−E(wk) 6 −0.5ηmk

‖∇E(wk)‖2, (1)

converges to the point w∗ which minimizes the error function
E.

The application of the second theorem is a useful stepsize
adaptation procedure which has been shown to be sufficient
to yield an improvement over the BP algorithm with a fixed
stepsize [3]. To fine–tune the size of the learning rate, the
Lipschitz constant Lk is locally approximated through the
following equation:

Lk =
‖∇E(wk) −∇E(wk−1)‖

‖wk − wk−1‖
, (2)

where w is the vector of weights and E the network error
function. After computing the Lipschitz the second theorem
due to Armijo can be applied to adjust the learning rate. If the
stepsize 0.5L−1

k
is very long and successive steps in weight

space do not satisfy Eq. (1), the stepsize adaptation procedure
of Theorem 2 is used to prevent subsequent weight updates
from overshooting the minimum of the error surface. On the
other hand, if the stepsize 0.5L−1

k
is smaller than a specific

lower bound, BPVS increases it to accelerate convergence.
If the stepsize is smaller than the desired accuracy, it is not
possible to reach the solution rapidly, except in situations
where equation Eq. (1) is not satisfied. A simple adaptation

mechanism to increase the stepsize is to double it. Now, since
BPVS satisfies Eq. (1), it converges to a minimizer of E.

In [6], [12] an alternative Armijo stepsize adaptation proce-
dure is proposed which can be applied to any descent direction
φk. This procedure uses two parameters (a, b) ∈ (0, 1) and
can be implemented in two versions depending on the input
value of the parameter s. The steps of the algorithm are the
following,

1. Input {f ;x0; (a, b) ∈ (0, 1); s ∈ {0, 1};m∗ ∈
Z;MIT ; ε}.

2. Set k = 0.
3. If ‖∇f(x)‖ 6 ε go to step 6. Else compute a descent

direction φk.
4. if s = 0 set M∗ = {m ∈ Z|m > m∗} and compute the

step size
(a) λk = βmk = arg maxm∈M∗{βm|f(xk + βmφk) −

f(xk) 6 βma〈∇f(xk), φk〉}.
Else compute the stepsize λk = βmk ,where mk ∈ Z

is an integer such that
(b) f(xk + βmkφk) − f(xk) 6 βmka〈∇f(xk), φk〉
(c) f(xk + βmk−1φk)− f(xk) > βmk−1a〈∇f(xk), φk〉

5. Set xk+1 = xk + λkφk. If k < MIT k = k + 1 and go
to step 3; otherwise go to step 6.

6. Output [xk, f(xk)]

The selection s = 0 is typically used for Newton–like
algorithms. For first order algorithms the best choice is s = 1.
If the objective function is bounded from below the following
subprocedure can be used to find a mk satisfying the relations
(b) and (c) of step 4 of the above procedure.

The stepsize subprocedure
1. If k = 0 , set m′ = m∗ else set m′ = mk−1

2. if mk = m′ satisfies relations (b) and (c) from step 4
stop.

3. if mk = m′ satisfies (b) and not (c) set m′ = m′−1 and
go to step 2.

4. if mk = m′ satisfies (c) and not (b) set m′ = m′ +1 and
go to step 2.

The above approach is useful when the standard Armijo line
search algorithm requires many iterations to tune the stepsize.

III. PROPOSED METHOD

The Parallel Tangent method [2], [5], [8], [9], [10] is
used to speed up the convergence of the steepest descent
method. Instead of always taking the steepest descent direc-
tion, −∇F (xi), the method suggests using

Si = xi − xi−2, i > 2 (3)

occasionally. This modification was suggested in [2]. An
extension of the previous idea was suggested in [9]. According
to the latter method the search directions are taken alternatively
as the steepest descent direction and the direction given by
Eq. (3). The resulting method is called a gradient based
Parallel Tangent (PARTAN) method. The algorithm of this
method can be described as follows,

(i) Start with an initial point x1.
(ii) Search for the minimum along the direction S1 =

−∇f(x1) and set the new point as

x2 = x1 + λ∗

1S1,

(iii) Search along the direction S2 = −∇f(x2) and obtain the
new point x3.

(iv) Find the next search direction as

S3 = (x3 − x1),

and obtain the point x4.
(v) Take the new search direction as

Si =

{

−∇f(xi) for i = 4, 6, 8, . . . , 2k,

(xi − xi−2) for i = 5, 7, 9, . . . , 2k − 1,

and find the new point as

xi+1 = xi + λ∗

i
Si,

where λ∗

i
is the optimal step length in the direction Si.

The proposed scheme, which is named PARTANVS, com-
bines the above elements to produce a neural network training
method. PARTANVS uses the adaptive learning rate employed
by BPVS when the gradient of the error function is used as
a search direction. This way we can reduce the computational
effort for the training of the neural network.

The basic steps of our method are described immediately
below.

1. Initialize the number of epochs to k = 1, the weights to
random values, the stepsize to an arbitrary real value η1

the stopping criterion (SC), the stepsize γ used in step 2
and a stepsize lower bound (SLB), L1 = 1, t = 1.

2. If k is odd and k > 2 update the weights using the
equation

wk+1 = wk + γ(wk − wk−2),

and go to step 8 else go to step 3.
3. Compute the gradient vector of the error function ∇E(w)

as in the conventional BP algorithm.
4. Compute the local approximation Lk of the Lipschitz

constant using Eq. (2) and set η = 0.5L−1

k
. If ηk > SLB

go to step 5; otherwise set tk = tk + 1, ηk = ηk2tk−1

and go to step 5.
5. If Eq. (1) holds, then set mk = 1, and go to step 7;

otherwise set mk = mk + 1, tk = 1 and go to step 6.
6. Set ηk = η12

1−mk and return to step 5.
7. Update weights according to:

wk+1 = wk − ηk∇E(wk)

8. If E(wk+1) > SC set k = k + 1 and go to step 2;
otherwise the procedure is terminated.

IV. EXPERIMENTAL RESULTS

The performance of the proposed method has been com-
pared with well–known and widely used variations of the
Backpropagation (BP) method, namely: Backpropagation with
Momentum (MBP) [3], [4], Second Order Momentum (SMBP)
and Adaptive Backpropagation (ABP) using the adaptive
scheme suggested by Vogl [3], [11], PARTAN, BPVS, PAR-
TANVS and PARTANVS2. PARTANVS uses for the γ pa-
rameter of the proposed algorithm a fixed value, while PAR-
TANVS2 uses the learning rate parameter η of the algorithm
multiplied by a constant value c, such that the parameter
γ = cη is in the interval (0, 1).

A. Description of the Problems

The problems we used were Cancer1, Diabetes1, and
Heart1. All three are classification problems from the
proben1 [7] dataset with fixed training and test sets.

Cancer1: The architecture used was 9–4–2–2. The stopping
error criterion for training was an error goal of 0.05 within
1000 function (also counting gradient) evaluations. In the
experiments the best results for the methods were given with
the following parameters: For BP the step–size was set to 0.9,
for PARTAN it was 0.9, for MBP and SMBP the step–size
was 0.9 and the momentum term was 0.9. For ABP, the error
ratio factor was 1.04, the stepsize increment factor was equal
to 1.05 while the stepsize decrease factor was 0.5. The initial
learning rate for BPVS, PARTANVS, and PARTANVS2 was
12.0. The parameter γ for PARTANVS (Section III) was 0.9.

Diabetes1: The architecture used was a 8–2–2–2 feedfor-
ward neural network. The stopping error criterion for training
was an error goal of 0.15 within 1000 function (also counting
gradient) evaluations. In the experiments the best results for
the methods were given with the following parameters: For
BP the step–size was 0.9, for PARTAN it was 0.9, for MBP
the step–size was 0.9 and the momentum term 0.9, for SMBP
the stepsize was 0.9 while the momentum was 0.9. For ABP,
the error ratio factor was 1.04, the step–size increment factor
was equal to 1.05 while the step–size decrease factor was 0.7.
The initial learning rate for BPVS and PARTANVS was 12.0.
The parameter γ mentioned in the algorithm in Section III was
0.9.

Heart1: The architecture used was a 35–8–2 feedforward
neural network. The stopping error criterion for training was an
error goal of 0.1 within 1000 function (also counting gradient)
evaluations. The parameter configuration for the previous two
problems was also applied in this case. In the experiments the
best results for the methods were given with the following
parameters: For BP the step–size was 0.9, for PARTAN it was
0.9. For MBP the step–size was 0.9 and the momentum term
was 0.9. For SMBP the step–size was 0.9 and the momentum
term was 0.9. For ABP, the error ratio factor was 1.04, the
step–size increment factor was equal to 1.05 while the step–
size decrease factor was 0.5. The initial learning rate for
BPVS, PARTANVS, and PARTANVS2 was 12.0. The variable
γ mentioned in the algorithm in Section III was 0.9.

B. Results Presentation

For each test problem we performed 100 simulations and
measured the number of successes (conv), the mean number of
function evaluations (gradient evaluations were also counted),
the minimum (min) and the maximum (max) number of func-
tion evaluations, and the standard deviation. We also computed
these statistics for the percentage of misclassification.

The results for problem cancer1 are given in Tables I and
II. PARTANVS and PARTANVS2 achieve better performance
than PARTAN and BPVS. In the training set PARTANVS
required the fewer function evaluations to reach the error goal.
In the test set PARTANVS and PARTANVS2 had the smallest
classification error among all the considered methods.

TABLE I

CANCER1 PROBLEM TRAINING SET

Algorithm Mean Stdev Max Min Conv.

BP 589.20 147.37 1001 328 97

MBP 86.75 29.43 212 46 100

SMBP 96.88 24.67 182 60 100

ABP 71.71 7.51 101 60 100

PARTAN 80.80 16.63 131 48 100

BPVS 26.63 6.84 56 16 100

PARTANVS 19.28 4.30 44 13 100

PARTANVS2 23.55 5.90 43 12 100

TABLE II

CANCER1 PROBLEM TESTING SET

Algorithm Mean Stdev Max Min

BP 2.52 3.54 37.36 1.15

MBP 2.10 0.58 3.45 0.57

SMBP 2.18 0.53 3.45 0.57

ABP 2.17 0.74 4.02 0.00

PARTAN 2.20 0.47 3.45 0.57

BPVS 2.28 0.70 4.02 0.57

PARTANVS 2.02 0.75 4.02 0.57

PARTANVS2 2.01 0.66 4.02 0.57

The results for the training test of Diabetes1 problem are
given in Table III. BP does not manage to train networks.
BPVS and PARTANVS performed significantly better than the
other methods. PARTANVS was characterized by the smallest
standard deviation. In Table IV the results on the test set of
Diabetes1 problem are shown. Again PARTANVS had a very
good generalization and it achieved the minimum classification
error.

Tables V, VI present the results for the training and test
set of the Heart1 problem respectively. During the training
process PARTANVS required less function evaluations than
the other methods while having the smallest standard deviation
value. In the test set, PARTANVS2 produced the second best
classification error after MBP.

TABLE III

DIABETES1 PROBLEM TRAINING SET

Algorithm Mean Stdev Max Min Conv.

BP 1001.00 0.00 1001 1000 0

MBP 458.72 144.10 1001 229 99

SMBP 536.40 151.47 1001 307 98

ABP 365.08 53.84 542 255 100

PARTAN 430.91 158.81 1001 222 99

BPVS 153.10 32.05 224 75 100

PARTANVS 116.92 23.75 218 74 100

PARTANVS2 139.34 28.83 239 89 100

TABLE IV

DIABETES1 PROBLEM TESTING SET

Algorithm Mean Stdev Max Min

BP 36.45 0.00 36.45 36.45

MBP 25.40 0.52 26.56 23.96

SMBP 25.44 0.65 29.17 23.96

ABP 25.32 0.56 27.08 23.96

PARTAN 25.44 1.21 36.46 24.48

BPVS 25.35 0.55 27.08 23.96

PARTANVS 24.30 1.30 27.60 21.35

PARTANVS2 25.31 0.58 27.08 23.96

TABLE V

HEART1 PROBLEM TRAINING SET

Algorithm Mean Stdev Max Min Conv.

BP 1001.00 0.00 1001 1001 0

MBP 164.72 25.95 260 118 100

SMBP 216.13 27.74 279 155 98

ABP 139.29 16.89 187 100 100

PARTAN 168.22 25.98 239 122 100

BPVS 58.90 12.60 117 37 100

PARTANVS 40.73 9.33 77 27 100

PARTANVS2 61.61 13.87 110 34 100

TABLE VI

HEART1 PROBLEM TESTING PROBLEM

Algorithm Mean Stdev Max Min

BP 20.75 0.81 23.04 18.70

MBP 20.49 0.89 22.17 17.83

SMBP 20.64 0.84 22.61 18.26

ABP 20.63 0.84 22.61 18.26

PARTAN 20.67 0.69 23.04 19.13

BPVS 20.55 0.66 22.61 19.13

PARTANVS 20.55 1.20 23.91 16.96

PARTANVS2 20.53 0.74 22.17 18.26

V. CONCLUSIONS

This paper presents two methods for training neural net-
works combining two methods, PARTAN and BPVS. The
proposed methods draw from the PARTAN method and by
following the approach of BPVS, they adapt the learning rate.
The proposed methods are relatively simple, straightforward to
implement, and compare favorably with PARTAN, BPVS and
other backpropagation family methods on the test problems
considered.

ACKNOWLEDGEMENTS

We wish to thank Professors G.S. Androulakis and G.D.
Magoulas for useful discussions and the referees for their
useful remarks. We also acknowledge the partial support of the
“Pythagoras” research grant awarded by the Greek Ministry of
Education and Religious Affairs and the European Union.

REFERENCES

[1] L. Armijo. Minimization of function having lipschitz continuous first
partial derivatives. Pac J. Math., 16:1–3, 1966.

[2] G.E Forsythe and T.S Motzkin. Asymptotic properties of the optimum
gradient method(abstract). American mathematical society bulletin,
57:183, 1951.

[3] G.D. Magoulas, M.N. Vrahatis, and G.S. Androulakis. Effective back-
propagation training with variable stepsize. Neural Networks, 10(1):69–
82, 1997.

[4] G.D. Magoulas, M.N. Vrahatis, and G.S. Androulakis. Increasing the
convergence rate of the error backpropagation algorithm by learning rate
adaptation methods. Neural Computation, 11(7):1769–1796, 1999.

[5] D.A. Pierre. Search techniques and nonlinear programming. In
Optimization theory with applications. Wiley, New York, 1969.

[6] E. Polak. Optimization: Algorithms and Consistent Approximations.
Springer, New York, 1997.

[7] L. Prechelt. Proben1: A set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, Fakultät für Informatik,
Universität Karlsruhe, 1994.

[8] S.S. Rao. Optimization theory and Applications. Wiley Eastern Limited,
1992.

[9] B.V Shah, R.J Buehler, and O. Kempthorne. Some algorithms for
minimizing a function of several variables. SIAM journal, 12:74, 1964.

[10] H.W Sorenson. Comparison of some conjugate direction procedures for
function minimization. Journal of the Franklin Institute, 288:421, 1969.

[11] T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon.
Accelerating the convergence of the back-propagation method. Biol.
Cybern., 59:257–263, 1988.

[12] M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos, and G.D. Magoulas.
A class of gradient unconstrained minimization algorithms with adap-
tive stepsize. Journal of Computational and Applied Mathematics,
114(2):367–386, 2000.

