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ABSTRACT
We describe the underlying probabilistic generative dignadel of
non-negative matrix factorisation (NMF) and propose aisdalcon-
jugate priors on the matrices to be estimated. A conjugater@a
chain prior enables modelling the spectral smoothness nfrala
sounds in general, and other prior knowledge about the gpett
the sounds can be used without resorting to too restricisiertiques
where some of the parameters are fixed. The resulting ahgoyit
while retaining the attractive features of standard NMFhsag fast
convergence and easy implementation, outperforms egidiviF
strategies in a single channel audio source separationetedtibn
task.

Index Terms— acoustic signal processing, matrix decompos

tion, MAP estimation, source separation

1. INTRODUCTION

Time-frequency energy distributions are of central imaoce in au-
dio signals analysis; particularly, the magnitude spegam repre-
sentation displays the magnitude of the time-frequencyficant
x,,~ as a function of frequencies and time indices. In recent
years, one audio modelling approach has focused on nonivigga
of the spectrogram matriX = {z, -} and enforcing a factorisation
asX = TV where bothT andV are matrices with positive entries
(see [2, 3, 4], and references therein). H&fa&an be interpreted as
a codebook of spectra, called basis vectors, ¥nid the matrix of
their gains in each frame. The success of the model stemstfrem
fact that entities of natural sounds can rather well be apprated
as a product of stationary spectrum and time-varying gaiese€ en-
tities include, for example, individual tones of musicatiments.
A basis vector and its gains can represent, for example cifiiilou-
tion of all the tones of a certain musical instrument havimgame
pitch, or all the tones of a percussive musical instrumenmnt. ad-
vantage of these methods is computational attractivenessodfast
converging iterative matrix factorisation techniques [5]

A problem with the standard NMF objective is that the proba-

bilistic interpretation is not explicit and consequentbsks vectors
and gains are not well modelled, and as we will show lateraare
sumed to be independent a-priori for all entrieslofand V. Es-

pecially for music signals, due to the physical propertiesosical

instruments and quasi-periodic structure of music, onédodearly

design more informative priors. For example, due to presehnote

events that have a constant pitch, gains in adjacent tiggpsémcy
atoms tends to be correlated. Similarly, due to harmonazity con-

stant timbre, basis vectors tend to have typically peaksahbni-

cally related frequency indicies.

Existing approaches have tried to model prior knowledgeiabo
basis vectors by initializing an inference algorithm witked of ba-
sis vectors corresponding to harmonic spectra [3], assythat this
would enable more robust inference. Alternatively, one lesmn
a set of basis vectors from a training corpus where each sasirc
present in isolation, and then keep the basis vectors fixddeati-
mate their gains [6]. This latter approach produces goadtseshen
the spectral characteristics of the training data are egudlose of
the target data. In practice, however, the exact charatiteriof the
target signal are often not known, and any mismatch betweaém t
ing and target data decreases the quality of the obtainedicol
One remedy is adapting all basis vectors but introducingleeg

. sation terms that encode some prior knowledge, such ascamdor

temporal continuity. This strategy has been shown to betfeus-
ing a heuristic approach where a cost function which peesliarge
differences between the gains of adjacent frames [4].

Our goal in this paper is twofold. First we describe in dettad
underlying probabilistic generative signal model of the Nnd
the nonnegative update equations as a quasi gradient eption
strategy. Consequently, given the probabilistic model,cae im-
pose various prior structures. Here, we use a Gamma chan[pfi
on the basis vector¥ and gainsV. The resulting algorithm out-
performs existing NMF strategies and opens up the way foila fu
Bayesian treatment for model selection.

The paper is organized as follows: Section 2 reviews shtrdy
objective of non-negative matrix factorisation and theted opti-
mization algorithm. Section 3 presents the probabiliséneyative
model behind the NMF, and extends it to allow priors for theapze-
ters. Section 4 presents simulation results and Section&usions.

2. NON-NEGATIVE MATRIX FACTORISATION

In NMF, the goal is to find entrywise non-negative matrid@and
V such that

(T%, V") = argmin D(X||TV) @

whereX is an entrywise non-negative matrix afdcould be Eu-
clidian distance, or divergence defined as

DX|Y) =Y [Xlu.rlog[X]uir /[Y]uir = [X]uir + [Y]ir

v, T

Here we use the divergence since it has been found to proaties b
results in audio signal analysis [4]. SinXeis fixed, we can use the
divergence function
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and write the equivalent optimisation problem

(T*’V*) = arg r%glzd([X]T’V’ [TV]:.) 3)

In general, this optimisation problem is not convex withpexs to

both T and V. Therefore finding the global optimum cannot be
guaranteed by any optimisation method. However, the pnolie

th th

wheret, 1. denotes the*" column of T andvy.;, - ther*" row of
V, respectively. Assuming that each time-frequency poistasis-
tically independent conditional dB andV, the entire model can be
denoted using matrix notation by

e~ [TVly,r [TV] [V)’(T]'M'

MK 1 1) ®)

p(X|T, V) =]

T,V

convex with respect t@ and'V separately, which allows for finding The maximum likelihood solution is given by

of locally optimal solutions.

Because of their computational effectiveness and sintplitie
multiplicative updates proposed in [5] have been extehsiveed to
solve the problem (3). The convergence proof in [5], whicbees
tially hinges upon bounding ternisg Zle t,.:v;, - Of the objective
by a variational bound, can be interpreted as follows: fardiron-

(T", V") = argmaxlogp(X|T,V)

where

log p(X|T, V)

variablesv; , which are restricted to non-negative values, the func- = Z —[TV]r + [X]o,7 log([TV]y,r) — log(I'([X]u,- + 1))

negative parameters, - andt, ;,, v =1,...,F,i=1,...,I,and
tion
F I
c=> d@r, Yy tuivis) (4)
v=1 =1
is non-increasing under simultaneous update efglli = 1,...,I

using the rule - ,
Zu:l tu,il’u,r/(zilzl tu,i/vi’n—)
25:1 o i

The rule has been applied to solve (3) by keeping fitdtxed and
applying (5) to updatév, then keepingV fixed and updatindr,
and repeating the updates until the values converge. Itipeathis
variational approach has been found to be efficient in esgad/
andT, since it automatically obeys the non-negativity restits.

®)

Vi, r Vi,

3. POISSON OBSERVATION MODEL

In the sequel, we illustrate that the objective (3) can bévddrstart-

ing from a probabilistic modé&l Assume that the magnitude at each
time-frequency ators,, . produced by the'" source is Poisson dis-

tributed: ‘ ‘
8?/,7' ~ ’PO(S?/,T; tV,iUi,T)7 (6)

whereu; . is the gain of the*® basis vector in frame and PO is
the Poisson distribution defined as

PO(z;A) = e N /T(z + 1). (7)

1 _ Z d([X}VﬂW [TV]V*T) (10)

Here=" denotes equal up to irrelevant constant terms (ifec
g < log f =" logg). We see that this objective is identical to the
objective (3) optimised by NMF.

3.1. Gain prior p(V)

In the following, we propose that both the basis vectors aaidsy
are unobserved random variables which are to be estimatettfre
data. We assume that the prior factorisep@B, V) = p(T)p(V).
To model continuation across time, we will use a Markov clain
gains. A suitable prior, that guarantees that the gaingacgysnon-
negative, and positively correlated (i.e., slowly varyindime) can
be constructed by a so called Gamma-chain [1]. HEm® a,b) is
the gamma distribution defined fgr> 0 as

G(ysa,b) = y* b % ¥"/T(a),

A Gamma chain is constructed by using auxiliary variakles as
follows.

(11)

G(zir;a+1,(ab)™")
g('Ui,T; a, (Zi,Ta‘)_l)
g(z7-+17i; a—+ 1, ('Ui,fa)il)

Zi1

Vi,r|2i,7

Vi, 1 ~

Zr41,i

Here,a is a coupling parameter that affects the affinity between the
Here,I'(z) denotes the gamma (generalised factorial) function. Theyains of adjacent frames. Wheris large, adjacent frames are cou-
Poisson distribution is defined only for discretg but in practise  pled more strongly. The auxiliary variables are needed &uen
the accuracy of: does need to be limited by having a large integerpositive correlatiorand conjugacy, a technical condition that leads
scale. We assume that the total magnitude of the observedlsig to closed form fixed point equations as in standard NMF. Thevab
., in each time-frequency point is the sum of the magnitudes ofGamma chain is a single parameter version of the model preen

individual sources i.e.,z,, = >.._, s, .. The sum of indepen- in [1] where the value:. = a + 1 is used in the distribution of the

dent Poisson-distributed random variables is also a Poisstom
variable with intensity parameter equal to the sum of irdlal in-
tensity parameters. Therefore,

I
tu,l:h'Ul:I,T) = Po(xu,r;ztu,ivi,7)7 (8)

i=1

(20,7

1Such as an observation has been made before in many studidmrb
it is crucial to formulate the mathematical details.

2We note that this assumption is physically unrealisticcsim general
for two superinposed sourcés and¢2, the magnitude of the superposition
x = |&1 + &2| can not be written as the superposition of the magnitudes of

individual sources, i.ex # |€1] + |€2].

auxiliary variables. The resulting model is a collectiorniraddepen-
dent Gamma chains for the gains of each source
The relevant t(:}rms in the log-prior function are given as

logp(V,Z) =" Y alog(zi,x+1) — 2i1ab

I K =1
+ Z Z 2a[log(vi,r) + log(2i,r )] — Vi 72,7 @ — Zi, 7 4+1Vi,7Q

i=17=1
K

I
=t Z d(a,abzi1) + Z d(a,virzira) + d(a,vi,rzir+10)

i=1 T=1
where we definéZ); . = zi . 12)



3.2. Basis vector priorp(T)

In this paper, we assume a prior where each entry of the besisenv
matrix is assumed to be independently drawn from a Gamma-dist
bution:
p(tvi) = /(o)

13)
The hyperparameters, ; and3,,; of the model can be selected in-
dividually for each basis vectat.r ;. For exampleg;.r; can be
selected such that typical basis vectors have peaks at haratly
related frequencies. We assum¢l’) = [, [T'_, p(t..;) and
consequently, the Iogarithm of the prior can be written as

E auzf
1v=1

F
Z Qg — 1 tutﬁut)

ayi—1 oy i —t, By
Ak B vii o=ty iByi
v,i v,i

g(tu,i; Qy iy ﬂ;,tl) =

log p 1Og tu 7.) tu,iﬂl/,i

(14)

||'M~

3.3. Inference

Given the model, the joint posterior distribution is givenlBayes’
rulep(Z,V, T|X) < p(X|V, T, Z)p(Z,V, T) which factorises to
p(X|V, T)p(Z, V)p(T). The MAP state can be found as

arg max {logp(X[V,T) +logp(Z, V) +logp(T)}  (15)

We substitute the terms in (15) with the expressions in ((13),
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Fig. 1. Gains of the bass drum basis vector estimated using three

and (14). Since the log-posterior is now written as a sum ef th different NMF algorithms. The bass drum onset times are athrk

divergence function defined in (2), the MAP estimator can ée d
rived directly by applying the rule (5) on the sum of the ter(h8),
(12), and (14). To simplify the notation, let us define, » =

a:”/(zz Ltuavie) forally =1,... Fandr =1,...,K. The
update rule (5) for each of the parameters is given as
Vi T 1 tu 7 K_ i, Ty, T
tui —tu (o, ), +qu—71 Yir T, (16)
ﬂu,i + 27-/:1 Ui,z
2 T,T F_ tl/ MMy, r
v o 1 7 ¥ Doyt b 17)
a(zi,T + z7'+1,i) + Zy’:l tu’,i
1/(v1,s +b) T=1
Zigr — $2/(Vir +vr-15) 1<T<K+1 (18)
1/1)2',7— T=K+1

It can be seen that the update rules differ from the basic Nptfates
[5] only by additive terms in the numerator and denominattrich
are caused by the priors.

The MAP estimation algorithm works in an iterative fashion,
first updating all the basis vectors using (16), then all tiegusing
(17), and (18), and repeating the updates until the algaritbn-
verges. According to the proof [5], the value of the postedis-
tribution (15) is guaranteed to be non-decreasing undér ehthe
updates.

with crosses and snare drum onset times with circles, résphc

The proposed method (bottom plot) is able to estimate gaheyav
the interference caused by other sources is smaller thareiather
algorithms.

4.1. Basis vector priors

In the first study we examine the benefit of the basis vectar oy
an example signal of a drum pattern consisting of bass dronares
drum, and hi-hats. The gain prior is not used here. The madmit
spectrogram of the signal was factorised into three soytices 3)
using three NMF algorithms. The first algorithm, basic NM§&; e
timates the basis vectors and gains blindly from the mixtigeal
by minimizing the divergence. The second algorithm usesifbee
sis vectors, which were trained for each source using nadighiere
the source was present in isolation but the instruments tasptb-
duce the sounds were not identical to those in the mixture.tfind
algorithm is the proposed method which uses Gamma prioithéor
basis vectors. We set the shape parametgrof the prior of all the
basis vectors equal th and the scale parametefs 1 equal to the
fixed basis vectors trained for the second algorithm.

The gains were estimated using all the three algorithms-sepa
rately. Figure 1 illustrates the gains corresponding taoidmes drum

By settingb = 0, the gain prior becomes independent of the hasis vector for three different algorithms. All the algomis pro-

overall level of the gains. Thus, unlike the cost term in fAg tem-
poral continuity objective implemented by the Gamma chaedd
not require fixing the scale of the parameters. However, suen
the numerical stability of the algorithm, in each iterative scale
the variance of the gains of each source to unity, and conapens
this by re-scaling the basis vectors and auxiliary varigble

4. SIMULATION EXPERIMENTS

The effect of the proposed priors is shown in two studies witlee
basis vector priors and gain priors are tested separately.

duce large peaks at correct bass drum hits. However, theaficst
second algorithm also produce smaller erroneous peaksspamd-
ing to the snare drum hits. Because the sounds in the matseal
to train the basis vectors are not identical to the soundséannix-
ture, the second algorithm patches the mismatches by myneg
parts of snare drum spectra by bass drum basis vectors. @thie
hand, because a part of the snare drum spectra can be rdptesen
with a bass drum spectra, the blind NMF algorithm is not able t
learn the basis vectors accurately enough. The proposedthln
circumvents these problems and produces gains where snare d
hits do not affect the excitations of the bass drum basiovect



< 14
Table 1. Average detection error rates and SDRs of the tested algc
rithms. The best result in each column is highlighted in bold g o 12 PRGN .
algorithm | det. error rate (%) SDR (dB) g z 1w 7 \
all pitched drums| all  pitched drums g I \\
2 n
EUC 28 28 30 6.6 76 45 3 6
DIV 26 28 23 | 76 9.0 47 3 L ,
DIV-SQ 24 25 22 8.5 9.8 6.0 110 102 10° 104 0 1 10 102 10° 10°
GAMMA | 25 28 20 10.1 123 6.0 scale ofa scale ofa
Fig. 2. The effect of the coupling parametenn the average detec-
tion error rate and average SDR. The solid line is the avevhgé
4.2. Gains sources, the dashed line is the average of pitched instrsnemd

The effect of the Gamma chain prior was evaluated quangtin
an unsupervised sound source separation task where rardos-a
tic mixtures of tones of musical instruments were separattal
sound sources. Basis vector priors were not used in thiy.s80D
random mixtures were generated by selecting random musical
struments and pitches from an acoustic database describfddl i
Random amount repetitions, timings, durations, etc. wéotted
for the tones according to the procedure described in [4].

The baseline algorithms include the basic NMF algorithnseba
on the minimization of the Euclidean distance between aaditer-
gence between the magnitude spectrograms. These are ddyote
EUC and DIV in the following. The NMF algorithm [4] where tem-
porally continuous gains were favored by using a cost terrthvh
is the squared difference of the gains of adjacent framesristed
by DIV-SQ, and the proposed Gamma chain algorithm is denote
by GAMMA. Different values ofa were tested and the one which
produced approximately the best results was used in thdaions.
Basis vector priors were not used in this evaluation.

In the simulations, each mixture was separated into sourges
using all the algorithms. At the moment there is no reliab&thod
for the estimation of the number of sources in this framewarid
therefore we tested each of the algorithms separately wit® 515,
and 20 basis vectors. Each source was reconstructéél7bas=
Trpvritin /(h_, ve ot ). The quality of the separation was
evaluated by comparing the separated sources to the disginces.
Each separated source was assigned to an original sourcgrgy u
the signal-to-distortion ratio (SDR) between them as adist mea-
sure as described in [4]. If an original source was not assigep-
arated sources, the source is said to be undetected. Theticiete
error rate was calculated as the ratio of the total numbemdeu
tected sources and the total number of sources. The quélibheo

separated sources was measured by calculating the SDRdretwe

each separated source and the corresponding originalesoOrdy

a single separated source per an original source was usegitb a
over-fitting (see [4]). The SDR was averaged over all the ceair
The averages were calculated also separately for pitclstaiment
sources and percussive sources.

4.3. Results

The average detection error rate and SDR are shown in TaBlleel.
results for DIV, EUC, and DIV-SQ are slightly different frothose
presented in [4], because of the slightly different sousm®nstruc-
tion method. The proposed method allows better averagetiete
accuracy and SDR than the basic NMF algorithms. It produpes a
proximately equivalent average detection error rate toDh&SQ
method, the performance being slightly worse for pitchestrin
ments and slightly better for percussive instruments. TD& $f
pitched instruments obtained with the proposed methodgisifsi

the dotted line is the average of percussive instruments.

cantly better than the one obtained with the other methods.

The effect of the value af is illustrated in Figure 2. The case
a = 0 corresponds to the DIV algorithm. It can be seen that inereas
ing the value ofx increases the detection accuracy of percussive in-
struments and the SDR of all the instruments until a certaintp
after which the quality decreases.

5. CONCLUSIONS

This paper proposes a Bayesian extension to the NMF wheenthe
tries of the unknown matrices are considered as unobseanetbm
variables. We use a Gamma Markov chain prior for the gains and
Gamma prior for the basis vectors. These conjugate Gamma pri
ors enable finding the maximum likelihood solution of thegrae-
ters by extending the simple and efficient multiplicativelates of
the original NMF algorithm, where the likelihood is guareed to

be non-increasing under each update and therefore thdthigas
guaranteed to converge. The prior structures (both on gaitbasis
vectors) help to overcome some problems and enable betiityqu

in one-channel source separation than the existing NMFitgos.

6. REFERENCES

[1] A. Taylan Cemgil and Onur Dikmen, “Conjugate Gamma
Markov random fields for modelling nonstationary sourcés,”
Proc. of the 7th Int. Conf. on Independent Component Analysis
and Sgnal Separation, London, UK, 2007.

Paris Smaragdis and J. C. Brown, “Non-negative matrétda
ization for polyphonic music transcription,” iRroc. of IEEE
Workshop on Applications of Signal Proc. to Audio and Acous-
tics, New Paltz, USA, 2003.

S. A. Abdallah and M. D. Plumbley, “Polyphonic transdigm
by non-negative sparse coding of power spectralPrirc. of Int.
Conf. on Music Information Retrieval, Barcelona, Spain, 2004.

Tuomas Virtanen, “Monaural sound source separation by
non-negative matrix factorization with temporal contiguand
sparseness criteriaJEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 3, 2007.

D. D. Lee and H. S. Seung, “Algorithms for non-negative-ma
trix factorization,” inProc. of Neural Information Processing
Systems, Denver, USA, 2000, pp. 556-562.

Bhiksha Raj and Paris Smaragdis, “Latent variable dgumm
sition of spectrograms for single channel speaker separati
in Proc. of IEEE Wbrkshop on Applications of Sgnal Proc. to
Audio and Acoustics, New Paltz, USA, 2005.

(2]

(3]

(4]

(5]

(6]



