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CHAPTER 1

INTRODUCTION

Twenty years ago, Tim Berners-Lee proposed to build a web of hypertextual pages,
which today is known as the World Wide Web. The Web is an important part of our
lives. Hence, understanding properties of the Web is one of the most essential research
needs. In this thesis we focus on the stochastic analysis of different characteristics
of the Web. In particular, we are interested in the Web properties that affect the
Web page ranking, that is a measure of popularity and importance of a page in the
Web. One of the most well-known and widely-used algorithms for the Web ranking
is the Google’s PageRank. We focus on the asymptotic behavior of the PageRank
distribution in various information networks, such as the Web and the Wikipedia.
For the majority of such self-organized networks it was observed that the PageRank
distribution follows a power law. One of the goals of this thesis is to define how
various network characteristics influence the distribution of the PageRank. To this
end, we introduce a stochastic equation that corresponds to the original definition
of the PageRank, and apply the theory of regular variation to study this equation.

Further results of our work is the application of extremal dependencies and angu-
lar measure to the problem of measuring correlation between different characteristics
of the power law graphs, and to the problem of rank aggregation. The angular mea-
sure has been designed for measuring correlations between power law distributed
random variables, but it has never been applied to large power law graphs.

We start this chapter with a brief introduction into the Web search process in
Section 1.1, and with definitions of the main Web ranking algorithms in Section 1.2.
Then, in Section 1.3 we discuss the determinative properties of the Web structure.
In particularly, we focus on power law distributions in Section 1.3.2. In Section 1.3.3
we provide an overview of graph models that possess various properties of the Web.

Section 1.4 briefly describes main ideas and techniques that we use in this the-
sis. In Section 1.4.1 we define regularly varying random variables which are natural
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4 Chapter 1. Introduction

mathematical formalization of power laws. In Section 1.4.2 we briefly explain the
idea of modeling the PageRank distribution as a solution of a stochastic equation.
Moreover, we propose a generalized version of the stochastic equation of the Page-
Rank in the way that it can be used in other real-life applications. For details on this
kind of stochastic equations we refer to Section 1.4.3. Further, in Section 1.4.4 we
give an introduction on applications of angular measure for evaluating dependencies
between various characteristics of the Web graph, and for rank aggregation problems.

Finally, in Section 1.5 we present the outline of the thesis.

1.1 Web search

A significant role in the Web evolution was played by Web search engines. At the
beginning, it was enough to have a complete list of all Web servers. However, with
the increase of the number of pages this central list became not only incomplete,
but too large to be of any practical use, and then the first search engines appeared.
These engines were primitive, and hence they had poor performance. The returned
search results were just lists of content relevant pages, whereas quality of these pages
still remained to be a subject for the user to determine. Thus, to access relevant
Web pages, users referred to colleagues, friends, or special web guide books.

The insufficiency of the search results was caused by the fact that the first search
engines were based on the already existing techniques that were developed for doc-
ument collections, in which all documents were assumed to have high quality, and
to be homogeneous. This assumption holds, for example, for collections of papers
or books, where the number of citations is a good measure of popularity. However,
the homogeneity assumption is definitely violated in a representative collection of
Web pages, where the best text match does not imply the highest relevance, and the
large number of incoming links can often indicate a spam. To resolve the problem,
Brin and Page with PageRank algorithm [23, 92] and Kleinberg with HITS algo-
rithm [63] proposed to use link analysis for measuring importance of pages in Web
search. The idea turns out to be very successful, and both of the algorithms are
widely used today not only in search engines (Google or Ask.com), but in different
ranking related problems. In Section 1.2 we provide formal definitions of PageRank
and HITS. Now, we briefly describe how search engines work in order to define the
place of the ranking in the Web search process.

Figure 1.1 shows a schematic diagram of the Web search process. At the begin-
ning, a search engine must collect information about available Web pages. Using
specially designed programs called crawlers, the search engines collect information
about the content of the Web pages, and links between them. The crawlers need to
discover new pages, and to update already visited Web pages. Here we do not focus
on the design of Web crawlers. In general, it is a complicated problem, for a survey
on the subject we refer to Castillo [27]. After being crawled, every page is classified.
If a page is ‘good’ according to some rules (e.g., non-duplicate, or non-spam), then it
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Figure 1.1: Schematic representation of Web search engine

is indexed, and stored in a database together with its rank. This rank is assigned to
every page, and it is computed according to position of a page in the Web graph. The
rank is pre-computed and usually query-independent. PageRank is one of examples
of such ranks.

We briefly explain theoretical foundation [65, 97] for how to incorporate a proba-
bility distribution as suggested by PageRank into the overall scoring of a page for a
given query. We are interested in the probability P(d|q) that a document d is relevant
for a given query q. Using Bayes’ rule we can rewrite this probability as

P(d|q) =
P(d)P(q|d)

P(q)
.

For page ranking purposes, P(q) is irrelevant since it does not depend on the doc-
ument. The term P(q|d) is one of the main interests of the information retrieval
community. Various heuristics are used to estimate the relevance of a query to a
document. The P(d) term has a natural interpretation from PageRank (or similar
models) as the likelihood that a document would be relevant independent of the
query. One of the points of this thesis is that it provides better understanding on
what the P(d) term might look like, and how it is distributed under the PageRank
model. We note that this speaks in terms of the actual value of the PageRank and
not the actual position in the ordering of documents, and therefore the value of the
PageRank is important.

When a user types a query, first, the query gets translated into the search sys-
tem language query (usually number code) through query interface. Second, using
the modified query, search engine searches for relevant pages in the database. Re-
turned results are listed on the screen in order of their importance. To achieve the
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best performance, search engines define the importance of the page based on secret
combination of rankings according to different criteria, such as content-relevance,
browsing histories, search engine logs, users personal preferences, e.g., geographical
locations, and positions of the pages in the Web graph.

Thus, link-related rank of a page plays an important role in the final listing of
the Web search results. In the next section we define two most well-known ranking
techniques that are based on the link analysis.

1.2 Web page ranking

The PageRank [23, 92], HITS [63], SALSA [70] and a number of other link-based
ranking algorithms have been successfully used for evaluating the importance of a
page in the Web graph. In this work we restrict our attention to the PageRank, the
most popular ranking algorithm, and HITS. For surveys on other ranking schemes we
refer to Langville and Meyer [69], and Berkhin [12]. Besides their primary application
in the Web search, the ranking algorithms help to solve other problems of evaluating
popularity of nodes in various information networks. For instance, the PageRank
has been used for spam detection [52], graph partitioning [5], and finding gems in
scientific citations [29], just to name a few. In the next section we start with the
definition of the PageRank, the main subject of our research.

1.2.1 PageRank

The PageRank was introduced by Brin and Page [23, 92] in 1998. This was one
of the ideas that brought Google to success. We start with the definition of the
simplest version of the PageRank, so called standard PageRank. Consider the Web
as a graph, where nodes are pages, and edges are links. Denote by w the number of
nodes in the Web graph. We use the terms in-degree and out-degree for the number
of incoming and outgoing hyperlinks of a page, respectively.

The PageRank is defined as a stationary distribution of an ‘easily bored surfer’
random walk on the graph (see Figure 1.2(a)). At each step, with probability c, the
random walk follows a randomly chosen outgoing link of a page, and with probability
(1−c) the walk starts afresh from a page chosen uniformly among all pages. In other
words, at each step the surfer makes a teleportation jump to a random page with
probability (1 − c). The constant c is called a damping factor, and takes values
between 0 and 1. We can summarize the PageRank definition in the next formula:

PR(i) = c
∑

j→i

1

dj
PR(j) +

1 − c

w
, i = 1, . . . , w, (1.1)

where PR(i) is the PageRank of page i, dj is out-degree of page j, the sum is taken
over all pages j that link to page i, and w is the number of pages in the Web graph.
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(a) Random walk on the Web
graph

(b) Dangling nodes assumption

Figure 1.2: Standard PageRank

From (1.1) it is clear that high value of PageRank of a page depends not only
on quantity, but also on quality (PageRank value) of pages that links to this page.
Unlike ranking by in-degree, when adding the large number of links can improve the
page position, the PageRank is not easy to cheat. To achieve higher PageRank, page
should receive links from important pages. Note that in-degree, as well as out-degree,
is a local characteristic of the Web, whereas PageRank is a global one. Thus, adding
a link affects only degrees of two pages, however adding a link can affect PageRank
in many other pages [7]. The question how in-degree and PageRank are related is
not trivial to answer, and it is one of the main questions of this thesis. We refer for
discussion on the subject to Section 1.4.2.

If we consider PageRank of a page as a time that surfer spends on this page, then
we see that dangling nodes, namely pages without out-going links, receive too much
‘attention’. In order to solve this unfairness various approaches have been proposed.
Page et al. [92] suggest to remove all dangling pages, Kamvar et al. [60] propose to
add dangling nodes at the final step of the PageRank computation, and Jeh and
Widom [58] modify dangling nodes by adding self-loops. In [14] and [42] authors
suggest to add a sink page with self-loop, such that all dangling pages link to it.
However, the most popular approach [55, 61, 68, 92] is to assume that every dangling
page instead of links to nobody, links to everybody (see Figure 1.2(b)). Then we
obtain that the probability to follow a particular link from such page becomes 1/w,
and it is almost zero for large w. This approach leads to the following definition of
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the PageRank:

PR(i) = c
∑

j→i

1

dj
PR(j) +

c

w

∑

j∈D

PR(j) +
1 − c

w
, i = 1, . . . , w, (1.2)

where D is a set of dangling nodes.
The damping factor c plays a crucial role in the definition of the PageRank. First

of all, c < 1 insures that the PageRank is well defined. Next, presence of c makes
computation of the PageRank faster [69]. Traditionally the value of c is chosen as
0.85, and it appears that this value provides reasonable ranking for the Web pages.
In [8, 14, 19, 30] authors study other values of the damping factor. Avrachenkov et
al. [8], and Boldi et al. [19] obtain that changing the value of c to the value close to 1
leads to distortion of highly ranked pages. Decreasing of the c factor results to more
robust PageRank, i.e. the influence of outgoing links of a page on PageRanks of other
pages [14], and on the PageRank of this page [7] is possible to bound. In [8] authors
suggest to use c = 0.5 to achieve more fair ranking for central strongly connected
component of the Web graph (see Section 1.3.1). In this work we mainly consider
c = 0.5 and c = 0.85. Depending on the type of underlying graph, the change of the
value of the damping factor can affect the top ranked pages like in the Web graph,
or, in opposite, has minor influence like in the Wikipedia graph. We refer for details
to Section 5.4.

It is common in the literature to rewrite (1.2) in a matrix form. To this end
we introduce normalized hyperlink matrix H , where Hij = 1/dj if there is a link
from page i to page j, and Hij = 0 otherwise. Recall that dj is the out-degree of
page j. Thus, non-zero elements of row i correspond to the outgoing links of page
i, whereas non-zero elements of column j correspond to incoming links of page j.
Next, we modify matrix H to S as follows: for every dangling node i, we replace
corresponding zero row with (1/w)eT , where eT is a row of ones. Then PageRank
vector πT can be found as a solution of the following equations:

πT = πT

[

cS +
1 − c

n
E

]

, πT e = 1.

It is easy to see that πi corresponds to PR(i) from (1.2). Matrix G = cS + (1 −
c)/wE is called Google matrix. This matrix is stochastic (each row sums to 1),
irreducible (all pages are connected due to the teleportation jump), aperiodic (Gii >
0), and primitive (Gk > 0), which implies that a unique positive πT exists and power
method guarantees to converge to this vector. Given some initial distribution π(0),
e.g., π(0) = e, the power method is defined as an iteration procedure:

π(k)T = π(k−1)T G, k ≥ 1.

Note that uniqueness of πT gives that the limiting distribution does not depend
on the initial distribution π(0). Then, the number of iterations that is needed to



1.2. Web page ranking 9

achieve ε-accuracy is of the order k = log(ε)/log(c) independent of the underlying
graph structure [14]. It possible to accelerate the power method. Kamvar et al. [61]
proposed to use extrapolation methods that are based on the expansion of the result
after kth iteration, π(k), into a series of eigenvectors of G. In [60] Kamvar et al.
note that pages within domain are connected more frequently, than pages in different
domains, and therefore they modify matrix H into block matrix. Using precomputed
values of the PageRank on the relatively small blocks as initial distribution, the
authors improve the speed of convergence. For more details about the PageRank
computation we refer to [12, 69].

1.2.2 Non-uniform and Personalized PageRank

In the definition of standard PageRank (1.2), the distribution of the random jump,
the teleportation distribution, is assumed to be uniform, i.e., 1/w for every i =
1, . . . , w. In the original paper [92] authors suggest to modify PageRank by adjust-
ment in the teleportation jumps to favor trusted nodes and be the same for all users,
or to favor specific nodes for each user with respect to the individual user tastes.
Then we can define the non-uniform PageRank as follows:

PR(i) = c
∑

j→i

1

dj
PR(j) +

c

w

∑

j∈D

PR(j) + (1 − c)T (i), i = 1, . . . , w, (1.3)

where T (i) is the probability to start walk afresh in page i.
The knowledge of the user preferences can be based on the usage data, such as

browsing histories, or search engine logs; and on the user data, such as information
about personal characteristics of the user, e.g., name, age, or geographic location [82].
However, the individual-personalized PageRank, i.e PageRank that is personalized
for every user, is computationally infeasible in practice. Then the idea is to build an
approximation of such individual PageRank, that is still allows to achieve good level
of personalization. Below we list several approaches for this approximation [54]. The
Topic-Sensitive PageRank [53] restricts the interests of a user to the small number of
topics, say K = 20. Then the teleportation jump can be defined as follows: T (i) =
∑

i∈J pJpi,J , where pJ is the teleportation probability to the topic J , J = 1, . . . , K,
and pi,J is a probability to teleport into particular page i within topic J. Intuitively,
if some individuals like to surf for pages about sport, then their search result can be
improved by enlarging the T (i)′s in (1.3) for the pages with sport content. Then, the
Topic-Sensitive PageRank represents user preferences for the beneficial topics choice.
Modular PageRank, that was proposed by Jeh and Widom in [58], is similar to the
above approach. In this case the surfer teleports to the certain pages with high ranks
instead of set of the topic-related pages.

In the BlockRank [60] the Web is considered to be combined from the blocks, for
example, each block represents a host. Then, the teleportation jump can be defined
as follows: T (i) = pJPRJ (i) , where pJ is a probability to jump into block J , and
PRJ(i) is the ‘local’ PageRank of page i in block J.
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We also mention next two approaches that modify the PageRank not through the
teleportation. The first, the query-dependent PageRank [101], is based on the idea
to replace 1/dj in (1.3) with pq(j → i), the probability that random walk follows the
link to page i given that it is on page j and is searching for query q. In the second,
Constantine and Gleich [30] suggest to modify the damping factor c accordingly to
the user surfing properties.

With any of the above mentioned approaches, the resulting distribution of the
PageRank scores for a given Web graph, depends on local graph characteristics such
as in-degree and out-degree. In Sections 1.3.2 and 1.4.2 we discuss the tail behavior
of the PageRank distribution, and its relations to different parameters in the Web.

1.2.3 HITS ranking scheme

Here we give brief introduction to HITS, another way of ranking Web pages. Al-
though it is not as popular as PageRank, it plays an important role in the Web search.
HITS algorithm was used in search engine Teoma, that is now part of Ask.com. The
name HITS comes form Hypertext Induced Topic Search, that suggests that HITS is
a query dependent algorithm unlike PageRank. The main idea of HITS is to assign
for every page two scores: authority and hub scores. An authority is a page with
many incoming links, while a hub is a page with many outgoing links. Then, a good
authority is referred by good hubs, and a good hub has links from good authorities.
To formulate it mathematically we denote by xi and yi authority and hub scores of

page i, respectively. Given that every page has been assigned initial scores x
(0)
i and

y
(0)
i we define an iterative procedure as follows:

x
(k)
i =

∑

j→i

y
(k−1)
j , and y

(k)
i =

∑

i→j

x
(k−1)
j , k = 2, . . . , (1.4)

where i → j means that i links to j. After every iteration x(k) and y(k) need to be
normalized.

If we consider adjacency matrix A, such as Aij = 1 if there is a link from i to j,
and Aij = 0 otherwise, then we can rewrite (1.4) as

x(k) = AT y(k−1), and y(k) = Ax(k−1), (1.5)

where x(k) and y(k) are vectors of authority and hub scores after kth iteration.
From (1.4) and (1.5) we obtain

x(k) = AT Ax(k−1), and y(k) = AAT y(k−1).

The matrices AT A and AAT are called authority matrix and hub matrix, respectively.
The last equations define an iterative power method for computing the dominant
eigenvectors for corresponding matrices. The matrices AT A and AAT are symmetric,
positive semidefinite and non-negative, so their eigenvalues λ1, . . . λw are necessary
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real and non-negative with λ1 > · · · > λw. In other words, HITS with normalization
always converges as [λ2(A

T A)/λ1(A
T A)]k. Unlike power method of the PageRank,

there is no better approximation to the asymptotic rate of convergence. Experiments
show that around 10-15 iterations are required for a good approximation [69].

To implement HITS we build neighborhood graph Q that relates to query. To
this end we add all pages that contain references to the query to this graph, and
expand it by adding pages that links to, or from the pages in Q. This procedure
allows to build semantic associations, for example it solves problem of synonyms. In
real life such graph expansion can lead to the huge graph, so usually the number of
additional pages are limited by some number, say 100 links into and 100 links out of
every page. Thus, we obtain a graph that is relatively small compared to the Web
graph. Then we calculate hub and authority scores on G, and list pages in two lists
accordingly to the scores. Depending on search proposes, user can chose authorities
(deep search on the query), or hubs (broad search).

Note that we can find eigenvector just for one of AT A and AAT , and then we
simply obtain, for instance, hub vector from the equation y = Ax. The disadvantages
of the HITS algorithm are that it depends on the initial vectors [70], and it is easy
to spam. There are different modifications for HITS, that solve mentioned problems.
We refer to [69] for details.

There are other ranking techniques, and many modifications of PageRank and
HITS. In this thesis we focus only on PageRank. In Section 4.4 we mention HITS
when we introduce PAR ranking scheme, that has properties of HITS and PageRank.

In the next section we consider probabilistic structure of the Web graph, in partic-
ularly, we focus on the PageRank distribution. In Section 1.4.2 we define a stochastic
equation that describes relations between PageRank and other Web characteristics.

1.3 Probabilistic structure of the Web

1.3.1 Web structure

The Web has a complex structure with some notable features. Cardinally, it is huge.
Recently Google reported that they succeeded to collect 1 trillion (1012) unique
URLs on the Web at once.1 Despite the fact that unique URLs do not always
identify unique pages, the obtained number still looks impressive. In 1998, Bharat
and Broder [13] estimated the size of indexed Web at 200 million pages. Seven years
later Gulli and Signorini in [51] claimed that indexable web is more than 11.5 billion
pages. Thus, the Web is growing, and it is growing fast.

The understanding of the Web structure is an important problem that yields to
better design of algorithms for crawling, searching and indexing. From a macroscopic
point of view, the Web graph can be seen as a bow-tie structure. This concept was

1googleblog.blogspot.com/2008/07/we-knew-web-was-big.html;(Accessed in
January 2009).
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Figure 1.3: The bow-tie structure of the Web

for first time introduced by Broder et al. in [24]. We illustrate this idea in Figure 1.3.
According to [24], the Web can be divided into several major components:

SCC, or Strongly Connected Component, that consists of all pages that can reach
one another following directed links;

IN component combines all pages that can reach pages from SCC, however, can
not be reached from it;

OUT component consists of all pages that are possible to access from SCC, and
have no links back to SCC.

Moreover, there are pages that are not in SCC, however are reachable from IN, and
pages that can reach OUT without passage through SCC. Such pages are called
TENDRILS. TUBES are formed from TENDRILS that hang off from IN to hook
into TENDRILS leading into OUT. We refer to the remaining parts of the Web pages
as to DISCONNECTED components. In [24] authors report that the size of SCC
(27.7%), while IN, OUT and TENDRILS components have similar sizes, and consist
of 22.3%, 21.2% and 21.5% of the Web pages, respectively. Later, similar results were
obtained by Donato et al. in [33], where they study another sample of the whole
Web. Surprisingly different behavior were observed in [18, 56, 77]. In [18] Boldi et
al. discover that half of pages in African Web are condensed into a single giant SCC
pointing to several smaller components. Liu et al. [77], and later Hirate et al. [56],
report that SCC in Chinese Web consists of 70% of the Web pages. In recent work by
Donato et al. [35], authors study inner structure of the various components. Thus,
they observed that the IN and OUT components are highly fragmented, while SCC
is well interconnected. Moreover, they observed large size of the SCC component
for Italian (72.3%), Indochina (51.4%) and UK (65.3%) Web samples. The large
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size of SCC in the various national Web domains was also observed in [9]. There
can be several explanations for phenomena. The first one is that the national Web
domains should be more connected by nature. The second explanation is that the
Web possibly becomes denser over time like it was observed in [71] for various social
networks. The increasing of the SCC’s size over time was also discovered in Wikipedia
graph [25].

Assume that we know that two pages in the Web are connected, and we are
interested in the length of the shortest path from one page to the other. We call the
average value of such lengths as an average diameter [28]. In the Web the average
diameter is surprisingly small. Thus, Broder et al. [24] find that the average path
length is about 16 edges if the Web graph is directed, and 7 edges if the Web graph
is undirected. Albert et al. [4] obtain that the average diameter in nd.edu domain
equals 11.2 links. The phenomenon of the small diameter is called as small-world
effect [84], and popularly known as ’six degrees of separation’. Another important
observation about the Web structure is so-called self-similarity of the Web. In short,
it means that the Web consists of miniature replicas of itself [32].

One of the most notable features of the Web is a presence of power laws. In the
next section we discuss power laws in more details.

1.3.2 Power laws

In simple words, a random variable X has a power law distribution with exponent
α > 0, if its probability of obtaining a value grater than x is proportional to x−α. The
power laws are a special family of distributions. In data analysis, many measured
parameters have typical size, or scale. For instance, if we consider heights of human
beings, the obtained values can deviate significantly, however can not exceed some
value. Another example can be speeds of cars on the highway. However, there are
some parameters that can vary over an enormously dynamic range. If we consider
population of cities, size of files downloaded from the Internet, citation of scientific
papers, copies of a book sold, and even diameters of the moon craters, then we can
see that the obtained values can be incomparable large or small. For further reading
about history and examples of the power law distributions in various research areas
we refer to Mitzenmacher [86, 87], and Newman [89].

The standard strategy to reveal a presence of a power law is to plot a histogram
of a quantity on log-log scale to obtain a straight line. We have log[P(X = x)] =
log(C) + [α + 1] log(x), where C is some constant. However, this technique is often
not efficient. In [89] Newman clearly illustrated that even for generated random
numbers with a known distribution the noise in the tail region has a strong influence
on the estimation of the power law parameters. Instead of the histogram, we suggest
to plot the fraction of measurements that are not smaller than a given value, i.e. the
complementary cumulative distribution function P(X ≥ x). The advantage is that
we obtain a less noisy plot. Additionally, this idea is consistent with our analysis for
complementary cumulative distribution functions. We note that if the distribution
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of X follows a power law with exponent α, then the corresponding histogram has an
exponent (α + 1). Thus, the plot of P(X ≥ x) on logarithmic scales has a smaller
slope than the plot of the histogram. To avoid ambiguity in this work we present all
results accordingly to our approach. In Section 4.1 we also discuss other techniques
for power law evaluation.

In [47] Faloutsos et al. for the first time discover power law behavior of degree
distribution in the undirected graph that represents paths between backbone routers
(the AS graph). In the same time Albert et al. [4] observed that in-degree distri-
bution in nd.edu follows power law with exponent α = 1.1, and, Broder et al. [24]
find the same exponent for the in-degree distributions in the entire Web. The next
fundamental result was obtained by Pandurangan et al. in [93], where they observe
that in-degree and PageRank in the Web graph have similar asymptotic behavior,
namely they follow power laws with the same exponent. In Figure 1.4 we present

(a) in-degree (b) PageRank

Figure 1.4: Histogram plots from [93] for in-degree and PageRank in log-log scale.

the log-log plots for histograms for the in-degree and the PageRank from [93]. This
observation is one of the results that motivate our research. Subsequent works by Do-
nato et al. [33], and Fortunato et al. [49] confirmed the observation about similarity
in tail behavior. Becchetti and Castillo [10] investigate the influence of the damping
factor c on the power law behavior of PageRank. Thus, they have shown that the
PageRank of the top 10% of the nodes always follows a power law with the same
exponent independent of the value of the damping factor. In [26] Capocci et al., and
in [25] Buriol et al. analyze in- and out-degrees distribution, and distribution of the
PageRank for the Wikipedia samples, and also confirm the similarity in the power
law behavior of the in-degree and the PageRank. In our works [74, 112, 113, 111, 115]
this problem was studied for the different Web and Wikipedia samples. We refer for
numerical results to Chapter 4.

In the next section we focus on various models that allow to achieve various
properties of the Web graph, in particular power law distribution of the in-degree.
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1.3.3 Web models

To better understand underlying structure and evolution of the Web graph, a con-
venient way to analyze the Web graph is through the random graph models. The
pioneering works on the random graphs have been done by Erdös and Rényi [45, 46].
They considered a model for random graphs in which every edge between every pair
of nodes is added with some fixed probability. The degree distribution in such a
graph is Poisson rather than the observed power law distribution in the Web.

The dynamic preferential attachment model is the far-reaching approach for de-
signing graphs with heavy tailed degree distribution. In [86] Mitzenmacher gives
a survey on various version of the model arising in different contexts already since
1920s. In their seminal paper [2], Albert and Barabási developed and applied the
preferential attachment model to describe the dynamics of wide range of complex
networks. This approach had a major impact on studies of the Web structure.

The model is characterized by ‘rich-gets-richer’ approach. Informally, it means
that newcomers prefer to donate their links to already popular pages then to unknown
strangers. Thus, we start with d initial nodes, and then every time step we add new
node, that link to d already existed nodes. These nodes are selected with probabilities
proportional to their degree (see Figure 1.5(a)). In [2] authors propose a model for
an undirected graph, that has been shown to have degree distribution with exponent
α = 2 [37]. Later, Bollobás and Riordan obtain the estimation for diameter at
time w as O(log(w)) for d = 1, and O(log(w)/ log log(w)) for d ≥ 2. However, the
original model has few disadvantages: it generates undirected graphs, and power law
exponent for degree distribution is stuck at α = 2. In order to model graphs with
exponent that are in (1,∞), Dorogovtsev et al. [36, 37], Albert and Barabási [3], and
Pennock et al. [95] proposed various modifications for the connection probability. In
this thesis we mainly use model from Pennock et al. [95], where new pages connect
to uniformly chosen pages with some probability δ, and with probability (1 − δ)
it follows preferential attachment rule. There are also many other variations of
preferential attachment models, like as copying model by Kleinberg et al [64] and
Kumar et al. [67], general preferential attachment model by Aiello et al. [1], and
forest fire model by Leskovec et al. [71]. We refer for a survey on the preferential
attachment models to Chakrabarti and Faloustsos [28]

Configuration Model [88, 90] is a static random graph model with predescribed
degree sequence. In order to build such a model we first assign degree Dj for every
vertex j, and assume that Lw =

∑w
j=1 Dj is even. Second, we say that page j has Dj

‘stubs,’ or half-edges. We number the stubs from 1 till Lw randomly, and connect
the first stub to one of Lw − 1 remaining stubs. Later, we repeat the procedure
for the second, unless it was chosen on the first step, and so on until all stubs will
be connected (see Figure 1.5(b)). If power law exponent is greater than 2, which
means that variance and mean of D exist, then distance between uniform pair of
nodes Hw ≈ logν(w), where ν = E(D(D − 1))/E(D) [109]. In the case of degree
distribution on the Web graph, such that the degree distribution has finite mean and
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(a) Growing Network (b) Configuration Model

Figure 1.5: Graph models

infinite variance, the obtained distance equals to Hw = 2 log log(w)/ log(α− 1). This
case was studied by van der Hofstad et al. in [110] and Reittu and Norros in [99].
Finally, for the graphs with infinite mean of degree distribution, van der Hofstad et
al. proved that Hw is uniformly bounded [108].

Besides preferential attachment and configuration models there are many other
interesting models. We refer to Bonato [21], Chakrabarti and Faloutsos [28], and
Newman [88] for excellent surveys.

In the next section, we formalize power laws by the theory of regular variation.
Later, in Section 1.4.2 we discuss how the tail distribution of the PageRank relates
to the various characteristics of the Web. In Section 1.4.4 give an introduction on
applications of angular measure for evaluating dependencies between various char-
acteristics of the Web graph.

1.4 Motivation and methodology

1.4.1 Regular variation

It is difficult to overestimate an importance of study of power law distributions. A
common mathematical way to analyze this kind of distributions is based on the theory
of regular variations. This theory has been successfully used in many applications,
such as mathematical finance [44, 83] for modeling of large insurance claims and stock
market shocks; telecommunications [94, 100] for modeling of file sizes; and analysis
of extremes [31] for modeling sea floods, just to name a few. Although many large
self-organizing networks exhibit power laws, for example, social networks [2, 85],
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epidemic networks [73], internet graph [47], or the Web graph [9, 24, 33, 93], most
of the studies are restricted to only finding the presence of power laws in degree
distributions. The main goal of this work is to fill this gap. We propose to use
the theory of regular variation to explain similarity in the asymptotic behavior of
in-degree and PageRank, the two most popular measures for page importance in the
Web. Furthermore, we apply the theory of multivariate regular variation, and suggest
to use the angular measure for measuring dependencies between different parameters
of power law graphs (see Section 1.4.4). This approach is especially important in the
Web, where power law exponents usually smaller than 2. In this case the second
moment does not exist, and the correlation coefficient cannot be calculated.

One of the goals of this thesis is to build the correspondence between various Web
characteristics and the PageRank distribution . Since the PageRank was introduced,
this problem draws a lot of attention. We discuss different approaches in the next
section.

To obtain the asymptotic behavior of PageRank we employ the theory of regular
variation that provides natural mathematical formalism for analyzing power laws.

Definition 1.1. A non-negative random variable X is said to be regularly varying
with index α, if

P(X > x) = x−αL(x) as x → ∞, (1.6)

for some positive slowly varying function L(x), that is defined as follows: for every
y > 0 we have

L(yx)

L(x)
→ 1 as x → ∞.

For more comprehensive treatment we refer to books of Bingham et al. [17],
Resnick [100], and Seneta [105].

1.4.2 In-degree and PageRank

The asymptotic similarity between in-degree and PageRank was first time observed
by Pandurangan et al. in [93]. Indeed, from the definition of the PageRank ((1.1),
(1.2), and (1.3)) we can see that the PageRank should be related to the in-degree.
However, as we saw above, the main idea of PageRank is that it depends not only on
quantity but also on quality of incoming links of a page. Moreover, we emphasize that
PageRank is a global characteristics of the Web while in-degree is a local one. Thus,
the phenomena of asymptotic similarity between the in-degree and the PageRank is
not trivial to justify.

One of the ways to approach this problem is to build a model of the Web, that
has a power law distribution of the in-degree, and then define the PageRank distri-
bution for this model. In [6, 50] authors verify asymptotic properties of PageRank
distribution for the case of preferential attachment models.

In this thesis we characterize the power law behavior of the PageRank using the
approach that we developed in our works [74, 75, 111, 112]. In the remainder of the
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section we briefly describe the main ideas of the approach. The model in its most
general form will be presented in Section 2.1, and the tail behavior of the PageRank
will be obtained in Chapter 2 and 3.

We model the PageRank as a solution of a distributional identity, and the tail
behavior of the solution is obtained under various assumptions. We note that the
PageRank values in (1.3) scale as 1/w with the number of pages. In our analysis, it
is more convenient to deal with corresponding scale-free PageRank scores

R(i) = wPR(i), i = 1, . . . , w,

assuming that w goes to infinity. In this setting, it is easier to compare the proba-
bilistic properties of PageRank and in- and out-degree, that are also scale-free.

We view the PageRank of a random page as a random variable R with E(R) = 1.
Our goal is to analyze to what extent the tail probability P(R > x) for large enough
x depends on in-degree distribution N , on distribution of out-degree of a page that
links to our randomly chosen page D, on teleportation distribution T , and on fraction
of dangling nodes p0. To this end, we model PageRank R as a solution of a stochastic
equation involving N , T and D.

We start our analysis with simplified model in [74, 75], where we assume that
all pages have constant out-degree, that equals average in- and out-degree. Then,
inspired by formula (1.1), the stochastic equation for the PageRank is as follows:

R
d
= c

N
∑

j=1

1

E(N)
Rj + (1 − c), (1.7)

where a
d
= b means that a and b have the same probability distribution. The relation

between PageRank and in-degree is modeled through a distributional identity which
is analogous to the equation for the busy period in the M/G/1 queue (see details in
Section 1.4.3). We analyze (1.7) using the approach employed in [81] for studying the
tail behavior of the busy period in case when the service times are regularly varying
random variables.

In [75] we also consider pages without out-going links, i.e. the dangling nodes. We
assume that the PageRank of a random page does not depend on whether the page
is dangling, then the fraction of the total PageRank mass concentrated in dangling
nodes, approximately equals the fraction of dangling nodes p0.

In [112] we extend stochastic equation (1.7) for the case of random out-degrees.
To this end we consider a random variable D, which represents the out-degree of
a page that links to a particular randomly chosen page i. We note that D is not
the same random variable as an out-degree of a random page since the additional
information that a page has a link to i, alters the out-degree distribution. Assuming
random out-degrees, in [112] we rewrite the stochastic equation for PageRank as
follows:

R
d
= c

N
∑

j=1

1

Dj
Rj + [1 − c(1 − p0)]. (1.8)
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The solution of the last equation can be found as a limit of R(k)’s, where R(k) is
defined through a distributional identity

R(k) d
= c

N
∑

j=1

1

Dj
R

(k−1)
j + [1 − c(1 − p0)].

If R(0) ≡ 1 then R(k) serves as a stochastic model for the result of the kth power
iteration in standard PageRank computations. Since PageRank vector is always a
result of a finite number of iterations, it follows that R(k) describes the distribution
of PageRank if the power iteration algorithm stops after k steps. Using probabilistic
techniques from Jessen and Mikosch [59], we defined asymptotical properties of R(k).

Finally, we combine techniques from [74, 75] and [112] in a generalization of our
model for the case of non-uniform PageRank. Thus, in Chapter 2 we define asymp-
totics of PageRank after each iteration using probabilistic approach as in [112], and
in Chapter 3 we justify the power law behavior of the PageRank using an analyt-
ical approach similar to [74]. Since the model from [112] is a generalization of the
previous result, then in this thesis we consider only the last model, where we take
into account many different factors affecting the PageRank, such as personalization
of the PageRank, and a possible dependence between personalized preference scores
and in-degrees of the Web pages. The PageRank stochastic equation can be modified
as follows:

R
d
= c

N
∑

j=1

1

Dj
Rj + cp0 + (1 − c)wT, (1.9)

To simplify the notation we introduce A
d
= c/D and B

d
= cp0 +(1− c)nT, and obtain

the generalized stochastic equation (1.10), that is discussed in the next section.

1.4.3 Stochastic equations

From a mathematical point of view, in Chapter 2 and 3 we present the analysis of
the following distributional identity

R
d
=

N
∑

j=1

AjRj + B, (1.10)

where we assume that all random variables are positive; Rj ’s are independent and
distributed as R; and Aj ’s are independent and distributed as some random variable
A with E(A) = [1 − E(B)]/E(N) < 1. We also set Rj ’s and Aj ’s to be independent,
and to be independent of N and B. Moreover, it is essential that E(B) < 1. We
emphasize that N and B can be dependent.

Equations similar to (1.10) are well known in the literature. For instance, such
equation can also describe the distribution of the busy period in the M/G/1 queue,



20 Chapter 1. Introduction

i.e. the queue with exponentially distributed interarrival times and an arbitrary
distribution for service times:

R
d
=

N(S1)
∑

j=1

Rj + S1,

where R is the distribution of the busy period (the time interval during which the
queue is non-empty), S1 is the service time of the customer that initiated the busy
period, N(S1) is the number of Poisson arrivals during this service time, and Rj ’s
are independent and distributed as R. We refer to [81, 117] for more details on the
asymptotics of a busy period in queues with heavy tails.

Another version of (1.10) arises in the theory of branching processes. For B = 0
we can obtain the following equation:

R
d
=

N
∑

j=1

AjRj ,

that has been analyzed in detail by Liu [78, 79].

1.4.4 Dependencies and rank correlations

In order to analyze equation (1.9) we have to make assumption on the dependence
of the evolved parameters. In our work [76, 114, 115] we study the question of the
measuring dependencies between heavy-tailed network parameters. In particular,
we focus on the relation between in-degree and PageRank. From the definition of
the PageRank (1.3), it is clear that it is influenced largely by in-degree. However,
there is no agreement in the literature on the dependence between these two quan-
tities, e.g. [33, 49]. The disagreement is caused by the fact that only the value of
the correlation coefficient has been considered as a dependence measure. However,
the correlation coefficient is an uninformative dependence measure in heavy-tailed
data [11, 28, 31, 100]. Indeed, the correlation coefficient is a ‘crude summary’ of
dependencies that is most informative for jointly normal random variables. It is a
common and simple technique but it is not subtle enough to distinguish between the
dependencies in large and in small values. This becomes a problem if we want to
measure the dependence between two heavy tailed network parameters, because in
that case we are mainly interested in the dependence between extremely large values.

We propose to employ the extreme value theory [11] and the theory of regular
variation [100] that provide a range of statistical procedures designed to deal with
multivariate data of which the marginal distributions exhibit power laws. In partic-
ular, the body of statistical theory contains a well-developed notion of dependence.
This notion called extremal dependence is characterized by angular measure, which
is much more suitable for the power law data than standard correlation measures.

Based on the stochastic equation of the non-uniform PageRank (1.9), in Sec-
tion 5.2 we characterize the tail dependence between in-degree and PageRank by
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two-point angular measure. This result formalizes the common understanding of
two main sources for the high PageRank: high in-degree and a high rank of one of
the ancestors. In Section 5.3 we empirically compute the angular measures for the
various Web characteristics. Our experimental results reveal a dramatically different
correlation structure in the Web, the Wikipedia and preferential attachment graph.

The proposed dependence measure can be also used for measuring rank correla-
tions. We refer for more details to Section 5.4. Using this approach, in Chapter 6 we
define rank distance and study possible application for the rank aggregation prob-
lems.

1.5 Overview of the thesis

This section gives an overview of the results in the thesis.

In Chapter 2 we define the models for in- and out-degrees, and provide stochastic
equation for PageRank in the form (1.10), where each random variable represents
a certain parameter in the Web. In Section 2.2 we use a probabilistic approach to
show that the proposed equation has a unique non-trivial solution with fixed finite
mean. To this end, we introduce a recurrent stochastic model for the power iteration
algorithm commonly used in PageRank computations. Further, in Section 2.3 we
obtain the PageRank asymptotics after each iteration. In Section 2.4 we predict
tail behavior of the limiting distribution of the PageRank as a convergence of the
results for iterations. To show the predicted behavior we use alternative techniques
in Chapter 3.

In Chapter 3 we define the tail behavior for the model of the PageRank distribu-
tion. To this end, we use Laplace-Stieltjes transforms and apply Tauberian theorem,
see Theorem 3.2 in Section 3.1. We start with the analysis of the model for the
in-degree distribution in Section 3.2. In Section 3.3 we continue with the stochastic
model for the PageRank. Then, in Section 3.3.1 we derive the equation for Laplace-
Stieltjes transforms, that corresponds to the general stochastic equation (1.10), and
in Section 3.3.3 we obtain our main result that establishes the tail behavior of the
solution of (1.10). Finally, in Section 3.3.4 we discuss asymptotics for the PageRank
distribution under various assumptions on the distribution of the in-degree and the
teleportation. Chapters 2 and 3 are based on Volkovich and Litvak [111].

Then, in Chapter 4 we perform a number of experiments on the Web and the
Wikipedia data sets, and on preferential attachment graphs in order to justification
for the results obtained in Chapters 2 and 3. The numerical results show a good
agreement with our stochastic model for the PageRank distribution. Moreover, in
Section 4.1 we also address the problem of evaluating power laws in the real data
sets. To this end, we define several state of the art techniques from the statistical
analysis of heavy tails, and provide empirical evidence on the asymptotic similarity
between in-degree and PageRank. Inspired by the minor effect of the out-degree
distribution on the asymptotics of the PageRank, in Section 4.4 we introduce PAR
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ranking scheme, that combines features of HITS and PageRank ranking schemes. In
this chapter we use results from [74, 75, 111, 112, 113]

In Chapter 5 we analyze the dependence structure in the power law graphs.
In Section 5.2 we analytically define the tail dependencies between in-degree and
PageRank of a one particular page by using the stochastic equation (1.10). Then,
in Section 5.3 we compute the angular measures for in-degrees, out-degrees and
PageRank scores in three large data sets. The analysis of extremal dependence leads
us to propose a new rank correlation measure which is particularly plausible for
power law data in Section 5.4. This chapter is based on [76], [114] and [115].

Finally, in Chapter 6 we apply this new rank correlation measure to various
problems of rank correlation. This is work in progress that was started during a
research visit at Yahoo!Research Barcelona in November 2008.



CHAPTER 2

PROBABILISTIC ANALYSIS OF THE PAGERANK

DISTRIBUTION

In this chapter we study how asymptotical behavior of the PageRank relates to the
various characteristics of the Web graph. We keep definition of the PageRank (1.3)
almost unchanged but we transform it into a stochastic equation. We start with
models for degree distributions in the Web. In Section 2.1.1 we model in-degree of
a random page as an integer valued random variable N , and in Section 2.1.2 we
introduce so-called effective out-degree D, that is out-degree of a page that points
into the randomly chosen page. Then, in Section 2.1.3 we define PageRank of a
random page in the network as a solution of stochastic equation.

We want to analyze to what extent the tail probability of the non-uniform Page-
Rank depends on the distributions of the in-degree, the effective out-degree, and
the teleportation jump. We note that the stochastic equation of the PageRank is a
special case of the following stochastic equation:

R
d
=

N
∑

j=1

AjRj + B. (2.1)

In Sections 2.2 and 2.3 as well as in Chapter 3 we consider (2.1) instead of the
stochastic equation of the PageRank for the sake of simplicity in notation.

In Section 2.2 we start our analysis with showing that (2.1) has a unique solution
R such that E(R) = 1. To this end, in Section 2.2.1 we iteratively define random
variables R(k)’s, k ≥ 0. These variables converge to the solution of (2.1) as k → ∞.
Next, in Section 2.2.2 we apply the results from the theory of regular variation in
order to define the tail behavior of R(k). We state the results in Theorem 2.4, where
we obtain that asymptotic of R(k) is determined by the asymptotics of the random

23
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variable with the heaviest tail among N and B. Since the random variable R(k)

can be seen as a stochastic model for the result of the kth matrix iteration in the
PageRank computation, and the PageRank vector is always a result of a finite number
of iterations, then we conclude that the distribution of PageRank should follow power
law with exponent that is minimum of exponents of in-degree N and teleportation
jump T. However, in Theorem 2.5 we note that if initial distribution R(0) has one
of the heaviest tail among R(0), N and T , then the PageRank distribution after kth
iteration should follow power law with exponent that is the same as exponent of
R(0). Since the limiting distribution of R(k) as k → ∞ does not depend on the initial
distribution, then we predict that the asymptotic behavior of R should be defined as
a convergence of the results of Theorem 2.4. In order to show the predicted behavior
we need to use alternative technique that is based on the Laplace-Stieltjes transforms
analysis, and is a subject of Chapter 3.

2.1 Model

In this section we present the models for the distributions of the in- and out-degrees,
and the PageRank.

2.1.1 In-degree

We set in-degree of a randomly chosen page in the network to be an integer valued
random variable N . In the Web graph as well in some other graphs, where we observe
power law behavior of the in-degree distribution, we set N to be an integer valued
regularly varying random variable with index αN > 1. One of the ways to model
such N is as follows: we assume that N = N(X), where X is regularly varying with
index αN and N(x) is the number of Poisson arrivals during the time interval [0, x],
when arrival rate is 1. Then, if X is regularly varying then N(X) is also regularly
varying and asymptotically identical to X. In Section 3.2 we demonstrate the tail
similarity between X and N(X) by using the Laplace-Stieltjes transforms. Then
N(X) is indeed an integer and obeys the power law. We use this representation of
N in Chapter 3. In this chapter we do not make any assumptions on N except we
require it to be integer valued.

2.1.2 Out-degree

Next, we model the weights 1/dj in the definition of the PageRank (1.3), where dj is
the out-degree of page j that has a link to page i. To this end, we consider a random
variable D that represents the out-degree of a page that links to a particular randomly
chosen page i. Note that D is not the same random variable as an out-degree of a
random page since the additional information that a page has a link to i alters the
out-degree distribution. This phenomenon is known as inspection paradox. The
inspection paradox roughly states that an interval containing a random point tends
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to be larger than a randomly chosen interval [102]. For instance, in [103], a number
of children in a family, to which a randomly chosen child belongs, is stochastically
larger than a number of children in a randomly chosen family. Likewise, a number
of out-links D from a page containing a random link, should be stochastically larger
than an out-degree of a random page. If pj is a fraction of the pages with out-degree
j ≥ 0, then we can obtain

lim
w→∞

P(D = j) =
jpj

E(N)
, j ≥ 1. (2.2)

where E(N) is the average in/out-degree, and w is the number of pages in the Web.
For sufficiently large networks, we may assume that the distribution of D is equal
to its limiting distribution as defined by (2.2). We refer to D as an effective out-
degree. The term is motivated by the fact that the distribution of D is the one that
participates in the PageRank formula (1.3).

2.1.3 Stochastic equation for the PageRank

Now, we are ready to model the PageRank distribution. We view the PageRank of
a random page as a random variable R with E(R) = 1. Further, we assume that
the PageRank of a random page does not depend on the fact whether the page is
dangling. Indeed, it can be shown that the PageRank of a page can not be altered
significantly by modifying outgoing links [7]. Moreover, experiments, e.g. in [42],
show that dangling nodes are often just regular pages whose links have not been
crawled. Besides, even authentically dangling pages such as .ps, .jpg or audio
files, often contain important information and gain a high ranking independently
of the fact that they do not have outgoing links. We note that such independence
immediately implies that in large networks, the fraction of the total PageRank mass
concentrated in dangling nodes is equal to the fraction of dangling nodes p0, simply
by the law of large numbers:

p0 =
1

w

∑

j∈D

R(j).

Our goal is to analyze to what extent the tail probability P(R > x) for large
enough x depends on the in-degree N , the effective out-degree D, the teleportation
jump T and the fraction of dangling nodes p0. To this end, we model PageRank R
as a solution of a stochastic equation involving N , T and D. Inspired by the original
formula (1.3), the stochastic equation for the PageRank is as follows:

R
d
= c

N
∑

j=1

1

Dj
Rj + cp0 + (1 − c)wT. (2.3)

Here Rj ’s and Dj ’s are independent and distributed as R and D, respectively. More-
over, we need to assume that Rj ’s and Dj ’s are independent and independent of N
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Figure 2.1: An example of Galton-Watson tree

and T . As before, c ∈ (0, 1) is a damping factor. We emphasize that N and T are
allowed to be depended, that is often the case for the non-uniform PageRank.

Hence, in stochastic equation (2.3) we generalize models (1.7) and (1.8) for the
case of random out-degree, and random teleportation jump. Moreover, here we allow
this personalization jump to be dependent on the in-degree. In the next section we
will show that (2.3) has a unique solution R such that E(R) = 1.

2.2 Solution of stochastic equation

In the remainder of this chapter and in Chapter 3 we will analyze the following
stochastic equation

R
d
=

N
∑

j=1

AjRj + B, (2.4)

where we assume that all random variables are positive; Rj ’s are independent and
distributed as R; and Aj ’s are independent and distributed as some random variable
with E(A) = [1−E(B)]/E(N). We also set Rj ’s and Aj ’s to be independent, and to
be independent of N and B. Moreover, it is essential that E(B) < 1. We emphasize
that N and B can be dependent. It is easy to see that the above equation corresponds

to (2.3) for A
d
= c/D and B

d
= cp0 + (1 − c)nT .

In Sections 2.2.2 and 2.3 we establish the existence and the asymptotic properties
of R in (2.4) using an iterative procedure defined in the next section.

2.2.1 Iterations

We use the following notations adopted from Liu [79]. Let {(Nu, Au1
, Au2

, . . . )}u

be a family of independent copies of (N, A1, A2, . . . ) indexed by all finite sequences
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Figure 2.2: The kth iteration

u = u1 . . . ui, where uj ∈ {1, 2, . . .}, j = 1 . . . i. Further, let T be the Galton-Watson
tree with defining elements {Nu}: we have ∅ ∈ T and, if u ∈ T and j ∈ {1, 2, . . .},
then concatenation uj ∈ T if and only if 1 ≤ j ≤ Nu. In other words, we indexed
the nodes of the tree with root ∅ and the first level nodes 1, 2, . . .N∅, and at every
subsequent level, the jth offspring of u is termed uj (see Figure 2.1).

We start with initial distribution R(0), and for every k ≥ 1, we define the result
of the kth iteration of (2.4) through a distributional identity:

R(k) =

N
∑

j=1

AjR
(k−1)
j + B, (2.5)

where R
(k−1)
j and Aj , j ≥ 1, are independent and distributed as R(k−1) and A,

respectively.
Repeatedly applying (2.5), we derive the following representation for R(k), k ≥ 1:

R(k) =
∑

u1...uk∈T

Au1
. . . Au1...uk

R(0)
u1...uk

+
k−1
∑

i=0

∑

u1...ui∈T

Au1
. . . Au1...ui

Bu1...ui
, (2.6)

where T is a notation for the Galton-Watson tree. In Figure 2.2 we display the
graphic interpretation of R(k).

2.2.2 Existence and uniqueness of solution

We start with the following definition. A stochastic process {Zi, i ≥ 1} is said to be
a martingale process if E(|Zi|) < ∞ for all i, and E(Zi+1|Z1, . . . , Zi) = Zi.

We use the next lemma to prove the existence of the solution (2.4). This lemma
is a result mentioned in [79].



28 Chapter 2. Probabilistic analysis of the PageRank distribution

Lemma 2.1. If E

(

∑N
j=1 Aj

)

= 1, then the sequence
∑

u1...ui∈T
Au1

. . . Au1...ui
is a

martingale.

In the next theorem we show that iterations R(k), k ≥ 1, converge to the unique
solution of (2.4).

Theorem 2.2. Equation (2.4) has the unique non-trivial solution with mean 1 given
by

R(∞) = lim
k→∞

R(k) =
∞
∑

i=0

∑

u1...ui∈T

Au1
. . . Au1...ui

Bu1...ui
. (2.7)

Proof. It is easy to verify that R(∞) in (2.7) is a well-defined solution of (2.4). In
particular, because all random variables are positive, we apply Fubini’s theorem [15]
to obtain

E

(

R(∞)
)

= E

[

∞
∑

i=0

∑

u1...ui∈T

Au1
. . . Au1...ui

Bu1...ui

]

= E(B)

∞
∑

i=0

(1 − E(B))n
E

[

∑

u1...ui∈T

1

1 − E(B)
Au1

. . .
1

1 − E(B)
Au1...ui

]

= 1,

where the final equation holds since
∑

u1...ui∈T
(Au1

/(1 − E(B))) . . .
(Au1...ui

/(1 − E(B))) is a martingale with mean 1 according to Lemma 2.1.
In the second equality we can take E(B) outside of the summation since Bu1...ui

comes from the (i − 1)th step, and is independent of the number of incoming links
at the level i. We refer to Figure 2.2 for illustration.

To prove the uniqueness, assume that there is another solution with mean 1 and
take this solution as an initial distribution R(0) with E(R(0)) = 1. Consider R(k),
then the first part of (2.6) has a mean:

E

(

∑

u1...uk∈T

Au1
. . . Au1...uk

R(0)
u1...uk

)

= (E(N))k

(

(1 − E(B))

E(N)

)k

= (1 − E(B))k,

and hence this part converges in probability to 0, as k → ∞, because, by the Markov
inequality, the probability that this term is greater than some ε > 0 is at most
(1 − E(B))k/ε → 0 as k → ∞. Moreover, the second part of (2.6) converges a.s. to
R(∞) as k → ∞. It follows that (2.6) converges to R(∞) in probability. We conclude
that there is no other fixed point of (2.4) with mean 1 except R(∞).

2.3 Asymptotics for iterations

Our main goal is to show how the asymptotics of R in (2.4) depends on the distri-
bution of N and B. We divide this problem into three possible cases. In the first
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case, we assume that N is a regularly varying random variable, and B has some
distribution with lighter tail, that is, P(B > x) = o(P(N > x)) as x → ∞. Then we
recall that N is an integer valued regularly varying random variable

P(N > x) ∼ x−αN LN(x) as x → ∞, (2.8)

where LN (x) is slowly varying function. In the second case, we take B to be regularly
varying and N to have a lighter tail. Then, we have

P(B > x) ∼ x−αB LB(x) as x → ∞, (2.9)

where LB(x) is a slowly varying function. In the final case, we consider both variables
to be regularly varying with the same indexes.

At this point, we assume that E(N)E(Aα) < 1, where α = min(αN , αB).
We start with lemma that describes the asymptotic behavior of product, sum

and random sums of regularly varying random variables. We use these results in
Theorems 2.4 and 2.5 for defining asymptotic properties of PageRank, when the
PageRank is a result of the finite number of the iteration steps. In the lemma, relation
(iii) is known as Breiman’s theorem (see e.g. Lemma 4.2.(1) in [59]). Properties (iv),
(v), and (vi) are statements (2), (1) and (5) of Lemma 3.7 in [59], respectively. The
results (i) and (ii) directly follow from Lemma 3.12 and 3.1 in [59], respectively.

Lemma 2.3. (i) Assume that X1 is non-negative regularly varying random variable
with index α ≥ 0. If random variable X2 > 0 is such that P(X2 > x) =
o(P(X1 > x)), then

P(X1 + X2 > x) ∼ P(X1 > x) as x → ∞.

(ii) Assume that X1 is non-negative regularly varying random variable with index
α ≥ 0. If random variable X2 > 0 satisfies P(X2 > x) ∼ C P(X1 > x) for some
constant C > 0, and P(X1 > x, X2 > x) = o(P(X1 > x)), then

P(X1 + X2 > x) ∼ (1 + C)P(X1 > x) as x → ∞.

(iii) Assume that X1 and X2 are two independent non-negative random variables
such that X1 is regularly varying with index α and that E(Xα+ε

2 ) < ∞ for
some ε > 0. Then

P(X1X2 > x) ∼ E(Xα
2 )P(X1 > x) as x → ∞.

(iv) Assume that N is regularly varying with index α ≥ 0; if α = 1, then assume
that E(N) < ∞. Moreover, let (Xi) be i.i.d. sequence such that E(X1) < ∞
and P(X1 > x) = o(P(N > x)). Then as x → ∞,

P

(

N
∑

i=1

Xi > x

)

∼ (E(X1))
α
P(N > x) as x → ∞.
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(v) Assume (Xi) is i.i.d. sequence of regular varying random variables with index
α > 0, E(N) < ∞, and P(N > x) = o(P(X1 > x)). Then

P

(

N
∑

i=1

Xi > x

)

∼ E(N)P(X1 > x) as x → ∞.

(vi) Assume that P(X1 > x) ∼ C P(N > x) for some constant C > 0, that X1 is
regularly varying with index α ≥ 1, and E(X1) < ∞. Then

P

(

N
∑

i=1

Xi > x

)

∼ (C E(N) + (E(X1))
α)P(N > x) as x → ∞.

In the next theorem we consider the case when the initial distribution R(0) has
a lighter tail than N or B. This assumption makes sense since iterations usually
start with R(0) ≡ 1. For other types of distribution of R(0) we refer to Theorem 2.5.
In short, the next theorem states that the tail behavior of R(k) is determined by
the asymptotics of the random variable with the heaviest tail among N and B.
Moreover, if the tails of N and B are equally heavy, then in fact we get the sum of
two asymptotic expressions.

Theorem 2.4. (i) If P(B > x) = o(P(N > x)) and P(R(0) > x) = o(P(N > x)),
then for all k ≥ 1 :

P(R(k) > x) ∼ C
(k)
N P(N > x) as x → ∞,

where C
(k)
N = (E(A))αN

∑k−1
i=0 [E(N)E(AαN )]

i
.

(ii) If P(N > x) = o(P(B > x)) and P(R(0) > x) = o(P(B > x)), then for all k ≥ 1,

P(R(k) > x) ∼ C
(k)
B P(B > x) as x → ∞,

where C
(k)
B =

∑k−1
i=0 [E(N)E(AαB )]i .

(iii) If P(B > x) ∼ CBNP(N > x) for some constant CBN , P(R(0) > x) = o(P(N >
x)), and P(N > x, B > x) = o(P(N > x)), then for all k ≥ 1,

P(R(k) > x) ∼ C(k)
P(N > x) as x → ∞,

where C(k) = [CBN + (E(A))αN ]
∑k−1

i=0 [E(N)E(AαN )]
i
.

Proof.

(i) We will use induction on k. For k = 1 we apply Lemma 2.3 (i) and (iv) to obtain

P

(

R(1) > x
)

= P





N
∑

j=1

AjR
(0)
j + B > x



 ∼ P





N
∑

j=1

AjR
(0)
j > x





∼ (E(A))αN P(N > x) as x → ∞,



2.3. Asymptotics for iterations 31

since E(N) < ∞, E

(

A1R
(0)
1

)

= E(A) < ∞, and P

(

A1R
(0)
1 > x

)

= o(P(N > x)).

Now, assume that the result has been shown for the (k − 1)th iteration, k ≥ 2, then
Lemma 2.3 (iii) yields

P

(

A1R
(k−1)
1 > x

)

∼ C
(k−1)
N E (AαN ) P(N > x), (2.10)

Because of (2.10) and E

(

A1R
(k−1)
1

)

= E(A) < ∞, we can apply Lemma 2.3 (i), and

(vi) to obtain

P

(

R(k) > x
)

∼ P





N
∑

j=1

AjR
(k−1)
j + B > x





∼
[

C
(k−1)
N E(AαN )E(N) + (E(A))αN

]

P(N > x) = C
(k)
N P(N > x) as x → ∞.

(ii) From Lemma 2.3 (i) we have that

P

(

R(1) > x
)

∼ P





N
∑

j=1

AjR
(0)
j + B > x



 ∼ P(B > x) as x → ∞.

Assume that the statement holds for (k − 1), where k ≥ 2. Then, from Lemma
2.3 (iii) we obtain

P

(

A1R
(k−1)
1 > x

)

∼ C
(k−1)
B E (AαB ) P(B > x).

Because E(N) < ∞, we apply Lemma 2.3 (ii) and (v) to obtain

P

(

R(k) > x
)

∼ P





N
∑

j=1

AjR
(k−1)
j + B > x





∼
[

E(N)C
(k−1)
B E(AαB ) + 1

]

P(B > x) = C
(k)
B P(B > x) as x → ∞.

(iii) We start the induction with k = 1 as follows

P

(

R(1) > x
)

∼ P





N
∑

j=1

AjR
(0)
j + B > x



 ∼ (E(A))αN P(N > x)

+ P(B > x) ∼ [(E(A))αN + CBN ]P(N > x) as x → ∞,

where we use Lemma 2.3 (ii) and (iv). Next, from (2.10), E

(

A1R
(k−1)
1

)

= E(A) <
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∞, and using of Lemma 2.3 (ii) and (vi) we obtain that for any k ≥ 2 :

P

(

R(k) > x
)

∼ P





N
∑

j=1

AjR
(k−1)
j + B > x





∼
[

E(N)C(k−1)
E(AαN ) + (E(A))αN + CBN

]

P(N > x)

= C(k)
P(N > x) as x → ∞.

With R(k) for A
d
= c/D and B

d
= cp0 +(1−c)wT, the random variable R(k) serves

as a stochastic model for the result of the kth power iteration in the PageRank
computation (see Section 1.2.1). Since the PageRank vector is always a result of
a finite number of iterations, we can conclude that the distribution of PageRank
should follow power law with exponent α = min(αN , αB). However, if the initial
distribution R(0) has one of the heaviest tails, then the following results hold.

Theorem 2.5. Let R(0) be a regularly varying random variable with index αR > 0.
Then the following statements hold.

(i) If P(N > x) = o(P(R(0) > x)) and P(B > x) = o(P(R0 > x)), then for all k ≥ 1 :

P(R(k) > x) ∼ C
(k)
R P(R(0) > x) as x → ∞,

where C
(k)
R =

∏k
i=0 [E(N)E(AαR )]i .

(ii) If P(R0 > x) ∼ CRNP(N > x), and P(B > x) = o(P(R(0) > x)), then for all
k ≥ 1 :

P(R(k) > x) ∼ C
(k)
RNP(N > x) as x → ∞,

where C
(k)
RN = [E(N)E(AαN )]kCRN + [E(A)]αN

∑k−1
i=0 [E(N)E(AαN )]

i
.

(iii) If P(N > x) = o(P(R(0) > x)), P(R(0) > x) ∼ CRBP(B > x), and P(R(0) >
x, B > x) = o(P(B > x)), then for all k ≥ 1 :

P(R(k) > x) ∼ C
(k)
RBP(B > x) as x → ∞,

where C
(k)
RB = [E(N)E(AαB )]kCRB +

∑k−1
i=0 [E(N)E(AαB )]

i
.

(iv) If P(R0 > x) ∼ CRNP(N > x), P(B > x) ∼ CBN P(N > x), P(R(0) > x, N >
x) = o(P(N > x)), and P(B > x, N > x) = o(P(N > x)), then for all k ≥ 1 :

P(R(k) > x) ∼ C
(k)
RBN P(N > x) as x → ∞,

C
(k)
RBN = [E(N)E(AαN )]kCRN + [CBN + [E(A)]αN ]

∑k−1
i=0 [E(N)E(AαN )]

i
.
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Proof. We again use induction. We start with k = 1 for which all statements are
valid. Next, we assume that result has been shown for (k − 1)th iteration, where
k > 2. Then we consider every case respectively.

(i) We apply Lemma 2.3 (i), (iii) and (v) to obtain the following:

P(R(k) > x) = P





N
∑

j=1

AjR
(k−1)
j + B > x



 ∼ P





N
∑

j=1

AjR
(k−1)
j > x





∼ E(N)E(AαR )P(R(k−1) > 0) = C
(k)
R P(R(0) > 0).

(ii) In this case we have

P(R(k) > x) = P





N
∑

j=1

AjR
(k−1)
j + B > x



 ∼ P





N
∑

j=1

AjR
(k−1)
j > x





∼
[

E(AαN )E(N)C
(k−1)
RN + (E(A))αN

]

P(N > x) = C
(k)
RN P(N > x),

where we use Lemma 2.3 (i), (iii) and (vi).

(iii) From Lemma 2.3 (ii), (iii) and (v) we obtain the statement:

P(R(k) > x) = P





N
∑

j=1

AjR
(k−1)
j + B > x



 ∼ P





N
∑

j=1

AjR
(k−1)
j > x





+ P(B > x) ∼
[

E(AαB )E(N)C
(k−1)
RB + 1

]

P(B > x) = C
(k)
RBP(B > x).

(iv) Here we use Lemma 2.3 (ii), (iii) and (vi) and get the following result:

P(R(k) > x) = P





N
∑

j=1

AjR
(k−1)
j + B > x



 ∼ P





N
∑

j=1

AjR
(k−1)
j > x





+ P(B > x) ∼
[

E(AαN )E(N)C
(k−1)
RBN + (E(A))αN + CBN

]

P(N > x)

= C
(k)
RBN P(N > x).

Recall that for A
d
= c/D and B

d
= cp0 + (1 − c)wT, equation (3.1) is a stochastic

equation for the non-uniform PageRank. Then, we use E(1/D) = (1 − p0)/E(N),
P(B > x) ∼ (1−c)αT P(wT > x) as x → ∞, and Theorem 2.4 to obtain the following
equivalence.
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Corollary 2.6. (i) If in-degree N follows power law with exponent αN , and P(wT >

x) = o(P(N > x)), then P(R(k) > x) ∼ C
(k)
N P(N > x) as x → ∞, where

C
(k)
N =

cαN (1 − p0)
αN

(E(N))αN

k
∑

i=1

[cαN E(N)E(1/DαN )]
i
.

(ii) If normalized teleportation jump wT follows power law with exponent αT , and

P(N > x) = o(P(wT > x)), then P(R(k) > x) ∼ C
(k)
T P(T > x) as x → ∞,

where

C
(k)
T = (1 − c)αT

k
∑

i=1

[cαT E(N)E(1/DαT )]
i
.

(iii) If N and wT obey power law with the same exponent αN , and P(wT > x) ∼
CBN (1− c)−αN P(N > x), then P(R(k) > x) ∼ C(k)P(N > x) as x → ∞, where

C(k) =

[

CBN +
cαN (1 − p0)

αN

(E(N))αN

] k
∑

i=1

[cαN E(N)E(1/DαN )]
i
.

As we can see the values of the multiplicative constants C
(k)
N , C

(k)
T and C(k)

increase with increasing of the number of the iterations. Since C
(k)
N , C

(k)
T and C(k)

are always smaller than 1, we can claim that with each new iteration the log-log plot
for the PageRank creeps up to the log-log plot of the in-degree distribution. For
more details and empirical results we refer to Chapter 4. We also refer to discussion
on the asymptotics of limiting PageRank distribution in Section 3.3.4

2.4 Asymptotics: from R
(k) to R

(∞)

Combining the results from Theorem 2.2 and 2.4, we can presume the following
asymptotic similarities for R(∞), the unique non-trivial solution of (2.4):

(i) If P(B > x) = o(P(N > x)), then P(R(∞) > x) ∼ CNP(N > x) as x → ∞, where

CN = limk→∞ C
(k)
N = (E(A))αN [1 − E(N)E(AαN )]

−1
.

(ii) If P(N > x) = o(P(B > x)), then P(R(∞) > x) ∼ CBP(B > x) as x → ∞,

where CB = limk→∞ C
(k)
B = [1 − E(N)E(AαB )]−1 .

(iii) If P(B > x) ∼ CBNP(N > x) for some constant CBN , and P(N > x, B > x)=
o(P(N > x)), then P(R(∞) > x) ∼ C P(N > x) as x → ∞, where

C = limk→∞ C(k) = [CBN + (E(A))αN ] [1 − E(N)E(AαN )]
−1

.
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Proving these results by probabilistic methods requires an exchange of limits
in x and k, which is usually a difficult technical problem. Indeed, if we assume
that P(R(k) > x) ∼ hk(x) as x → ∞ for every k and some function hk(x), then
P(R(∞) > x) ∼ limk→∞ hk(x) is not true in general. For instance, from Theorem 2.5
we know that the asymptotics of R(k) can be defined by the asymptotics of R(0),
whereas representation (2.7) clarifies that R(∞) does not depend on the distribution
of R(0). In Section 3.3 we prove the above similarities using the Laplace-Stieltjes
transforms analysis.





CHAPTER 3

LAPLACE-STIELTJES TRANSFORMS’ ANALYSIS

In this chapter we define the tail behavior for our models for the distributions of the
in-degree and the PageRank. To this end, we apply a technique that was used by
de Meyer and Teugels [81] to obtain asymptotic behavior of the busy period in the
M/G/1 queue. To define similarity in asymptotics between two random variables
we analyze the corresponding equation for the Laplace-Stieltjes transforms. The
key theorem of our analysis is a Tauberian theorem was introduced by Bingham
and Doney in [16], and later in the book [17]. The theorem establishes the relation
between the asymptotic behavior of a regularly varying distribution and its Laplace-
Stieltjes transform. For details we refer to Section 3.1.

In Section 3.2 we start with the analysis of the model for the in-degree distri-
bution. As it was discussed in Section 2.1.1, we define the in-degree of a random
page in the Web graph as an integer random variable N(X), where N is the number
of Poisson(1) events on [0, X ], where X is a regular varying random variable. We
show the asymptotic equivalence of N(X) and X in two steps. First, in order to
satisfy conditions of the Tauberian theorem (Theorem 3.2) we show that for some
integer k : the kth moments of X exist if and only if the kth moment of N(X) exist.
We state this result in Lemma 3.4. Second, we define the desired tail similarity in
Theorem 3.6.

In Section 3.3 we continue with stochastic model for the PageRank. As in Chap-
ter 2, we define the distribution of the PageRank through stochastic equation (2.3).
Again, instead of analyzing (2.3) we consider the general version of the stochastic
equation. Here we recall (2.4):

R
d
=

N
∑

j=1

AjRj + B, (3.1)

37
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where we assume that all random variables are positive; Rj ’s are independent and
distributed as R; and Aj ’s are independent and distributed as some random variable
with E(A) = [1−E(B)]/E(N). We also set Rj ’s and Aj ’s to be independent, and to
be independent of N and B. Moreover, it is essential that E(B) < 1. We emphasize
that N and B can be dependent. In this chapter we need to assume that A < 1, and
α = min(αN , αB) > 1 is non-integer, where αN and αB are power law exponents for
N and B, respectively.

Based on (3.1) we define the equation for Laplace-Stieltjes transforms of N, B,
and R in Section 3.3.1. To classify the asymptotic behavior of R, we first need to
show that conditions of Tauberian theorem (Theorem 3.2) are satisfied. Particularly,
in Lemmas 3.7 and 3.8 we justify that the existence of the kth moments of N and
B implies the existence of the kth moment of R, and vice versa. Then, we define
the necessary equivalences for the Laplace-Stieltjes transforms of N, B, and R in
Corollary 3.9; and obtain the main results in Theorem 3.10. The theorem justifies
asymptotics that are predicted in Section 2.4. Thus, the obtained tail behavior of R
is determined by the asymptotics of the random variable with the heaviest tail among
N and B, and is a convergence of the results of Theorem 2.4. For the case when
generalized stochastic equation (3.1) servers to model the PageRank distribution we
refer to Section 3.3.4.

We start with introduction of the main definitions and some facts that we use
throughout this chapter.

3.1 Preliminaries

The Laplace-Stieltjes transforms analysis is one of the classical ways to study regular
varying random variables. In this section we adopt definitions and result from [16].
More details can be also found in the book by Bingham et al. [17].

We denote by f(s) = Ee−sX , s > 0, the Laplace-Stieltjes transform of X , and let
ξi =

∫∞

0 xidFX(x) be the ith moment of X , where FX is the cumulative distribution
function of X . The successive moments of X can be obtained by expanding f(s) in
a series at s = 0. More precisely, we write the following:

Lemma 3.1. The nth moment of X is finite if and only if there exist finite numbers
ξ0 = 1 and ξ1, ..., ξn, such that

fn(s) = (−1)n+1

(

f(s) −
n
∑

i=0

ξi

i!
(−s)i

)

= o(sn) as s → 0. (3.2)

In that case, ξi is the ith moment of X.

The following theorem establishes a relation between the tail behavior of a regu-
larly varying random variable and its Laplace-Stieltjes transform. We use this result
in the proofs of Theorem 3.6 and 3.10.
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Theorem 3.2. (Tauberian Theorem) If n ∈ N, ξn < ∞, α ∈ (n, n + 1), then the
following are equivalent

(i) fn(s) ∼ (−1)nΓ(1 − α)sαL(1
s ) as s → 0,

(ii) P(X > x) ∼ x−αL(x) as x → ∞.

The next lemma provides a useful bound for slowly varying functions. Here we
present the version of the lemma from [117].

Lemma 3.3. (Potter bounds) Let L be a slowly varying function. Then, for any
fixed ϑ > 1, δ > 0 there exists a finite constant s0 < 1 such that for all s1, s2 < s0,

L
(

1
s1

)

L
(

1
s2

) ≤ ϑ max

{

(

s1

s2

)δ

,

(

s1

s2

)−δ
}

.

3.2 Asymptotic behavior of the in-degree model

We model the in-degree of a random page in the Web as an integer valued regularly
varying random variable N = N(X), where we assume that X is regularly varying
with index αN and N(x) is the number of Poisson arrivals during the time interval
[0, x], when arrival rate is 1. The advantage of N(X) is that we do not need to impose
any restrictions on X and at the same time ensure that the in-degree is integer. We
claim that the random variable N(X) is regularly varying with the same index as
X , or, more informally, N(X) follows a power law with the same exponent. Thus,
we can think of N(X) as the in-degree of a random Web page. For the sake of
completeness we present the formal statement and its proof in the remainder of this
section.

We want to prove that P(X > x) ∼ P(N(X) > x) as x → ∞. We assume that
random variable X is a regularly varying with non-integer index αX > 1:

P(X > x) ∼ x−αX LX(x) as x → ∞, (3.3)

where LX(x) is some slowly varying function. Then we show that N(X) is also a
regularly varying random variable with non-integer index αN > 1:

P(N(X) > x) ∼ x−αN LN(x) as x → ∞, (3.4)

such that αX = αN and LX(x) = LN (x). We use Tauberian theorem (see Theo-
rem 3.2), and therefore we first confirm that the corresponding moments of X and
N(X) always exist together.

We start with observation that E(X) = E(N(X)) = E(N). We denote by f and
φ the Laplace-Stieltjes transforms of X and N(X), respectively. Next, we consider
the generating function of N(X) :

GN(X)(s) = EsN(X) =

∫ ∞

0

EsN(t)dFX(t) =

∫ ∞

0

e−t(1−s)dFX(t) = f(1 − s),
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where FX is the distribution function of X . Thus, we derive the Laplace-Stieltjes
transform of N(X) in terms of the Laplace-Stieltjes transform of X :

φ(s) = Ee−sN(X) = f(1 − e−s). (3.5)

Denote by ν0 = 1, ν1 = E(N), . . . , νn the first n moments of N(X). Provided
that νn are finite we define

φn(s) = (−1)n+1

(

φ(s) −
n
∑

i=0

νi

i!
(−s)i

)

as in Lemma 3.1. Then, we can prove the following lemma.

Lemma 3.4. For n ≥ 1, the following are equivalent

(i) ξn < ∞,

(ii) νn < ∞.

Proof.

(i) → (ii) From Lemma 3.1 we know that ξn < ∞ implies fn(y) = o (yn) . Consider

y(s) = 1 − e−s =

n+1
∑

i=1

(−1)i+1 si

i!
+ o(sn+1),

then we can find yi(s):

yi(s) =

n+i
∑

j=i

µi,js
j + o

(

sn+i
)

for i ≥ 1 and some appropriate constants µi,j , j = i, . . . , n+ i. Thus, we easily obtain

fn(y(s)) = (−1)n+1

(

f(y(s)) −
n
∑

i=0

ξi

i!
(−y(s))i

)

= (−1)n+1



φ(s) − 1 −
n
∑

i=1

ξi

i!
(−1)i





n+i
∑

j=i

µi,js
j + o

(

sn+i
)









= (−1)n+1

(

φ(s) −
n
∑

i=0

ν̂i

i!
(−s)i + O

(

sn+1
)

)

,

for some finite constants ν̂0 = 1 and ν̂1, . . . ν̂n, that can be expressed in terms of
ξ1, . . . , ξn. Thus, we find

φ(s) =
n
∑

i=0

ν̂i

i!
(−s)i + (−1)n+1fn(y(s)) + O(sn+1) =

n
∑

i=0

ν̂i

i!
(−s)i + o(sn),

since y(s) = s + o(s). By uniqueness of the power series expansion we have νi = ν̂i,
i = 0 . . . n − 1, and then by Lemma 3.1 we have νn = ν̂n < ∞.
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(ii) → (i) Similar to the first part of the proof, where we use s(y) = − ln(1 − y).

Remark 3.5. It follows from the proof of Lemma 3.4 that if ξn < ∞, then

fn

(

1 − e−s
)

= φn(s) + O(sn+1).

Now, we use Theorem 3.2 to prove that (3.3) implies (3.4), and vice versa.

Theorem 3.6. The following are equivalent

(i) P(X > x) ∼ x−αN L(x) as x → ∞,

(ii) P(N(X) > x) ∼ x−αN L(x) as x → ∞.

Proof.

(i) → (ii) From Theorem 3.2 and (i) we know that

fn(s) ∼ (−1)nΓ(1 − αN )sαN LX

(

1

s

)

as s → 0, (3.6)

where αN > 1 is not integer and n is the largest integer smaller than αN . From
1 − e−s ∼ s as s → 0, (3.6) and Lemma 3.3 we obtain that

fn(s) ∼ fn(1 − e−s) as s → 0.

Then, we use (3.6) and Remark 3.5 to obtain

φn(s) ∼ (−1)nΓ(1 − α)sαL

(

1

s

)

as s → 0.

Now we again apply Theorem 3.2 to conclude that

1 − FN(X) ∼ x−αL(x) as x → ∞.

(ii) → (i) Similar to the first part of the proof.

Thus, our model for the number of incoming links properly describes the in-
degree distribution that follows a power law with finite expectation and a non-integer
exponent. We use N = N(X) throughout the rest of this chapter.

3.3 General stochastic equation

In this section we consider the general stochastic equation (3.1). We start with
deriving of the equation for Laplace-Stieltjes transforms, that corresponds to (3.1).
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3.3.1 Equation for Laplace-Stieltjes transforms

We denote the first m moments of B by β1, β2, . . . , βm, and β0 = 1. Then, provided
that βm is finite, we define

bm(s) = (−1)m+1

(

b(s) −
m
∑

i=0

βi

i!
(−s)i

)

, (3.7)

where b(s) is the Laplace-Stieltjes transform of B.
We introduce the following notation:

G(t, s) = E
(

e−tXe−sB
)

, (3.8)

where it is easy to see that G(t, 0) = f(t) and G(0, s) = b(s). Moreover, if X and B
are independent, implying that N and B are independent, then we have

G(t, s) = f(t)b(s).

Let r(s) be the Laplace-Stieltjes transform of R. Then, by (3.1) and (3.5) the
following holds:

r(s) = E
(

e−sR
)

= E



exp



−s

N
∑

j=1

AjRj



 e−sB





= E



E



exp



−s
N
∑

j=1

AjRj



 e−sB

∣

∣

∣

∣

N, B







 = G [1 − E (r (As)) , s] .

Thus, we derive the next equation:

r(s) = G [1 − E (r (As)) , s] . (3.9)

Denoting
t(s) = 1 − E (r (As)) , (3.10)

we write (3.9) as
r(s) = G(t(s), s). (3.11)

3.3.2 Auxiliary results

We define ρ1, . . . , ρk to be the first k moments of R. If ρk < ∞, and we write

rk(s) = (−1)k+1

(

r(s) −
k
∑

i=0

ρi

i!
(−s)i

)

, (3.12)

as in Lemma 3.1.
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Next, we denote k = min(m, n), where m and n are integer, and such that βm =
E(Bm) < ∞ and ξn = E(Xn) < ∞. Further, we assume that E(XjBk+1−j) < ∞ for
all 1 ≤ j ≤ k. We note that because of E(X) < ∞ and E(B) < ∞ this assumption
is always true in the case of the independent N and B. However, this assumption is
much weaker than independence. Then we can prove the following lemma.

Lemma 3.7. If ξn < ∞ and βm < ∞ for some integer m, n ≥ 1, and E(XjBk+1−j) <
∞ for all 1 ≤ j ≤ k, where k = min(m, n), then ρk < ∞.

Proof. We use induction, starting from k = 1 for which the statement is valid.
Assume that for i = 1, 2, . . . , k − 1, lemma has been proved, so we can use the
following expansion:

r(s) = 1 − s +

k−1
∑

i=2

ρi

i!
(−s)i + o(sk−1),

to present t(s) as a sum

t(s) = −E

(

k−1
∑

i=1

ρi

i!
Ai(−s)i + o(sk−1)

)

= −
k−1
∑

i=1

ρi

i!
E(Ai)(−s)i + o(sk−1).

As the result of this, we can actually obtain ti(s):

ti(s) =

k+i−2
∑

j=i

ζi,js
j + o(sk+i−2), (3.13)

for i ≥ 1 and some appropriate constants ζi,j , j = i, . . . , k + i − 2.

Now, we consider the Taylor expansion of G(t(s), s):

G(t(s), s) =

[

k
∑

i=0

ξi

i!
(−t(s))i + (−1)k+1fk (t(s))

]

(3.14)

+

[

k
∑

i=0

βi

i!
(−s)i + (−1)k+1bk(s)

]

− 1 +

k+1
∑

i=0

(−1)i

i!

i−1
∑

j=1

(

i

j

)

E
(

XjBi−j
)

tj(s)si−j + o(sk+1),

where t(s) ∼ E(A)s. Here we use that G′tjsi−j (0, 0) = (−1)iE
(

XjBi−j
)

< ∞ for all
0 ≤ i ≤ k + 1 and 0 < j < k + 1. Then, from (3.10), (3.11), and (3.14), we obtain
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the following:

r(s) = 1 − E(N)t(s) +

[

k
∑

i=2

ξi

i!
(−t(s))i + (−1)k+1fk (t(s))

]

+

[

k
∑

i=0

βi

i!
(−s)i

+(−1)k+1bk(s)
]

− 1 +

k+1
∑

i=0

(−1)i

i!

i−1
∑

j=1

(

i

j

)

E
(

XjBi−j
)

tj(s)si−j + o(sk+1)

= 1 − E(N) [1 − E(r(As))] +

k
∑

i=1

ηis
i + o(sk),

where we use (3.13), fk(t(s)) = o(sk), and bk(s) = o(sk) to find the appropriate
constants η1, . . . , ηk. Next, we rewrite the last equation

r(s) − E(N)E(r(As)) = 1 − E(N) +

k
∑

i=1

ηis
i + o(sk),

and apply (3.12) to obtain the following:

rk−1(s) − E(N)E (rk−1 (As)) + (−1)k
k−1
∑

i=0

ρi

i!
(1 − E(Ai))(−s)i = 1 − E(N)

+

k
∑

i=0

ηis
i + o(sk).

Because rk−1(s) = o(sk−1), E(rk−1(As)) = o(sk−1) and the uniqueness of the series
expansion, we can remove all powers up to k:

rk−1(s) − E(N)E (rk−1 (As)) = ηksk + o(sk). (3.15)

Now, we let A1, A2 . . . be independent and distributed as A. We consider the fol-
lowing partial sums

M
∑

j=0

(E(N))j [E (rk−1(A1 . . . Ajs)) − E(N) E (rk−1(A1 . . . Aj+1s))]

= rk−1(s) − (E(N))M+1
E(rk−1(A1 . . . AM+1s))

We claim that the second term converges to 0 as M → ∞. From induction hypoth-
esis and the definition of o(sk−1), for all ε > 0, there exists a δ = δ(ε) such that
|rk−1(s)| < εsk−1 whenever 0 < s ≤ δ. Fix some ε and take δ = δ(ε). Then the
following holds:

E |rk−1 (A1 . . . AM+1s)| < εsk−1
E
(

Ak−1
1 . . . Ak−1

M+1

)

= εsk−1
(

E(Ak−1)
)M+1

,
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where final equation holds because of the independence of the A’s. Taking the limit as
M → ∞, since E(B) < 1, A < 1, E(A) = (1−E(B))/E(N) and E(An−1) ≤ E(A) we
have limM→∞ E(N)M+1E(rk−1(A1 . . . AM+1s)) = 0. It follows that we can express
rk−1(s) as an infinite sum:

rk−1(s) =

∞
∑

j=0

(E(N))j [E (rk−1(A1 . . . Ajs)) − E(N) E (rk−1(A1 . . . Aj+1s))] , (3.16)

where we can apply (3.15) to each of the terms. Form the definition of o(sk), for
every ε > 0, there exists a δ = δ(ε) such that

∣

∣rk−1(s) − E(N)E (rk−1 (As)) − ηksk
∣

∣ < εsk

whenever 0 < s ≤ δ. Moreover, for this ε and 0 < s ≤ δ, we also have

∣

∣E (rk−1 (A1 . . . Ajs)) − E(N)E (rk−1 (A1 . . . Aj+1s)) − ηksk
E
(

Ak
1 . . . Ak

j

)∣

∣

≤ E
∣

∣E
[

rk−1 (A1 . . . Ajs) − E(N)rk−1 (A1 . . . Aj+1s) − ηkskAk
1 . . . Ak

j

|A1, . . . , Aj

]∣

∣ < εsk(E(Ak))j ,

for every j ≥ 0 and A1, . . . , Aj+1, which are independent and distributed as A. Here
the last inequality holds because A < 1, and then 0 < A1 . . . Aj+1s ≤ s < δ for every
j ≥ 0. Using the representation of rk−1(s) as an infinite sum, (3.16), we obtain

∣

∣

∣

∣

∣

∣

rk−1(s) − ηk

∞
∑

j=0

(E(N))j
E
(

Ak
1 . . . Ak

j

)

sk

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

j=0

(E(N))j [E (rk−1(A1 . . . Ajs)) − E(N)E (rk−1(A1 . . . Aj+1s))]

−ηk

∞
∑

j=0

(E(N))j
E
(

Ak
1 . . . Ak

j

)

sk

∣

∣

∣

∣

∣

∣

≤ εsk
∞
∑

j=1

(E(N)E(Ak))j

= ε[1 − E(N)E(Ak)]−1sk.

Thus, we have shown that rk−1(s) − ηk[1 − E(N)E(Ak)]−1sk = o(sk). Taking ρk =
−ηk[1 − E(N)E(Ak)]−1, from Lemma 3.1 and the last equation we conclude that ρk

is the kth moment of R and it is finite.

We can also proof the conversed lemma.

Lemma 3.8. If ρk < ∞, k ≥ 1, then ξk < ∞ and βk < ∞.
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Proof. Let R be non-negative random variable, that satisfies (3.1) and has finite kth
moment. Equation (3.1) implies that R is stochastically greater than B, and thus R
is also stochastically greater than B(AN(X) + 1). Hence, the existence of the kth
moment of R ensures the existence of the kth moment of B and N(X), which in turn
ensures the existence of the kth moment of X .

The next Corollary follows from the proof of Lemma 3.7.

Corollary 3.9. It follows from Lemma 3.7 that

(i) if n < m, then rn(s) − E(N)E (rn (As)) = fn(t(s)) + O(sn+1).

(ii) if n > m, then rm(s) − E(N)E (rm (As)) = bm(s) + O(sm+1).

(iii) if n = m, then rn(s) − E(N)E (rn (As)) = fn(t(s)) + bn(s) + O(sn+1).

Proof. Recall k to be min(m, n). Because rk(s) = o(sk) we can consider the following
expansion of (3.13):

ti(s) =

k+i−1
∑

j=l

ζi,js
j + o(sk+i−1), (3.17)

for i ≥ 1 and appropriate constants ζi,j , j = i, . . . , k + i − 1.
From (3.11), (3.14), (3.17), the definitions of rk(s), bk(t), t(s), Lemma 3.7, it

follows that

(−1)k+1rk(s) +
k
∑

i=0

ρi

i!
(−s)i =

[

(−1)k+1fk (t(s)) +
k
∑

i=2

ξi

i!
(−t(s))i + 1

−E(N)

[

1 − E

(

(−1)k+1rk(As) +
k
∑

i=0

ρi

i!
(−As)i

)]]

− 1 +

[

k
∑

i=0

βi

i!
(−s)i

+(−1)k+1bk(s)
]

+

k+1
∑

i=0

(−1)i

i!

i−1
∑

j=1

(

i

j

)

E
(

XjBi−j
)

tj(s)si−j + o(sk+1)

= (−1)k+1[bk(s) + fk(t) + E(N)E(rk(As))] +
k+1
∑

i=0

ςis
i + o(sk+1),

where ς0, . . . , ςk+1 are appropriate constants. Due to the uniqueness of the series
expansion, we can reduce the above formula to

rk(s) = bk(s) + fk(t) + E(N)E(rk(As)) + (−1)k+1ςk+1s
k+1 + o(sk+1).

The corollary follows because t(s) ∼ E(A)s as s → 0.

Now we are ready to prove our main result.
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3.3.3 Main theorem

In the next theorem we obtain our main result that establishes the tail behavior of
the solution of the general stochastic equation (3.1). In particular, for A

d
= c/D and

B
d
= cp0 +(1−c)wT, we can derive asymptotics for the PageRank distribution under

various assumptions on the distribution of the in-degree and the teleportation (see
Section 3.3.4).

Theorem 3.10. (i) if P(B > x) = o(P(N > x)), then the following are equiva-
lent:

(i.1) P(N > x) ∼ x−αN LN(x) as x → ∞,

(i.2) P(R > x) ∼ CNx−αN LN (x) as x → ∞,
where CN = (E(A))αN [1 − E(N)E(AαN )]−1;

(ii) if P(N > x) = o(P(B > x)), then the following are equivalent:

(ii.1) P(B > x) ∼ x−αB LB(x) as x → ∞,

(ii.2) P(R > x) ∼ CBx−αB LB(x) as x → ∞,
where CB = [1 − E(N)E(AαB )]−1;

(iii) if P(B > x) ∼ CBN P(N > x), then the following are equivalent:

(iii.1) P(N > x) ∼ x−αN LN(x), and P(B > x) ∼ x−αN LB(x)
∼ CBNx−αN LN(x) as x → ∞,

(iii.2) P(R > x) ∼ Cx−αN LN (x) as x → ∞,

where C = [CBN + (E(A))αN ] × [1 − E(N)E(AαN )]
−1

.

The results of Theorem 3.10 describe the tail behavior of R under various as-
sumptions on the distribution of N and B. First of all, we observe that the power
law exponent is defined by the random variable with the heaviest tail among N and
B, representing the in-degree and the user preference, respectively. Next, we see that
the obtained multiplicative constants agree with the results of Section 2.4. When
B has a lighter tail than N , we observe that the distribution of B has no influence
on the asymptotics of R. In the next case we find that CB only depends on the
distribution of N only through its mean, and in the case of the similar tails of N
and B we have the effects from both of them.

Proof of Theorem 3.10.

(i, ii, iii.1) ⇒ (i, ii, iii.2) It follows from (i, ii, iii.1) and Theorem 3.2 that

(i) fn(t) ∼ (−1)nΓ(1 − αN )tαN LN

(

1
t

)

as t → 0;

(ii) bm(s) ∼ (−1)mΓ(1 − αB)sαBLB

(

1
s

)

as s → 0;

(iii) both previous equivalences,
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where m and n are the largest integer values not exceeding αB and αN , respectively.

Recall that t(s) ∼ E(A)s as s → 0, because of (3.10) and r(s) = 1 − s + o(s).
Then, by applying Corollary 3.9 we can obtain as s → 0:

(i) rn(s) − E(N)E (rn (As)) ∼ (−1)nΓ(1 − αN )(E(A))αN LN

(

1
s

)

sαN

(ii) rm(s) − E(N)E (rm (As)) ∼ (−1)mΓ(1 − αB)LB

(

1
s

)

sαB

(iii) rn(s) − E(N)E (rn (As)) ∼ (−1)nΓ(1 − αN )
[

(E(A))αN LN

(

1
s

)

+ LB

(

1
s

)]

sαN .

Let VN and VB be constants that are defined as follows:
(i) VN = (E(A))α and VB = 0;
(ii) VN = 0 and VB = 1;
(iii) VN = (E(A))α and VB = 1.
Next, we denote

Z(s) = rk(s) − E(N)E (rk (As)) ,

Y (s) = (−1)kΓ(1 − α)

[

VNLN

(

1

s

)

+ VBLB

(

1

s

)]

sα,

where α = min(αN , αB), and k = min(n, m). We note that Y (s) ≥ 0 for every s > 0.

We prove the statement of the theorem in two steps. First, we use the represen-
tation (3.16) for rk(s), and show that the following asymptotic similarity holds:

∞
∑

i=0

(E(N))i
E (Z (A1 . . . Ais)) ∼

∞
∑

i=0

(E(N))i
E (Y (A1 . . . Ais)) , (3.18)

as s → 0. Second, we demonstrate that the right-hand side of (3.18) has the desired
asymptotics.

As we saw above, Z(s) ∼ Y (s) as s → 0. Then, for every ε > 0, there exists
a δ = δ(ε) such that |Z(s)/Y (s) − 1| < ε whenever 0 < s ≤ δ. We fix some ε and
take δ = δ(ε). Now again let A1, A2, . . . be independent random variables, which are
distributed as A. Because A < 1, and then 0 < A1 . . . Ais ≤ s ≤ δ, for every i ≥ 0
we have

∣

∣

∣

∣

Z(A1 . . . Ais)

Y (A1 . . . Ais)
− 1

∣

∣

∣

∣

< ε. (3.19)
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From (3.19) we obtain the following:
∣

∣

∣

∣

∑∞
i=0(E(N))iE (Z (A1 . . . Ais))

∑∞
i=0(E(N))iE (Y (A1 . . . Ais))

− 1

∣

∣

∣

∣

≤
∑∞

i=0(E(N))i |E [Z (A1 . . . Ais) − Y (A1 . . . Ais)]|
|∑∞i=0(E(N))iE (Y (A1 . . . Ais))|

≤
∑∞

i=0(E(N))iE

[∣

∣

∣

Z(A1...Ais)
Y (A1...Ais)

− 1
∣

∣

∣Y (A1 . . . Ais)
]

∑∞
i=0(E(N))iE (Y (A1 . . . Ais))

<
ε
∑∞

i=0(E(N))iE (Y (A1 . . . Ais))
∑∞

i=0(E(N))iE (Y (A1 . . . Ais))
= ε,

which implies (3.18).
Next, we use Lemma 3.3, and then for every ϑ > 1 and δ > 0 we can find finite

constants sB and sN such that for all i > 0 and 0 < s < min(sB, sN ),

ϑ−1 (A1 . . . Ai)
δ ≤

LB

(

1
A1...Ais

)

LB

(

1
s

) ≤ ϑ (A1 . . . Ai)
−δ

, and

ϑ−1 (A1 . . . Ai)
δ ≤

LN

(

1
A1...Ais

)

LN

(

1
s

) ≤ ϑ (A1 . . . Ai)
−δ

. (3.20)

We divide the right-hand side of (3.18) by LB

(

1
s

)

LN

(

1
s

)

, and apply (3.20) to

Y (A1 . . . Ais)/LB

(

1
s

)

LN

(

1
s

)

to obtain the following:

ϑ−1(−1)kΓ(1 − α)

(

VN

LB(1
s )

+
VB

LN(1
s )

)

sα
∞
∑

i=0

(E(N))i
E

(

(A1 . . . Ai)
α+δ
)

≤
∑∞

i=0(E(N))iE (Y (A1 . . . Ais))

LB

(

1
s

)

LN

(

1
s

)

≤ ϑ(−1)kΓ(1 − α)

(

VN

LB(1
s )

+
VB

LN(1
s )

)

sα
∞
∑

i=0

(E(N))i
E

(

(A1 . . . Ai)
α−δ
)

.

Because A1, A2 . . . are independent and identically distributed as A we can conclude
the following:

ϑ−1(−1)kΓ(1 − α)

(

VN

LB(1
s )

+
VB

LN(1
s )

)

sα 1

1 − E(N)E (Aα+δ)

≤
∑∞

i=0(E(N))iE (Y (A1 . . . Ais))

LB

(

1
s

)

LN

(

1
s

)

≤ ϑ(−1)kΓ(1 − α)

(

VN

LB(1
s )

+
VB

LN (1
s )

)

sα 1

1 − E(N)E (Aα−δ)
.
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Taking ϑ → 1 and δ → 0 by the dominated convergence we obtain

∞
∑

i=0

(E(N))i
E (Y (A1 . . . Ais)) ∼ (−1)kΓ(1 − α)[1 − E(N)E(Aα)]−1

×
(

VN

LB(1
s )

+
VB

LN (1
s )

)

LB

(

1

s

)

LN

(

1

s

)

sα as s → 0.

Combining the last equivalence, (3.18), and the infinite-sum representation (3.16) for
rk(s) :

rk(s) =
∞
∑

i=0

(E(N))i [E (rk (A1 . . . Ais)) − E(N)E (rk (A1 . . . Ai+1))] , (3.21)

we then obtain

rk(s) ∼ (−1)kΓ(1 − α)

[

VNLN

(

1

s

)

+ VBLB

(

1

s

)]

[1 − E(N)E(Aα)]−1sα (3.22)

as s → 0. Now, we again apply Theorem 3.2 that leads to the statement of the
theorem.

(i, ii, iii.1) ⇐ (i, ii, iii.2) We denote VN and VB, k = min(n, m), and α ∈ (k, k + 1),
as before. Then, from (i, ii, iii.2), and Theorem 3.2 we can obtain (3.22), that leads
to the asymptotic equivalence:

rk(s) − E(N)E(rk(As)) ∼ (−1)kΓ(1 − α)L

(

1

s

)

[1 − E(N)E(Aα)]−1sα, (3.23)

as s → 0, where we denote

L

(

1

s

)

= VN

[

LN

(

1

s

)

− E(N)E

(

AαLN

(

1

As

))]

+ VB

[

LB

(

1

s

)

− E(N)E

(

AαLB

(

1

As

))]

Next, we again use bounds (3.20) to obtain
[

VN

LB

(

1
s

) +
VB

LN

(

1
s

)

]

[

1 − ϑ−1
E(N)E(Aα+δ)

]

≤ L
(

1
s

)

LN

(

1
s

)

LB

(

1
s

)

≤
[

VN

LB

(

1
s

) +
VB

LN

(

1
s

)

]

[

1 − ϑE(N)E(Aα−δ)
]

Thus, by the dominated convergence for ϑ → 1 and δ → 0 we have

L

(

1

s

)

∼ [1 − E(N)E(Aα)]

[

CNLN

(

1

s

)

+ CBLB

(

1

s

)]

.
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From last similarity and (3.23) we obtain

rk(s) − E(N)E(r(As)) ∼ (−1)kΓ(1 − α)

[

VNLN

(

1

s

)

+ VBLB

(

1

s

)]

sα,

as s → 0, from where by applying Corollary 3.9 we show (i, ii, iii.1).

3.3.4 Tail behavior of the PageRank distribution

Recall that for A
d
= c/D and B

d
= cp0 + (1 − c)wT, where w is the number of pages,

equation (3.1) serves a stochastic model for the non-uniform PageRank. Then, from
Theorem 3.10 we obtain the following equivalences.

Corollary 3.11. (i) If in-degree N follows power law with exponent αN , and
P(wT > x) = o(P(N > x)), then P(R > x) ∼ CNP(N > x) as x → ∞,
where

CN =
cαN (1 − p0)

αN

(E(N))αN (1 − cαN E(N)E(1/DαN ))
.

(ii) If normalized teleportation jump wT follows power law with exponent αT , and
P(N > x) = o(P(wT > x)), then P(R > x) ∼ CT P(wT > x) as x → ∞, where

CT =
(1 − c)αT

(1 − cαT E(N)E(1/DαT ))
.

(iii) If N and wT follow power law with the same exponent αN , and P(wT > x) ∼
CBN (1 − c)−αN P(N > x), then P(R > x) ∼ CP(N > x) as x → ∞, where

C =

[

(E(N))αN CBN + cαN (1 − p0)
αN

(E(N))αN (1 − cαN E(N)E(1/DαN ))

]

.

Consider the case when normalized teleportation has a lighter tail than the in-
degree. From Corollary 3.11(i) we note that the teleportation distribution has no
influence on the PageRank distribution. Then, in this case we claim that tail be-
havior of the non-uniform PageRank (1.3) is the same as the tail behavior of the
standard PageRank (1.2). Furthermore, from the Jensen’s inequality E(1/DαN ) ≥
(E(1/D))αN = [(1 − p0)/E(N)]αN , it follows that

CN ≥ cαN (1 − p0)
αN

(E(N))αN [1 − cαN (1 − p0)αN (E(N))1−αN ]
= C′N . (3.24)

The last expression is the value of CN in case when the out-degree of all non-dangling
nodes is a constant E(N)/(1 − p0) as in (1.7). If αN = 1.1, then the difference
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between the left- and the right-hand sides of (3.24) is really small for any reason-
able out-degree distribution. If we also ignore the term cαN (1 − p0)

αN (E(N))1−αN

in Corollary 3.11(i), then CN can be approximated from above as follows

CN ≥ cαN (1 − p0)
αN

(E(N))αN
= cαN

[

E

(

1

D

)]αN

= C
′′

N .

Note that the asymptotic equivalence P(R > x) ∼ C
′′

N P(N > x) as x → ∞ holds if
we assume that the values of the PageRank R can be approximated by cNE(1/D)
as proposed in Fortunato et al. [49]. Furthermore, we can repeat a similar reasoning
for (iii) to obtain

C ≥ (E(N))αN CNB + cαN (1 − p0)
αN

(E(N))αN [1 − cαN (1 − p0)αN (E(N))1−αN ]
≥ CNB + cαN

[

E

(

1

D

)]αN

.

In Section 4.2 and 4.3 we verify the obtained asymptotics for the PageRank in several
sets of Web graph data.

Since the in-degree distribution follows power law with αN = 1.1, the examples
of the case when teleportation has the heaviest tail, are difficult to examine because
it is indistinguishable from the case (iii), or because the first moment of wT does
not exist. In Section 4.2 we provide an example for the non-uniform PageRank with
teleportation that follows power law with exponent αT = 0.5 (see Figure 4.5(d)),
where we can clearly see that the PageRank tends to follow a power law with the
same exponent as the teleportation distribution.



CHAPTER 4

NUMERICAL RESULTS AND SPECIAL CASES

In this chapter we provide empirical justification for the results obtained in Chap-
ters 2 and 3. To this end, we perform a number of experiments on the Web and the
Wikipedia data sets, and on preferential attachment graphs, that are commonly used
for modeling graphs with power law degree distribution (see details in Section 1.3.3).

We start with evaluation of power laws in the Web graph data. Despite that the
power law behavior is well studied in many real-life networks, e.g. Internet graph [47],
the World Wide Web [24], and citation graphs [98], the conclusion on whether or
not the data follows a power law is often seem to be made purely by determining
whether or not the log-log plot resembles the signature straight line. However this
can be misleading especially when a size-frequency plot is used [72]. Although one
may agree with Li et al. [72] that a cumulative (size-rank) plot is enough to reveal a
power law to an experienced eye, for more reliable conclusions on realistic noisy data,
we need more than just a glance at the log-log plots. Chakrabarti and Faloutsos [28]
mention two goodness-of-fit methods for Pareto distribution and suggest that such
methods should be applied more often. In Section 4.1 we aim at resolving these
issues by using several state of the art techniques from the statistical analysis of
heavy tails, cf. the recent book of Resnick [100]. Using QQ plots, Hill and altHill
plots, and Pickands plots we evaluate that in-degree and PageRank follow power laws
with similar exponents for various data sets.

Next, we study how well the tail behavior of the PageRank is predicted by our
stochastic model. In Section 4.2 we compute the non-uniform PageRank (1.3) for
the various distributions of the teleportation jump, and compare it with the results
of Section 3.3.4. We confirm that the PageRank distribution tends to follow a power
law with the same exponent as the exponent of the heaviest distribution among in-
degree and teleportation. Moreover, we also perform experiments for some special
cases. In Section 4.3 we consider distribution of the standard PageRank (1.2) on large

53
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data sets. In particularly, we study the asymptotic behavior of the PageRank after
the first, the second, and the last iterations, and observe that our model correctly
captures the dynamics of the PageRank distribution in successive of power iterations.

The numerical results show a good agreement with our stochastic model for the
PageRank distribution.

Finally, inspired by the minor effect of the out-degree distribution on the asymp-
totics of the PageRank, we propose a new ranking scheme in Section 4.4. We call
this scheme as Pure Authority Rank (PAR), and define it as a modification of the
PageRank (1.2) where we assume that the number of outgoing links of all pages is a
constant, and equals to the average in- and out-degree. Note that PAR rank can be
modeled by stochastic equation (1.6). We compute the PAR rank for the Wikipedia
and preferential attachment graph, and again observe the similarity in the asymp-
totics of the PAR rank and the in-degree. Moreover, we also compare the PAR rank
with PageRank, and discover that the PAR rank behaves similarly to the PageRank
computed for a higher value of c, and converges faster.

4.1 Evaluation of power laws

In this section we use various statistical techniques to reveal and evaluate the power
laws. To this end, we chose three data sets that represent different network struc-
tures. As the Web sample, we used the EU-2005 data set with 862.664 nodes and
19.235.140 links [20]. We also performed experiments on the Wikipedia (English)
data, whose structure is known to be different from the Web graph [26]. This data
set contains 4.881.983 nodes and 42.062.836 links. Finally, we simulated a Grow-
ing Network by using preferential attachment rule for 90% of new links. The graph
consists of 10.000 nodes with constant out-degree d = 8. In Figure 4.1 we show the
cumulative log-log plots for in-degrees, out-degrees and PageRank scores in all data
sets. The PageRank scores are computed according to definition of the standard
PageRank (1.2).

The log-log plots for the in-degree and the PageRank in Figure 4.1 resemble the
signature straight line indicating power laws. However, several techniques should
be combined in order to establish the presence of heavy tails and to evaluate the
power law exponent. We use QQ plots, Hill and altHill plots as well as Pickands
plots to confirm that the in-degree and the PageRank follow power laws with similar
exponents for all three data sets. We will also conclude that the out-degree can be
modeled reasonably well as a power law with exponent around 2.5-3.

Denote by X1, . . . , Xw non-negative observations of node’s characteristic (e.g. in-
degree) on the Web graph. We write X(i) for the ith largest value of X1, . . . , Xw,
where 1 ≤ i ≤ w:

X(1) ≥ X(2) ≥ . . . ≥ X(w).

In the next sections we will provide a review of estimation techniques designed under
assumption that X1,. . . Xw are independent random variables having an identical
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Figure 4.1: Cumulative log-log plots for in/(out)-degree, PageRank (c=0.5) and
PageRank (c=0.85)

regularly varying distribution with tail index α. The idea is to apply several different
procedures in order to make the final conclusion.

4.1.1 Hill plot

The Hill’s estimator Hk,w is a widely used estimator of 1/α, that is based on k upper
order statistics:

Hk,w =
1

k

k
∑

i=1

log

(

X(i)

X(k+1)

)

. (4.1)

It was proved (see e.g. [100]) that Hk,w converges in probability to 1/α as w, k → ∞,
k/w → 0. An obvious problem with the Hill estimator is choosing the value k so
that X(k) corresponds to a ‘beginning’ of the power law tail. This can be mitigated
by constructing a so-called Hill plot.
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To make a Hill plot for α we graph {(k, H−1
k,w), 1 ≤ k ≤ w} and if the plot

looks stable around a certain horizontal line, we can pick the corresponding value of
α. This sometimes works beautifully, especially for data close to pure Pareto tails.
However, if L(x) in the definition of regular varying random variable (1.6) deviates
considerably from a constant there may be enormous errors. The Hill plot, as well
as the Hill estimator, is also not location invariant. Theoretically, a shift does not
affect the power law exponent, however it drastically distorts the Hill plot. Clearly,
in case when the Hill plot does not look stable, the Hill estimator can not be used
for the evaluation of α.

To construct confidence intervals for the Hill estimator, Newman [89] suggests to
use a bootstrap method for estimating the variance of H−1

k,w. A simpler way is to use

the convergence of
√

kHk,w to a normal random variable with mean 1/α and variance
1/α2 as w, k → ∞, k/w → 0 (see [100, p.304]). Thus, one can obtain confidence
intervals based on the quantiles of the standard normal distribution.

One can also display the Hill plot in the alternative form {(θ, H−1
dwθe,w

), 0 ≤ θ ≤
1}, where dxe is the smallest integer greater or equal to x ≥ 0. This plot is called
the alternative Hill plot, altHill. Compared to the Hill plot, the altHill shows the
largest order statistics more prominently. According to [100], if the distribution is
not exactly Pareto, then the altHill spends more time in the small neighborhood of
α than the Hill plot.

Here we only display Hill and altHill plots for in-degree and PageRank (c=0.85)
in the Web graph (see Figure 4.2). For the various plots for the Growing Network
(Figure 4.18), and the Wikipedia (Figure 4.15 and 4.17), as well for plots of out-degree
and PageRank(c=0.5) in the EU-2005 data set (Figure 4.14 and 4.16) we refer to
Section 4.6. We note that the saw-type picture for in-degrees and out-degrees reflects
the fact that we deal with integer values that are the same for quite large groups of
nodes.

In the Web data, the Hill plots confirm the power law tail of in-degree and
PageRank (c=0.85). The exponent α seems to be the same in both cases. However,
it looks like the estimation 1.1 is, on average, on a higher side. Again, oscillations
between 0.9 and 1.2 are essential since α = 0.9 implies infinite mean. The altHill is
stable for θ between 0.4 and 0.9. The beginning of the plot is most probably distorted
by the well-known exponential cut-off of the real-life data [28], and for θ > 0.9 the
number of used order statistics is too large.

In the Growing Networks, the Hill plots behave reasonably nice. The plot for
in-degree (Figure 4.18(a)) is more stable as it spends significant time around the line
α = 1.1. In Figure 4.18(c), the plot for PageRank (c=0.85) also behaves well and
seems to suggest a slightly smaller tail index, around 1.05. From the plots we see
that the estimator for α is very sensitive to the choice of k. Thus, constructing a
Hill plot is a helpful step when applying a Hill estimator.

The Hill and altHill plots suggest that the in-degree and PageRank in the Web
(Figure 4.2) and in the Growing Networks (Figure 4.18) are heavy-tailed but not
exactly a Pareto. Indeed, the plots look relatively stable but it is difficult to single
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(b) PageRank (c=0.85)

Figure 4.2: Hill (left) and altHill (right) plots for the EU-2005 data set.

out α.

For the out-degree in the Web data (Figure 4.16(a)) the altHill plot oscillates
considerably. However, the Hill plot (Figure 4.14(a)) does not behave nearly as
badly as it would, for instance, for the exponential distribution (see example in [100,
p.96]). Based on the Hill plot, one may therefore conclude that the out-degree has a
power law.

Finally, Wikipedia turns out to be an example of perfect Hill plots (Figure 4.15)
whereas altHill (Figure 4.17) shows large oscillations. We conclude that in-degree
and PageRank (c=0.85) in Wikipedia follow closely a Pareto distribution with index
1.2. The index of PageRank (c=0.5) distribution is around 1.4. The out-degree is
also Pareto, with index about 1.6.
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Figure 4.3: Pickands plots for in/(out)-degrees and PageRanks.

4.1.2 Pickands plot

A Pickands estimator as presented in [100], is another way to evaluate α and re-
veal the presence of power laws. We first introduce the extreme-value distributions,
defined as

Gγ = exp
(

−(1 + γx)−1/γ
)

, γ ∈ R, 1 + γx > 0.

The power law case corresponds to γ > 0 and then γ = 1/α.
The Pickands estimator of γ uses differences of quantiles, where the latter are

estimated by means of three upper statistics, X(k), X(2k), X(4k), from a sample size
w. The estimator is defined as

γ̂
(Pickands)
k,w =

1

log 2
log

(

X(k) − X(2k)

X(2k) − X(4k)

)

.

Determining an appropriate of k is again an important issue. Unlike the Hill esti-
mator, the Pickands estimator is both location and scale invariant.
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Similarly to the Hill plot, a Pickands plot consists of the points

{(

k, γ̂
(Pickands)
k,w

)

, 1 ≤ k < w/4
}

.

A difficulty in constructing Pickands plots for integer-valued observations such as
in-degrees and out-degrees in the networks, is that the values of order statistics
might be identical, resulting in division by zero. To fix this problem we introduce a
randomization of the data by adding uniformly (0, 1) distributed random variables
to each of the observations.

The Pickands plots for our data sets are presented in Figure 4.3. We note that

we plot the values of γ̂
(Pickands)
k,w that estimates 1/α.

The results for in-degree and PageRank in all three data sets are in good agree-
ment with Hill plots. The new information we find by looking at the plot for out-
degree in the Web data. In Figure 4.3(a) a large part of the Pickands plot shows
γ < 0 which signals light tails. This is in agreement with Donato et al. [33] and
other papers that claim that the out-degree data does not follow a power law. On
the other hand, the Pickands plot goes below zero only for quite large values of k, so
we still can not exclude the power law tail.

4.1.3 QQ plot

Suppose we have a hypothesis that the true distribution function producing the data
is F (x). A goodness of fit test provides the rigorous way to verify such hypothesis,
whereas the QQ plot is a more informal but convenient alternative. To construct a
QQ plot we graph the theoretical quantiles of F versus the sample quantiles:

{(

F←
(

i

w + 1

)

, X(w−i+1)

)

, 1 ≤ i ≤ w

}

,

where F←(y) = inf{x : F (x) ≥ y} is the inverse of distribution function F . If our
hypothesis is true then the result should fall roughly on the straight line {(x, x), x >
0}. One potential problem is how to decide what we consider ‘close enough’ to linear.

To apply QQ plots to power laws, suppose that our null hypothesis is that for
some x0 > 0, a distribution of a random variable X satisfies

P(X > x) =

(

x

x0

)−α

,

so it follows that P(log X > y) = e−α(y−log x0). Hence, using quantiles of exponential
distribution we plot

{(

− log

(

1 − i

w + 1

)

, log X(w−i+1)

)

, 1 ≤ i ≤ w

}

.
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(b) out-degree: 100.000 (α =
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(c) PageRank (c=0.5): 50.000
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(d) PageRank (c=0.85): 300.000
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Figure 4.4: QQ lines for the EU-2005 data set.

The slope of the least-squared line fitted to the QQ plot is an estimate of 1/α.
Thus, if {(xi, yi), 1 ≤ i ≤ n} are n points on the plane, we can calculate the slope in
standard way

SL{(xi, yi), 1 ≤ i ≤ w} = Sxy/Sxx,

where Sxy =
∑w

i=1(xi − x̄)(yi − ȳ), Sxx =
∑w

i=1(xi − x̄)2 and x̄ means mean value of
x. Now we can define the QQ estimator for 1/α based on k upper order statistics as

SL
{(

− log (1 − i(w + 1)) , log X(w−i+1)

)

, w − k + 1 ≤ i ≤ w
}

.

Clearly, there remains the problem of choosing k.

In Figure 4.4 we present the QQ plots for EU-2005 data set for good choices of
k. In Section 4.6 we provide the remaining plots. Again, the data on the in-degree
and the PageRank resulted in QQ plots similar to straight lines, and the estimates
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for α are close to what we expected. Thus, in this case all techniques point to the
same result.

With a certain amount of tolerance, we can accept that the QQ plot for out-
degrees in the Web data in Figure 4.4(b) is close enough to a straight line. Moreover,
the estimated α = 2.95 is in good agreement with the Hill plot. We also note that
α > 2 implies a finite variance while power law models are especially important in
case when the variance is infinite, reflecting high variability [72, 94]. Hence, in case
of a finite variance, it is not really crucial whether the data obeys a power law. To
exclude the possibility of exponential tail of out-degree, we also constructed a QQ plot
with exponential quantiles by plotting − log (1 − i/(w + 1)) against X(w−i+1). The
result that we do not present here is not any close to a straight line. To summarize,
the out-degree has a finite variance and a tail heavier than exponential, so it can be
modeled reasonably well as a power law with exponent around 2.5-3, according to
our estimates.

4.2 Asymptotics for non-uniform PageRank

In this section we study tail behavior of non-uniform PageRank (1.3) in relation to
various characteristic of the Web graph, and to distribution of teleportation jump.
Thus, we want to illustrate the results of Chapters 2, and 3, in particularly, we justify
asymptotical equivalences obtained in Corollaries 2.6, and 3.11. We start with the
case of the non-uniform PageRank.

We use Stanford data set1 with w = 281.903 pages and 2.312.497 links. It is a
relatively small Web sample, however, it is known to possess basic properties of the
Web. In particular, in this data set, the in-degree shows typical power law behavior
with exponent αN = 1.1. In the next section we present more numerical results for
simpler model of the standard PageRank with uniform teleportation.

We create the teleportation distribution by using the inverse transformation
method. First, we generate random numbers u1, . . . , uw from the standard uni-
form distribution, and then we set ti = (1 − ui)

−1/αT , where i = 1, . . . , w. These
ti’s are random numbers that are Pareto distributed with exponent αT . We choose
αT = 0.5, 1.1 and 3.0. Second, we denote t̄ as the mean value of t1, . . . , tw, and
define the teleportation probability of a jump to page i as T (i) = ti/(wt̄). Next,
we use formula (1.3) to obtain the non-uniform PageRanks. We also compute the
PageRank with uniform teleportation jumps. The computation of the PageRank is
done by applying the matrix power iteration method (see [69] for more details).

In Figure 4.5(a)-(d) we present cumulative log-log plots for in-degree, teleporta-
tion and PageRanks for damping factors c = 0.5 and c = 0.85. Here we consider a
scale-free teleportation, so we plot complementary cumulative distribution function
P(wT > x) = (t̄x)−αT . Then, y = −αT x − αT ∗ log10(t̄) is the straight line that

1www.kamvar.org/personalization; (Accessed in April 2009).
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Figure 4.5: Cumulative log-log plots for in-degree, teleportation and PageRank.

corresponds to the teleportation log-log plot. We also fit the in-degree plot with the
straight line y = −1.1x + 0.08.

First, we consider the log-log plots of the standard PageRank with uniform tele-
portation (see Figure 4.5(a)). In this case we use Corollary 3.11(i) to obtain the
distance between in-degree and PageRank log-log plots as

log10(CN ) = log10

[

cαN (1 − p0)
αN

(E(N))αN (1 − cαN E(N)E(1/DαN ))

]

, (4.2)

where, as before, N is the in-degree, D is the effective out-degree, and p0 is the
fraction of the dangling nodes. From E(N) = 8.2032, p0 = 0.006 and E(1/D1.1) =
0.1043, we predict the PageRank log-log plots: y = −1.1x − 0.46 for c = 0.85, and
y = −1.1x− 1.04 for c = 0.5. In the plot we show these theoretically predicted lines
and experimental PageRank log-log plots. We see that both lines perfectly match the
slopes of the PageRanks, and they trace the direction of changes in the PageRank
distribution in respect with changes of the damping factor. Indeed, the plot of the
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PageRank with c = 0.5 is further from the in-degree log-log plot, then the plot of
the PageRank with c = 0.85. We note that we underestimate the predicted distance
in the case of c = 0.85, that can be caused by some assumptions of our model. We
refer to Section 4.5 for discussion.

We again use Corollary 3.11(i) for the case of the PageRank with teleportation
that follows power law with exponent αT = 3.0. Then we end up with the same
constant as in (4.2), and therefore we get the same predicted lines for the PageRank
log-log plots: y = −1.1x − 0.46 for c = 0.85, and y = −1.1x − 1.04 for c = 0.5.
In Figure 4.5(b) we plot the distributions of the teleportation and the PageRanks
along with the predicted straight lines. The results are similar to the previous case.
Thus, we can see that the distribution of the teleportation has no influence on the
tail behavior of the PageRank in case when the teleportation has a lighter tail than
the in-degree.

Next, we consider the T (i)’s with αT = 1.1. In Remark 3.11(iii) we need to
know CNB from P(wT > x) ∼ (1 − c)−αT CNBP(N > x) as x → ∞. Since y =
−1.1x + 0.08 and y = −1.1x− 0.98 are the fitted lines for log-log plots for in-degree
and teleportation, respectively, we can find that CNB = 0.0108 for c = 0.85, and
CNB = 0.4063 for c = 0.5. Thus, in the case when the in-degree and the teleportation
are regular varying with the same index αN = αT = 1.1, we can define the distance
in the following way:

log10(C) = log10

[

(E(N))αN CNB + cαN (1 − p0)
αN

(E(N))αN (1 − cαN E(N)E(1/DαN ))

]

. (4.3)

We apply these constants in the above formula to obtain y = −1.1x − 0.41 and
y = −1.1x − 0.76 for PageRank plots for c = 0.85 and c = 0.5, respectively. We
plot these lines in Figure 4.5(c). Compared to Figures 4.5(a) and (b), here the
teleportation distribution smoothens the log-log plots of the PageRanks. Thus, we
can hardly see the difference between the plots for c = 0.5 and c = 0.85. The slopes of
the experimental PageRanks again correspond to the predicted power law exponent
1.1. The differences between the log-log plots of the in-degree and the PageRanks
agree better than in the previous cases.

Finally, we present results for the teleportation with power law exponent αT = 0.5
in Figure 4.5(d). Note that we can not find the distance in this case, because the first
moment of T does not exist. However, we can clearly see that the PageRank tends
to follow a power law with the same exponent as the teleportation distribution.

From Section 3.3.4 we know that

CN ≥ cαN (1 − p0)
αN

(E(N))αN [1 − cαN (1 − p0)αN (E(N))1−αN ]
= C′N . (4.4)

The last expression is the value of CN in case when the out-degree of all non-dangling
nodes is a constant E(N)/(1 − p0). If αN = 1.1, then the difference between the
left- and the right-hand sides of (4.4) is really small for any reasonable out-degree
distribution. We test the prediction of multiplicative constant C′N from (4.4). To
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Figure 4.6: The theoretical and observed differences between asymptotics of in-degree
and PageRank.

this end, we calculate the differences between the logarithms of the complementary
cumulative distribution functions of PageRank and in-degree for different values of
the damping factor. In Figure 4.6 we plot log10(C

′
N ) together with the observed

differences. As it can be seen, the theoretical and observed values are quite close.
E.g., for typical values of c between 0.8 and 0.9, the difference is 0.41, resulting in a
factor C′N that is only a factor 2.57 larger than in the observed data. Thus, this is
a good approximation for the difference between the two distributions.
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Figure 4.7: Cumulative log-log plots for in-degree and PageRank. The straight lines
for the PageRank plots are predicted by the model for the 1st, the 2nd, and the last
power iterations.

Finally, we verify out model for power iterations. In Figure 4.7 we show the
cumulative log-log plot of in-degree and standard PageRank after the 1st, the 2nd,
and the last power iterations for the damping factors c = 0.5 and c = 0.85. The
results again confirm the similarity in the asymptotic behavior of the in-degree and
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the PageRank. Using Corollary 2.6(i) we calculate the difference between log-log
plots of the in-degree and the PageRank after the kth iteration:

log10

(

C
(k)
N

)

= log10

[

cαN (1 − p0)
αN

(E(N))αN

k
∑

i=1

[cαN E(N)E(1/DαN )]
i

]

. (4.5)

In the case of c = 0.85, we predict PageRank after the 1st, the 2nd, and the last
power iterations with the straight lines: y = −1.1x − 1.00, y = −1.1x − 0.77, and
y = −1.1x − 0.46, respectively. From Figure 4.7 we see that our model correctly
predicts the PageRank distributions for c = 0.5, and captures the dynamics of the
iterations for c = 0.85.

4.3 Asymptotics for the standard PageRank

In this section we analyze distribution of the standard PageRank (1.2) in the Web
data set, the Wikipedia data set and preferential attachment graphs. Then, we
apply Corollaries 3.11(i) and 3.11(i), that give us the asymptotic similarity between
in-degree and PageRank and the multiplicative constants as in (4.2) and (4.5).

4.3.1 Web data

We performed experiments on Indochina-2004 and EU-2005 Web samples [20]. In
Figures 4.9 and 4.8 we present cumulative log-log plots for in-degree and PageRanks.
We fit the straight line for in-degree accordingly to the evaluated power law exponent.
For the PageRank, we plot the theoretically predicted straight lines obtained from
Corollary 3.11(i).

The Indochina set contains 7.414.866 nodes and 194.109.311 links. The results
are presented in Figure 4.8. The in-degree plot resembles a power law except for
the excessively large fraction of pages with in-degree about 104. The presence of
bump was observed also in other data samples in the past [24, 34]. In [34], the
authors suggested that it could be probably due to a huge clique created by a single
spammer. For more detail on this data set see [9]. For Indochina, we obtain a power
law exponent αN = 1.17 for cumulative plot, which is quite different from the result
in [9]. This demonstrates the sensitivity of estimators for the power law exponent.
Indeed, the exponent 0.6 in [9] reflects the behavior in the first part of the plot,
whereas 1.17 gives more weight on the tail of the in-degree distribution.

We fit the straight line y = −1.17x+0.8 into the in-degree plot and then compute
the distance according to (4.2) for c = 0.2, 0.5, and 0.85. With E(N) = 26.17,
p0 = 0.18, and E(1/D1.17) = 0.0248, we obtain the following prediction for the
PageRank log-log plot: y = −1.17x− 1.73 for c = 0.2, y = −1.17x− 1.16 for c = 0.5,
and y = −1.17x− 0.70 for c = 0.85. In Figure 4.8(b)-(c) we show these theoretically
predicted lines along with the experimental PageRank log-log plots. We see that for
this data set, our model provides the linear fit with a striking accuracy.
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Figure 4.8: Indochina data set: cumulative log-log plots for in-degree and PageRank.
The straight lines for the PageRank plots are predicted by the model.

We performed the same experiment for EU-2005 data set defined in Section 4.1.
Then, in-degree log-log plot can be fitted perfectly by y = −1.1x + 0.61. We use
the same approaches to calculate the difference between the in-degree and PageRank
plots for E(N) = 22.3, p0 = 0.08, E(1/D1.1) = 0.0314. Thus, the theoretical predic-
tion for the PageRank are y = −1.1x−1.63, y = −1.1x−1.07, and y = −1.1x−0.60
for c = 0.2, 0.5, and 0.85, respectively. The log-log plots for experimental data,
the fitted straight line for in-degree, and corresponding theoretical straight lines for
PageRank, are presented in Figure 4.9.

4.3.2 Wikipedia

In order to further verify our results, we performed the experiments on the Wikipedia
data set from Section 4.1. The structure of Wikipedia is believed to be slightly
different from the Web graph. In Figure 4.10 we show the in-degree and PageRank
plots, with fitted straight line y = −1.18x + 0.30 for the in-degree and predicted
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Figure 4.9: EU-2005 data set: cumulative log-log plots for in-degree and PageRank.
The straight lines for the PageRank plots are predicted by the model.

lines for the PageRank. In this data set we have E(N) = 8.6159, p0 = 0 and
E(1/D1.18) = 0.1006. Figure 4.10(a) shows the PageRank plot for c = 0.5 and
c = 0.85. In Figure 4.10(b) we depict the PageRank plots after the first, the second
and the last iterations for c = 0.85.

Importantly, we observe that the PageRank for Wikipedia retains its power law
distribution, and the exponent is again the same as the one for in-degree. Moreover,
we see that our model correctly captures the dynamics of the PageRank distribution
in successive power iterations and for different values of c.

4.3.3 Synthetic graphs

Next, we performed the experiments on a synthetic graph with out-degree close to
constant. The graph of 5.000.000 nodes and 41.577.523 links was generated using
preferential attachment rule (see Section 1.3.3). Further, 30% of the links were
redirected in order to make the graph more realistic and comparable to Wikipedia.
The original out-degree was 9, however, due to the duplicated edges, the average
out-degree became 8.3155. This data set is different from the Growing Network in
Section 4.1.

The results on the PageRank distribution are presented in Figure 4.11. For the
in-degree, we computed α = 1.14. The predicted lines for the PageRank are obtained
with E(N) = 8.3155, p0 = 0, E(1/D1.14) = 0.0858 (≈ (E(N))α). In Figure 4.11(a)
we show the PageRank plot for c = 0.5 and c = 0.85, and Figure 4.11(b) displays
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Figure 4.10: Wikipedia data set: cumulative log-log plots for in-degree and Page-
Rank. The straight lines for the PageRank plots are predicted by the model.

the PageRank plots after the first, the second and the last iterations for c = 0.85.
One can see that our model provides a good estimation for the difference between
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Figure 4.11: Synthetic data: cumulative log-log plots for in-degree and PageRank.
The straight lines for the PageRank plots are predicted by the model.

the graphs. Furthermore, the lines look parallel as before, although in the growing
network models, the PageRank power law exponent is proved to depend on the
damping factor [6]. Here we clearly face the fact that the nuances of the ‘real’ slope
are hard to capture on the data. Consequently, our model works well in this case.

Here we also consider another version of the growing network graph that showed
a quite different behavior. The difference is caused by the simulation procedure.
To ensure the same number of outgoing links for all pages, we link the first E(N)
nodes to randomly chosen pages at the end of the simulation. We simulate Growing
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Network by using preferential attachment rule for 80% of new links. The graph
consist of 50.000 nodes with constant out-degree E(N) = 8. In Figure 4.12 we present
cumulative log-log plots for in-degree and PageRanks. Clearly, the PageRank for
c = 0.85 does not show good power law behavior. The observed bumps can be
explained by the presence of loops with highly ranked initial nodes.
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Figure 4.12: Growing network: cumulative log-log plots for in-degree and PageRank.

4.4 PAR ranking scheme

The negligible effect of out-degree distribution on the PageRank behavior made us
wonder about the role of out-degrees in link-based ranking in general. In HITS (see
Section 1.2.3), the ranking of a page i is determined by its authority score, which in
turn depends on hub scores of pages linking to i. Furthermore, a hub score is high for
pages with high out-degree, and thus getting a link from such a page is advantageous
in HITS whereas it is disadvantageous in PageRank according to (1.3). Since both
HITS and PageRank work well in practice, one may try to think of some ranking
scheme where out-degree does not play a role at all.

We propose one such ranking scheme that we call a Pure Authority Rank (PAR).
This algorithm is a mixture between HITS and PageRank. The PAR is defined

iteratively. The initial score of each page i = 1, . . . , w is s
(0)
i = 1/w, and the results

of successive iterations are computed as

s
(k)
i =

c

E(N)

∑

j→i

s
(k−1)
j +

1 − c

w
, k ≥ 1, (4.6)

and then normalized so that
∑w

i=1 s
(k)
i = 1. Here the summation is over all pages j

that link to i.
Now, let A be an adjacency matrix of the Web Graph. Then denoting M̃ =

(c/E(N))A + (1 − c)E/w, where E is the matrix of ones, we can write (4.6) with
the subsequent normalization in a matrix-vector form as s(k) = s(k−1)M̃/||s(k−1)M̃ ||,
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Scores Ranks Iterations
Data c Correlation coefficient Kendall’s τ Spearman’s ρ PR PAR

Synthetic graph 0.5 0.8112 0.1234 0.1827 8 7
0.85 0.9753 0.1002 0.1488 13 9

Wikipedia 0.5 0.2474 0.3510 0.4304 8 17
0.85 0.4675 0.3629 0.4422 29 18

Table 4.1: Comparison of PageRank and PAR.

where s(k) = (s
(k)
1 , . . . , s

(k)
w ) and || · || is the L1 norm. Since M̃ is a positive matrix,

the convergence and uniqueness of the PAR scores are guaranteed by the Perron-
Frobenius theorems. If we take c = 1 we obtain an algorithm close to HITS but
without the hub-iteration. In this case, the algorithm will converge but the resulting
vector might depend on the initial vector, as in HITS and SALSA [70]. We refer to
[48] for the detailed uniqueness analysis of link-based ranking schemes.

We computed the PAR scores for Wikipedia and the synthetic graph. The algo-
rithm converges fast and, remarkably, the speed of convergence does not depend on c
(see Table 4.1). In Figure 4.13 we present the log-log plots for PAR and PageRank.
Since the two methods are similar, it is not surprising that the PAR distribution
seems to follow a power law with the same exponent as in-degree. A more interest-
ing observation is that the PAR plot for Wikipedia in Figure 4.13(b) behaves similar
to a PageRank plot computed for a higher value of c.
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Figure 4.13: PageRank and PAR log-log plots.

Finally, we computed the Kendall’s tau [62] and the Spearman’s rho [107] (for
definitions see (5.23) in Chapter 5), as well as correlation coefficient between PAR
and PageRank scores for the top 1% pages. The results are presented in Table 4.1.

The high correlation between the scores for synthetic graph is expected since in
this case the difference between PAR and PageRank is minimal. On the other hand,
the correlation between the ranks is on a lower side. Similar to [22] we observe that
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the ranking order is very sensitive to the nuances of the algorithm. We note that
the ordering of the PageRank and the PAR values may be less significant when they
are incorporated into an information retrieval model as described in Section 1.1. For
a more fair comparison of the two algorithms, future research should reveal which
pages were demoted and which were promoted. We believe that the advantages of
the PAR algorithm, such as fast convergence and insensitivity to out-degrees, should
definitely attract more studies.

4.5 Discussion

Our results are in a good agreement with the Web data. The differences between the
model and the data depend on many factors, in particular, on the choice of a data
set. Furthermore, equation (2.3) implicitly involves the assumption of the branching
structure of the Web. Although hierarchal structure is present in the Web [40, 41],
this assumption is an obvious simplification of the realistic Web structure. Future
work could try to investigate how to improve the model in that respect, mainly by
studying the dependencies amongst the Ri’s in (2.3), or between the Ri’s on the one
hand and N on the other.

The Growing Network models may provide an alternative explanation [6, 50]. For
instance, in [6] it was shown that the expected PageRank in Growing Networks follows
a power law with an exponent which does depend on the damping factor. The reason
for such discrepancy with our results could be that we focus only on asymptotics,
whereas [6] employs a mean-field approximation. Indeed, experiments show that the
shape of the PageRank distribution does depend on the damping factor, and thus, it
may affect the average values while the tail behavior remains the same for all values
of c.

4.6 Additional plots
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(b) PageRank (c=0.5)

Figure 4.14: Hill plots for the EU-2005 data set.
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(c) PageRank (c=0.5)
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(d) PageRank (c=0.85)

Figure 4.15: Hill plots for the Wikipedia data set.
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(b) PageRank (c=0.5)

Figure 4.16: altHill plots for the EU-2005 data set.
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(d) PageRank (c=0.85)

Figure 4.17: altHill plots for the Wikipedia data set.
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(b) PageRank (c=0.5)
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(c) PageRank (c=0.85)

Figure 4.18: Hill (left) and altHill (right) plots for the Growing Network data set.
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(a) in-degree: 1000 (α =

1.06) upper-statistics
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(b) PageRank (c=0.5):

1000 (α = 1.19) upper
statistics
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(c) PageRank (c=0.85):

1500 (α = 1.05) upper
statistics

Figure 4.19: QQ lines for the Growing Network data set.
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(a) in-degree: 500.000 (α = 1.18)
upper statistics
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(b) out-degree: 300.000 (α = 1.59)
upper statistics
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(c) PageRank (c=0.5): 250.000

(α = 1.40) upper statistics
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(d) PageRank (c=0.85): 500.000

(α = 1.20) upper statistics

Figure 4.20: QQ lines for the Wikipedia data sets





CHAPTER 5

EXTREMAL DEPENDENCIES

5.1 Introduction

In this chapter we focus on dependence structure in power law graphs. In particular,
we consider relation between two important power law characteristics: in-degree and
PageRank.

We propose to employ the extreme value theory [11] and the theory of regular
variation [100] that provide a range of statistical procedures designed to deal with
multivariate data of which the marginal distributions exhibit power laws. We oper-
ate with the notion of tail dependence for a random vector (X, Y ), the dependence
between extremely large values of X and Y . Such tail dependence is characterized
by an angular measure on [0, 1], or [0, π/2] (see Section 5.2.2 for formal definition)
depending on the chosen norm. Informally, a concentration of the angular measure
around 0 and/or 1 signals independence, while concentration around some other
number a ∈ (0, 1) suggests that a certain fraction of large values of Y comes together
with the large values of X .

In Section 5.2 we start with an analytical approach for computing the tail de-
pendencies between the in-degree and the PageRank. To this end, we again consider
the PageRank as a solution of the general stochastic equation (2.4), and compute
the angular measure analytically. The resulting angular measure is concentrated in
points 0 and a ∈ (1/2, 1), and the mass distribution depends on the network param-
eters. Such angular measure is a formalization of the common understanding that
there are two main sources for high ranking: high in-degree and a high rank of one
of the ancestors. Furthermore, the fraction of the measure mass in 0 stands for the
proportion of highly ranked nodes that have a low in-degree. Thus, we obtain the
description of the dependence structure, that is more informative and better relates

77
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to reality that the correlation coefficient. We derive the results on tail dependence
in Sections 5.2.1 and 5.2.2. In Section 5.2.4 we discuss the results and compare our
findings to the graph data

Then, in Section 5.3 we compute the angular measures for in-degrees, out-degrees
and PageRank scores in three large data sets from Section 4.1. Our experimental
results reveal a dramatically different correlation structure in the three data sets.
For instance, the results for in-degree and PageRank in Wikipedia strongly suggest
an independence between these two parameters. Similar analysis for the Web graph
reveals a non-trivial dependence structure. Finally, a preferential attachment graph
shows a very strong dependence between in-degree and PageRank.

The analysis of extremal dependence leads us to propose a new rank correlation
measure which is particularly plausible for power law data. The measure has the
appealing property that it is especially sensitive to rank permutations for top-ranked
nodes. Using the new correlation measure, we demonstrate that the PageRank rank-
ing is not sensitive to moderate changes in the damping factor. The rank correlation
measure is presented in Section 5.4.

Further, in next chapter we apply the proposed rank correlation measure to rank
aggregation problems.

5.2 Characterization of tail dependence for in-degree

and PageRank

As in Chapters 2 and 3, we model the distribution of the non-uniform PageRank (1.3)
through the stochastic equation. Here we again study the general stochastic equa-
tion (2.4):

R
d
=

N
∑

i=1

AiRi + B, (5.1)

where Ai’s are independent and distributed as some random variable A < 1, and
B > 0 is independent of the Ai’s. Note that in this chapter we assume that N and
B are independent. Next, we define

F̄1(u) := P(N > u) and F̄2(u) := P(R > u), u > 0,

and assume that F̄1(u) is regularly varying with non-integer index α > 1. We also
assume that B in (5.1) has a lighter tail than N , that is, P(B > u) = o(P(N > u)) as
u → ∞. As a result, F̄2(u) is also regularly varying. In fact, from Theorem 3.10(i)
we have that

F̄2(u) ∼ KF̄1(u) as u → ∞, (5.2)

where K = (E(A))αN [1−E(N)E(AαN )]−1. Moreover, if we consider stochastic equa-
tion (1.7) for the standard PageRank (1.1), then we obtain that

K =
cα

dα − dcα
, (5.3)
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for EN = d, A = c/d and B = 1− c. In the sequel we will only use the specific form
(5.3) in Corollary 5.5 and Section 5.2.4. We also note that within same model (5.1),
we could assume that the distribution of the Ri’s is different from the one of R. In
this case, if the tail of the Ri’s is not heavier than the one of N , similarity (5.2) still
holds (see Lemma 2.3(iv) and (vi) in Chapter 2).

We need to deal with a minor complication because F̄1 is not strictly decreasing,
and we will in the sequel need to consider the behavior of its inverse function for
small arguments. Instead of working with the generalized inverse F̄−1

1 (v) = inf{u >
0|F̄1(u) ≤ v}, which would make the proofs more involved, we prefer to simply work
with some function that is strictly decreasing and asymptotically equivalent to F̄1(u).
Such a function can e.g. be defined as f1(u) := (1+ e−u)F̄1(u), for which the inverse
function is well-defined. Thus, we arrive at the following:

F̄1(u) := P(N > u) ∼ f1(u), as u → ∞ (5.4)

F̄2(u) := P(R > u) ∼ f2(u), as u → ∞,

where
f1(u) = u−αL(u), f2(u) = Ku−αL(u) = Kf1(u),

for some slowly varying function L(·).

5.2.1 Tail dependence

Let us introduce two functions that are defined on R2
+, namely the stable tail depen-

dence function [11],

`(x, y) = lim
t↓0

t−1
P(F̄1(N) ≤ tx or F̄2(R) ≤ ty) (5.5)

and the function

r(x, y) := lim
t↓0

t−1
P(F̄1(N) ≤ tx, F̄2(R) ≤ ty).

Provided that the limit in (5.5) exists, these are closely related since they satisfy
`(x, y) + r(x, y) = x + y. The main result of this section gives the stable tail depen-
dence function for N and R:

Theorem 5.1. The function r(x, y) for N and R is given by

r(x, y) = min{x, y(EA)α/K}. (5.6)

Consequently, `(x, y) = max{y, x + y(1 − (EA)α/K)}.

In the remainder of Section 5.2 we mainly work with r(x, y) rather than `(x, y),
since its derivation is more appealing.

To prove Theorem 5.1 we need to use the following lemma.
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Lemma 5.2. As u → ∞, the following asymptotic relation holds for any constant
C > 0,

P(N > u, R > Cu) ∼ min{f1(u), (EA/C)αf1(u)}.

We refer to Section 5.2.3 for the proof of this lemma, but the intuition behind
it is clear. It follows from (5.1) and the strong law of large numbers that when N
is large, we have R ≈ EA · N . Therefore, when EA > C, the event {R > Cu} is
already ‘implied’ by {N > u}, so the joint probability behaves just like P(N > u).
When EA < C, N needs to be larger for R > Cu to hold, and the joint probability
behaves like P(N > uC/EA).

In order to understand Theorem 5.1 we fix x, y > 0 throughout this section and
rewrite the joint probability in a form that enables application of Lemma 5.2. It will
be convenient to use the functions

g1(t) := f−1
1 (tx) and g2(t) := f−1

2 (ty) = f−1
1 (ty/K) = g1(ty/Kx), (5.7)

which are well-defined for all t > 0, due to the monotonicity of f1, and hence also
f2. The schematic derivation is as follows:

P(F̄1(N) ≤ tx, F̄2(R) ≤ ty)
1∼ P(f1(N) ≤ tx, f2(R) ≤ ty)

= P(N ≥ g1(t), R ≥ g2(t))
2
= P

(

N ≥ g1(t), R ≥
(

y

Kx

L(g1(t))

L(g2(t))

)−1/α

g1(t)

)

3,1∼ P

(

N ≥ g1(t), R ≥
( y

Kx

)−1/α

g1(t)

)

(5.8)

The statement of Theorem 5.1 now follows from Lemma 5.2 since f1(g1(t)) = tx,
provided that each of the three steps indicated in (5.8) is justified. We resolve these
issues as follows:

1. We deduce the asymptotic equivalence of the two probabilities from the asymp-
totic equivalence of the functions inside the probabilities. This step is intu-
itively clear but not mathematically rigorous. In the proof of Theorem 5.1 we
will make the argument precise, see Section 5.2.3.

2. This step is fairly straightforward. Indeed, v = f1(u) = u−αL(u) implies u =
(v/L(u))−1/α, so f−1

1 (v) = (v/L(f−1
1 (v)))−1/α. Hence, for v = tx, from (5.7)

we obtain

g1(t) =

(

tx

L(g1(t))

)−1/α

and also g2(t) =

(

ty

KL(g2(t))

)−1/α

,

so

g2(t)

g1(t)
=

(

y

Kx

L(g1(t))

L(g2(t))

)−1/α

. (5.9)
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3. This is a consequence of the following statement (the proof of which can be
found in Section 5.2.3), combined with issue 1.

Lemma 5.3. For all x, y > 0 we have L(g1(t)) ∼ L(g2(t)) as t ↓ 0.

Now, in order to prove Theorem 5.1 we only need to resolve issue 1 twice in the
derivation in (5.8). The formal proof is presented in Section 5.2.3.

5.2.2 Angular measure

In this section we find the angular measure that corresponds to the function r(x, y)
we found, but first we will give some preliminaries. In extreme value theory (see
[11]), it has been shown that a unique (nonnegative) measure H(·) exists on the set
Ξ = {ω ∈ R2

+ | ||ω|| = 1}, such that the stable tail dependence function ` can be
expressed as

`(x, y) =

∫

Ξ

max(ω1x, ω2y)H(dω). (5.10)

Here || · || is a norm that may be chosen freely, but for (5.10) to hold, the measure
has to be normalized in such a way that

∫

Ξ

ω1H(dω) =

∫

Ξ

ω2H(dω) = 1,

so that we have `(x, 0) = x and `(0, y) = y, as should. In this work we choose the
|| · ||1 norm, for which ||ω||1 = |ω1| + |ω2|, since that is easiest to work with. Then
(5.10) can be rewritten as

`(x, y) =

∫ 1

0

max{wx, (1 − w)y}H(dw),

and the normalization becomes

∫ 1

0

wH(dw) =

∫ 1

0

(1 − w)H(dw) = 1. (5.11)

Here we let w = ω1, and we identify the measures on Ξ and [0, 1]. By (5.11) it follows
that the function r(x, y) can be written as

r(x, y) =

∫ 1

0

wxH(dw) +

∫ 1

0

(1 − w)yH(dw) −
∫ 1

0

max{wx, (1 − w)y}H(dw)

=

∫ 1

0

min{wx, (1 − w)y}H(dw). (5.12)

We will now derive the function r(x, y) in case when the angular measure has
masses in 0 and a only, as we suspect to be the case for in-degree and PageRank.
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First of all, the normalization (5.11) boils down to aH(a) = H(0)+ (1−a)H(a) = 1,
which is easily solved to give

H(0) = 2 − 1/a and H(a) = 1/a. (5.13)

Note that H has total measure 2 (as also follows for the general case by summing
both integrals in (5.11)), and that H(0) > 0 implies that a > 1/2. Combining (5.12)
and (5.13), the function r(x, y) can now be written as

r(x, y) = min{x, y(1/a − 1)}.

This is a very similar form as we found earlier in (5.6), and it is not difficult to
see that the expressions are equal for a = K/(K + (EA)α). So by uniqueness, the
angular measure of N and R is indeed a two-point measure, and after using (5.13)
we arrive at

Theorem 5.4. The angular measure with respect to the || · ||1 norm of N and R is
a two-point measure, with masses

H(0) = 1 − (EA)α

K
in 0,

H(a) = 1 +
(EA)α

K
in a =

K

K + (EA)α
.

Corollary 5.5. If K is given by (5.3) with EN = d and EA = c/d, then the angular
measure of N and R is a two-point measure, with masses

H(0) = cαd(1−α) in 0,

H(a) = 2 − cαd(1−α) in a =
(

2 − cαd(1−α)
)−1

.
(5.14)

5.2.3 Proofs

Proof of Lemma 5.2. The proof is based on the strong law of large numbers. Infor-
mally, we use the fact that if N is large, then (5.1) implies R ≈ EA · N .

Assume first that C < EA. Then we write

P(N > u, R > Cu) = P(N > u)P(R > Cu|N > u), (5.15)

and we further obtain

P(R > Cu|N > u) ≥ P





buc
∑

i=1

AiRi + B > Cu



 ≥ P





buc
∑

i=1

AiRi > Cu





= P



C−1u−1

buc
∑

i=1

AiRi > 1



→ 1 as u → ∞,
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where the convergence holds by the strong law of large numbers for any C < EA.
Hence when C < EA the result follows directly from (5.4) and (5.15).

Now assume that C > EA. We would like to show that

lim
u→∞

P(N > u, R > Cu)

f1([C/EA]u)
→ 1. (5.16)

Then the result of the lemma will follow since L(u) ∼ L([C/EA]u) as u → ∞. For
the proof, we choose a sufficiently small δ so that we can break the joint probability
into three terms:

P(N > u, R > Cu) = P(N > [C/EA + δ]u, R > Cu)

+ P([C/EA − δ]u < N ≤ [C/EA + δ]u, R > Cu)

+ P(u < N ≤ [C/EA − δ]u, R > Cu). (5.17)

Exactly as in case C < EA, using (5.4), we have

lim
u→∞

P(N > [C/EA + δ]u, R > Cu)

f1([C/EA]u)
= lim

u→∞

P(N > [C/EA + δ]u)

f1([C/EA]u)
= 1 + O(δ).

(5.18)

Moreover, applying the argument as in the case when C < EA, from the law of large
numbers we obtain that

P(R > Cu|u < N ≤ [C/EA − δ]u) ↓ 0 as u → ∞,

and thus

0 ≤ lim
u→∞

P(u < N ≤ [C/EA − δ]u, R > Cu)

f1([C/EA]u)

≤ lim
u→∞

P(N > u)P(R > Cu|u < N ≤ [C/EA − δ]u)

f1([C/EA]u)
= 0. (5.19)

Finally, we get

0 ≤ lim
u→∞

P([C/EA − δ]u < N ≤ [C/EA + δ]u, R > Cu)

P(N > [C/EA]u)

≤ lim
u→∞

P([C/EA − δ]u < N ≤ [C/EA + δ]u)

P(N > [C/EA]u)

= lim
u→∞

f1([C/EA − δ]u) − f1([C/EA + δ]u)

f1([C/EA]u)
= O(δ). (5.20)

The result (5.16) now follows from (5.17)–(5.20) by letting δ ↓ 0.
In the case C = EA the argument is similar, only we write

P(N > u, R > EAu) = P(N > [C/EA + δ]u, R > Cu)

+ P(u < N ≤ [C/EA + δ]u, R > Cu).

This completes the proof of the lemma.
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Proof of Lemma 5.3. Applying the Potter bounds of Lemma 3.3 in Chapter 3, we
obtain that for all ϑ > 1, δ > 0 one can choose t sufficiently small such that

ϑ−1

[

max

{

g1(t)

g2(t)
,
g2(t)

g1(t)

}]−δ

≤ L(g1(t))

L(g2(t))
≤ ϑ

[

max

{

g1(t)

g2(t)
,
g2(t)

g1(t)

}]δ

which by (5.9) is the same as

ϑ−1

[

max

{

g1(t)

g2(t)
,
g2(t)

g1(t)

}]−δ

≤ Kx

y

(

g1(t)

g2(t)

)α

≤ ϑ

[

max

{

g1(t)

g2(t)
,
g2(t)

g1(t)

}]δ

.

From the first inequality above we get

lim inf
t↓0

ϑ1/α

[

max

{

g1(t)

g2(t)
,
g2(t)

g1(t)

}]δ/α (
Kx

y

)1/α
g1(t)

g2(t)
≥ 1

for all ϑ > 1, δ > 0. Taking ϑ → 1 and δ ↓ 0 we obtain that

lim inf
t↓0

(

Kx

y

)1/α
g1(t)

g2(t)
≥ 1.

Analogously, we can show that

lim sup
t↓0

(

Kx

y

)1/α
g1(t)

g2(t)
≤ 1.

so that the limit of the left-hand side is 1. This implies the result, again by (5.9).

Proof of Theorem 5.1. Since F̄i(u) → 0 and |F̄i(u) − fi(u)| = o(F̄i(u)), i = 1, 2, as
u → ∞, then for any small ε > 0 we can choose t1 small enough so that for any
t ≤ t1 and u > 0 that satisfy F̄1(u) ≤ tx we also have |F̄1(u) − f1(u)| ≤ ε|F̄1(u)|,
and hence |F̄1(u)− f1(u)| ≤ εtx. Moreover, we can choose t2 ≤ t1 small enough such
that F̄2(u) ≤ ty implies |F̄2(u)− f2(u)| ≤ εty for all t ≤ t2. Also, for any small δ > 0
it follows from Lemma 5.3 that there exists a positive number t3 ≤ t2 such that for
all t ≤ t3,

1 − δ ≤ L(g1((1 + ε)t))

L(g2((1 + ε)t))
≤ 1 + δ.

If we now fix some small ε > 0 and δ > 0, the above implies for any t ≤ t3 that

P(F̄1(N) ≤ tx, F̄2(R) ≤ ty)

= P(f1(N) ≤ (f1(N) − F̄1(N)) + tx, f2(R) ≤ (f2(R) − F̄2(R)) + ty)

≤ P(f1(N) ≤ (1 + ε)tx, f2(R) ≤ (1 + ε)ty)

= P (N ≥ g1((1 + ε)t), R ≥ g2((1 + ε)t))

= P

(

N ≥ g1((1 + ε)t), R ≥
(

y

Kx

L(g1((1 + ε)t))

L(g2((1 + ε)t))

)−1/α

g1((1 + ε)t)

)

≤ P

(

N ≥ g1((1 + ε)t), R ≥
( y

Kx
(1 + δ)

)−1/α

g1((1 + ε)t)

)

.
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Note that the above closely follows the derivation in (5.8), with ∼ signs replaced by
inequalities; in particular the 4th and 5th lines follow immediately from (5.7) and
(5.9) upon replacing t by (1 + ε)t. Now we can apply Lemma 5.2 to the above (note
that f1(g1((1 + ε)t)) = (1 + ε)tx) and then let t → 0, to obtain

lim sup
t→0

t−1
P(F̄1(N) ≤ tx, F̄2(R) ≤ ty) ≤ (1 + ε)min{x, (1 + δ)y(EA)α/K}.

Similarly we can obtain

lim inf
t→0

t−1
P(F̄1(N) ≤ tx, F̄2(R) ≤ ty) ≥ (1 − ε)min{x, (1 − δ)y(EA)α/K},

so that the statement of the theorem follows by letting ε and δ go to 0.

5.2.4 Examples and discussion

We compare the above results to the measurements on two different network struc-
tures: the EU-2005 data set and the Growing Network from Section 4.1. In Figure 5.1
we present log-log plots for in-degree and PageRanks with fitted straight lines.
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(a) Web data set
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(b) Growing Network data set

Figure 5.1: Cumulative log-log plots for in-degree and PageRanks.

Following [11, p.328] we define an estimator of the angular measure. We are
interested in the dependencies between two regularly varying characteristics of a
node, namely the in-degree N and the PageRank R. Recall that w is the number of
nodes in the graph. Let (Nj , Rj) be observations of (N, R) for the corresponding node
j. Then we use the rank transformation of (N, R), leading to {(rN

j , rR
j ), 1 ≤ j ≤ w},

where rN
j is the descending rank of Nj in (N1, . . . , Nn) and rR

j is the descending rank

of Rj in (R1, . . . , Rw). Next we apply a coordinate transform (rN
j , rR

j ) −→ (rj , Θj),
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given by

(rj , Θj) = Trans

(

1

rN
j

,
1

rR
j

)

,

where we set Trans(x, y) := (x+y, x/(x+y)) since all results of this section are proven
for the || · ||1 norm. Alternatively, in Sections 5.3 and 5.4 we use the polar coordinate

transformation: Trans(x, y) :=
(

√

x2 + y2, arctan (y/x)
)

. However, in this case we

need to transform the angular measure in Theorem 5.4 to the corresponding measure
w.r.t. the || · ||2 norm using formula (8.38) in [11]. Now we need to consider k points
{Θj : rj ≥ r(k)}, where r(k) is the kth largest in (r1, . . . , rw), and make a plot for the
cumulative distribution function of Θ, which gives the estimation of the probability
measure H(·)/2. The question how to choose the right k can be solved by employing
the Starica plot (see Section 5.3.1).

From (5.14) we can calculate the predicted angular measure concentrated in 0
and a. For the Web data sample with average in-degree d = 22.2974, taking c = 0.5
and c = 0.85, we obtain that a0.5 = 0.6031, H(a0.5)/2 = 0.8290, and a0.85 = 0.7210,
H(a0.85)/2 = 0.6934, respectively. Recall that the values of H(a)/2 estimate the
fraction of highly ranked pages whose large PageRank is explained by large in-degree.
Observe that according to the model, this fraction becomes larger if c decreases.

In Figure 5.2(a) and 5.2(b) we plot the theoretical angular measures together
with the empirical ones. The comparison between the graphs shows that there is
only a very rough similarity to be seen, in the sense that the value of H(0)/2 is a
reasonable estimate for the fraction of pages with high PageRank and small in-degree
(corresponding to the ‘turn’ around 0.8). However, the ‘point mass’ at a seems to be
spread out in an almost uniform manner. To understand this, we should realize that
the theoretical two-point measure we found is only a formalization of the idea that
each large PageRank value has to be either due to a large in-degree, or due to a large
contributing PageRank. In the data (representing ‘reality’), such a strict division is
not reasonable; for instance there will surely be pages with high PageRank due to
a high in-degree and a high contributing PageRank, or due to more than one high
contributing PageRanks. Thus we see that although our model roughly captures the
idea of different causes for large PageRank values, it is not subtle enough to properly
represent the angular measure as found from a realistic data set. Future work could
try to investigate how to improve the model in that respect, mainly by studying the
dependencies amongst the Ri in (5.1), or between the Ri on the one hand and N on
the other.

Finally, we perform experiments on the Growing Network. Clearly, in our model
based on stochastic equation (5.1) we can not assume anymore that R is distributed
as the Ri’s since Ri’s are the ranks of ‘younger’ nodes, and presumingly, the Ri

will have lighter tails than R itself. Assuming that P (Ri > u) = o(P (N > u)) as
u → ∞, from Lemma 2.3(iv) we obtain that for this simple model the value of K is
just K = (c/d)α. Substituting this into (5.14) gives us a = 1/2, H(a) = 2, H(0) = 0,
i.e. the measure is concentrated in one point a = 1/2. In Figure 5.2(c) we again
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(a) Web data set: c=0.5,
k=100.000
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(b) Web data set: c=0.85,
k=100.000
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(c) Growing Network data
set: c=0.85, k=6.000

Figure 5.2: Angular measure and theoretically predicted angular measure.

plot the empirical and theoretical measures, which match perfectly. We see that in
synthetic graphs constructed by the preferential attachment rule, large PageRank
is always due to large in-degree, and this can be easily captured by our stochastic
model.

In further research, it will be interesting to consider other graph models of the
Web, for instance, a configuration model (see Section 1.3.3). The configuration model
is not as centered as the preferential attachment network, and it is known to be close
to the tree structure. Thus, one may expect that the stochastic equation provides an
accurate description of the dependencies between in- degree and PageRank in such
a model.

The derived two-point measure is only a first-order approximation of the complex
angular measure observed on the data, since the realistic situation is way more
complex than our simplified model. Further modifications of the model are needed
in order to adequately describe the dependencies in real-life networks.
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5.3 Evaluating statistical dependencies in Web graphs

In this section, we follow the book of Resnick [100]. We compute angular measures
for in-degrees, out-degrees and PageRank scores in three large data sets studied in
Section 4.1. Our experimental results reveal significant differences in dependence
structures in these data sets.

5.3.1 Angular measure estimator

Suppose we are interested in analyzing the dependencies between two regular varying
characteristics of a node, X and Y . As in Section 5.2.4 we define {(rx

j , ry
j ), 1 ≤ j ≤

w}, such that rx
j and ry

j are the descending ranks of observations of X and Y for
page j, respectively. Next we choose k = 1, . . . , w and apply the polar coordinate
transform in (5.2.4):

Trans

(

k

rx
j

,
k

ry
j

)

= (Rj,k, Θj,k). (5.21)

Now, we obtain the following estimator for the angular measure:

∑w
i=1 1[Ri,k > 1, Θi,k ∈ A]
∑w

i=1 1[Ri,k > 1]
, (5.22)

where 1[·] is an indicator function. More details can be found in Chapter 9 of [100].
It was proved in [11, 100] that the empirical measure converges to a proper

distribution on [0, π/2] as w, k → ∞, k/w → 0. That is, ideally, we need to consider
only a relatively small part of a large data set. In practice the problem remains: how
to choose a suitable value of k? In the case of bivariate regular variation, this can be
determined by making a Starica plot. This technique helps to determine where the
bivariate power law behavior actually ‘starts’. To make the Starica plot, we consider
radii R1,k, . . . , Rw,k from (5.21) and rank them in descending order R(1) ≥ . . . ≥ R(w)

as before. To get Starica plot we graph

{(

R(j)

R(k)
,
R(j)

R(k)
· j

k

)

, 1 ≤ j ≤ w

}

, or

{(

R(j),
R(j)j

∑n
i=1 1{Ri,k≥1}

)

, 1 ≤ j ≤ w

}

.

The idea is that for suitable k the ratio in the ordinate should be roughly a constant
and equal 1 for the values of the abscissa in the neighborhood of 1. The plot looks
different for the different parameters k and one can either find a suitable k by trial
and error or use numerical algorithms to compute optimal k. A Starica plot for good
k will have a region in the right neighborhood of x = 1 where the plot is hugging the
y = 1 line. If the line is going steep up at x = 1 then the chosen k is too large. On
the other hand, if the graph stabilizes around y = 1 for some x < 1 then it means
that k is too small, and we miss some valuable tail data. We refer to Resnick [100]
for more details and references.
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(a) Eu-2005 data set:
k=100.000
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(b) Wikipedia data set:
k=600.000
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(c) Growing Network data
set: k=6.000

Figure 5.3: Starica plot for in-degree and PageRank (c = 0.85).

In Figure 5.3 we present Starica plots for the pair of in-degree and PageRank
(c=0.85). The plots behave nicely in all three data sets, which makes our angular
measure more reliable. The Growing Network exhibits an ideal Starica plot (Fig-
ure 5.3(c)). In [113] we provided the plots and the appropriate values of k for the
other combinations: in-degree and PageRank (c = 0.5), in-degree and out-degree;
and out-degree and PageRank (c = 0.5, c = 0.85).

5.3.2 Dependence measurements on the data

As in Section 4.1 we chose the EU-2005, the Wikipedia and the Growing Network
data sets to represent different network structures. After defining a suitable k, we
compute the pairwise angular measure. In Figure 5.4 we depict θ ∈ [0, π/2] against
the estimated probability angular measure [θ, π/2], which, according to (5.22), equals
to the fraction of pages i where the angle Θi,k is greater or equal to θ provided that
Ri,k > 1.

The results are striking. Let us first look at Figures 5.4(a),(b) that characterize
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Figure 5.4: Cumulative functions for Angular Measures.

the dependence between in-degree and PageRank. For the Wikipedia data set we
observe that about half of the observations are concentrated around 0 whereas an-
other half is close to π/2. This suggests an independence of the tails of in-degree
and PageRank (c=0.85 and c=0.5). That is, in the Wikipedia data set an extremely
high in-degree almost never implies an extremely high ranking. This may be due
to the fact that many links in Wikipedia are created by automated processes rather
than human processes. The picture is completely the opposite for Growing Net-
works, where the angular measure is entirely concentrated around π/4 indicating a
complete dependence. Thus, in highly centralized preferential attachment graphs,
most connected nodes are also most highly ranked.

Finally, the Web graph exhibits a subtle dependence structure that results in
angular measure which is almost uniform on [0, π/2]. This suggest that PageRank
popularity measure can not be replaced by in-degree without significant disturbance
in the ranking (of course, in-degree can not be used as a popularity measure for
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many other reasons, for instance, because it is easy to spam by creating link farms;
we refer to [69] for further discussion of PageRank and other popularity measures).

The picture is different in Figure 5.4(c) where we depict the angular measure
for in-degree and out-degree in the Web and in Wikipedia. In the Web, the in-
and out-degree tend to be independent which justifies the distinction between hubs
and authorities [63]. In Wikipedia the in- and out-degrees are dependent but this
dependence is not absolute.

Finally, the dependence between out-degree and PageRank in the Web and Wikipedia
in Figure 5.4(d) resembles the patterns observed for in-degree and PageRank.

Analysis of dependencies in real-life graph and synthetic data contributes to-
wards a better understanding and modeling of complex graph structures. Clearly,
for adequate modeling, it is not sufficient to maintain power laws. For instance, it
was already argued in [38] that robustness of Internet power law router graph is in
strong disagreement with a preferential attachment model. Likewise, our analysis
clearly reveals a striking disagreement of the preferential attachment graph with de-
pendence structure of the Web and the Wikipedia. Better models have to be sought
and existing models have to be thoroughly analyzed before we can conclude that
they adequately reflect important features of complex networks.

5.4 The Θ rank correlation measure

We start by noting again that the estimator of the angular measure described in
Sections 5.2.4 and 5.3.1 is based on a rank transformation. This is clearly seen
from formula (5.21) where only rank of the parameters X and Y plays a role. This
observation naturally leads to a new measure for rank correlations.

In summary, our idea is as follows. As before, we define r1
i and r2

i as a ranking
order of page i in scheme 1 and 2, respectively, where i = 1 . . . n. Now we suggest to
represent the difference between the two rank positions of i by the angle

Θi = arctan(r1
i /r2

i ).

For example, in Figure 5.5, Θi is depicted for a node that has rank 3 in scheme 1
and rank 6 in scheme 2. Note that this is exactly the angle in [0, π/2] computed
in (5.21) in order to construct the angular measure estimator. The value Θ close
to π/4 means a relatively small change in ranking. On the other hand, Θ around
π/2 means that the node i is much better off with scheme 2, and the value close
to 0 says that the node is ranked much higher by scheme 1. Thus, we actually
measure the rank difference for node i in radians! Having computed Θi for every i
(or for a certain set of highly ranked nodes i) we construct a corresponding empirical
cumulative distribution function for Θ. As in the previous section, the resulting
angular measure can be used to characterize the rank correlations.

We note that we characterize the rank correlation by a measure or a plot rather
than a number. Compared to the common rank correlation measures such as Kendall’s
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τ [62] and Spearman’s ρ [107], our proposed measure has an important advantage
that it is able to reveal the slightest rank disturbance among highly rank nodes
while neglecting even moderate perturbations among lowly ranked nodes. Indeed,
the Kendall’s τ and the Spearman’s ρ are defined as

τ = 1 − 2d∆

n(n − 1)
, and ρ = 1 − 6

∑n
i=1 d2

i

n(n2 − 1)
, (5.23)

where d∆ is the number of pairs in the symmetric difference of {(r1
i , r1

j ), 1 ≤ i < j ≤
n} and {(r2

i , r2
j ), 1 ≤ i < j ≤ n}; and di = r1

i − r2
i is the difference between two

ranks of page i. Thus, the Θ rank correlation measure actually evaluates the rank
disturbance visible for users. Certainly, the arctan(·) function makes our measure
symmetric with respect to the schemes 1 and 2
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Figure 5.5: Rank Correlation.

Naturally, in this framework, it is also possible to compute such angular measure
only for the top ranked pages. This can be done along the same lines as in Section 5.3
as follows. Based on the polar transformation (5.21) we can separate top ranked pages
by considering only points {Θi,k : Ri,k > 1}. Here the question of choosing k does
not arise anymore. Indeed, the technique involving Starica plot was needed to get an
idea where the power law behavior ‘starts’ in order to measure statistical dependency
for the heavy-tailed data as in [100]. On the other hand, if we are interested in rank
correlations, we may simply pick the k that gives us the top proportion of pages we
are interested in. Note that by increasing k we do not change the observed values
of Θ, we merely increase their number. As a result, in the angular measure, each
observation will simply have less weight. On contrary, decreasing k means ‘zooming
in’ the rank perturbations on the top.

One more advantage of the proposed correlation measure is the fast and easy
implementation since for each node i, only the fraction r1

i /r2
i has to be computed.

Below we present the example of the proposed rank correlation measure in the
Growing Network, the Web and the Wikipedia data sets from Section 4.1. For every
data set we rank pages according to values of the PageRank with damping factor
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Figure 5.6: Cumulative functions for Angular Measures for PageRank (c=0.5) and
PageRank (c=0.85)

c = 0.5 (ranking scheme 1), and c = 0.85 (ranking scheme 2). In Figure 5.6 we plot
cumulative functions for angular measures for k = 100 and the values of k’s that
have been chosen according to the Starica plots as described in Section 5.3 (see e.g.
Figure 5.3).

For Growing Network data set we observe the strong correlation between ranking
schemes. We can also conclude that in Wikipedia the change in the damping factor
affects only about 20% of considered pages, in the top-hundred group as well as in
the larger group. For the Web data, the correlation between ranking is not significant
for approximately half of the pages. However, for the top pages, the difference in the
damping factor mixes up the order of ranking.

The idea of a angular measure estimator is naturally extended to yield the Θ rank
correlation measure. The main idea of this measure is that we characterize the rank
correlations by a cumulative distribution of Θi’s, where i = 1, . . . n. This way, one
can actually see how many pages change their ranks significantly. Such measure is
substantially more informative than just one number, that represents the correlation
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in the whole graph. For instance, Melucci [80] noticed that Kendall’s τ tends to grow
close to one for large data sets. The author provides an example where Kendall’s τ
for ranking orders of only a few hundred Web pages becomes almost 1, in spite of
the large number of rank perturbations. We remark however that if for some reason
having one number is necessary, one can always compute, e.g. the expected deviation
of Θ from π/4.

As mentioned before, the proposed correlation measure is quite harsh with respect
to lowly ranked nodes. Indeed, the node ranked 1000 must fall all the way to 2000 to
make the same effect as number 1 becoming number 2. We would like to emphasize
that such discrepancy is especially suitable for ranking order emerging from a heavy-
tailed data, such as PageRank or in-degree. This is because in such data, there is a
huge difference between the highest values of the realizations, cf. [43].

In the next chapter we apply the Θ rank correlation measure for various problems
of rank aggregation.



CHAPTER 6

RANK AGGREGATION

In this chapter we report on work in progress, that was started during a research
visit at Yahoo!Research Barcelona in November 2008. The goal of the project was
to apply the extremal dependencies and angular measure to the problem of rank
correlation.

Rank aggregation is an important and well-studied problem in Information Re-
trieval. The purpose of rank aggregation is to combine several ranking lists in one
new list that obtains a ranking of better quality. Thus, rank aggregation gives a way
to improve the quality of Web search results; in practice we aggregate results that are
obtained according to different criteria, different parameters of retrieval algorithms,
or by different search engines.

A significant component in the problem of rank aggregation is to evaluate how
much better is the new ranking list compared with the input ranking lists. In the
cases when an “ideal” ranking list is given, the evaluation is defined by the value
of correlation between new ranking list and the ideal list. Thus, when the value
of the correlation coefficient between the new list and the ideal list is close to 1,
we consider that the rank aggregation algorithm produces a good ranking. There
are several correlation measures, however, Kendall’s τ [62] measure and Spearman’s
ρ [107] measure are the ones that are most commonly used. Here we recall the
definition of these two measures. Given that σ1(k) and σ2(k) are the ranking orders
of a page k, k = 1 . . . n, in two ranking schemes 1 and 2, respectively, we define
Kendall’s τ and Spearman’s ρ as follows:

τ = 1 − 2d∆

n(n − 1)
, and ρ = 1 − 6

∑n
i=1 d2

i

n(n2 − 1)
,

where d∆ is the number of pairs in the symmetric difference of {(σ1(i), σ1(j)), 1 ≤
i < j ≤ n} and {(σ2(i), σ2(j)), 1 ≤ i < j ≤ n}; and di = σ1(i)−σ2(i) is the difference

95
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between two ranks of page i. From the above definitions it is clear that none of the
two measures distinguishes rank disturbance in the high ranks or in the low ranks.
In other words, they penalize errors equally at the top and at the bottom of the
ranking lists. However, in many cases we are more interested in coincidences at the
top than at the bottom of the lists. In particular, in Web search only 40% of users
are viewing more than first 10 results returned for search query [57].

Shien [106], and Pinto da Costa and Soares [96] suggest to use deferent weights
to emphasize changes in the top ranks for Kendall’s τ and Spearman’s ρ, respec-
tively. Recently, new approach based on average precision was introduced by Yilmaz
et al. [116]. In our turn, we propose to use the angular measure as a correlation
measure between different rankings. Indeed, the angular measure gives more weight
to the errors at the high rankings. Moreover, since the angular measure is specially
designed for measuring correlations between power law distributed parameters, we
can assume that it provides a good measure of comparing Web-related rankings. In
the next section, we define new distance measure between ranking lists based on the
angular measure. Using this distance we perform experiments for two real data sets
in Section 6.2. Further, in Section 6.3 we discuss future research.

6.1 Angular measure for rank correlation

In the previous chapter we defined the angular measure. Here we recall the definition.
Let σ1(k) and σ2(k) be the ranking orders of a page k in two ranking schemes 1 and
2, respectively, where k = 1 . . . n. We note that we refer to the page with rank 1 as
to the most “interesting” page. Now, we apply the transformation with respect to
some norm

(R, Θk) = Trans(σ1(k), σ2(k)).

In the sequel we use Trans(x, y) = (x + y, x/(x + y)).

Next, we suggest to represent the difference between the two rank positions of
k by the angle Θk = σ1(k)/(σ1(k) + σ2(k)). Then we define the distance measure
between two ranking lists as a sum of deviations from the case of σ1(k) = σ2(k):

d(σ1, σ2) =
n
∑

k=1

∣

∣

∣

∣

1

2
− σ1(k)

σ1(k) + σ2(k)

∣

∣

∣

∣

=
1

2

n
∑

k=1

|σ1(k) − σ2(k)|
σ1(k) + σ2(k)

. (6.1)

Note that d(·, ·) is symmetrically defined, and it is a metric.

Remark 6.1. If σ1, σ2 and σ3 are full ranking lists, i.e., for every k and i rank
σi(k) is defined, then the triangle inequality holds:

d(σ1, σ3) ≤ d(σ1, σ2) + d(σ2, σ3).
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In the proof we justify that triangle inequality actually holds for every page k,
k = 1, . . . , n. For details we refer to Section 6.4. Then, similar to the analysis in
Chapter 5 we can modify (6.1) for the case when we consider only pages that are in
the top N either in one ranking list or in another. We denote T (N) = {k| σ1(k) ≤
N, or σ2(k) ≤ N}, and define the following distance:

dN (σ1, σ2) =
∑

k∈T (N)

∣

∣

∣

∣

1

2
− σ1(k)

σ1(k) + σ2(k)

∣

∣

∣

∣

=
1

2

∑

k∈T (N)

|σ1(k) − σ2(k)|
σ1(k) + σ2(k)

.

Compared to Kendall’s τ and Spearman’s ρ, the proposed measure is able to
reveal the slightest rank disturbance among highly rank nodes while neglecting even
moderate perturbations among lowly ranked nodes. Indeed, if we consider the nodes
ranked 1, . . . , n, and swap the ranks 1 and 10, then we get τ = 1 − 2 ∗ 18/n(n − 1),
ρ = 1 − 6 ∗ 162/n(n2 − 1), and for our correlation measure at node 1 we obtain
Θ1 = 1/11 ≈ 0.0910 that is close to the x-axis, and is a visible deviation from 1/2.
On the other hand, swapping the numbers 1001 and 1010 yields the same values of
τ and ρ, but Θ1001 = 1001/2011) ≈ 0.4978. Thus, the Θ rank correlation measure,
and therefore the distance d(·, ·), actually evaluate the rank disturbance visible for
users.

Now we formalize the rank aggregation problem. For full ranking lists σ1, . . . , σm,
we seek to find a new ranking σ∗ in the way that the sum of distances from σ∗ to all
other rankings σi, i = 1, . . . , m, is minimized. In other words

σ∗ = argmin

m
∑

i=1

d(σ∗, σi). (6.2)

Figure 6.1: Bipartite graph for rank aggregation

In [39] Dwork et al. propose to use a minimum cost perfect matching in the
bipartite graph in order to find the optimal ranking. Following the approach of
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Dwork et al. we construct a complete bipartite graph, in which the one of part of
nodes corresponds to pages, and the another to ranks. Every edge (k, σ(k)) has
a weight that is defined by the sum

∑m
i=1 d(σ(k), σi(k)) (see Figure 6.1). Then,

we need to find the perfect matching with the minimum cost. However, finding a
perfect matching in the case of large data sets is computationally inefficient. One
of the ways to approximate the optimal ranking is to use a specially constructed
Markov Chain, as in [39]. Another approach is to obtain the optimal rank for every
page independently.

In the latter case, for every k (k = 1, . . . , n), and the corresponding ranks:
σ1(k), . . . , σm(k), we define a new rank as follows:

σ∗(k) = arg min

(

m
∑

i=1

|σi(k) − σ∗(k)|
σi(k) + σ∗(k)

)

. (6.3)

We note that this approach can be easily extended for the case of partial ranking
lists, where for some pages ranks are not defined in some lists.

In the next sections we apply the new distance d(·, ·) to the problem of rank aggre-
gation for real data sets. We compute rankings for a Flickr data set (Section 6.2.1)
and a TREC data set (Section 6.2.2).

6.2 Numerical results

We start with σ1, . . . , σm full ranking lists for pages k = 1, . . . , n. Using the distance
d(·, ·) we define new ranking list σAM . Moreover, we also define another list σB by
applying Borda’s count method. The Borda’s count is a simple and very intuitive
method, that is just the ranking of {∑m

i=1 σi(1), . . . ,
∑m

i=1 σi(n)} in increasing order.

For the case of the partial rankings we propose several extensions. For the Flickr
data set in Section 6.2.1 we define full lists by the following procedures. We denote by
Mi the largest score in the ith ranking list. Then, we assign rank Mi +1 to all pages
that are undefined in σi. We also use another method, when instead of assigning the
same value we define scores for the pages in increasing order: Mi + 1, Mi + 2, . . .
accordingly to some rules. Dwork et al. [39] argue that for any rule of assigning scores
to unranked candidates, there are partial information cases in which undesirable
outcomes for Borda’s method may occur.

In Section 6.2.2 we use another way to deal with partial lists. In order to encour-
age pages that have been ranked in many lists, we first define new score of a page
accordingly to (6.3), or as a sum of all ranks of this page, and then divide these new
scores by the number of the lists that have ranked this pages. Finally, we rank these
obtained scores in increasing order.

Since in our data we do not know the ideal ranking list, but we know which of
the pages are relevant, then we use precision and MAP (mean average precision) for
evaluation. Denote by Rlv the set of all relevant documents, and again by σ some
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Figure 6.2: Flickr data: MAP’s for various topics

ranking list. Then, precision at a (P@a) is defined as follows:

P@a =
#{k|k ∈ Rlv, and σ(k) ≤ a}

a
,

and mean average precision is defined as

MAP =

∑

a∈Rlv P@a

#Rlv
.

Here # states for the number of elements in the set. If P@a and MAP are close to
1, then aggregated ranking is good.

Now, we present the experimental results.

6.2.1 Flickr data set

Here we use Flickr data set that was collected by Olivares et al. [91], and is a set of
30 topics, that were derived from Flickr search logs1. For each topic there are 10
lists of 25 ranked images. The only exception is for topic number 20, where we have
only 9 lists. For more detail on this set we refer to [91].

In Figure 6.2 we present MAP values for various topic. For every topic i, i =
1, . . . , 30 we aggregate four ranking that are defined by the following methods:

1On-line photo sharing service flickr.com; (Accessed in January 2009).
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- average MAP min MAP max MAP
AM 0.7030 0.2902 0.8806
BORDA 0.7297 0.3492 0.9735
AMinc 0.7220 0.2943 0.9367
BORDAinc 0.7202 0.3534 0.9432

Table 6.1: Flickr: MAP statistics

• AM: We define full lists by adding the same ranks Mi = 26, and use Hun-
garian algorithm [66] to exactly define aggregated list for the angular measure
distance;

• AMinc: We define full lists by adding increasing ranks Mi = 26, 27, . . . for
every list, and again use Hungarian algorithm [66] to exactly define aggregated
list according to the angular measure distance;

• BORDA: We again define full lists by adding the same ranks Mi = 26, and use
Borda’s method;

• BORDAinc: We define full lists by adding increasing ranks Mi = 26, 27, . . . for
every list, and use Borda’s method.

In Table 6.1 we present average, minimal and maximal values of MAP. As we can see
that for this data set Borda’s method performs better than angular measure based
technique for the prevalent number of the topics. Thus, we can suppose that our
measure is too rough for small data sets. Since Borda is much easier to calculate, we
can suggest to use Borda’s method for this case.

6.2.2 TREC Data

In order to perform experiment on the larger data set, we chose set of results from
Web Track in the Text REtrieval Conference1 2000 (TREC-9). The set consists of
50 queries (topics), and for each of these topic 105 ranking results were assigned.
Every ranking result is a list of top 1000 query relevant pages. Then, for every query
we use the next rank aggregation methods:

• BordaNorm: For every page we consider only available ranks within a query,
sum them and normalize by the number of the available ranks;

• AM: For every page we consider only available ranks within a query, and define
the new rank as in (6.3), i.e. according to the angular measure distance;

• AMNorm: Similar to the second method, however we normalize AM-value by
the number of the available ranks (to encourage ranks that come from the large
number of voters);

1trec.nist.gov (Accessed in January 2009).
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• [#Voters]−1: Simple count of the number of voters. (good page = many voters).

At the end of the analysis of each query, we rank all pages within a query accordingly
to the obtained values in increasing order.
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Figure 6.3: TREC: Average precision at a

In Figure 6.3 we plot the average precision at a. Here we clearly see that the
Borda’s method performs poorly on this data set. The number of voters, and nor-
malized AM allow to achieve good precision. Moreover, we note that normalized AM
wins over [#Voters]−1 at the first and second ranks. This confirms our assumption
that the angular measure approach for the rank aggregation provides more relevant
ranking for the top pages.

6.3 Discussion

In this work we made the first attempt for applying the angular measure to the rank
aggregation problem. From numerical results we can conclude that methods that are
defined by the angular measure can provide good precision for the top nodes in large
data set, however they can fail in a small data set. It will be interesting to further
specify the situations where the angular measure distance provide good results for
rank aggregation.

Here we discuss some open problems for the future research. First of all the
distance (6.1) is not normalized, thus we can not compare distances for rankings of
different length. Second, we need to evaluate how good is (6.3) as an approximation
of (6.2). We can also intend to formalize a Markov Chain approximation algorithm
similar to the one proposed by Dwork et al. [39].

From the experimental point of view, we need to apply TREC methods for the
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Flickr data, and possibly consider another relevance measures, like b-pref, and b-
pref 10 (e.g., see [104]).

6.4 Appendix

Proof of Remark 6.1: We show that for every 1 ≤ k ≤ n the following inequality
holds:

|σ1(k) − σ3(k)|
σ1(k) + σ3(k)

≤ |σ1(k) − σ2(k)|
σ1(k) + σ2(k)

+
|σ2(k) − σ3(k)|
σ2(k) + σ3(k)

.

Denote x = σ1(k), y = σ2(k) and z = σ3(k). Next, we consider the possible cases.

1: x > y > z

x − z

x + z
≤ x − y

x + y
+

y − z

y + z
=

2y(x − z)

(x + y)(y + z)

(x + y)(y + z) ≤ 2y(x + z);

(y − x)(y − z) ≤ 0.

2: x > z > y

x − z

x + z
≤ x − y

x + y
+

z − y

y + z
=

2(zx − y2)

(x + y)(y + z)

(x + y)(y + z)(x − z) ≤ 2(zx − y2)(x + z);

(y − z)(3x(y + z) + x2 + yz) ≤ 0.

3: y > x > z

x − z

x + z
≤ y − x

x + y
+

y − z

y + z
=

2(y2 − zx)

(x + y)(y + z)

(x + y)(y + z)(x − z) ≤ 2(y2 − zx)(x + z);

(x − y)(3z(y + x) + z2 + xy) ≤ 0.

4: y > z > x

z − x

x + z
≤ y − x

x + y
+

y − z

y + z
=

2(y2 − zx)

(x + y)(y + z)

(x + y)(y + z)(z − x) ≤ 2(y2 − zx)(x + z);

(y − z)(3x(y + z) + x2 + yz) ≥ 0.
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5: z > x > y

z − x

x + z
≤ x − y

x + y
+

z − y

y + z
=

2(zx − y2)

(x + y)(y + z)

(x + y)(y + z)(z − x) ≤ 2(zx − y2)(x + z);

(x − y)(3z(y + x) + z2 + xy) ≥ 0.

6: z > y > x

z − x

x + z
≤ y − x

x + y
+

z − y

y + z
=

2y(z − x)

(x + y)(y + z)

(x + y)(y + z) ≤ 2y(x + z);

(y − x)(y − z) ≤ 0.
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SUMMARY

Today, the study of the World Wide Web is one of the most challenging subjects. In
this work we consider the Web from a probabilistic point of view. We analyze the
relations between various characteristics of the Web. In particular, we are interested
in the Web properties that affect the Web page ranking, which is a measure of
popularity and importance of a page in the Web. Mainly we restrict our attention
on two widely-used algorithms for ranking: the number of references on a page (in-
degree), and Google’s PageRank. For the majority of self-organizing networks, such
as the Web and the Wikipedia, the in-degree and the PageRank are observed to
follow power laws. In this thesis we present a new methodology for analyzing the
probabilistic behavior of the PageRank distribution and the dependence between
various power law parameters of the Web. Our approach is based on the techniques
from the theory of regular variations and the extreme value theory.

We start Chapter 2 with models for distributions of the number of incoming (in-
degree) and outgoing (out-degree) links of a page. Next, we define the PageRank as a

solution of a stochastic equation R
d
=
∑N

i=1 AiRi+B, where Ri’s are distributed as R.
This equation is inspired by the original definition of the PageRank. In particular, N
models in-degree of a page, and B stays for the user preference. We use a probabilistic
approach to show that the equation has a unique non-trivial solution with fixed finite
mean. Our analysis based on a recurrent stochastic model for the power iteration
algorithm commonly used in PageRank computations. Further, we obtain that the
PageRank asymptotics after each iteration are determined by the asymptotics of the
random variable with the heaviest tail among N and B. If the tails of N and B are
equally heavy, then in fact we get the sum of two asymptotic expressions. We predict
the tail behavior of the limiting distribution of the PageRank as a convergence of the
results for iterations. To prove the predicted behavior we use another techniques in
Chapter 3.

In Chapter 3 we define the tail behavior for the models of the in-degree and the
PageRank distribution using Laplace-Stieltjes transforms and the Tauberian theo-
rem. We derive the equation for the Laplace-Stieltjes transforms, that corresponds
to the general stochastic equation, and obtain our main result that establishes the
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tail behavior of the solution of the stochastic equation.
In Chapter 4 we perform a number of experiments on the Web and the Wikipedia

data sets, and on preferential attachment graphs in order to justify the results ob-
tained in Chapters 2 and 3. The numerical results show a good agreement with our
stochastic model for the PageRank distribution. Moreover, in Section 4.1 we also
address the problem of evaluating power laws in the real data sets. We define several
state of the art techniques from the statistical analysis of heavy tails, and we provide
empirical evidence on the asymptotic similarity between in-degree and PageRank.
Inspired by the minor effect of the out-degree distribution on the asymptotics of the
PageRank, in Section 4.4 we introduce a new ranking scheme, called PAR, which
combines features of HITS and PageRank ranking schemes.

In Chapter 5 we examine the dependence structure in the power law graphs. First,
we analytically define the tail dependencies between in-degree and PageRank of a
one particular page by using the stochastic equation of the PageRank. We formally
establish the relative importance of the two main factors for high ranking: large
in-degree and a high rank of one of the ancestors. Second, we compute the angular
measures for in-degrees, out-degrees and PageRank scores in three large data sets.
The analysis of extremal dependence leads us to propose a new rank correlation
measure which is particularly plausible for power law data.

Finally, in Chapter 6 we apply the new rank correlation measure from Chapter 5
to various problems of rank aggregation. From numerical results we conclude that
methods that are defined by the angular measure can provide good precision for the
top nodes in large data sets, however they can fail in a small data sets.
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