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Chapter 1

Introduction

The main topic of this thesis is the investigation of a recently developed machine learning technique
called Non-negative matrix factorization (NMF) and its potential use for failure analysis in semicon-
ductor industry.

1.1 Blind Source Separation and Matrix Factorization

Due to exploding data storage capacities and still improving measurement procedures, high-dimensional
data are more and more widespread in diverse fields such as medicine, biology, logistics, information
technology and industry. However, the rising flood of information and data complexity can rapidly
become unmanageable and necessitates suitable data preprocessing algorithms in order to reduce
data dimension, and to extract, visualize or encode the desired information. The purpose of low
dimensional representations of a high dimensional datasets with a minimum loss of information is to
uncover the most relevant features of the data. Many procedures used for dimensionality reduction
can be formulated as a matrix factorization. A N ×M matrix X is approximated by some func-
tion of the product of two smaller matrices f(W,H), where W has dimension N × K and H has
dimension K ×M , K << min(M,N). Prominent examples of such exploratory matrix factorization
(EMF) techniques represent principal component analysis (PCA) which was first proposed by Pearson
[Pea01] and Hotelling [Hot33], independent component analysis (ICA) [Com94], [HKO01], [CA02] or
non-negative matrix (NMF) and tensor (NTF) factorization [CZPA09]. In recent years, NMF has
gained growing popularity over competing techniques such as PCA or ICA due to the direct and
intuitive interpretability of the components in a parts-based representation.

1.1.1 Blind Source Separation

Rather than detecting correlations between measurement variables by statistical tests, which is a usual
task e.g. in Social Sciences, Blind Source Separation techniques aim to form a quantitative model of
what was observed by stating suitable assumptions on the data generative process.
Multiple cause or latent variable models assume the data to be generated by some process which is
not observable directly, in which a set of, say K hidden sources superimpose and generate a set of N
observations. Based on careful assumptions on the underlying process, the superposition principle is
modeled and the hidden sources as well as their contributions to the observations can be reconstructed
in some cases. When applied to a BSS problem, for example PCA or ICA assume that the underlying
sources are mutually uncorrelated or independent, respectively.
In contrast, NMF exploits the non-negativity as a basic property of many kinds of real world data.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: left: A typical task for machine learning is the Blind Source Separation problem. A set
of K sources is superimposed in some way and generates a set of N observations. Each source and
observation is a vector of M variables. For some reasons, the underlying sources are not observable
directly, nor are the individual contributions to the single observations. right: Illustration of the
matrix factorization model X = f(W,H). A N ×M data matrix X is approximated by a function
of the product of a N ×K weight matrix W and a K ×M matrix H. Properties related to running
index i, directly transfer from X to W, while index j is common for X and H

1.1.2 Matrix Factorization

Under some linearity assumptions, the BSS model shown in figure 1.1 can be expressed as a matrix
equation

X ≈WH (1.1)

where the i-th observation is the M -dimensional row vector

Xi∗ ≈
K∑
k=1

WikHk∗ (1.2)

and can be approximated by a linear combination of the K hidden basis components Hk∗ using the
weights Wik which reflect the respective presence of component k in observation i (see Fig. 1.1 for an
illustration).

1.2 Industrial data

In a microchip factory, various different products like sensors or mobile components or other integrated
circuits based on semiconductor technology are manufactured in sophisticated sequences of up to
several hundreds of individual processing steps.
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Figure 1.2: Wafer manufacturing and the various kinds of data collected during the process. Before the
microchips are completed, a wafer passes up to several hundreds of single operations. Typically, wafers
are bundled to units of 25 or 50 pieces called lot which share the same processing history. In general,
an operation is not executed by only one single apparatus, but can be performed on several pieces
of equipment in parallel. During the whole processing chain which takes 1-3 months, various kinds
of data are collected: The lot history collects the information about which single equipments have
processed a certain lot in the successive operations. Equipment data contains general information
on the operational characteristics of the manufacturing tools. After important processing steps,
intermediate measurements are performed to control the success of the preceding steps and finally,
after completion, final measurements such as functional tests take place.

1.2.1 Wafer fabrication

The usual basic material consists of a silicon disk called wafer, which undergoes a series of processing
steps called operations. Depending on the product, each wafer contains up to a few thousand chips
whose manufacturing process can take 1-3 months before completion.
Each type of product has an individually specified sequence of operations that have to be carried out
on the disk. An operation can be e.g. adding a layer to the wafer, drawing a pattern, covering a
pattern with a photo layer, etching a pattern or implanting [vZ90].
Each operation follows a specific recipe containing details such as the thickness of a layer to be added.
In general, more than one single piece of equipment can perform an operation, e.g. there are several
implanters or etchers at a semiconductor site which can perform the same operations (see figure 1.2).
Wafers are processed as a unit called lot, which is a collection of 25 or 50 wafers. All wafers within a
lot typically share the same processing route, which is a certain sequence of operations and recipes.
In a wafer factory, various kinds of data arise such as
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• Lot history
For each lot, the complete path through the production line is logged, containing information
about which equipment has been passed in each operation.

• Equipment data
During production single manufacturing equipments permanently record up to 1000 operational
process parameters such as e.g. temperature or pressure

• Intermediate measurement data
After important processing steps, intermediate measurements control properties of the previous
step such as a layer thickness or a line width. These data are also called metrology [SHLL05].

• Final measurement data
After processing, certain test structures between the chips called process control monitors (PCM)
are evaluated for each wafer , including e.g. operational voltages or currents (about 150 param-
eters) and functionality tests are performed on the single chips which ensure that all functional
specifications are met and the chip works properly.

Functional tests which evaluate the performance of the individual chips can only be executed after
the last step of production (e.g. since there are no bonds before).
Depending on the actual product, there is an individual tailored set of specifications for desired and
necessary properties. According to these specifications, a series of up to 400 tests is performed,
ensuring that those chips are sorted out which do not meet all required quality aspects and cannot
be delivered to customers.
Each chip is labeled according to the test outcome. The labels are called BINs and collect certain
tests. If a chip is labeled pass, everything works properly. If it fails in any of the tests performed, the
chip carries the label of the test’s BIN category (e.g. 1, 2, 3, . . . ). The BIN number codes a certain
aspect of malfunction.
For each tested wafer, a wafermap can be generated, which is an image containing all chips with their
x-y-coordinates and their BIN label.
The yield is defined as the portion of pass chips and is one of the most important variables in industry.
According to [BC99], more than 50% of all yield problems are caused by process equipment.
Many interrelated factors affect the yield of fabricated wafers. In an unsolved low-yield problem, a
series of experiments is performed by the engineers in which a set of different factors is varied to
study their influence on the fabrication process. Since the number of required experiments grows
exponentially with the number of varied factors, it is necessary to change as few factors as possible.
This is known as design of experiment approach [D.91].
During wafer fabrication, large amounts of data monitoring individual processes, equipments, etc.
(see figure 1.2) are stored in databases. So much effort is spent on the discovery of potential failure
causes based on these data. Due to the high complexity and immense amounts of data, the need for
suitable sophisticated data analysis tools in semiconductor industry is obvious.

1.2.2 Knowledge discovery by machine learning techniques

The catchword knowledge discovery in general means the extraction or generation of potentially useful
information from data [SHLL05]. Usually, large amounts of data need to be reduced into a manageable
form which can then be further processed by human experts. There is a variety of such techniques
implemented in commercial software, also known as data mining or automatic pattern extraction.
Data mining greatly reduces the time needed to analyze data and reveals insight extracted from data
which would be otherwise unknown.
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Various strategies for knowledge discovery have been applied in order to infer possible causes of faults
from the data, many of which are in every-day use by semiconductor engineers.
[Tur95] investigates the necessary transformation of raw semiconductor manufacturing data into a
useful form as input to a decision tree algorithm and denotes it data engineering.
The effectiveness of mining association rules and decision trees in determining the causes of failures
of a wafer fabrication process is discussed in [BCC99]. The authors conclude that choosing a proper
data mining method and a suitable data pre-processing to solve a problem at hand is a non-trivial
problem and articulate the need for general methodologies and guidelines.
Due to the high data complexity, the application of neural networks has been studied in several facets.
The main applications include the modeling of individual processes and process sequences, real time
equipment controlling as well as failure detection [Fed96], [FPW97], classification and diagnosis of
equipment and process problems [KWL+97] , [GB00a] [Sch02] and the references therein.
Yield improvement strategies by statistical data analysis are discussed e.g. in [TKGB99], [BC99],
[CWC07] The methods include statistical techniques like analysis of variance (ANOVA), nonparamet-
ric tests, multiple regression, generalized linear models (GLM) and K-means clustering .
A classification and regression tree (CART) method for analyzing wafer probe data was discussed in
[SMR+02] and compared to classical multivariate statistical techniques such as clustering, principal
components and regression-based methods.
Other recently developed machine learning concepts find application in the semiconductor industry.
Examples are independent component analysis (ICA), which has been used to model and analyze
wafer probe test data [DPGK05], and process disturbances [SM07], or support vector clustering on
wafer binary maps [Wan09]
Further, Projection Pursuit [RPW06], and mixture models combined with Bayesian networks [SPST07]
have been proven to be very useful tools to discover dependencies and irregularities in multivariate
data sets.
Multivariate techniques such as principal components analysis (PCA), multiway PCA and other mul-
tilinear factorizations have been applied successfully for process monitoring (see [WGB+99] for the
monitoring of an etching process).
Recently, ICA and PCA have also found application to semiconductor industry for multivariate process
monitoring (see [LQL06], [GS07], [CHCL09] and references therein).
Non-negative matrix factorization (NMF) which will be the main topic of this thesis has recently been
applied in the semiconductor industry for endpoint detection in plasma etching [RMRM08].
Summarizing, a huge arsenal of different data analysis and machine learning techniques can be applied
to various kinds of data collected during and after microchip manufacturing. Any of the mentioned
methods can make a contribution to the detection of failure causes and improvement of production.
However, all techniques also have a limited field of application and eventually need a proper data
preprocessing and skilled personnel to place the results into context and to draw viable conclusions.

1.3 This thesis

During the last three years I worked with the Infineon Technologies AG in Regensburg. The basic
intention of my work was to figure out new data analysis tools which support the engineers in their
daily work discovering potential flaws in the manufacturing process of semiconductor wafers.
The main topic of this thesis is the investigation of Non-negative matrix factorization and extensions
thereof which were designed for the application to semiconductor wafer test data.
Although the main contributions of this thesis are rather theoretical aspects of Non-negative matrix
factorization techniques which can be easily transferred to other application fields or areas of research,
the potential of the new developments is demonstrated on test data sets as they arise in semiconductor
industry.
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We will utilize the potential of non-negative matrix factorizations by modeling the test data gathered
at the end of wafer processing as a set of observations which is generated by several simultaneously
acting, not directly observable sources. The final test data results from a joint action of failure causes.
With a slight abuse of denotation, the term superposition (which exclusively describes the overlapping
of waves in its original meaning) is used here to depict the principle of simultaneous action of several
causes which are mixed up to produce a set of observations. By non-negative superposition we mean
the property that one individual source can not destruct the effect of another source and the individual
contributions can only overlap in a constructive fashion.
Two different kinds of data sets will be analyzed, both of which can be arranged in an N ×M data
matrix X.

1. BIN data
In the measurement procedure, each chip is labeled according to a BIN category (see Fig. 1.3,
top). A wafer can be characterized by the counts of each individual BIN (see Fig. 1.3, bottom,
right). In that case, each column X∗j corresponds to a BIN category while each wafer is stored
in its own row Xi∗.

2. Pass/fail data
Each chip is labeled pass, if all specifications are met properly, and fail, if any of the tests has
a negative outcome. This data contains x-y- coordinates and pass-fail labels coded as 0/1 (see
Fig. 1.3, bottom, left). Each row vector Xi∗ corresponds to a wafer, while each column vector
X∗j is associated to the x-y- position of a chip in this case.

BIN data contains either count data or relative counts normalized by the total number of chips per
wafer and is non-negative. In this case, we will see how NMF can be directly applied to decompose
the data into potentially meaningful components.
On the other hand, pass/fail data is binary containing entries 0 or 1 only. In that case, NMF can not
be applied directly and we will develop an extension of NMF suited for binary data called binNMF.
Note that the term BIN in upper case letters denotes a specific test category, and is not to be confused
with the lower case expression bin as in binNMF which means binary here.
We will associate a non-negative superposition principle for the generation of both, BIN and pass/fail
data and investigate the potential of NMF to solve the blind source separation problem.
This thesis is organized as follows: Chapter 2 introduces the analysis technique of Non-negative
matrix factorization (NMF). After a motivating example, a brief overview of existing applications of
the method is given and the main implementational aspects concerning cost functions and optimization
strategies are discussed. Further, some extensions and variants of NMF are outlined.
Chapter 3 focuses on one of the (to some extent) unsolved questions of NMF, given by the non-
uniqueness of its solutions. Based on geometrical considerations, a determinant criterion is derived
which allows for the characterization of a naturally ”best” solution among several possible ones by
a minimal volume spanned by the basis vectors. An algorithm incorporating this determinant crite-
rion called detNMF is developed and simulations demonstrate its performance on artificial datasets.
Further, the determinant criterion gives rise to a new and simple explanation for the phenomenon
reported in the literature that a cascade of several NMF steps usually improves the quality of the
solutions. Finally, the determinant criterion and the detNMF algorithm are briefly put into context
of related work.
Equipped with the knowledge on optimal NMF solutions in a general setting, Chapter 4 presents the
direct application of NMF on a non-negative dataset derived from BIN categories. The necessary
data aggregation is described and the linearity assumptions on the data generating process required
by the NMF model are stated. As a first approximation, the assumptions seem adequate. A volume
constrained NMF algorithm is applied to generate decompositions of this data into putative non-
negative sources and weights. It is illustrated that the extracted components are plausible from a
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Figure 1.3: Two possibilities to generate a data matrix from a set of several wafermaps. While each
row contains the data from a different wafer, the columns can represent either single chips (left) or
different BIN categories. A non-negative superposition model can be associated to both cases. The
example wafer contains 24 chips, each labeled by one of the BINs 0, 1, 2, 3. Here, BIN 0 means: die
works fine, while BIN l (l=1,2,3) codes the event chip failed in test category l.
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data analysis point of view. Furthermore, it turns out that the determination of the actual number
of underlying components can not be achieved by standard rules of thumb in general. The further
analysis steps to discover the true underlying root causes are not discussed in this thesis. Such a
description would be technically too complex and requires expert knowledge.
Chapter 5 presents the development of a completely new analysis technique named binNMF. It can
be seen as an extension of NMF to binary pass/fail test data sets. The underlying superposition
model is explained in detail and transformed into a maximum likelihood estimation problem. A two
stage optimization strategy is developed which explores the search space in a simplified version of the
problem and adds on a fine tuning procedure which optimizes the actual likelihood function. Related
techniques in the literature are surveyed, concluding that none of the existing techniques covers all
required aspects for this kind of investigations. A toydata example illustrates the basic properties
of the binNMF technique, and two different real world data sets are analyzed in which interpretable
components were extracted by the method. Again, the true number of underlying components can
not be determined automatically.
The remaining parts of this thesis investigate the ability of Bayesian techniques to gain further in-
sights into the NMF methodology. It is hoped that especially the Bayesian approach to model order
selection and the systematic framework to incorporate prior knowledge into an estimation procedure
supplements the basic NMF methods.
In a brief introduction to general Bayesian techniques in chapter 6 the basic ideas are presented.
Chapter 7 reviews recent literature on attempts to incorporate Bayesian methods into NMF.
Finally, chapter 8 presents two achievements which follow from Bayesian reasoning. The first one is a
theoretic description of an optimal solution to a given NMF problem in a Bayesian sense. It turns out,
that under some conditions, this result derived from Bayesian arguments coincides with the determi-
nant criterion from chapter 3. The second achievement is the development of a Bayesian extension to
one of the best-known NMF algorithms. To the best of my knowledge, the algorithm in the presented
form named VBNMF is a new development. Simulations studies demonstrate its ability to estimate
the actual number of underlying components in toydata sets under certain conditions. It turns out
that the VBNMF algorithm is relatively tolerant against slight violations of the prior assumptions and
can be useful for binary datasets as well although if it is constructed for the continuous NMF case.
A binary real data example further demonstrates the performance of the algorithm and highlights
potential room for improvement.
Concluding, a brief summary of the main findings in this thesis and an outlook are given in chapter
9.



Chapter 2

Introduction to NMF

Non-Negative Matrix Factorization (NMF) is a multivariate data analysis technique which is aimed
to estimate physically meaningful latent components from non-negative data.
Assume there are K different hidden components Hk∗ constituting M -dimensional row vectors of non-
negative entries Hk1, . . . ,HkM . As an introductory example, assume each of the M dimensions to be
a different wavelength, and a hidden component Hk∗ to be the emission spectrum of some material.
Assume further that the true components Hk∗ can not be measured directly for some reason. Instead,
we can measure additive superpositions, such that each observation Xi∗ can be written as

Xi∗ ≈
K∑
k=1

WikHk∗ (2.1)

using the weights Wik which reflect the presence of component k in observation i.
In that case the NMF procedure can be interpreted as blind source separation (BSS) challenge and
consists of estimating both matrices W and H blindly, or, in an unsupervised fashion.
In some applications, the method is used to extract at least some informative components from the
data (instead of a complete separation of all components) and separate them from the rest, e.g. in
denoising tasks.
Unlike other matrix-valued blind source separation techniques such as factor analysis [Gor74], princi-
pal component analysis (PCA) [Jol86], [Pea01] , [Hot33], or independent component analysis (ICA)
[Com94], NMF is especially suited for the decomposition of non-negative data. The absence of neg-
ative values is an important property of many physical quantities, such as for example intensities,
concentrations, frequencies, counts and not least probabilities. The key point is to form a quantita-
tive model of what was observed rather than detecting correlations between measurement variables
[PT94].

2.1 Non-negative superposition: an example

Many real world data sets are generated by a strictly additive superposition of non-negative source
values to non-negative observation data. For illustrative purposes, we discuss an air pollution study
as introductory example.
Assume there are three different air pollutants A,B,C (maybe something like Nitrogen Oxides, Carbon
Monoxide, Sulfur oxide, e.t.c.) and only two possible sources of pollution or contaminators, e.g. a
factory and the traffic on a nearby highway.
We make the simplifying assumption that each of the sources emits a characteristic mixture of A,B
and C (see figure 2.1, left) which are up-and down regulated as an ensemble. The overall emission of

9
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Figure 2.1: Virtual air pollution study: Assume two different sources of air pollution, each emitting a
characteristic mixture of three pollutants A,B,C (left). In absence of further sources, the measurement
data will lie in a 2-dim subset of 3-dim space (right)

a source can be strong or weak (e.g. rush hour or less traffic), but the proportions between the three
quantities are fixed and constitute a typical fingerprint of the source. We further assume that the
measured quantities originate only from the two mentioned sources and there is no other contaminator.
Several air samples are taken by some apparatus which can measure quantities given by the three
variables A,B, and C.
When plotting the measurement values in a 3-dimensional coordinate system, whose axes are given
by A,B and C, the data will lie in a 2-dimensional subset (if there are no other sources) as illustrated
in figure 2.1, right.
The locations of the measurement values can be understood as follows: If only one source is active
(e.g. if the factory is temporarily down to clean the chimney), the samples taken during that time
contain molecules originating exclusively from the traffic on the highway. The corresponding data lies
on the lower boundary line in the figure. Since we assume that the emission profile stays constant
independent from the intensity, samples corresponding to more traffic lie apart from the origin but
still on the same line. If the factory starts emission, the air particles from the factory will superimpose
with these from the highway. Assuming that the components do not volatilize with different speeds,
the measurement values will lie somewhere in between the lines corresponding to the highway and the
factory. In case of no traffic, the measured particles will come from the factory only and hence the
data will lie on the upper boundary in the figure.
Expressing this as a matrix factorization model, the source profile of the factory can be described as
a vector H1∗ = (H11, H12, H13) ≥ 0 representing the concentrations of the substances A,B and C.
Similarly, the highway is assigned a basis vector H2∗. Each measured data point constitutes a vector
Xi∗ = (Xi1, Xi2, Xi3) and can be written as

Xi∗ =
K∑
k=1

WikHk∗ = Wi1H1∗ +Wi2H2∗ (2.2)

where Wi1 and Wi2 describe the activation of the two sources in observation i.
If the actual profiles (figure 2.1, left) of neither highway nor factory were unknown, a Blind Source
Separation task would be to estimate both the matrix of basis profiles H and individual weights W
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from the observations X only. In that case Non-negative matrix factorization would help to recover
both matrices. The assumptions are given by the linear model in eq. 2.2 and the non-negativity
constraints W ≥ 0, H ≥ 0.

2.2 Applications for NMF

The decomposition of large scale datasets of non-negative quantities plays a key role several application
fields. Since its invention by Paatero and Tapper [PT94] in the mid 1990s under the name positive
matrix factorization (PMF), dozens of researchers applied NMF to a variety of different problems in
various research areas. Although not being the very first to apply NMF, Lee and Seung established
the now popular name non-negative matrix factorization (NMF) and their nature publication
in 1999 [LS99] initiated the nowadays great popularity of this technique in interdisciplinary working
fields.
By now, variants of NMF have found application to

• Environmental Science and chemometrics, where spectra or sets of concentrations were analyzed
[PT94], [Hop00] and meteorological applications [ST09]

• Image data processing, [LS01], [CGLZ01], [BB02], [LHZC03], [GVS03], [GV03] [Hoy04] where
relevant parts of images are to be extracted and especially emphasis lies on face detection
[BP04a] and image classification problems such as handwritten digit recognition.

• Biomedical applications such as e.g. microarray data analysis, [BTGM04], [GC05], [CSPMT+06],
[KP07], [SLK+08], where the non-negative data corresponds to gene expression levels and NMF
was successfully applied for cancer classification; Other biomedical applications include EEG
signal separation and classification [LZL04], [CCR06], the investigation of protein fold recog-
nition [OP06] and imaging disciplines such as magnetic resonance imaging (NMR) [SDB+04],
[DMSS07], positron emission tomography (PET) [LLCL01], or fluorescence spectroscopy [GPH04]

• Text mining [Ber01], language modeling [NM01], and document clustering [XLG03], [SBPP06]
where NMF was used to extract topics or semantic features from collections of documents.

• Sound recognition and classification [SB03], [SS05], [Asa05], [CC05] where acoustic features
are extracted from sound recordings yielding e.g. instrument-specific patterns and solving the
acoustic source separation problem.

• Financial data [DRdFC07], to identify underlying trends in stock market data

amongst other applications such as the clustering of Scotch Whiskies [YFH09], cryptography [XYF08]
or the analysis of an etching process [RMRM08]. (see also [CZPA09] and [Dev08] for recent surveys
on general and biomedical applications of NMF).

2.3 The NMF problem

NMF is an unsupervised learning algorithm which decomposes a non-negative matrix X into a product
of two non-negative matrices WH. Here the original matrix has N rows storing the observations and
M columns representing the dimensions. The two factor matrices W and H have size N × K and
K ×M respectively.
The NMF problem can be stated as follows: Given a non-negative N ×M data matrix X, find two
non-negative matrices W and H, such that their product approximates the original matrix

X ≈WH (2.3)
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Figure 2.2: Examples for the different penalizations in the respective terms of eqns. (2.4) and
DKL(2.5). The x-axis denotes the term WHij , while the y-axis shows 1

2 (Xij − [WH]ij)2 (E) and

(Xij ln
(

Xij
[WH]ij

)
+[WH]ij−Xij) (KL) as a function of WHij for three different fixed targets Xij = 0

(left), Xij = 1 (center) and Xij = 10 (right).

2.3.1 Cost functions for NMF

A cost function quantifies the approximation error between X and WH and has to be minimized
w.r.t. the non-negativity constraints. Popular cost functions are the squared Euclidean distance or
quadratic error

DE(X,WH) =
1
2

∑
i

∑
j

(Xij − [WH]ij)
2 (2.4)

or the generalized Kullback-Leibler divergence

DKL(X,WH) =
∑
i

∑
j

(Xij ln
(

Xij

[WH]ij

)
+ [WH]ij −Xij) (2.5)

which were used in [LS99][LS01], but are by far not the only possible choices. These cost functions
are sums of individual terms for each entry of the data matrix Xij . Different cost functions assign
different penalizations for missing the target values (see figure 2.2 for a comparison of the single entries
constituting DE (2.4) and DKL(2.5) for different target values.)
There is a large variety of divergence measures which have been successfully applied to NMF problems,
such as the family of Bregman divergences [DS05], Renyi’s information measure [Dev05], Csiszar’s
divergences [CZA06], Kompass’ divergence [Kom07], the α-divergence [CLKC08] or the Itakura-Saito
divergence [FBD09] (see also [CZPA09] for an extensive review) which will not be discussed here.

2.3.2 Optimization strategy for NMF

The minimum of a cost function D given by e.g. eq. (2.4) or eq. (2.5) w.r.t. W ≥ 0 and H ≥ 0,
can not be computed in closed form but must be found by an iterative procedure alternating between
updating one matrix while keeping the other one fixed (see figure 2.3).
For example, Lee and Seung [LS99][LS01] proposed the following multiplicative update rules for the
quadratic cost function DE (2.4)

Hkj ← Hkj
[WTX]kj

[WTWH]kj
and Wik ←Wik

[XHT ]ik
[WHHT ]ik

(2.6)
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• Initialize N ×K matrix W ≥ 0 and K ×M matrix H ≥ 0

• Repeat
{

1. Update W s.th. D(X,WnewH) ≤ D(X,WoldH) and Wnew ≥ 0
keeping H fixed

2. Update H s.th. D(X,WHnew) ≤ D(X,WHold) and Hnew ≥ 0
keeping W fixed

}
until convergence

Figure 2.3: Pseudo code for an NMF algorithm

and the rules (2.7) for the generalized KL-divergence DKL(2.5)

Hkj ← Hkj

∑
iWikXij/[WH]ij∑

lWlk
and Wik ←Wik

∑
j HkjXij/[WH]ij∑

pHkp
(2.7)

and proved that these multiplicative updates never increase the respective cost function. We will
discuss several alternative optimization strategies in section 2.4.
The initialization of the matrices W and H can be arbitrary non-negative numbers. Several pre-
processing strategies have been tested, such as PCA or clustering (see e.g. [LMA06], [ZYZ07]). In
general, NMF algorithms are gradient based techniques and hence suffer from getting stuck in local
minima and it is recommended to run an algorithm several times using different (e.g. random)
initializations.
The convergence properties depend on the particular algorithm. In general, global convergence is
hard to prove, but most algorithms can be shown not to increase the cost function in each single
iteration. Usually, convergence is tested by measuring the decrease of the cost function between
successive iterations, and the algorithm stops if the decrease falls below some predefined threshold
[GS00], [Lin07a], [KSD08], [KP07], [KP08].
Basically, the following questions need to be considered on an NMF application:

1. Cost function
First of all, a cost function has to be defined which expresses the discrepancy between the
matrices X and the product WH. There are several possible choices of a cost function for NMF
(see paragraph 2.3.1).

2. Additional constraints
In many applications there is some knowledge about the desired properties of the factor matrices
available such as spareness or smoothness. Such constraints are closely related to the uniqueness
of solutions, which are discussed in section 2.5.1.

3. Optimization algorithm
Once the cost function including optional additional constraints is chosen, there are various
possible numerical strategies to solve the optimization problem. A brief overview of optimization
strategies in NMF is given in section 2.4.

4. Dimensionality
The N ×M matrix X can be factorized into the product of a N × K and a K ×M matrix.
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The factorization rank K is usually chosen < min(N,M) and required as input for most NMF
algorithms. In many real world applications, the actual number of components is unknown and
its determination is a difficult issue called model order selection. We will discuss that question
in a later paragraph (section 8.2). By then we assume the number of components K to be given.

2.4 Algorithms for NMF

In this section we will discuss several different optimization strategies which have been proposed to
solve the NMF problem. Good survey papers on NMF algorithms are e.g. [Tro03], [CP05] ,[SD06],
[BBL+06] and the recently released textbook of Cichocki et al. [CZPA09].

2.4.1 Gradient approaches

We mainly concentrate on the plain Euclidean distance DE (eq. 2.4) and demonstrate the update
details for the matrix H only for demonstration purposes. The corresponding expressions for W follow
from symmetry arguments by considering the transposed equation XT ≈ HTWT . Most strategies
can be extended to other cost functions and suitable additional constraints.
Consider the squared Euclidean distance cost function

DE(X,W,H) =
1
2

∑
i

∑
j

(Xij − [WH]ij)
2 (2.8)

whose partial derivative w.r.t. the (k, j)-th entry of H is given by

∂DE

∂Hkj
= −

∑
i

(Xij −
∑
l

WilHlj)Wik (2.9)

and involves only entries from the jth column H∗j . In the following, we denote

[∇HDE ]∗j :=
[
∂DE

∂H1j
, . . . ,

∂DE

∂HKj

]T
(2.10)

the K × 1 gradient vector whose k’th entry is given by eq. (2.9).
A gradient algorithm updates the j’th column H∗j by taking a step into the into the direction of the
negative gradient (which is guaranteed to be a descent direction of DE)

H∗j ← H∗j − αj [∇HDE ]∗j (2.11)

where αj > 0 is a step size parameter which has to be chosen suitably such that none of the following
cases appears

1. αj too small
The decrease of the objective function is very small and the algorithm will be slow

2. αj too large
Either the algorithm passes the minimum and leads to a larger cost than the initial one
DE(Hnew

∗j ) > DE(Hold
∗j ), or Hnew

∗j contains undesired negative values, or both

Several NMF algorithms have been proposed which can be seen as (sometimes rescaled) gradient
algorithms. In general, one can distinguish between those algorithms which solve the constrained
optimization problem in each sub step exactly and set Hnew to that matrix which minimizes DE for
a given W and those which just decrease the cost function in each sub step.
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The Lee and Seung algorithm and variants

Lee and Seung [LS99],[LS01] proposed the following multiplicative update rule

Hkj ← Hkj
[WTX]kj

[WTWH]kj
(2.12)

which can be interpreted as a gradient step after rewriting it in an additive form:

Hkj ← Hkj + ηkj
(
[WTX]kj − [WTWH]kj

)
(2.13)

where the step size is given by

ηkj =
Hkj

[WTWH]kj
(2.14)

and we recognize the last expression in (2.13) to be the negative gradient

[∇HDE ]kj = −
∑
i

(Xij −
∑
l

WilHlj)Wik (2.15)

Note that, in contrast to the basic gradient step (eq. 2.11), each entry Hkj has an extra step size
parameter ηij instead of one parameter per column αj .
Lee and Seung provided a proof that an update of the form (2.12) never increases the cost function
(2.8). Since all factors on the right hand side of eq. 2.12 are non-negative, the non-negativity
constraint is incorporated automatically in an elegant way.
(Note that this algorithm intrinsically was known before as image space reconstruction algorithm
(ISRA) [DWM86], [DP87] which was designed for a known matrix W and unknown H. Lee and Seung
[LS99],[LS01] were the first to use this algorithm switching between updates for W and H. They also
proposed a multiplicative algorithm for the generalized KL divergence 2.5 (see eq. 2.7), which was
known as the Richardson-Lucy algorithm [Ric72],[Luc74],[LC84] in a similar fashion [CZPA09]).
Some problems with the Lee and Seung algorithms have been encountered. First, once a parameter
is exactly zero, it remains zero for all times. Second, the convergence proof does not preclude saddle
points (this was criticized by several authors, see e.g. [CDPR04], [GZ05], [BBL+06]). Thus, improve-
ments to the original algorithm have been proposed, such as the interior-point gradient (IPG) method
[MZ05], which uses the modified update

Hkj ← Hkj + αjηkj
(
[WTX]kj − [WTWH]kj

)
(2.16)

where αj can be chosen in closed form as large as possible such that neither the non-negativity
constraint nor the decrease property is violated. This modification encourages larger step sizes and
was shown to be significantly faster than the original version.
An other refinement of the Lee/Seung algorithm modified the step size (2.14) to

ηkj =
Hkj

[WTWH]kj + δ
, Hkj =:

{
Hkj if [∇HDE ]kj ≥ 0
max(Hkj , σ) if [∇HDE ]kj < 0 (2.17)

where δ and σ are pre-defined small positive numbers and proved that any limit point of the modified
updates is a stationary point [Lin07a], which is a necessary condition for a local minimum.

Projected Gradient methods

In contrast to interior-point methods which never leave the non-negative orthant, projected gradient
methods follow a different strategy. They perform a step into some descent direction and then project
the result back onto the non-negative orthant. This procedure implies the problem that the projected
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step actually increases the cost function, although the same step without projection would decrease
the (unconstrained) cost function (see [KSD07] and the illustration in figure 2.4). We note that
this problem presumes that the actual solution lies in the non-negative orthant. In NMF problems
which do have an exact solution X = WH, the final solution has no negative entries. During the
optimization procedure, however, the best suiting unconstrained H given some intermediate W can
indeed contain negative entries and the problem can appear.

Figure 2.4: 2-dimensional example in which the variables H1j , H2j are updated by a projected gradient
method from their initial values y(1). The ellipses denote level sets of the cost function D. While the
unconstrained optimum y(0) is forbidden due to the non-negativity constraints, and the constrained
optimum is at y(2), the projection of the unconstrained optimum y(3) lies on a higher level of the cost
function than the initial values y(1) (example adapted from [KSD07])

One step of a projected gradient method can be described as

H∗j ← P [H∗j − αj [∇HD]∗j ] (2.18)

where

P [zi] =

 zi if li < zi < ui
ui if zi ≥ ui
li if zi ≤ li

(2.19)

is a projection operator which truncates too small and too large values and sets them to predefined
constant values li and ui [Lin07b].
There are different variants of projected gradient methods which use different strategies to chose a
proper step size αi, such as the Armijo rule [Lin07b], [CZPA09].
Another type of NMF algorithms makes use of the second order derivatives and perform steps of the
kind

H∗j ← P
[
H∗j − αD∇HjD

]
(2.20)

where α > 0 and D is an approximation of the inverse Hessian matrix.
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There are many possible choices for D ranging from the identity matrix to the actual inverse of the
Hessian. If D is the inverse Hessian, α = 1 and no projection were applied, the algorithm is actually
a Newton algorithm. Approximating the inverse Hessian instead of its exact evaluation can gain
great savings of computational time. These iterations are then called quasi-Newton [ZC06],[KSD06]
or Newton-type [KSD07].
Interior point methods and the projected gradient strategy can also be combined by dividing, at each
iteration, the variables into a free and a fixed set [KSD07] . The latter is given by those variables,
for which any step into the direction along the negative gradient would lead to a violation of the
non-negativity constraint. These variables are not updated in the corresponding iteration. In every
single iteration, the set of fixed variables must be identified and only the free variables are updated
via eq. (2.20).
A variety of other projected Gradient approaches have been applied to the NMF problem such as
Oblique Projected Landweber, Barzilai-Borwein Gradient Projection, Projected Sequential Subspace
Optimization among others and I refer to [ZC08], [CZPA09] for more details. In summary, projected
gradient approaches to NMF are more efficient than their multiplicative counterparts [CLKC08].
However, the implementation details which are necessary to assure a decreasing cost function under
the non-negativity constraints seem to be rather complex. Especially if additional constraints have
to be incorporated or even alternative cost functions are necessary which better suit the problem,
potentially large effort has to be taken to customize a suitable algorithm.

2.4.2 Alternating Least Squares algorithms

While the principles discussed in section 2.4.1 can be applied to arbitrary NMF cost functions D, we
will introduce a technique known as Alternating Least Squares (ALS) here. As suggested by the name
it is exclusively valuable for the least squares (=̂ minimized Euclidean distance) cost function DE .
We can rewrite the squared Euclidean distance functional (eq. 2.8) column per column

DE =
M∑
j=1

[
1
2

N∑
i=1

(Xij − [WH]ij)
2

]
(2.21)

and gain a sum of M vector-valued subproblems of the form

Minimize f(x) =
1
2

∑
i

([Ax]i − bi)
2 (2.22)

subject to
x ≥ 0 (2.23)

where A = W, b = X∗j and x = H∗j .
This vector-valued constrained optimization problem can be solved e.g. by the Lawson and Hanson
procedure [LH74],[LH87].
A simple NMF algorithm can be implemented in Matlab e.g. using the function lsqnonneg.m, which
is an implementation of the Lawson and Hanson procedure (see fig. (2.5) for the pseudo-code). Lin
[Lin07b] proves the convergence of the above procedure. This property is not trivial, since, even if
each sub-problem update of one column of H∗j or update of one row of Wi∗ is a convex problem and
thus has a unique optimum [LH87], this is not sufficient for the whole problem. By the aid of the work
of Grippo and Sciandrone [GS00], the convergence of this 2-block coordinate descent algorithm with
one block being W and the other one H can be shown. Though theoretically faultless, this algorithm
is not attractive for applications because it is extremely slow (see [Lin07b] for numerical examples).
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A basic Alternating least squares algorithm for NMF can be stated as

• initialize matrix W ≥ 0

• Repeat
{

1. for j = 1, . . . ,M update H∗j by solving eq. (2.22),
setting A = W, b = X∗j and x = H∗j

2. for i = 1, . . . , N update Wi∗ by solving eq. (2.22),
setting A = HT , b = [Xi∗]T and x = [Wi∗]T

}
until convergence

Figure 2.5: NMF procedure which solves a set of vector-valued non-negative least squares problems
in every sub step

In spite of solving the constrained optimization subproblems, a very popular approach is to solve
the related unconstrained problem instead and then project the result onto the non-negative orthant
[LMA06].
Setting the derivatives (2.9) to zero for all k, j yields∑

i

XijWik =
∑
i

∑
l

WilHljWik for all k,j (2.24)

which is equivalent to

WTX = WTWH (2.25)

and can be solved for H

H = [WTW]−1WTX (2.26)

by multiplying the left (pseudo-) inverse of WTW.
In general, this matrix H contains undesired negative values and has to be projected onto the non-
negative orthant by setting the negative entries to zero or small positive constants ε.
The whole projected ALS algorithm can be cast in Matlab notation (see also [CZPA09])

W = rand(N,K);
for iter = 1:max_iter
H = max(eps,pinv(W’*W)*W’*X);
W = max(eps,X*H’*pinv(H*H’));

end

where the command pinv computes the Moore-Penrose pseudo inverse [Moo20], [Pen55] in Matlab.
Note that the matrices to be inverted are both sized K ×K only.
While convergence of this type of algorithm is theoretically hard to prove, it is often observed in
practice.
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Cichocki et al. [CZPA09] call this simple and fast projected ALS algorithm their working horse,
admitting its unstable convergence properties, and suggest its use to generate good initial values for
more sophisticated NMF algorithms.
Any of the presented algorithms can only converge to a local minimum. Hence, multiple runs with
different random initializations are recommended anyway.

2.4.3 Stopping criteria

Beyond a predefined number of iterations or a fixed running time, some other stopping criteria were
suggested for NMF algorithms in the literature. Brunet et al. [BTGM04] use the difference be-
tween recent iterations as a stopping criterion. Lin [Lin07b] invokes a stopping criterion from bound-
constrained optimization.
Kim and Park [KP08] test the convergence of a NMF algorithm by an averaged measure of violations
of the Karush-Kuhn-Tucker (KKT) optimality conditions

The Karush-Kuhn-Tucker optimality conditions for NMF

The Karush-Kuhn-Tucker conditions are a generalization of the method of Lagrange multipliers and
necessary for a solution in nonlinear programming to be optimal [CP07] .
Given the optimization problem

Minimize D(W,H) s.t. W ≥ 0,H ≥ 0 (2.27)

According to the Karush-Kuhn-Tucker optimality conditions, (W,H) is a stationary point of eq.(2.27)
if and only if

W ≥ 0 (2.28)
∇WD(W,H)) ≥ 0 (2.29)

W. ∗ ∇WD(W,H) = 0 (2.30)

and

H ≥ 0 (2.31)
∇HD(W,H)) ≥ 0 (2.32)

H. ∗ ∇HD(W,H) = 0 (2.33)

where .∗ means component-wise multiplication. In the strict sense, any NMF algorithm should verify
the validity of the KKT conditions for the estimated solutions to ensure convergence.
Proofs of convergence of NMF algorithms are scarce (see the discussions in [SD06], [BBL+06]) though
for the popular class of multiplicative update algorithms convergence to a stationary point could be
proven [Lin07a].
We conclude this paragraph on NMF algorithms here, noting that there are by far more optimiza-
tion techniques for NMF, such as Quadratic Programming [ZC06] or combinations of the mentioned
techniques [ZC07]. The group of A. Cichocki implemented and intensively tested a variety of numer-
ical optimization schemes for NMF problems, some of which are contained in the non-commercial
NMFLAB software package [CZ06].
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2.5 Extensions and variants of NMF

2.5.1 Additional Constraints

Obviously, a non-negative factorization X = WH does not have a unique solution. If we insert the
K ×K identity matrix 1K ,

X = WH = W1KH = WS−1SH (2.34)

we see that if W ≥ 0,H ≥ 0 is a NMF-solution, then WS−1,SH is a NMF-solution as well as long
as WS−1 ≥ 0,SH ≥ 0.
Thus, the plain cost function D(X,WH) measuring the discrepancy between the data and its approx-
imation cannot distinguish between two alternative solutions. In general, this problem is attenuated
by additional regularization terms to the reconstruction error D(X,WH) yielding

D̃ = D(X,WH) + αf(W) + βg(H) (2.35)

where f() and g() are application-dependent functionals. This new constrained cost function D̃
distinguishes between solutions of equal reconstruction errors by means of the additional terms which
describe a priori information such as smoothness or sparseness of the factor matrices. The usefulness
of the additional constraints must be justified by arguments which are relevant for the application
[PT94].

sparsity

In particular sparsity constraints have gained quite popularity. The concept of sparse coding means
that only a few units out of a large population are actually used to represent typical data vectors
[Fie94]. This implies that most units take small values and only a few take significantly non-zero
values when representing a data item.
Hoyer [Hoy02] uses the following cost function for NMF

Dnnsc =
∑
i

∑
j

(Xij − [WH]ij)2 + λ
∑
ik

Wik (2.36)

to penalize large entries in the weight matrix W and encourage sparse solutions. Hoyer [Hoy04]
further showed that controlling the degree of sparseness of the component matrices leads to parts-
based representations that match the intuitive features of the data.
Another approach was due to Li et al. [LHZC03] encouraging spatially localized representations of
images in the local NMF (LNMF) cost function

Dlnmf =
∑
i

∑
j

(Xij ln
Xij

[WH]ij
−Xij + [WH]ij) + α

∑
ia

[WTW]ia − β
∑
k

[HHT ]kk (2.37)

In this case, the Kullback-Leibler divergence is chosen for the reconstruction error, and a term penal-
izing large entries in WTW as well as a term penalizing small diagonal entries of HHT are added.
The term for W should increase the sparsity of the weights and encourage solutions where only a few
basis components are necessary to represent each observation, while the last expression should make
the basis vectors as orthogonal as possible in order to minimize redundancy between different basis
vectors. A further example incorporating sparsity to NMF is called Non-smooth NMF [PMCK+06].
The actual form of the regularization constraints depends not only on the desired characteristics of
the weights and basis components, but also on the optimization strategy. For example, a sparseness
measure which counts the close to zero entries induces discontinuities to the cost function and requires
more sophisticated optimization strategies such as the genetic algorithm proposed in [STP+05].
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2.5.2 NMF extensions and related techniques

Supervised NMF

Supervised extensions of LNMF (eq. 2.37) called Discriminant NMF (DNMF) [BP04b] or Fisher NMF
[WJ04] allow for incorporation of additional knowledge such as class labels and encourage similarities
between observations from the same class and dissimilarities between the classes.

Positive matrix factorization

In the original positive matrix factorization problem [PT94]

X = WH + E (2.38)

Q =
∑
i

∑
j

E2
ij

σ2
ij

(2.39)

the optimization problem is formulated as

(2.40)
{W,H} = argmin Q (2.41)

where the matrix σ contains error estimates of the observations. Thus, individual data points Xij

which may be uncertain are scaled by a large σij and do not participate to the cost function as they
would if all σij were equal. NMF algorithms with special accentuation on robustness w.r.t. potential
outliers thus could be easily developed by introducing additional weighting terms.

Affine NMF

Laurberg et al. [LH07] included an explicit offset and showed that this affine NMF model can lead to
a more accurate identification of mixing and sources. In our notation, each observation is written as

Xi∗ ≈
K∑
k=1

WikHk∗ + H0∗ (2.42)

where H0∗ is an additional vector. This special case can be reached by fixing one column of W to
one during the iterations.
Affine NMF can be useful in cases where one basis component is present in every observation with an
equal weight. [LH07] showed that this can help to improve the uniqueness of solutions.

Multilayer techniques

To further improve the performance of NMF algorithms and to reduce the risk to get stuck in local
minima, a multi-layer technique has been proposed recently [STP+05], [CZA06], [CZ07]. A cascade
of L > 1 decompositions of the type

X = WH1H2 . . .HL (2.43)

can significantly improve the results compared to one single decomposition.
While [CZ07] use this technique together with sparsity constraints, they argue that a cascade of sparse
representations can lead to a non-sparse representation, which is closer to the truth in some applica-
tions. In chapter 3 we will give an alternative explanation for the success of multilayer techniques.
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Bayesian NMF

Bayesian methods have gained much attention in the machine learning community in the last decades.
Their potential to gain further insights into NMF was investigated recently [VCG08], [SL08], [SWH09],
[Cem09], [FBD09] and is still an area of active research.
We will discuss the Bayesian approaches to NMF in more detail in a later paragraph (section 7.2).

Nonnegative Tensor Factorization

Non-negative matrix factorization can be viewed as a bilinear model. A N ×M object is factorized
into something of size N×K and a second factor of size K×M . A similar model could be designed for
something that consists of N×M×L dimensions. e.g. N observations in M variables at L time points,
or several space coordinates treated separately, or individual test categories, etc. Many datasets have
to be aggregated before being representable as a matrix, and applying NMF. This aggregation can be
related to a loss of information and it can be desirable to decompose the original, multilinear object
instead of a bilinear matrix.
For example in image analysis, the neighborhood of pixels can be relevant information. When vec-
torizing each image in order to store it into a row of the data matrix X, all pixels of the image are
aligned, e.g. column by column. The information that two pixels are on a horizontal line is completely
lost. Instead, it could be interesting to decompose the three way tensor built up from N observations
in x- and y- coordinates, yielding a N ×M × 2 -tensor.
One possibility is to decompose a N ×M × L tensor X via

Xl ≈WDlSl(l = 1, 2, ..., L) (2.44)

where Xl is the lth slice of a three-way tensor. Non-negative tensor factorizations are a natural
extension to NMF and a current area of ongoing research [CZPA09].

Kernel NMF

As mentioned in [SS02], a nonlinear extension of a linear technique can be designed by means of the
concept of kernels, provided that the linear technique can be expressed in terms of scalar products.
Since the matrix products in NMF can be formulated via the scalar product 〈x,y〉 :=

∑
k xkyk

[WH]ij = 〈Wi∗,H∗j〉 (2.45)

a kernel version of NMF should be possible by replacing the scalar product by a kernel matrix.
One such kernel NMF formulation was presented in [ZZC06] and is based on a mapping

φ : x ∈ V → φ(x) ∈ F (2.46)

where φ is a nonlinear map from the original input space V to a possibly infinite dimensional feature
space F and φ(X) = [φ(X1∗), . . . , φ(XN∗)]. Kernel NMF is aimed to find

φ(X) = WHφ (2.47)

where Hφ is a basis in feature space and W are the usual weights.
The kernel trick implies that the mapping φ need not be known explicitly. Multiplying eq.(2.47) from
right by φ(X)T leads to

φ(X)φ(X)T = WHφφ(X)T (2.48)

yielding
K = WY (2.49)



2.5. EXTENSIONS AND VARIANTS OF NMF 23

where K is called a kernel matrix whose ijth entry is given by

〈φ(Xi∗), φ(Xj∗)〉 (2.50)

Since φ(Xi∗) lies in F for all i = 1, . . . , N and Hφ is a basis of F , one can express Hφ by the images
φ(Xi∗) to obtain a representation of Y in terms of the kernel matrix K.
In some applications, the nonlinear kernel extension can extract more useful features from the data
than its linear counterpart. Moreover, it can deal with relational data where only the relationships
between objects are known (expressed as a kernel matrix) [ZZC06] .
Another kernel NMF method based on convex NMF was presented in [DLJar], using a linear kernel
K = XXT .
The design of optimal nonlinear kernels for the detection of non-linear features in certain applications
seems to be an interesting field of future investigations.

2.5.3 Related techniques

We will not review general matrix factorization techniques like singular value decomposition (SVD),
principal component analysis (PCA), independent component analysis (ICA) or factor analysis (FA)
here. These techniques suffer from the presence of negative entries in either the basis or the weight
matrix or both. In the applications considered here, we assume non-negative observations to be gen-
erated by strictly additive superposition of non-negative basis vectors and there are no such negative
entries.
Concluding this introductory chapter for NMF, we discuss its relation to another popular data analysis
technique named Probabilistic Latent Semantic Analysis (PLSA).
Thomas Hofmann introduced PLSA [Hof99],[Hof01] for the analysis of binary and count data, which
appear e.g. in text analysis. The technique performs a probabilistic mixture decomposition aimed
to detect semantic features called aspects in documents. In this aspect model for co-occurrence data
of words and documents, an observation is the appearance of word j in a particular document i. A
generative model is defined by the following scheme:

1. Select a document di with probability P (di)

2. Pick a latent class zk with probability P (zk|di)

3. Generate a word wj with probability P (wj |zk)

This corresponds to a joint probability model for words and documents

P (di, wj) = P (di)P (wj |di) = P (di)
K∑
k=1

P (wj |zk)P (zk|di) (2.51)

in which the conditional distributions P (wj |di) are convex combinations of the K aspects P (wj |zk)
such that

∑
k P (zk|di) = 1.

The parameters can be learned in a maximum likelihood framework

LL : =
∑
i

∑
j

n(di, wj) lnP (di, wj)

=
∑
i

n(di)

lnP (di) +
∑
j

n(di, wj)
n(di)

ln
∑
k

P (wj |zk)P (zk|di)

 (2.52)

where n(di, wj) is the number of occurrences of word j in document i and n(di) =
∑
j n(di, wj) is the

length of document i. The log likelihood LL in eq. (2.52) can be maximized by the EM algorithm
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[DLR77] which is a popular optimization technique for latent variable models. It alternates between
an expectation (E) step where the posterior probabilities of the latent variables zk are computed
assuming the current estimates of the parameters and a maximization (M) step which updates the
parameters based on the posterior probabilities estimated in the previous E-step.
The E-step for the PLSA model is given by

P (zk|di, wj) =
P (wj |zk)P (zk|di)∑
k P (wj |zk)P (zk|di)

(2.53)

while in the M-step, the log-likelihood (2.52) has to be maximized w.r.t the normalization constraints∑
j P (wj |zk) = 1 and

∑
k P (zk|di) = 1. This yields the update rules

P (wj |zk) =
∑
i n(di, wj)P (zk|di, wj)∑

m

∑
i n(di, wm)P (zk|di, wm)

(2.54)

P (zk|di) =

∑
j n(di, wj)P (zk|di, wj)

n(di)
(2.55)

Shashanka et al. [SRS08] pointed out that the above EM equations can be written as

Hkj ← Hkj

∑
i

Xij

[WH]ij
Wik (2.56)

Hkj ← Hkj∑
j Hkj

(2.57)

Wik ← Wik

∑
j

Hkj
Xij

[WH]ij
(2.58)

using

1. Xij = n(di, wj)

2. Hkj = P (wj |zk)

3. Gik = P (di|zk)

4. a diagonal matrix S such that Skk = P (zk), and

5. W = GS

and showed that PLSA is equivalent to the multiplicative Lee-Seung [LS99] algorithm for the KL-
divergence measure which was discussed in eq. (2.7).
This relationship was also mentioned by others [GG05], [DLP08].
We discussed the relationship between NMF and PLSA in detail, since both techniques use algorithms
which are numerically equivalent although being conceptually different. While NMF is usually formu-
lated as constrained optimization problem involving a cost function, PLSA is a probabilistic model
whose parameters can be estimated by the well-known EM-procedure [DLR77].
We will have a closer look on the statistical aspects of NMF later in section (7.1).

2.6 Summary

In this chapter the method Non-negative matrix factorization was introduced as a technique to de-
compose non-negative data into potentially meaningful components.
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The extracted basis and weight matrices are both constrained to be non-negative, too.
We briefly reviewed the existing literature on NMF and discussed the basic challenges in the design
of NMF algorithms.
Concluding this chapter, we note that there are two important aspects of NMF which remain partly
unsolved questions and need further investigation:

1. Uniqueness
Is there a principled way to determine an optimal solution of a given NMF problem?

2. Model order
Is there a way to automatically determine an optimal number of components in a given NMF
problem?

While a solution to the first question will be the topic of the next chapter, Bayesian approaches to
answer both questions will be discussed in chapters (6) and (8).
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Chapter 3

Uniqueness of NMF and the
Determinant Criterion

In this chapter, we have a closer look on the problem concerning the uniqueness of NMF.
We propose a determinant criterion to constrain the solutions of non-negative matrix factorization
problems and achieve unique and optimal solutions in a general setting, provided an exact solution
exists. We demonstrate how optimal solutions are obtained by a heuristic named detNMF in an
illustrative example and discuss the difference to sparsity constraints.

3.1 Uniqueness of NMF

NMF has seen numerous applications in recent years (see paragraph 2.2) where it has been primarily
applied in an unsupervised setting for example in image and natural language processing, sparse
coding, and a variety of applications in computational biology. Usually, NMF is used to gather
hidden information from data, such as the extraction of (at least some of) the underlying components
which can be used to generate the whole dataset by non-negative superposition.

3.1.1 Why is uniqueness important?

To make NMF a reliable data analysis tool, it is essential to understand its intrinsic insufficiency of
a unique solution. Figure (3.1) illustrates two different problems concerning the optimal solutions of
an optimization problem. In case A (left hand side) several points of the search space (or parameter
space) lead to an equally low cost function. These minima are equivalent, since they can not be
distinguished by evaluating the cost function. The related uniqueness problem (i.e. to assign one best
solution among several equivalent ones) is an intrinsic problem of the system.
In the second case B displayed on the right hand side of figure (3.1), there is one global minimum
and at least one local minimum. A downhill algorithm such as gradient descent can not traverse a
minor bump of the cost function and become stuck into a local minimum, although there is another
minimum with a lower cost. This problem can be circumvented by several runs using different starting
positions, or stochastic search algorithms.
As we will see, the uniqueness problems of NMF are of the kind A: without additional constraints there
are several equivalent solutions which can not be distinguished by a cost function which measures the
reconstruction error only.
The existence of several solutions can lead to multiple interpretations. Running an identical analysis
twice must not lead to different solutions without understanding their origin or judging their quality.

27
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Figure 3.1: The x-axes denote the space of possible parameter settings, while the y-axes show the
value of a cost function. In case A (left) there are several different optimal solutions which have an
equal cost function. In contrast, case B has one global minimum and one or more local optima.

Established analysis tools like for example PCA have a fixed hierarchy of the extracted principle
components, which are sorted according to their explained variance and orthogonal to each other.
NMF does not have such an ordering of the extracted components.
In contrast, there can be several equivalent solutions at an equal level of the cost function (type A ).
In addition, NMF algorithms are greedy algorithms and can, on principle, only converge (if at all) to
local minima of the cost function.
There are some recent attempts to deal with the non-uniqueness NMF-solutions. [DS04], poses the
two fundamental questions

1. Under what assumptions is NMF well-defined, e.g. in some sense unique?

2. Under what assumptions is the factorization correct, recovering the right answer?

The idea of a simplical cone in the non-negative orthant spanned by the basis vectors which contains
the data cloud is discussed, and situations are given (e.g. an ice-cream cone) where there is only one
possible solution.
Other approaches add penalty terms to the plain cost function, such as the sparsity constraint on the
weights used in non-negative sparse coding by Hoyer [Hoy02]

Dnnsc =
∑
i

∑
j

(Xij − [WH]ij)2 + λ
∑
ik

Wik (3.1)

or the constraints used in the local NMF algorithm (LNMF) by Li et al. [LHZC03] encouraging
spatially localized representations

Dlnmf =
∑
i

∑
j

(Xij ln
Xij

[WH]ij
−Xij + [WH]ij) + α

∑
ia

[WTW]ia − β
∑
k

[HHT ]kk (3.2)

Various regularizing constraints have also been added to enforce certain characteristics of the solutions
or to impose prior knowledge about the application considered [Hoy04]. Further, [TST05] analyzed
the uniqueness properties of sparse NMF and prove that Hoyer’s algorithm [Hoy04] indeed finds the
closest points of fixed sparseness.
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The development of positive matrix factorization [PT94], as surveyed in [Hop00], rather proposes
application-driven extra penalties whose justification requires background knowledge.
In addition to the plain NMF cost function describing the reconstruction error, additional penalty
terms for either W or H or both are added. The new constrained cost function then allows to
distinguish between two solutions with equal reconstruction error by the penalty terms (e.g. two
solutions which are equivalent according to the plain cost function become distinguishable due to
some extra constraints). However, the choice of the penalty function and the determination of an
appropriate balance between approximation error and penalty (e.g. the determination of an optimal
λ in eq. (3.1) can be tricky and must be justified by additional knowledge.
Laurberg [LCP+08] constructed a restricted uniqueness theorem for NMF based on Plumbley’s re-
sults on non-negative ICA [Plu01], [Plu02], [Plu03]. The circumstances under which NMF of an
observed nonnegative matrix is unique are investigated and necessary and sufficient conditions for the
uniqueness are given.
Summarizing, uniqueness of NMF is either enforced by directly imposing additional constraints, or
conditions on the data are discussed under which unique solutions exist.
Here, we1 suggest a different approach to uniqueness. Starting from a geometrical point of view
similar to [SDB+03], we illustrate the problem of uniqueness in terms of the volume spanned by the
basis vectors. We further explain how the determinant can be used to identify an optimal solution
arising naturally among all possible exact non-negative decompositions of a given data matrix given
no additional constraints.

3.1.2 Uniqueness

Let X = WH be a non-negative factorization into K basis components. Obviously, these matrices
(W,H) are far from representing unique solutions. Any pair (WS−1,SH) still provides a valid
decomposition of the same data X as long as S−1 exists and WS−1,SH ≥ 0. A unique solution for a
given NMF problem can be specified by an arbitrary solution (W,H) together with a transformation
S appropriately restricted by suitable non-negativity constraints.
Among all possible such transformations S, there are two special cases :

1. S is a diagonal matrix with positive entries

2. S is a permutation matrix.

Case (1) represents a scaling invariance which can be overcome by normalization of the corresponding
basis or feature vectors. For example, simultaneous scaling of a row Hk∗ by a scalar αk > 0 and
the corresponding column W∗k by 1

αk
does not alter their scalar product. We can then alleviate the

scaling invariance e.g. by normalization of the feature vectors Hk∗. Sorting with respect to the norm
of W then also removes the permutation freedom (2).
In general, there are much more than these two trivial indeterminacies for NMF, which we will discuss
next.

3.2 Geometrical Approach

3.2.1 Problem illustration

Although real world observations are usually fraud with noise, we will restrict ourselves to the noise-
free case in the following.

1originally proposed by G. Pöppel 2007, private communication
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Of course, noise induces further uncertainty. However, the non-uniqueness problem of NMF we
consider here has nothing to do with additional noise but is a basic property of the model formulation.
In the following, we assume the M -dimensional data X to be generated by non-negative linear com-
binations of K ≤M linear independent feature vectors Hk∗ ≥ 0 such that X = WH exactly.
We further assume the Hk∗ to be normalized, so that

∑
j(Hkj)2 = 1 for k = 1, . . . ,K to fix the scaling

of both W and H.
The goal of any NMF-algorithm is the identification of feature vectors Hk∗, given only the data X
and the number of features K.

Figure 3.2: 2D illustration for NMF: Detail from data generated via X = WH, using a equally

distributed 1000× 2 matrix W in [0, 1] and H =
√

4
5

(
0.5 1
1 0.5

)
. Two possible NMF-bases (H1∗,H2∗)

and (H′1∗,H
′
2∗) are shown.

Examining all information (a-d) carefully

(a) X = WH, (b) X ≥ 0, (c) W ≥ 0, (d) H ≥ 0 (3.3)

leads to the following geometrical interpretation:

• X ≥ 0:
All data vectors {Xi∗}Ni=1 constitute a cloud in the non-negative orthant (R+

0 )M of RM .
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• H ≥ 0:
Each basis vector Hk∗ points into (R+

0 )M ; Normalized vectors Hk∗ span a K-dimensional sub-
space of the non-negative orthant (R+

0 )M of RM .

• W ≥ 0:
Positive coefficients Wij for all j imply that a data vector Xi∗ is inside this K-dimensional
subspace, whereas Wij = 0 for at least one j indicates that point Xi∗ lies on a K-1 dimensional
peripheral surface. Here, we consider the surfaces as part of the interior of the subspace.

(see Fig. 3.2 for a two-dimensional example where M = K = 2, see also [Hop00],[SDB+03]). Any set
of K non-negative vectors {Hk∗}Kk=1 which encloses the data X in a non-negative fashion provides
a valid solution to the NMF-problem X = WH. Now let us recall the additional transformations
S from paragraph 3.1.2 which converts the matrix H 7→ SH and W accordingly. Given a solution,
(W,H), the resulting vectors SHk∗ provide another solution, if all SHk∗ ≥ 0 and all data lie inside
the new parallelepiped (WS−1 ≥ 0).
A natural choice of a unique solution given the data X is a set of nonnegative vectors {Hk∗}Kk=1, which
span a parallelepiped of minimal volume containing X. In other words, the non-negative K-tuple of
M -dimensional vectors enclosing the data in the tightest possible way is our candidate for a unique
solution. (See the pair (H1∗,H2∗) in Fig. 3.3, left.)

3.2.2 The Determinant Criterion

Let P (H) be the parallelepiped spanned by the vectors H1∗, . . .HK∗. If H is a square matrix, the
volume of P (H) is given by

vol(P ) = |det(H)|. (3.4)

In case of a non-square K ×M - matrix H, the volume of the parallelepiped can be obtained by the

following relation: vol(P ) =
√
det(HHT ). If we normalize each feature Hk∗ by

(√∑
j(Hkj)2

)−1

, a

minimal determinant relates to minimal angles between the edges of P (H).
Thus, our candidate for an optimal solution can be specified as follows:

X = WH (3.5)

normalized such that √∑
j

(Hkj)2 = 1, for k = 1, . . . ,K (3.6)

and
det(HHT ) = min, (3.7)

regarding X,W, and H ≥ 0.

3.2.3 Limitations of the determinant criterion

Assuming a noise-free model, there is at least one exact solution for the correct K. The optimal
solution is given by the one selected by the determinant criterion (eqns. 3.5, 3.5, 3.5), and is unique
up to permutation.
There are two important special cases, where the determinant criterion fails to describe a unique
optimal solution:
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Figure 3.3: left: Non-uniqueness geometrically: there are several possible sets of basis vectors H ≥ 0
which enclose the given data X ≥ 0 in a non-negative fashion W ≥ 0. right: If the basis vectors
Hk∗ are normalized to unit length, the volume of the spanned parallelepiped is directly related to the
angle at the origin.

1. Rotational symmetry (see Fig. 3.4, left)
In case there is rotational symmetry in the data, several equivalent sets of basis vectors can
span an identical volume. In the extremal case, the data describes a cone and there are infinite
possibilities to enclose this. If there is rotational symmetry, there are several equivalent optimal
solutions, which cannot be distinguished by the determinant criterion. Note that the data need
not be completely rotational symmetric as in the example in figure 3.4, left. For example, data
with a polygonal cross-section can also lead to rotational ambiguity.

2. Offset (see Fig. 3.4, left)
If every data point shares a fixed contribution vector H0∗, the solution of minimal volume is not
identical to the optimal one. This special case is known as affine NMF problem and is discussed
in [LH07]. The offset can be incorporated explicitly to the NMF problem.

If the data is noisy and the model X ≈WH holds only approximately, a suitable trade off between
the reconstruction accuracy and a minimal determinant has to be found. In that case, the existence
of unique solutions is arguable anyway.

3.2.4 The Algorithm detNMF

In this paragraph we discuss a new algorithm named detNMF, which directly implements the deter-
minant criterion. As an objective function, we chose the regularized least-squares function

E(X,WH) =
N∑
i=1

M∑
j=1

(Xij − [WH]ij)2 + α det (HHT ), (3.8)
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Figure 3.4: Cases where the determinant criterion does not identify the correct solutions left: The
data is rotational symmetric. The origin lies behind plane of projection. Each triangle describes a
different triple of equivalent enclosing basis vectors H1∗, H2∗, H3∗. right: The data has an offset.
Each data vector shares an offset H0∗ such that the enclosing basis vectors do not intersect in the
origin. (affine NMF [LH07])

where α is a small positive regularization parameter. The regularizing term det (HHT ) is differen-
tiable, and its partial derivatives are given by

∂ det(HHT )
∂Hlm

= 2 det (HHT )[(HHT )−1H]lm. (3.9)

Now consider the following multiplicative update rules (3.10)-(3.13 within the algorithm detNMF :
update:

Hlm ← Hlm ·
[WTX]lm − α det (HHT )[(HHT )−1H]lm

[WTWH]lm
(3.10)

Wlm ← Wlm ·
[XHT ]lm

[WHHT ]lm
(3.11)

normalize:

Hlm ← Hlm√∑
m(Hlm)2

(3.12)

Wml ← Wml ·
√∑

m

(Hlm)2 (3.13)

These update rules represent a modification of the well-known Lee and Seung method [LS99], [LS01]
to which they reduce in the limit α → 0 (compare eq. 2.6 in paragraph 2.3.2). General methods
of how to regularize multiplicative updates with additional constraints can be found in [BBL+06] or
[DS05].
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3.2.5 The choice of α

If the parameter α in the reformulated update rule (3.10)

Hlm ← Hlm

(
[WTX]lm

[WTWH]lm
− αdet (HHT )[(HHT )−1H]lm

[WTWH]lm

)
(3.14)

is set to zero, the update rule reduces to the Lee and Seung multiplicative update rule. The latter
has been shown not to increase the reconstruction error [LS01], [Lin07a], [SD06].
As described in Section 3.2, any solution to an exactly solvable NMF-problem requires the basis
vectors Hk∗ to lie on the periphery of the data cloud. In order to minimize the reconstruction error
under the non-negativity constraint, a NMF algorithm thus tries to position the basis vectors Hk∗
outside the given data cloud. In contrast, the determinant constraint forces the basis vectors Hk∗ to
move towards each other for α > 0, which contradicts the requirement that the basis vectors have
to include all data points into their convex hull. Hence, α should be kept small or zero during the
first iterations and increased as soon as an outer position of the basis vectors is reached. Since the
algorithm is initialized by random matrices W and H, a general rule for the choice of the parameter
α is hard to find. In simulations we observed that if α is always kept small enough so that the
reconstruction error does not increase during an iteration, very satisfactory results are obtained with
the above algorithm. This strategy does not spoil the approximate, constrained decomposition of the
algorithm as it only pushes the basis vectors towards the cloud of data points if this is possible.

3.3 Illustrative example

In this section the determinant criterion is illustrated by simulations. First, we show that plain
NMF without additional constraints produces various distinct decompositions of an artificial data
set, whereas the detNMF algorithm consistently recovers the correct solution in multiple runs.

3.3.1 Unconstrained NMF versus detNMF

The following simulation setup was used. A fixed 3 × 5 matrix H representing basis components of
characteristic shapes (see also Fig. 3.5, left)

H =

 H1∗
H2∗
H3∗

 =

 bowl
stair
block

 (3.15)

The true weight matrix W is generated by non-negative equally distributed random numbers in [0, 1].
The algorithm receives X = WH and the correct factorization rank K = 3 as input. The matrices H
and W are initialized with random positive numbers and then iteratively updated as described above
until the normalized reconstruction error falls below a certain threshold (e.g. E(α=0)

NM < 10−10).
Figure 3.7 shows a comparison of the results gained via plain (unconstrained) NMF and detNMF. The
pictures show 3-dimensional projections of 10 randomly initialized runs using equally and sparsely
distributed weights W and H as in Figure 3.5. While the detNMF algorithm consistently recovers the
original basis vectors H which constitute the edges of a tetrahedron in a three dimensional projection,
the solutions gained via plain NMF without additional constraints vary.

In the simulations, the algorithm detNMF always extracted the correct features despite starting with
random initializations as well as different original coefficient matrices W and varying numbers of
individuals (e.g. N = 100, 1000, 10000).
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Figure 3.5: Left: Original features bowl H1∗(top), stair H2∗(center), and block H3∗(bottom), which
are perfectly recovered by the detNMF algorithm. Each vector Hk∗ is a 5-dim analogon to the 2-dim
vectors in Fig. 3.2. Right: Example of a valid solution, but with wrong features H′1∗,H′2∗,H′3∗,
obtained via unconstrained NMF

During iteratively reconstructing the data matrix X with sufficient precision, the determinant criterion
pushes the feature vectors towards the optimal solution with the smallest possible determinant (see
Fig. 3.6). In contrast, the unconstrained version (α = 0, as proposed by [LS99]) converges to
several different solutions, depending on the initialization of the NMF procedure. In Fig. 3.5 (right)
we give an example of an exact nonnegative factorization of the data in (W′,H′) which does not
reproduce the original features H correctly. Note that H′2∗ + 0.2H′3∗ ≈ H2∗. Furthermore, note
that det(HHT ) = 0.18 and det(H′H′T ) = 0.31. The basis H′ is sufficient to explain all data by a
non-negative superposition, but does not coincide with the correct solution which generated the data
and is characterized by a minimal determinant.

3.3.2 Determinant Criterion versus Sparseness Constraints

In the following, we will demonstrate that the determinant criterion offers a natural way to induce
unique solutions to exactly solvable NMF problems, whereas sparseness constraints as suggested by
[Hoy02] or [LHZC03] among others can be misleading. We discuss two extreme toy examples:

1. In the first example our detNMF algorithm correctly discovers the unique features of a non-sparse
data distribution, whereas a sparse NMF approach fails to do so.

2. In the second example we use a data distribution with a multi-modal density which lends itself
to a very sparse representation.

With these extreme examples we intend to highlight the fact that sparse coding does not represent
a robust and natural criterion for unique solutions, while a determinant criterion can be, provided
enough data is available.
For comparison, we chose the nnsc-algorithm, as described in [Hoy02] (nnsc: non-negative sparse
coding), which is tailored to provide good solutions for sparse data sets. It minimizes the following
objective function

Ennsc =
N∑
i=1

M∑
j=1

(Xij − [WH]ij)2 + λ
∑
ij

Wij . (3.16)
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Figure 3.6: Typical evolution of simulation parameters using the determinant criterion. top: Loga-
rithm of the reconstruction error, bottom: determinant det(HHT )

The term λ
∑
ijWij , λ ≥ 0 penalizes large mixing coefficients Wij , hence pushes the solution towards

small coefficients. Ideally, using an appropriate sparsity constraint, most data points should be
explained by a minimal set of basis vectors Hs∗, with the majority of all other coefficients Wij , j 6= s
being zero. An optimally sparse W thus corresponds to a solution where the columns W∗j contain
as much zeros as possible.
With the first example we discuss a data distribution which is concentrated right in the middle between
the basis vectors which span the data space. This non-sparse data distribution serves to demonstrate
potential drawbacks of sparsity constraints by means of the following idea:
The representation of all data points using only non-negative expansion coefficients, i.e. (W ≥ 0),
requires all basis vectors to lie on the periphery of the data subspace (see Fig. 3.2). If, however,
the NMF algorithm tries to satisfy a sparseness condition by approaching one basis vector to a data
agglomeration which is not located near a true basis vector, the non-negativity constraint instantly
forces other basis vectors to balance this close approach by moving further away from the cloud of
data points. Otherwise, not all non-negativity constraints can be met. The property of maximal
sparseness, imposed by some suitable criterion, thus can lead to a valid unique solution which might
not be the solution searched for and certainly does not represent a minimum volume solution. On
the other hand we expect our minimal volume constraint to cope with the situation and to yield the
correct solution.
Example 2 demonstrates that even in cases of very sparse data distributions where any sparse NMF
algorithm is expected to yield good results our minimal volume constraint also should yield unique
and correct solutions.
In case of example 1 and using the feature vectors Hk∗ (eq. 3.15), we construct the coefficients in W
as follows: 90% of the data points are generated via s(t ·H1∗+ (1− t) ·H3∗), where the parameter t is
randomly drawn from a Gaussian distribution with (µ, σ) = (0.5, 0.03), and s equally distributed in
the interval [0, 1]. Being projected onto the first three principal components of X, the feature vectors
Hk∗ constitute the edges of a tetrahedron (see Fig. 3.8, solid lines). Note that by construction, the
data has exactly three principal components related to nonzero eigenvalues. Most data points are an
approximately equally weighted mixture of two features and thus lie on a surface between two edges
of the tetrahedron. The remaining 10% of the data are equally distributed in the space between the
feature vectors as illustrated in Fig. 3.8.
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Figure 3.7: Comparison of plain NMF (left) and detNMF (right). The results of 10 randomly initialized
runs are shown. top: W equally distributed; bottom: W sparse
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Figure 3.8: 3D-visualization of the data distribution of example 1 (see text for details). Data and
feature vectors are projected onto the three principal components of the data. In this space, the
original feature vectors H1∗, H2∗, H3∗ constitute the edges of a tetrahedron with length 1. These
features are exactly recovered by the detNMF algorithm (solid lines). Obviously, the sparse NMF
approach fails to position all basis vectors correctly. Note that the normalized feature vectors deduced
from the nnsc algorithm are drawn on a larger scale (dashed lines) to render them visible as two feature
vectors, deduced with both algorithms, almost coincide. All feature vectors intersect at the vertex
located at the origin. left: top view, the vertex at the origin is placed in the center of the figure right:
side view, the left corner represents the origin of the axis system.

Figure 3.9: 3D-visualization of the data distribution of example 2 (see text for details). Data and
feature vectors are projected onto the three principal components of the data. In this space, the
original feature vectors H1∗, H2∗, H3∗ constitute the edges of a tetrahedron with length 1. These
features are recovered by both the nnsc algorithm (broken lines) and the detNMF algorithm (solid
lines). All feature vectors intersect at the vertex located at the origin which is placed in the center of
the figure.

After random initialization of W and H, we processed both algorithms (detNMF,nnsc) until the
reconstruction error ((NM)−1E(α = 0) in eq. 3.8 and (NM)−1Ennsc(λ = 0) in eq. 3.16, respectively)
was smaller than 10−10. Again, the detNMF algorithm recovered the correct feature vectors. On
the other hand, the nnsc algorithm produced a solution with a smaller value of

∑
i,jWij , but also

comprising a larger determinant than corresponds to the original data matrices. The final values of
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example 1 example 2

det(HHT )
∑
i,jWij det(HHT )

∑
i,jWij

detNMF 0.1806 495.6798 0.1803 583.3226
nnsc 0.3096 487.7167 0.1804 583.2772

Table 3.1: Comparison of the values of the constraints for both algorithms, taken at the solutions
gained by the algorithms detNMF and nnsc

the constraints are given in Tab. 3.1, while a 3D-visualization of the data and the resulting feature
vectors are shown in Fig. 3.8.
As is obvious from Table 3.1(left) and Figure 3.8, the complete set of all three features is not identified
correctly if a maximally sparse solution is enforced. Though the majority of the data points is not
accumulated near the feature vectors, a maximally sparse matrix W still exists which, however, does
not represent the true matrix of mixing coefficients. While two feature vectors H′i∗ are oriented such
as to satisfy the sparseness constraint, a third feature vector moves far away from the given data
points. This movement is enforced by the overall non-negativity constraint. Thus, if the data is
not maximally sparse, the decomposition achieved by a sparse NMF-algorithm is not necessarily the
correct one. We note that there are sparse algorithms (see e.g. [Hoy04], among others) containing an
adjustable sparseness parameter which enables the selection of solutions containing a desired degree
of spareness. However, such algorithms cannot lead to unique solutions in a general setting, since
they require prior knowledge of the true sparseness of the matrix W.
On the other hand, the determinant approach is more general, because it does not depend on the
distribution of coefficients directly. It is based on the geometrical consideration that a true basis
vector should only point into a certain region of space, if the data necessitates it because of the non-
negativity constraints. The determinant criterion keeps the basis vectors away from such regions and
hence constrains the solutions in a general way converging to optimal and unique solutions.
The second toy example is constructed in a way that a sparse NMF algorithm should be able to yield
a good solution and identify the underlying features. Initializing the 1000× 3- matrix W by equally
distributed random numbers from the interval [0, 1], in 90% of the triples (Wi1,Wi2,Wi3) two out
of the three components were scaled by a factor of 10−1 in equal shares (see Fig. 3.9). In fact, the
sparse algorithm did recover the correct features. But the minimal determinant constraint leads to
an equally good solution as can be seen from Table 3.1.
Both examples demonstrate that the minimal determinant constraint leads naturally to unique and
correct solutions independent of the characteristics of the given data distribution.

3.4 The multilayer technique

As mentioned in [CZA07], [CZA08], a sequential decomposition of nonnegative matrices as a cascade
of L > 1 unmixing systems usually yields a better performance than one single decomposition.
According to [CZA07], it is an open theoretical issue to prove mathematically or explain more rig-
orously why the multilayer approach considerably improves the performance of NMF (or its tensor-
extension NTF). The authors provide the following intuitive explanation: [. . . ] the multilayer system
provides a sparse distributed representation of basis matrices H(l) , so even a true basis matrix H is
not sparse it can be represented by a product of sparse factors. In each layer we force (or encourage) a
sparse representation. We found by extensive experiments that if the true basis matrix is sparse, most
standard NTF/NMF algorithms have improved performance [. . . ] . However, in practice not all data
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provides a sufficiently sparse representation, so the main idea is to model any data by cascade connec-
tions of sparse sub- systems. On the other hand, such multilayer systems are biologically motivated
and plausible.
It turns out that the determinant criterion introduced above gives a simple alternative explanation
for the success of multilayer techniques.
The multilayer technique can be explained as follows: In the first step, the decomposition X ≈
W(1)H(1) is performed where W(1) is a N ×K and H(1) is a K ×M -matrix. The second step then
considers the decomposition: W(1) ≈W(2)H(2) (the weight matrix of the first step is interpreted as
new data matrix and further decomposed). The l-th step then uses the result from the previous l− 1
step and decomposes W(l−1) ≈ W(l)H(l) where H(l) is a square K × K -matrix. Thus, a L-stage
multilayer system performs the decomposition

X ≈W(L)H(L)H(L−1) . . .H(2)H(1). (3.17)

Setting H(L)H(L−1) . . .H(2)H(1) =: H, the determinant criterion reads

det
(
HHT

)
= det

(
H(L) . . .H(2)H(1)H(1)TH(2)T . . .H(L)T

)
= det

(
H(L)H(L)T . . .H(2)H(2)TH(1)H(1)T

)
= det

(
H(L)H(L)T

)
. . . det

(
H(2)H(2)T

)
det
(
H(1)H(1)T

)
. (3.18)

Fixing the scaling freedom in every subproblem by normalizing the rows of H(l) such that (
∑
j(H

(l)
kj )2) =

1 for all k = 1, . . . ,K implies that

0 ≤ det
(
H(l)H(l)T

)
≤ 1 (3.19)

for every term l = 1 . . . L in the last line of (3.18).
In a cascade of L sub-mixing steps, the the determinant det

(
HHT

)
is a product of L terms, each of

which is smaller or equal one. Thus, the more substeps are performed, the more probable is
the occurrence of at least one factor < 1 and thus a smaller overall determinant.
As discussed above, the l-th subsystem W(l−1) ≈W(l)H(l) can be interpreted as decomposition of the
fictitious data W(l−1) into coefficients W(l) and a basis H(l) and constitutes a usual NMF problem
which can have several equivalent solutions. Any solution positions the basis vectors H(l)

k∗ on the
periphery of the data cloud W(l−1). According to the determinant criterion the solution comprising
the smallest volume is optimal for the particular subproblem.
The more demixing sub-steps are performed, the higher is the probability to obtain a solution with
a small determinant. The multilayer technique is a fast and cheap option which produces minimum
determinant solutions indirectly. In my experiments, usually 3-4 substeps are sufficient for consistent
decompositions.

3.5 Related work

3.5.1 Endmember extraction

As an anonymous referee pointed out, a similar concept of a volume constraint for NMF has been
independently developed to solve spectral unmixing problems [MQ07]. The idea of an enclosing
simplex of minimum volume is known as endmember extraction hyperspectral unmixing applications
[Cra94]. Although the idea is the same, it is limited to mixtures (where the mixing coefficients sum to
one). Moreover, the approach by [MQ07] has a somewhat circumstantial implementation involving a
PCA, which is not necessary. A recent study found both, Miao’s [MQ07] and our approach [SPTL09]
useful as an input for a Bayesian sampling procedure, noting that our approach is simpler [ASL09].
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Figure 3.10: Non-negative ICA left: mixed signals; center: whitened signals; right: signals rotated to
non-negative orthant

3.5.2 Non-negative ICA

Simultaneously with the development of NMF, Plumbley [Plu01], [Plu02], [Plu03] worked on a non-
negative version of Independent Component Analysis (ICA) [Com94]. He stated that the non-
negativity of the estimated sources together with the pre-whitening of the observed data is sufficient
to recover the underlying non-negative sources uniquely.
While usual ICA algorithms determine the correct rotation after a whitening step by some non Gaus-
sianity measure (e.g. the kurtosis), non-negative ICA utilizes the non-negativity constraint on the
sources to determine this rotation. Thus, second-order decorrelation (instead of statistical indepen-
dence) together with non-negativity constraints is sufficient to solve the non-negative ICA problem.
As depicted in figure 3.10, non-negative ICA first decorrelates the data and then rotates until the
data fits into the non-negative orthant. In contrast, determinant constrained NMF does not need
decorrelated features and directly discovers the basis vectors. Moreover, NMF is robust to additive
noise (see e.g. [LCP+08]).

3.6 Conclusion

A determinant criterion was introduced to constrain the possible solutions of an exact NMF problem.
Geometrically, this criterion means a minimum volume constraint on the subspace spanned by the
basis vectors and emphasizes unique best solutions for a given problem. An easy to implement algo-
rithm called detNMF which directly incorporates the determinant criterion was used in illustrative toy
examples which represent two extreme data distributions. In these extremal settings, the detNMF al-
gorithm was contrasted with a sparse NMF variant to demonstrate that sparseness constraints can be
a misleading restriction while the determinant criterion is a more general approach. Moreover, the de-
terminant criterion provides a very concrete explanation why a cascade of consecutive decompositions
usually improves the performance of any NMF algorithm.
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Chapter 4

NMF application to BIN data

4.1 Data aggregation

As explained in the introductory section about wafer fabrication (1.2.1), chips are usually tested in
different BIN categories.

Figure 4.1: For the present investigation, each wafer is represented by (normalized) BIN counts. The
example wafer (left) contains 24 chips, each labeled by one of the BINs 0, 1, 2, 3. Here, BIN 0 means:
die works fine, while BIN l (l=1,2,3) codes the event chip failed in test category l. The diagram on the
right displays the same wafer in terms of BIN counts which can be further normalized by the total
number of chips per wafer. If one ignores the pass BIN (BIN 0 here), the normalized BIN counts are
an approximation of the fail probability in the respective BIN category.

We represent the i’th wafer by the M -dimensional row vector

Xi∗ = (Xi1, . . . , XiM ) ≥ 0 (4.1)

containing the number of chips carrying BIN label j, divided by the total number of chips per wafer on
position Xij . If the BIN number represents a test category where the chip can fail (usually any BIN
category except the pass BIN), the matrix entry Xij can be interpreted as an approximate probability
that a chip on wafer i fails in category j.
We assume there is a set of K ∈ {2, 3, 4, . . . } underlying sources which are responsible for the fail
chips. Each of the sources has an associated M -dimensional vector or typical fingerprint

Hk∗ = (Hk1, . . . ,HkM ) ≥ 0 (4.2)

43
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expressing the probability that a chip fails in category j due to source k in entry Hkj ≥ 0.
We further assume that the fingerprint of each source Hk∗ remains the same, irrespective of the
intensity of that source. The intensity of the k’th source on wafer i is assumed to be represented
by the non-negative scalar Wik ≥ 0, where Wik = 0 means that source k does not contribute to
observation i and a value Wik > 0 is a relative measure for the intensity.
In summary, we assume that an observation can be represented as linear combination

Xi∗ ≈
K∑
k=1

WikHk∗ (4.3)

of non-negative weights Wik and basis components Hk∗.
Data matrix entry Xij ≥ 0 contains the number of chips carrying BIN label j on wafer i, divided by
the total number of chips on the wafer.
As a first approximation, the linear model given by eq. (4.3) holds true.
However, there are some nonlinear effects in the wafer test data, which we neglect here. One of these
nonlinearities for example is induced by the fact that each chip carries only the label of one BIN
category in this example, although if the chip can potentially fail in several different BIN categories.
For example, if test A is performed before B, the apparent probability that a chip on wafer i fails in
test B decreases if many chips fail in test A already since we associated an approximate fail probability
with the number BIN counts per total chips.
Here, we assume that such nonlinear effects are small and interpret them as noise which is absorbed
in the approximately in eq. (4.3).
In general, the linear approximation is quite accurate if the assumed fail probabilities are small.

4.2 Results

In this study, a data set comprising N = 2800 wafers and M = 19 BIN categories is used. A three-
layered ALS NMF algorithm (see section 3.4) followed by refinement using the detNMF algorithm
(see section 3.2.4) was applied to blindly recover the non-negative weight and basis matrices W and
H from the N ×M data matrix X.
Note that unlike in PCA, the extracted basis vectors are not orthogonal to each other and are not
extracted in a hierarchical order.
For NMF, we eliminate the scaling ambiguity by normalization such that each row vector has unit
length (

∑
j H

2
kj = 1). We sort the rows W∗k of the rescaled W in descending order by value of

(
∑
iW

2
ik).

For illustration purposes, a PCA was performed and the data is projected onto the first three principal
components (which have nothing to do with the NMF basis vectors!), see figure (4.2, left hand side)
for a plot of the data. The majority is spread near the center at the origin, while some arms point
outwards in a star-shaped manner. Note that the displayed 3 dimensional projection is used for
visualization purposes only and cannot display the whole structure of the data.
On the right hand side of figure (4.2) the first five basis vectors extracted by NMF are displayed in
addition. Each basis vector points into the direction one arms.

4.2.1 Examples for NMF decompositions

The NMF decompositions in different numbers of components K are quite consistent, as can be seen
in figures (4.3) and (4.4). All basis vectors HK=3 corresponding to K = 3 components appear in
HK=4 plus an additional component (see Fig. 4.3, top). The corresponding columns of the weight
matrices WK=3 and WK=4 show the same behavior as indicated by the scatterplots given in (Fig.
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Figure 4.2: left: projection of the data onto its first three principal components; right: the first five
basis vectors H1∗, . . . ,H5∗; Note that the principal components (extracted by PCA) do not coincide
with the NMF basis components. They are used for illustration purposes only.

4.3, bottom). The same plot also reveals that the columns of W are roughly distributed according to
the non-negative part of Gaussian distributions.
In figure (4.4), the extracted basis components HK=4 and HK=6 for K = 4 and K = 6 are contrasted
with each other. Again, all components for the smaller decomposition (left) can be recovered in
the decomposition into a larger number of components (right) (HK=4

1∗ ≈ HK=6
1∗ , HK=4

2∗ ≈ HK=6
2∗ ,

HK=4
3∗ ≈ HK=6

3∗ and HK=4
4∗ ≈ HK=6

6∗ , roughly.) , plus two new basis vectors HK=6
5∗ and HK=6

6∗ appear.
The same holds for the weight matrices, as shown in the scatterplots in the bottom of figure (4.4).
Summarizing, the basis vectors H and weight matrices W yield quite consistent results. The 3
dimensional projection given by figure (4.2) indicates that each basis vector Hk∗ points into one of
the directions of the data agglomerations which point outwards from the origin in a shape resembling
a star. The histograms of the columns of the weight matrices resemble non-negative parts of Gaussian
distributions, sometimes exponential distributions.



46 CHAPTER 4. NMF APPLICATION TO BIN DATA

Figure 4.3: Different NMF decompositions using K = 3 and K = 4 components. top: The three
basis vectors HK=3 (left) are quite similar to the first three rows of HK=4 (right). The fourth basis
vector HK=4

4∗ is relatively new, but has some correlations with HK=3
3∗ . bottom: Scatterplots from left

to right: columns of WK=4; from top to bottom: columns of WK=3; Additionally, the histograms of
each column are displayed.
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Figure 4.4: Comparison of the decompositions in K = 4 and K = 6 components; top,left: HK=4;
top,right: HK=6; bottom: scatterplots of the columns WK=4

∗k vs. WK=6
∗k
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Figure 4.5: Eigenvalues of the covariance matrix (left) and correlation matrix (center) in descending
order. The right plot shows the number of components K versus a variational Bayes criterion Bq
which has a maximum at K = 11 (see text and paragraph 8.2.2 for details)

4.2.2 Number of components

The actual best number of components is a very hard question in the present example. As mentioned
in the introductory NMF chapter 2, we assume the number of components K to be given, since it is
required as input for usual NMF algorithms. Of course, in real world applications we do not know in
advance how many underlying components there are in a data set.
Sometimes, the eigenvalue spectrum of the covariance or correlation coefficient matrix can give a hint
on the dimensionality of the data space. In figure 4.5, a plot of the eigenvalues of the data covariance
and correlation coefficient matrix is given.
Using normalized data such that the variance within a variable is 1, each observed variable contributes
one unit of variance to the total variance. According to Kaiser’s criterion [Kai58] each principal com-
ponent which explains at least as much variance as one observed variable contains relevant information.
In figure (4.5, center plot), there are seven eigenvalues greater than 1, so Kaiser’s criterion suggests
K = 7 to be the actual dimensionality.
In contrast, optical inspection of the eigenvalue spectrum of the data covariance matrix (4.5, left)
may suggest either 3 principal components, 7,8, or 11 important components in the data (indicated
by large decrease between adjacent eigenvalues).
Obviously, these rule of thumbs for the estimation of the dimensionality by judgment of the PCA
eigenvalue spectrum does not lead to a clear statement on the actual number of components in the
case considered here.
Anticipating the result of a later chapter, a variational Bayes procedure suggests that K = 11 com-
ponents give the best explanation for this dataset (see the maximum of the variable Bq in figure
4.5, right) We will explain the theory behind the computation of this Bayesian criterion in detail in
paragraph (8.2.2).

4.3 Summary

This section demonstrated the performance of the NMF technique on wafer test data which was aggre-
gated in relative BIN counts per wafer. Each column of the data X corresponds to one BIN category,
while each row constitutes the data of one wafer. Data entry Xij is an approximate probability that
a chip on wafer i fails in BIN category j. We assumed a linear non-negative superposition of K
individual failure causes, ignoring all nonlinear effects which can be contained in such wafer test data.
The NMF methodology was proven to extract consistent components of a data set comprising N =
2800 wafers and M = 19 BIN categories. For different numbers of components K, rather the same
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components are extracted, which was verified by visual inspection by the estimated basis components
Hk∗ and scatterplots of the weights W∗k.
The benefit of the NMF methodology to the overall failure analysis is to offer an alternative data
representation, separated by potential causes and their individual contributions.
We do not discuss further analysis steps which are necessary to detect the actual root causes in the
processing line. As sketched in section (1.2) other data analysis tools can be used to match the NMF
findings with other historical data of the investigate wafers.
The determination of the actual number of hidden components remains an open issue. A sneak
preview on a later chapter was given which addresses the problem of model order selection.
In this chapter, test data was analyzed on wafer level, i.e. fail probabilities in different BIN categories
were approximated by the fraction of chips per wafer carrying the respective BIN labels, and a linear
non-negative superposition model was assumed. In that case, usual NMF techniques can be applied.
Due to the developments in chapter 3, the uniqueness ambiguity for a fixed number of components
does not occur since we used a volume-constrained NMF algorithm.
While this chapter concerned the direct application of NMF to suitably aggregated data on wafer
level, the next chapter will follow a different approach. In chapter 5, we will construct a non-negative
superposition model for binary test data on chip level and develop a new extension of NMF suited to
this problem.
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Chapter 5

NMF extension for Binary Test
Data

In this chapter a new approach to the analysis of wafermaps is introduced. In contrast to the preceding
chapter (4), where test data on wafer level was approximated by a standard NMF model, a new
method for binary data on chip level is developed here. The method is called binNMF and is aimed
to decompose binary wafer test data into elementary root causes and their individual contributions.
The data is assumed to be generated by a superposition of several simultaneously acting sources or
elementary causes which are not observable directly. Throughout this chapter we will use the term
superposition as a synonym for the action of several underlying sources and their joint effect on the
outcome of the wafer test procedure.
Based on a minimum of assumptions the superposition process is modeled and its reversion allows to
identify the underlying source characteristics.

5.1 Binary Data Sets

Binary test data arise for example in the final functionality tests of microchip fabrication. Irrespective
of which physical quantity is actually measured, the information transmitted for every single die is a
binary pass or fail variable. Hence already after the first failed single test the corresponding chip is
labeled fail while it is labeled pass only if it passes all single tests. Such large binary data sets, which
are collected in many practical applications apart from semiconductor industry, may be considered
to be generated by diverse hidden underlying processes. Here, a multiple cause model is assumed
for data generation, and the problem is related to NMF methodology. Not surprisingly, parallels
exist between the proposed method and existing techniques from various disciplines such as statistics,
machine learning, neural networks and bioinformatics which have strong overlap and use basically
similar procedures for different target settings.

5.1.1 Defect patterns

Semiconductor microchips are usually processed on a silicon wafer. Before completion, each wafer
passes up to several hundreds of processing steps. Most functionality tests can only be performed
after the final processing step when the devices are completed. In general, the test outcome reflects
whether a set of specifications is met (pass, 0) or not (fail, 1). Due to the diversity of processing
steps like etching, implantation, photo lithography etc., here, the general term ’defect’ describes some
malfunction dependent on one or more processing steps which render a manufactured device not to
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Figure 5.1: left : A raw wafer passes up to several hundreds of processing steps before the complete
chips can be tested on their functionality right: In a set of binary wafermaps containing pass/fail
information for the individual chips, sometimes localized failure patterns are present.

meet all defined performance and functionality specifications. Such a defect can be induced in any
of the single manufacturing steps, or be the result of a combination of some not perfectly calibrated
or matched instances, or even be already present in the raw material. Whatever is the number of
physical quantities tested for every chip, finally each chip is characterized by a single binary variable
Xij ∈ {0, 1} corresponding to pass or fail which depends on the margin of the actual test setup. This
set of binaries for a whole wafer can be seen as a wafer map. Visual inspection of a large enough
set of wafer maps often reveals geometrically localized structures, called failure patterns, on the disk
such as rings, scratches or clusters.
The aim of the proposed exploratorybinNMF data analysis methodology is the identification of failure
patterns and to support the subsequent clarification of their hidden causes.

5.1.2 Data generating process

Imagine there are K possible elementary causes for a defect, and a combination of them is responsible
for the actual test outcome. The superposition of these hidden causes reflects the following properties:

• Each single cause can separately increase the total fail probability.

• None of the single causes weakens the effect of the other causes.

• The overall fail probability is small only if all individual fail probabilities are small as well.

Now assume that M variables are measured simultaneously. The i-th observation then constitutes a
row vector Xi∗ = (Xi1, . . . , XiM ) (see Fig. 5.1, right) whose components represent the binary pass
(Xij = 0) or fail (Xij = 1) status of the M measurements. Here, each variable corresponds to a chip
position (a specific x-y-coordinate one the wafer) and is indexed by j, and each observation i to a
wafer.
Two additional assumptions are the following:

• To each source or hidden cause can be assigned a characteristic, locally resolved pattern of fail
probabilities, henceforth called basic pattern. Some regions are assigned a larger, others are
assigned a smaller fail probability reflecting the characteristics of the related hidden cause or
source.

• Each basic pattern can vary its intensity only as a whole.
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5.2 NMF for Binary Datasets

After having explained the meaning of the general term defect here in section 5.1.1, and stated the
desired properties of the data generating process, we proceed to explain how the defect probabilities
of M chips on N wafers can be described by means of two non-negative matrices W and H.

5.2.1 The superposition approximation

Consider a finite number K of hidden sources or elementary failure causes Sk, k = 1, . . . ,K underlying
the observed failure patterns. The basic patterns related with these hidden sources are assumed
to superimpose to the observed failure patterns constituting the wafermaps. The event ’chip j on
wafer i is pass’ is encoded by Xij = 0 and its conditional probability given hidden source Sk reads
P (Xij = 0|Sk). The opposite event ’chip j on wafer i is fail’ is encoded as Xij = 1 and its conditional
probability given hidden source Sk reads P (Xij = 0|Sk), accordingly. The corresponding overall
conditional pass and fail probabilities then factorize in case of independent single events and are given
by

P (Xij = 0|S1, . . . , SK) =
K∏
k=1

P (Xij = 0|Sk) (5.1)

P (Xij = 1|S1, . . . , SK) = 1−
K∏
k=1

P (Xij = 0|Sk) (5.2)

The factorial form of the overall conditional pass-probability given in eq. (5.1) reflects the superpo-
sition assumption: The overall conditional pass-probability can only be large, if none of its factors
P (Xij = 0|Sk) is small. On the other hand, one single conditional pass probability close to zero given
a specific failure cause Sk renders the overall conditional pass probability small. Thus, a chip is likely
categorized as fail if at least one source Sk exists such that P (Xij = 0|Sk) is close to zero. But it is
likely categorized as pass only if for all Sk, k = 1, . . . ,K the conditional probabilities P (Xij = 0|Sk)
are large.

5.2.2 The Poisson yield model

The Poisson yield model is a standard assumption in modeling semiconductor defect probabilities (see
[Pha06]). Assuming that the defects are randomly distributed and that the occurrence of a defect at
any location is independent of any other defect, the probability of having t defect events is given by
the Poisson probability distribution

Pλ(t) = exp(−λ)
λt

t!
(5.3)

where the parameter λ reflects the expected number of defects per part and is calculated as the
product of an area and a defect density.
Now assume a collection of N wafers, each containing M chips, arranged in an N ×M data matrix
X. Assume further that there are K independent elementary causes, such that the probability of
observing t defects related to cause k on chip j of wafer i can be expressed as

Pλijk(t) = exp (−λijk)
λtijk
t!

(5.4)
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Given the superposition approximation discussed above, it is only needed to distinguish between the
two cases of no defect, rendering the conditional pass probability high for all hidden sources, or at
least one defect, rendering at least one conditional pass probability low on a wafer.
By now, the latent sources, chip positions and wafers are seen as independent. In the following, we
introduce some dependency structure by some basic assumptions.

1. The k-th basic pattern Hk∗ = (Hk1, . . . ,HkM ) is denoted by an M -dimensional row vector
whose j-th component Hkj ≥ 0 indicates the defect probability of chip j induced by source k.

2. Each elementary failure cause can contribute differently to the failure patterns of the different
wafer maps. We describe the impact of source k on wafer i by the weight factor Wik ≥ 0, where
Wrk < Wsk means that source k has less impact on wafer r than on wafer s.

3. We finally assume that a whole set of N wafer maps, each containing M chips, can be represented
by a finite number of K elementary failure causes. Each observed wafer map represents a
realization of an individual superposition process of the same underlying elementary failure
causes.

Given independent elementary failure patterns Hk∗ and the superposition approximation, the condi-
tional pass-probability of chip j on wafer i can be expressed as

P (Xij = 0|Sk) = exp (−WikHkj) (5.5)

where, according to eq. (5.4), λijk = WikHkj and t = 0. The conditional pass and fail probabilities
according to the factorial model in eq. (5.1) now read

P (Xij = 0|S1, . . . , SK) =
K∏
k=1

exp (−WikHkj) = exp

(
−

K∑
k=1

WikHkj

)
(5.6)

P (Xij = 1|S1, . . . , SK) = 1− exp

(
−

K∑
k=1

WikHkj

)
(5.7)

where we recognize the exponent in the last expression as (i, j)-th entry of the matrix product WH
which corroborates the close relationship to NMF techniques. Since all Wik, Hkj are non-negative by
assumption, the conditional fail probability becomes a linear function of the underlying causes, i.e.
P (Xij = 1|S1, . . . , SK) ≈

∑
kWikHkj for small arguments, and saturates at P (Xij = 1|S1, . . . , SK) ≈

1 for large arguments.

5.2.3 Bernoulli Likelihood

Denoting the Bernoulli-parameter Θij = P (Xij = 1|S1, . . . , SK) = 1− exp (−[WH]ij), the Bernoulli
likelihood of entry (i, j) is

P (Xij |Θij) = ΘXij
ij (1−Θij)1−Xij (5.8)

Assuming that the data are independent, given Θ, this leads to an overall log-likelihood

LL =
N∑
i=1

M∑
j=1

{Xij ln(1− exp (−[WH]ij))− [WH]ij +Xij [WH]ij} (5.9)

which has to be maximized in the variables W and H with respect to the non-negativity constraints
W,H ≥ 0.
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Figure 5.2: Illustration of the superposition model. left: Elementary failure patterns H1∗,H2∗,H3∗
describing the characteristics of three hidden sources S1, S2, S3 center: 2 different superpositions of fail
probabilities P (X1∗ = 1|S1, S2, S3) and P (X2∗ = 1|S1, . . . , S3) right: observable binary realizations
X1∗, X2∗. Note that in general the elementary failure patterns H are continuous-valued and not
restricted to binary values
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binNMF summary

N : number of objects ∈ N
M : dimension ∈ N
K : number of basic patterns � min(N,M)

X data matrix N ×M
W coefficient matrix N ×K
H pattern matrix K ×M

Xij

{
= 0 : ’pass’
= 1 : ’fail’

∈ {0, 1}

Wik weight of pattern k in object i ∈ [0,Wmax]
Hkj intensity on position j in pattern k ∈ [0, 1]

P (Xij = 0|S1, . . . , SK) e−[WH]ij ∈ ]0, 1]

P (Xij = 1|S1, . . . , SK) 1− e−[WH]ij ∈ [0, 1[

Figure 5.3: Summary of the constituents of thebinNMF model: binary data X is modeled by a nonlin-
ear function of a product of non-negative matrices W and H expressing the conditional probabilities
according to K underlying hidden sources S1, . . . , SK

Note that the Bernoulli likelihood is a natural choice for binary data (see e.g. [Tip99], [CDS01],
[BKF09]).
In the appendix (B), experiments with an alternative family of cost functions based on the Minkowski-
R measure [Bis96] are reported.

5.3 Optimization strategies

Although if the task of maximizing the log likelihood (5.9) can be interpreted as the minimization of
a special NMF cost function, the Bernoulli likelihood 5.9 has not been a topic in the NMF literature
so far and we can not apply any of the NMF algorithms discussed in chapter 2 directly for the
optimization. However, the challenges of an optimization under non-negativity constraints are similar.
Several alternating optimization schemes were tested which, at each step, keep one parameter matrix
fixed and update the other one according to some gradient rule with respect to the non-negativity
constraints on W and H. In principle, any of the NMF optimization strategies discussed in chapter
2 can be tested on the Bernoulli likelihood although the resulting algorithms may be more complex
than for usual NMF cost functions. In general, Newton type algorithms have a greater computational
complexity in each iteration, while leading to a comparative large increase of the log likelihood per
iteration. Since especially the logarithm in (5.9) induces many local optima, the steps taken by
Newton type algorithms are very often such as to get stuck in a local optimum in the early iterations.
For this reasons, we concentrate on simpler optimization strategies which make smaller but simpler
steps in each iteration. We discuss an alternating gradient ascent and a multiplicative update scheme.
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5.3.1 Alternating Gradient Ascent

The basic gradient ascent scheme is given by

Wik ← Wik + ηW
∂LL

∂Wik
(5.10)

Hkj ← Hkj + ηH
∂LL

∂Hkj
(5.11)

where the left hand sides must not become negative. For tiny step sizes ηW , ηH an actual increase
of the log likelihood is guaranteed, but many iterations are necessary. On the other hand, a step too
large can either lead to a decrease of LL or to negative elements in the parameter matrices.
The alternating gradient ascent algorithm consists of the following steps:

• update W:

1. update W according to eq. (5.10)

2. set negative elements in W to zero

3. if LLnew < LLold diminish ηW and try again
else slightly increase ηW and go on

• update H:

1. update H according to eq. (5.11)

2. set negative elements in H to zero

3. if LLnew < LLold diminish ηH and try again
else slightly increase ηH and go on

However, a general limitation of gradient optimization techniques is their getting stuck in local optima.
In addition, once one of the stepsize parameters ηW , ηH has become very small, it takes very long
time before reasonable progress can be made even if bigger steps were possible. Introducing separate
stepsize parameters for each row Wi∗ and column H∗j can lead to better performance, but also
requires more administration effort.

5.3.2 Multiplicative updates

The following simple multiplicative update rules do not require stepsize parameters and the evaluation
of the log likelihood during the iterations:

Wik ← Wik

∑
j

XijHkj
1−exp (−[WH]ij)∑

j Hkj
(5.12)

Hkj ← Hkj

∑
i

XijWik

1−exp (−[WH]ij)∑
iWik

(5.13)

Eqns. (5.12) and (5.13) are fix point-equations which strongly resemble the original Lee and Seung
updates [LS01] for NMF as discussed in chapter 2. They share the benefits of not having to control
a stepsize parameter and the non-negativity constraints. On the other hand, they also share the well
known drawbacks of the Lee-Seung method: convergence towards a saddle-point can not be excluded,
and, once a parameter is exactly zero, it remains zero.
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Figure 5.4: The Bernoulli log likelihood as a function of the number of iterations. left: performance
of the alternating gradient algorithm (AGA) (sec. 5.3.1) in 50 randomly initialized runs. Depending
on the initialization, several local maxima are reached, some of which in early iterations. right:
Comparison between the multiplicative (sec. 5.3.2) and alternating gradient algorithm (sec. 5.3.1).
Both algorithms were initialized by intermediate results of a preprocessing step (see sec. 5.3.4)

It is easy to verify that a local maximum of the Bernoulli log likelihood (5.9) is a fix point of the
multiplicative updates given by eqns. (5.12, 5.13):
Setting the partial derivative w.r.t. Hkj to zero yields

0 =
∂LL

∂Hkj
(5.14)

=
∑
i

(
Xij exp (−[WH]ij)
1− exp (−[WH]ij)

− (1−Xij)
)
Wik (5.15)

=
∑
i

(
Xij

1− exp (−[WH]ij)
− 1
)
Wik (5.16)

⇔
∑
i

Wik =
∑
i

Xij

1− exp (−[WH]ij)
(5.17)

⇔
∑
i

Xij
1−exp(−[WH]ij)∑

iWik
= 1 (5.18)

the case Wik is analogous.
Although we can show that an optimum is a fixed point of the update equations, this is not an actual
proof that the algorithm can even get close to such an optimum.
In practice, however, good convergence properties are observed.
Rewriting e.g. eq. (5.13) in an additive fashion leads to

Hkj ← Hkj +
Hkj∑
iWik

[
∑
i

XijWik

1− exp (−[WH]ij)
−
∑
i

Wik︸ ︷︷ ︸
= ∂LL
∂Hkj

] (5.19)

where the underbraced term is the partial derivative ∂LL
∂Hkj

.
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Convergence problems can only arise if the stepsize Hkj∑
iWik

were large. In that case, we could introduce
a parameter ω and modify the update equations (5.12, 5.13) to

Wik ← Wik

∑j
XijHkj

1−exp (−[WH]ij)∑
j Hkj

ω (5.20)

Hkj ← Hkj

∑i
XijWik

1−exp (−[WH]ij)∑
iWik

ω (5.21)

One can always choose ω small enough such that the updating factor is close to 1, and the change
between successive values of Hkj is small. A general discussion on such multiplicative heuristic
formulas can be found in [CZPA09], where ω represents a relaxation parameter, typically in the range
[0.5, 2].
As mentioned, in the experiments discussed here we set ω = 1 and always observed good monotonicity
and much faster convergence times compared to the alternating gradient algorithm (AGA) (see Fig.
5.4, right).

5.3.3 The noisy case

In real world applications, there is always some data which cannot be explained by any of the K
assumed underlying sources. Such random noise can cause serious convergence problems or spoil
some of the reconstructed basic patterns. We circumvent these problems by adding a dummy pattern
HK+1,∗ which consists of all ones. During optimization, we treat the corresponding weights W∗,K+1

just as usual ones while keeping the pattern constant all the time. This simple trick offers the
algorithm an opportunity to explain data points Xij = 1 which do not suit the model of K sources
well by increasing their noise parameter Wi,K+1. Without this precautionary measure, a single event
Xij = 1 which does not suit the model tends to increase the row Wi∗ or the column H∗j or both
because of the logarithmic penalty Xij ln(1− exp−[WH]ij).

5.3.4 Preprocessing

Particularly the logarithm in eq. (5.9) can cause serious global convergence problems by inducing local
maxima to the log-likelihood function. Any point Xij = 1 with a small probability 1−exp (−[WH]ij)
will result in a logarithmic divergence of the log-likelihood. The optimization algorithm thus will try
to compensate the divergence by increasing [WH]ij . In order to attenuate this problem, we propose
an appropriate preprocessing step for our optimization procedure.
Introducing an auxiliary variable α ∈]0, 1[, we set

P (Xij = 1|S1 . . . , SK) = 0, if Xij = 0
P (Xij = 1|S1 . . . , SK) = α, if Xij = 1 for all i, j. (5.22)

This can be summarized by

αXij = 1− exp (−[WH]ij)⇔ − ln(1− αXij) = [WH]ij (5.23)

Since the left hand side of the last equation is always nonnegative we recover a standard NMF problem
X′ ≈WH when substituting X ′ij =: − ln(1− αXij).
Choosing the squared Euclidean distance as a cost function
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Figure 5.5: The preprocessing procedure approximates the penalties considered by the actual log
likelihood (top row) for Xij = 1 (left) and Xij = 0 (right) by a quadratic form with an adjustable
parameter α (bottom row).

E(α,W,H) =
N∑
i=1

M∑
j=1

(ln(1− αXij) + [WH]ij)
2 (5.24)

the well-known Alternating Least Squares Algorithm as described in [CZA08] can be used to minimize
(5.24) with respect to W ≥ 0 and H ≥ 0. The ALS-updates are given by

Hrs ← max{ε,−
N∑
i=1

[(WTW)−1WT ]ri ln(1− αXis)} (5.25)

Wlm ← max{ε,−
M∑
j=1

ln(1− αXlj)[HT (HHT )−1]jm} (5.26)

In fact, any NMF algorithm could be used in the preprocessing step. Our choice of the ALS procedure
is motivated by its simplicity and speed. The bad theoretical convergence properties (induced by
truncation of negative elements) are alleviated by repeating the procedure several times using different
random initializations for H and W and retaining only the solution with the smallest Euclidean
distance. Multiple random initializations also lead to a more complete coverage of the search space.

Determining the Parameter α

The effect of α can be understood in the following way: As long as the matrix factorization framework
permits it, an optimization algorithm should increase those [WH]ij for which Xij = 1, and diminish
those [WH]ij for which Xij = 0 in order to reach the maximum likelihood solution. This kind of
learning dynamics is also conserved in our simplified version, where optimal solutions tend towards
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Figure 5.6: Log-likelihood of the approximations computed by the ALS-method as a function of α for
10 random initializations. The best value is obtained for α = 0.87 in this example. The horizontal
line denotes the true log-likelihood.

− ln(1 − α) for Xij = 1 and 0 if Xij = 0. Thus, qualitatively, the basic properties of the data are
roughly reflected in the simplification. However, an optimal α cannot be estimated from the data
directly but has to be determined by an additional optimization process.
The true quantity to be maximized is the log-likelihood function (5.9) which is a sum over NM
individual terms. The costs corresponding to terms Xij = 1 and Xij = 0 are asymmetric for the two
cases. A Xij = 1 term leads to costs ln(1 − exp(−[WH]ij)), whereas a Xij = 0 term yields a cost
of −[WH]ij (see Fig. 5.5, top row). The (negative of the) Euclidean cost function (5.24) implies a
quadratic cost for both cases instead (see Fig. 5.5, bottom row). Xij = 0 leads to a term [WH]2ij ,
while Xij = 1 yields a cost of − (ln(1− α) + [WH]ij)

2. The latter is an inverted parabola with a
maximum at − ln(1−α)(> 0). Note that only the left branch of this parabola needs to be considered,
since the terms Xij = 1 seek to approach the maximum at [WH]ij = − ln(1 − α) and the terms
Xij = 0 favour small values [WH]ij .
From simulations on toydata sets, we observed that the best obtained log-likelihood LL(X,W(α),H(α))
among several randomly initialized runs resembles a concave function of α (see Figure 5.6). Thus, a
Golden Section Search procedure can be applied to obtain the optimal α in a reasonable amount of
trials and computational time.
In summary, with the help of the auxiliary parameter α, the original log-likelihood components for
Xij = 1 and Xij = 0 are approximated by quadratic forms. This parameter α has to be optimized in
order to find the best such approximation for a given dataset.

5.3.5 Uniqueness

Referring to the non-uniqueness of unconstrained NMF solutions, in case of binary datasets this
problem is relieved.
As is shown in a schematic drawing in Fig. 5.7, with continuous-valued data several equivalent
solutions exist because the spanning basis vectors H1∗, . . . ,HK∗ can lie anywhere between the data
cloud and the boundaries of the non-negative orthant (see also chapter 3 and [SPTL09]). In a binary
problem setting, the data lie in the corners of a M -dim hypercube in the non-negative orthant having
one corner at the origin and edge length − ln(1 − α). The (continuous-valued) basis vectors Hk∗
coincide with the borders of this hypercube if K = M and are inside the hypercube if K < M . Thus,
the additional freedom of the basis vectors due to multiple possibilities outside the data cloud in the
continuous case is missing in the binary situation, since the basis vectors are inside the data cloud in
this case.
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Figure 5.7: left: Non-uniqueness of NMF solutions for continuous-valued data illustrated with a 2-dim
manifold embedded in 3-dim space. Different solutions are indicated by bundles of spanning basis
vectors H1∗,H2∗ right: In case of binary data, there is no such ambiguity since the data lie in the
corners of a hypercube with edge length − ln(1−α). Note that one of the corners corresponds to the
origin and the edges span the positive orthant.

We can summarize the whole optimization strategy as searching the parameter space by repetitive
running a fast ALS algorithm on a simplified problem involving an additional parameter α. This α
is optimized by a Golden Section Search procedure. The simplified problem is solvable by standard
NMF algorithms. Considering the results of chapter 3, NMF is known not to produce unique results
without additional restrictions in general. In the special case of binary data, however, these uniqueness
problems do not exist. Thus the preprocessing procedure for fixed α leads to optimal solutions of
E(α,W,H) in eq. (5.24). Optimization of α then leads to a good approximation of the original
problem LL(W,H) in eq. (5.9). From this point, we can run the AGA or multiplicative algorithm to
optimize the actual log likelihood LL into the nearest local maximum. In that sense we can interpret
the binary NMF problem to have a quasi optimal solution inherited from the quadratic approximation.
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Figure 5.8: left: 30 × 30 source patterns Horig
1∗ . . . ,Horig

4∗ valued in [0, 1] (white:0, black:1, grey:
intermediate). center: Reconstructions gained via the ALS preprocessing HALS , right: Maximum
likelihood solutions HML gained vie gradient refinement

5.4 Simulations

A 1000× 900 binary data matrix X was created by setting the (i,j)-th entry to 1 with probability

pij = 1− exp
(
−[WorigHorig]ij

)
(5.27)

(see Fig. 5.9 for examples) using K = 4 fixed failure patterns Horig
1∗ , . . . ,Horig

4∗ and a randomly
generated 1000× 4 coefficient matrix Worig.
We use three binary patterns (white: 0, black: 1) and one pattern of values graded from zero in the
center to one on the edges (see Fig. 5.8, left hand side).
The preprocessed ALS-method yields quite good approximations of the original source patterns in
this example. After 1000 iterations refinement by Alternating Gradient Ascent, nearly perfect re-
construction of the original patterns is achieved (see Fig. 5.8). Note that in the images W and H
are re-scaled such that the maximum value in each pattern Hk∗ is given by one for reasons of better
visualization.
The top row of Fig. 5.9 contains examples for coefficients Wik in the toy data set. The second row
shows the corresponding binary images Xi∗ which are obtained by a setting the entries to 1 with
probabilities given by eq. (5.27). The leftmost example X1∗ consists of the vertical line (Horig

3∗ ) and
the continuous pattern on the edge (Horig

4∗ ), weighted by W13 and W14, while W11,W12 = 0. The
rightmost example X8∗ consists of the diagonal, horizontal and vertical lines (Horig

1∗ ,Horig
2∗ and Horig

3∗ ),
weighted by W81, W82 and W83 while W84 = 0.
The binNMF algorithm receives only the binary realizations X and the information K = 4 as input
and separates the underlying patterns H and the weights W.
The third row of Fig. 5.9 shows the weights WALS (the solution with optimal E(α,W,H) which are
the input for the refinement by Alternating Gradient Ascent (solutions WML shown in the last row).

5.5 Real world application

The examples presented show decompositions of real world data sets which were derived from special
measurements. The potential of the binNMF technique to discover localized patterns on binary
wafermaps is demonstrated.
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Figure 5.9: Toydata examples. Top: Original coefficients Wi∗, Second row: Binary realizations Xi∗,
Third row: Coefficients gained by ALS, Bottom: Coefficients after refinement by Gradient Ascent

5.5.1 Real World Example I

The real world example shows a decomposition of M = 3043 wafers, each containing M = 500 chips
into K = 6 basic patterns (see Fig. 5.10). The data stems from measurements which aim to identify
latent structures and detect potential failure causes in an early stage of the processing chain. A
different decomposition of the same dataset is shown in [SPL10]. The estimated K = 6 basic patterns
H1∗, . . . ,H6∗ have clearly different characteristics: One pattern of higher fail probability on the upper
side of the wafer, a bead centered on the wafer, a ring of fails on the edge zone, two different repeated
structures, and defects concentrated on the bottom of the wafer were detected. The related weight
coefficients W∗1, . . . ,W∗6 store the activity of each of the 6 putative basic patterns on each wafer
separately. This new representation of the data highlights wafers affected by the detected sources and
is intended to support the detection of potential error causes.
Figure (5.11) illustrates examples of the parts-based representation by relevant underlying patterns
of fail probabilities 1− exp (−WikHk∗) which generate the observed failure patterns. In this respect,
the binNMF method provides an alternative representation of a given dataset, separated in terms of
putative sources and their individual contributions.

5.5.2 Real World Example II

This second example shows two different decompositions of a total of 760 wafers into K = 5 and
K = 6 source components (see Fig. 5.12). Each wafer contains 3500 chips here and hence the images
have a higher resolution than in the previous example.
Again, different kinds of patterns are detected, some of which seem to have some rotational symmetry.
An interesting feature is visible in these images: In wafer processing, a set of 50 or 25 wafers is treated
as a unit called lot. Usually, all wafers of a lot have the same processing history, e.g. the whole lot
is processed by one machine at once, while different lots can have a different process history. In this
example, there are 25 wafers in a lot and we see that the computed source patterns often are active
in bundles of about 25 wafers. Either a whole lot is affected by a source or not. Note that the upper
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Figure 5.10: Estimated basic patterns H1∗, . . . ,H6∗ and contribution coefficients W∗1, . . . ,W∗6, es-
timated from a real dateset comprising 3043 wafers and 500 chips.

leftmost pattern 1 and the middle leftmost pattern 2 in decomposition in K = 6 sources shown in the
bottom of figure (5.12) seem to be rotated versions of each other and that source 1 becomes active
just as source 2 becomes inactive (corresponding to values between 350 and 375 on the abscissa which
give the indices of the processed wafers i.)
In this example two different decompositions in K = 5 and K = 6 sources are shown to emphasize
that there is no built-in criterion to automatically judge an optimal number of sources.
Based on the decompositions gained by the binNMF technique, engineers can select either already
known patterns or previously unknown ones and use the weight matrices for further analysis.
The main advantage of the technique is that the actual production process is treated as a black box.
As mentioned in the introductory chapter 1.2, there are lots of additional data available and can be
matched with the information generated by the binNMF technique to allow previously impossible
insights and improve failure analysis.
Note that the geometrical structure of the extracted patterns is a feature which can be easily assessed
by human experts. This can be used as an independent control mechanism to judge individual
decompositions, since the binNMF technique does not exploit the geometrical structure of the patterns.
The algorithm would reproduce the results irrespective of the ordering in which the chip positions are
aligned in the data matrix.
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Figure 5.11: Examples for parts based representations obtained by binNMF. The rightmost wafermaps
are the binary original data, the left images show the underlying patterns of fail probabilities in their
respective intensity 1− exp (−WikHk∗).
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Figure 5.12: Real world example II: dateset comprising N = 760 wafers and M = 3500 chips
top: Decomposition in K = 5 sources (left: 1,2,3, right: 4,5) bottom: decomposition in K = 6 sources
(left: 1,2,3, right: 4,5,6).
Visual inspection shows that four of the basis patterns Hk∗ are conserved while pattern HK=5

2∗ is
split into two new patterns HK=6

3∗ and HK=6
5∗ . An interesting detail of this example are the peaks

concerning bundles of 25 wafers representing the processing unit of a lot (e.g. in WK=5
∗4 and WK=5

∗5 ).
The plots indicate that the corresponding basis pattern is present on all wafers of one lot.
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5.6 Distinction from existing models

This section provides a short subsumption of existing literature on related topics. We will see that
none of the common techniques is suitable to find a satisfactory solution to the described problem
although some decisions on subproblems (e.g. in favour of a Bernoulli likelihood as cost function)
have been motivated by citations.
There are two prominent models which utilize the Bernoulli likelihood to model binary data via real-
valued source and weight variables, namely the logistic PCA [Tip99], [SSU03] and the Aspect Bernoulli
model [KB08]. We briefly discuss both of them and explain how our model is to be positioned right
in between them. Further, we briefly discuss additional approaches to decompose binary datasets,
noting that none of them covers all aspects of the binNMF problem setting (summarized in Fig.5.3).

5.6.1 Logistic PCA

Logistic PCA is an extension of usual principal component analysis (PCA) for dimensionality reduction
of binary data. There are three main contributions on this topic which are very similar to each other,
and we summarize them under the term logistic PCA ([Tip99], [CDS01], [SSU03]).
It is formulated as an optimization problem of the following likelihood which in our notation reads

P (Xij |W,H) = σ([WH]ij)Xij (1− σ([WH]ij))1−Xij (5.28)

where σ(z) = (1 + exp(−z))−1 is the logistic function.
Tipping [Tip99] utilized the model as a method to visualize binary datasets. He used a variational
technique to determine the optimal parameters.
Collins et al. [CDS01] extended PCA to the exponential family to provide dimensionality reduction
schemes for non-Gaussian distributions and describe a general optimization scheme in terms of Breg-
man distances. Since the Bernoulli distribution is a member of the exponential family, the framework
can also be applied to binary datasets and leads to the model given by eq. (5.28).
Schein et al. [SSU03] use a method closely related to the one in [Tip99], naming it logistic PCA and
demonstrate its power on data reconstruction on a variety of real world problems.
Since there is no non-negativity constraint on the factor matrices W and H negative values will occur
in the optimal solutions. These are not interpretable in the context of modeling a strictly additive
superposition of non-negative source variables.
Logistic PCA is a nonlinear version of PCA and thus has inherited most of its advantages and draw-
backs. While being very powerful when reconstructing high dimensional data using only a few com-
ponents, it might be hard to interpret the meaning of extracted components themselves. This issue
clearly has analogies to the continuous case, where non-negative matrix factorization ([LS99],[PT94])
leads to better interpretable results than linear PCA in applications where the non-negative superpo-
sition principle holds.
Logistic PCA and binNMF both optimize a Bernoulli likelihood which is parameterized by the set
of Bernoulli parameters Θij ∈ [0, 1]. Both methods utilize a non-linear function which transfers the
matrix product WH onto the range of the Θij . The main difference is given by the non-negativity
constraints in our model.

5.6.2 Aspect Bernoulli

The Aspect Bernoulli model, which was recently introduced by Kabán et al. [KBH04], and Bingham
et al. [BKF09], does not need a nonlinearity and decomposes the mean of the Bernoulli distribution
P (Xij = 0)AB = WHij instead of P (Xij = 0) = 1− exp(−WHij), which leads to the likelihood

P (Xij |W,H) = [WH]Xijij (1− [WH]ij)1−Xij . (5.29)
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In the Aspect Bernoulli model, both parameter matrices W and H are constrained to have entries
in [0, 1]. The matrix entry corresponding to entry Hkj of our pattern matrix H stores the Bernoulli
probability of the jth attribute being on, conditioned on the latent aspect k, while the parameter
corresponding to our weight Wik is the probability of choosing a latent aspect k in observation i.
In order to keep the product [WH]ij ≤ 1, the entries of row Wi∗ are further restricted to sum to
1, which is a standard mixture model assumption. The latter is the key feature which renders the
Aspect Bernoulli model not applicable for our purposes. Cases where more than one source is highly
active at the same time cannot be displayed properly. Suppose there are two aspects or elementary
causes highly active on one observation and each single cause has a probability larger than 0.5. This
would yield Wi1H1j > 0.5 and Wi2H2j > 0.5 ⇒ [WH]ij > 1, contradicting [WH]ij ∈ [0, 1]. Hence,
such cases cannot be handled by the Aspect Bernoulli model.
The authors of [BKF09] present a rather informative overview of related models and even mention
that an intermediate model between logistic PCA and aspect Bernoulli could be constructed. The
binNMF model is an example of such an intermediate model which is to be positioned right between
logistic PCA and Aspect Bernoulli.

5.6.3 Noisy-OR models

Saund’s multiple cause model [Sau95] discusses two neural network approaches with one hidden layer
and an output/input layer, namely the WRITE-BLACK and the WRITE-WHITE-AND-BLACK
model. The former describes a voting scheme in which hidden units either abstain (0) or vote ON
(1). One single vote ON suffices to turn the prediction unit ON. This voting scheme is analogous to
our idea of failure generation, except that we allow non-negative single probabilities, while the votes
of the hidden units are binary.
Dayan and Zemel [DZ95] introduce competition into the generative model by forcing at most one
cause to take responsibility on any occasion.
Recently, [SH06] modeled high-dimensional binary data as generated by a small number of hidden
binary sources combined via noisy-OR units. Indeed, Singliar et al. obtain a conditional probability
of the data given the latent source variables and coefficients which is identical to our log-likelihood
model 5.9, except that the source variables are restricted to be exclusively binary. The authors suggest
a variational EM algorithm to do the optimization. In each sub step, a set of variational parameters
is introduced which leads to a lower bound to the actual log-likelihood. This bound is maximized
with respect to the variational parameters in the E-step, and maximized with respect to the usual
variables in the M-step. Unfortunately, neither of the described steps has a closed form solution and
has to be solved via numerical methods. It is also unclear how close an optimum likelihood solution
can be reached by the variational method, since only a lower bound is maximized in each step, and
not the likelihood directly.
An extension of the method allowing non-negative source values could be an alternative to our gradient
algorithm as a refinement procedure, since the binNMF model can best be interpreted as an extension
to the noisy-OR model with nonnegative hidden units and connections, provided with the activation
function 1− exp(−z) to generate the output.
However, even exact EM algorithms are greedy algorithms and hence suffer from local maxima. We
expect our preprocessing procedure to search the parameter space for good initial points to increase
the performance of the noisy-OR methodology, too.

5.6.4 Probabilistic latent semantic analysis

Probabilistic latent semantic analysis (PLSA) [Hof99], assumes that a document can be described by
a generative process, in which words are related to topics and several topics can generate a document
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(see paragraph 2.5.3). In our case, a topic corresponds to a hidden elementary cause, a document is
analogous to a wafer, and a word resembles a fail chip.
The probability that word j occurs in document i can be expressed by a convex combination [Hof01]

P (di, wj) = P (di)
K∑
k=1

P (wj |sk)P (sk|di) (5.30)

Similar to the Aspect Bernoulli model discussed in section (5.6.2), this is a linear model for the
superposition, where the convexity constraint is imposed thereby keeping the composite expression
between 0 and 1. This property excludes the case where several elementary causes are simultaneously
active to a high degree, and hence this mixture assumption does not hold in the binary wafer test
data scenario considered here. On the other hand, there is no such limiting mixture assumption in
the binNMF model, and a non-competing combination of all possible sources is responsible for each
wafer instead of a mixture distribution.
In [SH06], the differences between noisy-or component analysis (NOCA) and mixture-based ap-
proaches such as the PLSA model are discussed in a text analysis context. These differences directly
transfer to the binNMF setting. NOCA and binNMF share a similar structure except for the allowed
values of the two factor matrices.
As pointed out by [Hof99], [SRS08], [BJ06] and others, probabilistic latent variable models have strong
connections to NMF and are identical in special cases. They differ from the current binNMF model
beneath others in being strictly linear.

5.6.5 Other approaches

Latent Dirichlet Allocation (LDA) [BNJ03] is a Bayesian extension to PLSA which adds a param-
eterized distribution for the documents, but still retains the mixture model property. Buntine and
Jakulin [BJ06] present a general framework called Discrete Component Analysis which generalizes
some of the methods mentioned here and places them into context. Zhang et al. [ZDLZ07] apply
the NMF methodology to decompose a binary matrix X into binary matrices W and H by enforcing
solutions with binary factor matrices. The method is called binary matrix factorization. Meeds et
al. [MGNR06] also introduce a model called binary matrix factorization in which a real-valued data
matrix X is factorized into a triple UWVT, where U and V are binary and W is a real-valued
matrix.

5.7 Summary

This chapter introduced a novel blind source separation approach called binNMF to extract system-
atic failure causes from binary wafer test data. A model for the data generating process based on a
minimum of assumptions was discussed which is closely related to the well-known NMF procedure and
can be interpreted as a binary extension thereof. A two stage optimization procedure was presented.
In a preprocessing step, the space of possible solutions is explored by a fast NMF algorithm on a sim-
plified approximation to the original problem. An alternating gradient procedure and a multiplicative
algorithm were discussed to optimize the actual problem in form of a Bernoulli log-likelihood in a
second fine-tuning step. The model was placed into context of existing literature on related topics,
concluding that none of the existing techniques provide a satisfactory solution to the described prob-
lem. The performance of the overall procedure was illustrated in an artificial toydata example. Two
real world applications demonstrate the potential of the binNMF technique to extract meaningful
components from binary real world datasets. While the usual uniqueness problem of NMF was shown
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to be irrelevant in this binary extension, the optimal number of sources remains an open question
here.
In the rest of this thesis, we will investigate Bayesian techniques and their potential to determine an
optimal number of components automatically.
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Chapter 6

Bayesian learning

Bayesian techniques are statistical approaches to data modeling which offer a structured way to
incorporate uncertainty.
Bayesian inference means techniques in which observations are used to compute a model which is a
joint probability distribution of observations, variables and parameters.
The most important equation in Bayesian inference is given by Bayes’ theorem

P (X,Y ) = P (X)P (X|Y ) = P (Y )P (Y |X) (6.1)

which states that the joint probability distribution function of two events or hypotheses X and Y can
be expressed in terms of marginal and conditional distributions.
If event X depends on an unknown variable Z, we can express all available information on Z by some
prior distribution P (Z) and integrate the variable out by the use of a second fundamental equation:

P (X) =
∫
P (X,Z)dZ =

∫
P (X|Z)P (Z)dZ (6.2)

which integrates over all possible values of Z.

6.1 Bayesian inference

The Bayesian probability of an event X is a person’s degree of belief in that event [Hec98]. Whereas
a classical probability is a physical property of the world, a Bayesian probability is a property of the
person who assigns the probability. An important difference between both, classical and Bayesian
probability is that one need not undertake repeated trials to determine a Bayesian probability.
Ghahramani [Gha04] explains the basic idea of Bayesian learning as follows: Suppose we wish to
design a machine which is able to explore the world all by itself. The machine has beliefs about the
world, and updates these beliefs on the basis of observed data. We must equip this machine with
some basic methodology to do this. It can be shown that, if certain axioms of coherent inference
are accepted, and if the machine represents the strength of its beliefs by real numbers, then the only
reasonable way of manipulating these beliefs is to follow the rules of probability [Jay03].
The machine permanently tries to explain the world by inventing new models and collecting data.
MacKay [Mac92a] distinguishes between two levels of Bayesian inference: At the beginning, data X
are gathered and alternative models are created. In the first stage of inference, the parameters of
each model are adjusted to the data. In the second stage of inference, we assign preferences to the
alternative models. On this basis, new data is gathered, new models are invented or future actions
are chosen.

73
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Let a model mi be parameterized by the set of parameters Θi.

1. For every single model mi, the posterior probability of its parameters Θi is computed according
to

P (Θi|X,mi) =
P (X|Θi,mi)P (Θi|mi)

P (X|mi)
(6.3)

In the first stage of inference, the parameters of a fixed model are adjusted to the data by
computing their posterior distribution.

2. At the second level of inference, the posterior probability of every model is computed according
to

P (mi|X) =
P (X|mi)P (mi)

P (X)
(6.4)

Based on the models’ posterior probabilities, we assign preferences to the alternative models.

Note that the data dependent term in the second stage on the right hand side of eq. (6.4) is the
normalizing constant in the fist stage

P (X|mi) =
∫
P (X|Θi,mi)P (Θi|mi)dΘi (6.5)

Assuming that there is no reason to assign different priors P (mi) and P (mj) to alternative models i
and j, different models are ranked by evaluating the evidence P (X|mi) which can be interpreted as
the support the data gives us for preferring model mi.
Except for very simple models, this integral is usually very complex and not computable directly.
In the Bayesian statistics community Markov Chain Monte Carlo (MCMC) is the method of choice
for approximating difficult high dimensional expectations and integrals [BG04]. Several methods have
been proposed for estimating the evidence, such as Chib’s method [Chi95], or Annealed Importance
Sampling [Nea01].
Sampling methods are prohibitive for large-scale problems, because they can be slow and the posterior
distribution over parameters is stored as a set of samples and can yield problems concerning memory.
Another approach is Laplace’s method which makes a local Gaussian approximation to the a poste-
riori distribution around its maximum (the MAP estimate) [Mac03]. In the large sample limit, this
approximation becomes more and more accurate, given some regularity conditions [BG04].
Variational methods [JGJS98] are deterministic approximations which make use of a lower bound by
suitable choices of a variational distribution and will be discussed in more detail in section 6.2.

6.1.1 Statistical physics

The techniques used to approximate the necessary integrals mentioned above also find application
in statistical physics, for example to evaluate the partition function of a large system of interacting
spins. Each state of N spins can be identified with a probability distribution

P (x|β,J) =
1

Z(β,J)
exp[−βE(x; J)] (6.6)

where x is a state vector x ∈ {−1,+1}N and E(x; J) is the energy of the state. The parameters J
are coupling constants and β = 1

kBT
with kB denoting Boltzmann’s constant and T a temperature.

The normalization constant is called a partition function

Z(β,J) =
∑
x

exp[−βE(x; J)] (6.7)
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where the summation goes over all possible states of x.
Many important statistical quantities of the system can be derived from the partition function, such
as its energy 〈E〉 = ∂lnZ

∂β , heat capacity Cv = ∂〈E〉
∂T or entropy S = ∂

∂T (kBT lnZ).

6.1.2 Graphical models

Probabilistic models for which a graph denotes the conditional independence structure between ran-
dom variables are called graphical models. Probabilistic inference in graphical models means the
computation of a conditional probability distribution over the values of some hidden variables Y,
given the values of some observed variables X

P (Y|X) =
P (Y,X)
P (X)

(6.8)

There are directed graphs and undirected graphs. Bayesian networks are directed graphs [Hec98]
which encode the joint probability distribution of variables. Each variable is expressed as a node in
the graph and depends on its parent nodes.
An undirected graphical model or Markov random field [JGJS98] can be specified by associating
potentials with cliques in the graph. A clique is defined as a maximal subset of fully connected nodes.
A potential is a function of the set of configurations of a clique that associates a positive real number
with each configuration. For every subset of nodes Ci that forms a clique, there is an associated
potential φi(Ci). The joint probability distribution for all nodes in the graph S is the product over
the clique potentials

P (S) =
∏
i φi(Ci)
Z

(6.9)

where the sum over all possible configurations

Z =
∑
{S}

∏
i

φi(Ci) (6.10)

just like in statistical mechanics, is called a partition function.
Directed graphical models can be transformed into undirected graphical models.
Many prominent examples can be represented as graphical models: Neural networks [SJ98] are layered
graphs with a nonlinear activation function at each node. Boltzmann machines [AHS85], [HS86] are
undirected graphical models with binary-valued nodes and a restricted set of potential functions.

6.1.3 Bayesian parameter estimation

Bayesian techniques offer a principled way to combine prior knowledge with data and motivate a
coherent framework for machine learning. Bayesian parameter estimation is stage 1 in the above
inference procedure described by eq. (6.3).

Maximum a posteriori estimation

Let the data X be generated by a model with parameters Θ. Note that here the conditioning on
a fixed model mi is assumed implicitly. Further let P (Θ) denote our initial (prior) belief on the
parameters’ values. In case of a vague guess, this can e.g. be a Gaussian around some expected value.
In absence of any opinion on the parameters, this can be some flat distribution, e.g. a uniform.
According to Bayes’ formula X.

P (X|Θ)︸ ︷︷ ︸
likelihood

P (Θ)︸ ︷︷ ︸
prior

= P (Θ|X)︸ ︷︷ ︸
posterior

P (X)︸ ︷︷ ︸
evidence

= P (X,Θ)︸ ︷︷ ︸
joint distribution

(6.11)
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the relevant quantities can be transformed into each other.

• The prior distribution P (Θ) expresses our knowledge on the parameters Θ before seeing the
data X

• The posterior distribution P (Θ|X) reflects our knowledge on Θ given X

• The likelihood P (X|Θ) is a function of the parameters Θ and describes the probability to observe
the data X if the parameters are set to Θ.

• The evidence P (X) =
∫
P (X|Θ)P (Θ)dΘ is the expected likelihood under the prior distribution,

and indicates how much the observed data X supports the model assumption (e.g. the structure
of the parameters Θ and the likelihood function).

Figure 6.1: MAP estimation: The arrival of the data X turns our prior belief on the parameters P (Θ)
into a posterior distribution P (Θ|X) via Bayes’ formula

So, the most probable parameters Θ in the light of the data can be computed by maximizing the
quantity

P (Θ|X) ∝ P (X|Θ)P (Θ) (6.12)

since P (X) does not depend on particular parameters.
This is called maximum a posteriori (MAP) estimation and extends the maximum likelihood (ML)
methodology by offering the possibility to incorporate prior knowledge on the parameters.
Usually it is computationally convenient to search for the maximum of the logarithm

log (P (X|Θ)P (Θ)) = log(P (X|Θ)) + log(P (Θ)) (6.13)

instead.

Example: Neural network’s constraint for large weight parameters.

The weight decay parameter in neural networks can be derived by a prior distribution on the param-
eters (here the couplings between the neurons)

P (Θ) ∝ exp
(
−βΘ2

)
(6.14)

which is a Gaussian distribution with mean 0 and β = 1
2σ2 .

The MAP estimate is the argument of the maximum of the quantity

log(P (X|Θ))− βΘ2 (6.15)
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Figure 6.2: Why Bayesian inference embodies Occam’s razor
The horizontal axis represents the space of all possible datasets X. A simple model B with few
adjustable parameters makes only a limited range of predictions, shown by P (X|B), while a more
powerful model A which has more free parameters is able to predict a greater variety of datasets. If
the observed data comes from region C, the evidence for the simpler model B is greater than the
evidence for model A. (figure and explanation are borrowed from [Mac03])

given some likelihood function P (X|Θ) (e.g. the quadratic deviation).
Summarizing, the MAP framework is the statistical formulation of certain optimization problems
which can be written as a cost function with regularization.
The negative log likelihood corresponds to the error function, while the regularizer can be interpreted
in terms of a log prior distribution over the parameters.

Conjugate priors

For a given likelihood function P (X|Θ) it is sometimes possible to choose the prior P (Θ) such that
the posterior P (Θ|X) has the same functional form as the prior.
The prior is said to be conjugate to the likelihood then [RS61].
If the likelihood belongs to the exponential family of distributions, there is always such a conjugate
prior.

6.1.4 Bayesian model selection and Occam’s razor

It is always possible to better explain a given dataset by a model with more parameters. Think of a
curve fitting problem by a set of splines. A given noisy curve can fitted arbitrarily well if the number
of splines used for the fit is increased without limitation. If the number of splines is too large, however,
the procedure will start to fit the noise and not the curve of interest. This is known as overlearning
or over-fitting [Bis96].
The Bayesian procedure for model comparison (stage 2) automatically incorporates a principle called
Occam’s razor, which states that “one should not increase, beyond what is necessary, the number of en-
tities required to explain anything” [citation found online at http://pespmc1.vub.ac.be/occamraz.html].
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The evidence P (X|A) that the data gives us for model A is a transportable quantity which allows the
comparison of completely different model structures with each other.

6.1.5 Examples for the evidence framework

The evidence framework has been applied e.g. in neural networks or interpolation tasks:

Neural Networks

MacKay [Mac92b] applied Bayesian inference techniques to the determination of optimal parameters
which change the effective learning model, e.g. the number of hidden units or weight decay terms in
backpropagation networks. A set of input-target pairs D = {xm, tm} is used to train a network with
architecture A and connections w to make predictions on the target outputs tm as a function of input
xm in accordance with the probability function P (tm|xm,w, β,A). A prior probability P (w|α,A) is
assigned to alternative network connection strengths w, and a posterior probability P (w|D,α, β,A)
of the network connections w is derived which depends on a decay rate α, the data error and a noise
parameter β. Different model structures can be compared by evaluating their evidence P (A|D) which
involves the determination of optimal values for the parameters α, β and the weights w (see [Mac92b],
[Mac99] for details).

Interpolation

The same framework of Bayesian model comparison was also applied by MacKay in a curve fitting
context as Bayesian Interpolation [Mac92a]. The interpolation examples include the determination of
an optimal number of basis functions in a polynomial model, to set the characteristic size in a radial
basis function (rbf) model and to determine the regularizer in a spline model. It was demonstrated
that the evidence framework can also be applied to compare the performance of these three totally
different models in the light of the data.

6.2 Variational Bayes

Variational techniques are used as approximation methods in a variety of fields such as statistics
[Rus76], statistical mechanics and quantum statistics [Fey72], [Par88], quantum mechanics [Mit94],
or finite element analysis [Bat96]. The strategy is always similar: a complex problem is converted
into a simpler one by decoupling the degrees of freedom in the original problem. This decoupling is
achieved by an expansion which includes additional adjustable parameters.
A famous example for variational techniques in physics are mean field approximations [Mac03], where
e.g. the interactions of many spins are replaced by an averaged quantity or mean field to make the
computations tractable.

6.2.1 A lower bound for the log evidence

In general, variational approximations are deterministic procedures which provide bounds for proba-
bilities of interest.
One possible bound is induced by Jensen’s inequality ([Jen06]). Let X denote the observed variables,
Y denote the latent variables, and Θ denote the parameters of a fixed model m which will be implicitly
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assumed in the following. The log evidence can be bounded from below

lnP (X) = ln
∫
P (X,Y,Θ)dYdΘ (6.16)

= ln
∫
Q(Y,Θ)

P (X,Y,Θ)
Q(Y,Θ)

dYdΘ (6.17)

≥
∫
Q(Y,Θ) ln

P (X,Y,Θ)
Q(Y,Θ)

dYdΘ (6.18)

=
∫
Q(Y,Θ) ln

P (Y,Θ|X)P (X)
Q(Y,Θ)

dYdΘ (6.19)

=
∫
Q(Y,Θ) ln

P (Y,Θ|X)
Q(Θ)

dYdΘ +
∫
Q(Y,Θ) lnP (X)dYdΘ (6.20)

= −KL(Q(Y,Θ)||P (Y,Θ|X)) + lnP (X) (6.21)

The first expression in the last line is the negative Kullback-Leibler divergence between the two
probability distributions Q(Θ) and P (Θ|X).
According to Gibb’s inequality, the KL-divergence between two probability distributions Q and P is
non-negative always and zero only if Q = P . This is a well-known result from statistical physics and
information theory [CT91], [Mac03]. Hence, maximizing the latter quantity w.r.t. the variational
distribution Q(Y,Θ) leads to

Q(Y,Θ) = P (Y,Θ|X) (6.22)

this means that the variational distribution equals the posterior distribution of the latent variables
and parameters.
Usually, the computation of the true posterior P (Y,Θ|X) is intractable.
Hence, simpler forms of the approximating distributions are chosen which render the problem tractable.
Hinton and van Camp [HvC93], Hinton and Zemel [HZ94] use a separable Gaussian form for Q in a
similar task.
In contrast, the so called free-form approach [Att00],[GB00b], assumes the following factorized ap-
proximation

Q(Y,Θ) ≈ Q(Y)Q(Θ) (6.23)

which yields a lower bound

lnP (X) ≥
∫
Q(Y)Q(Θ) ln

P (X,Y,Θ)
Q(Y)Q(Θ)

dYdΘ =: FQ (6.24)

In general, this factorized approximation of the true posterior will not reach equality and remain a
lower bound on the log evidence. The strategy of variational Bayes is thus to make this lower bound
as tight as possible.
It is interesting to rewrite the bound in eq.(6.24) as

FQ =
∫
Q(Y)Q(Θ) ln

P (X,Y|Θ)P (Θ)
Q(Y)Q(Θ)

dYdΘ (6.25)

=
∫
Q(Y)Q(Θ) ln

P (X,Y|Θ)
Q(Y)

dYdΘ +
∫
Q(Θ) ln

P (Θ)
Q(Θ)

dΘ (6.26)

=
〈

ln
P (X,Y|Θ)
Q(Y)

〉
Q(Y)Q(Θ)

−KL(Q(Θ)||P (Θ)) (6.27)
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where the first term corresponds to the averaged log likelihood and the second term is the KL dis-
tance between the prior and posterior approximation of the parameters. With increasing number of
parameters |Θ|, the KL distance grows and FQ decreases. Hence, a large number of parameters is
automatically penalized by the variational Bayes framework. This was pointed out by Attias [Att00],
who also showed that the popular Bayesian information criterion (BIC) for model order selection
[Sch78] is a limiting case of the variational Bayes framework. In the large sample limit N →∞, the
parameter posterior is sharply peaked about the most probable value Θ = Θ∗ and the KL-term in
FQ reduces to |Θ

∗|
2 lnN .

6.2.2 The VBEM algorithm

The Variational Bayesian EM algorithm [Att00], [GB01], [BG04] iteratively maximizes FQ in eq. 6.24
w.r.t. the free distributions Q(Y) and Q(Θ). Each update is done while keeping the other quantities
fixed.
Setting

∂

∂Q(Θ)
FQ + λ

(∫
Q(Θ)dΘ− 1

)
= 0 (6.28)

where λ is a Lagrange multiplier ensuring the normalization of the density Q immediately leads to

Q(Θ) ∝ P (Θ) exp
[∫

lnP (X,Y|Θ)Q(X)dX
]

(6.29)

Similarly, one can derive

Q(X) ∝ exp
[∫

lnP (X,Y|Θ)Q(Θ)dΘ
]

(6.30)

The equations (6.30) and (6.29) constitute the Variational Bayesian EM algorithm. Beal and Ghahra-
mani [BG04] show that the Variational Bayesian EM algorithm reduces to the ordinary EM algorithm
if the parameter density is restricted to be a Dirac delta function Q(Θ) = δ(Θ−Θ∗).
Attias [Att99], [Att00] was the first who described the variational Bayes framework and showed that
it is a generalization of the well-known EM algorithm [DLR77] which is the method of choice for
maximum likelihood parameter estimation in statistics. Before, Neal and Hinton [NH98] generalized
the EM algorithm for maximum likelihood estimation to cases where a lower bound is iteratively
maximized w.r.t. parameters and hidden variables.
Ghahramani and Beal [GB01] applied it to the large class of conjugate-exponential models, which can
be characterized by two conditions:

1. The complete-data likelihood is in the exponential family, i.e. can be written as

P (X,Y|Θ) = g(Θ)f(X,Y)eΦ
Tu(X,Y) (6.31)

where Φ(Θ) is the vector of natural parameters, u and f are functions and g is a normalization
constant.

2. The parameter prior is conjugate to the complete-data likelihood

P (Θ|η, ν) = h(η, ν)g(Θ)ηeΦ
T ν (6.32)

where η and ν are hyperparameters of the prior and h is a normalization constant.
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6.2.3 Applications of variational inference

Special attention has been spent on variational methods in context of graphical models (see [JGJS98]
for a tutorial on variational methods in graphical models). In densely connected graphical models
there are often averaging phenomena which render nodes relatively insensitive to particular values of
their neighbors. Variational methods take advantage of these averaging phenomena and can lead to
simple approximation procedures.
Machine learning applications of variational Bayes include Ensemble learning for neural networks
[HvC93] and mixtures of experts [WM96],
Utilizing mixture models as approximating distributions are discussed in [JJ98], [BLJJ98] and [Att00].
Variational Bayes versions of popular data analysis techniques have been developed, such as Bayesian
logistic regression [JJ97], Bayes mixtures of factor analyzers [GB00b], Variational Principal Com-
ponent Analysis [Bis99], Ensemble learning for Independent Component Analysis [Lap99], Factor
analysis [HK07], or Bayesian Independent Component Analysis [WP07].

Statistical physics, continued

In statistical physics, variational free energy minimization [Mac03] is a method which approximates
the (usually very complex) distribution P (x|β,J) given in eq. (6.6) by a simpler one Q(x; θ) that is
parameterized by adjustable parameters θ. The quality of the approximation can be measured by the
variational free energy

βF̃ (θ) =
∑
x

Q(x; θ) ln
Q(x; θ)
P (x|β,J)

− lnZ(β,J) (6.33)

which is the sum of the Kullback-Leibler divergence or relative entropy DKL(Q||P ) between the two
distributions Q and P and the true free energy of the system defined as

βF := − lnZ(β,J) (6.34)

Thus, the variational free energy βF̃ (θ) is bounded below by the true free energy βF and the two
quantities are equal if Q(x; θ) = P (x|β,J).
The optimization strategy is to vary the parameters θ such as to minimize βF̃ (θ). The approximating
distribution Q is then a simplified approximation to the true distribution P , and the value of βF̃ (θ)
will be an upper bound to βF .
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Chapter 7

Bayesian approaches to NMF

While we introduced the technique of NMF in chapter 2, and gave a general introduction on Bayesian
learning theory in chapter 6, this chapter brings both approaches together. First, the statistical
aspects of usual NMF are discussed in section 7.1. Then, section 7.2 briefly reviews existing literature
on Bayesian approaches to NMF.

7.1 The statistical perspective of NMF

While in chapter 2, NMF was formulated as an optimization problem of a cost function with non-
negativity (and other optional) constraints, we will discuss the statistical perspective of NMF in this
section.
We will recognize that plain NMF can be interpreted as maximum likelihood estimation with addi-
tional non-negativity constraints.
Suitable prior distributions can be used to enforce certain characteristics in the solutions and NMF
with additional constraints can be interpreted as MAP estimation.
As an example, we show that non-negative sparse coding [Hoy02] can be derived from MAP estimation
with an exponential prior.

7.1.1 NMF as Maximum likelihood estimation

The interpretation of NMF as maximum likelihood estimation has been recognized by several authors
(see e.g. [SDB+03], [CZA06], [SL08], [FC09] and others).

Gaussian noise

Assuming the usual NMF model with additional Gaussian noise:

X = WH + E⇔ E = X−WH (7.1)

where the matrix E denotes the reconstruction error whose entries Eij are assumed to be indepen-
dent identical distributed according to a Gaussian with zero mean and variance σ2

r (r stands for
reconstruction error). Due to the independence assumption the joint distribution of all data items
factorizes:

P (X|W,H) =
(
− 1√

2πσr

)NM∏
i

∏
j

1√
2πσr

e

(
1
2

(
Xij−[WH]ij

σr

)2
)

(7.2)
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Taking the logarithm yields

ln(P (X|W,H)) = −NM ln(
√

2πσr)−
1

2σ2
r

∑
i

∑
j

(Xij − [WH]ij)
2

︸ ︷︷ ︸
DE(X,WH)

(7.3)

Maximizing of the latter quantity w.r.t. W,H neglects the constant terms and we see immediately
that the minimization of the squares Euclidean distance DE(X,WH) for NMF (see eq. 2.4 in chapter
2) is equivalent to the maximization of a Gaussian likelihood. Note that the non-negativity constraint
on W and H must be stated in additionally.

Poisson noise

Poisson noise is in general used to describe the noise affecting counting processes, and is sometimes
called photon noise [BLZ07]. The pdf of a Poisson distribution is given by

P (n;λ) =
λn

n!
exp(−λ) (7.4)

where n is an integer and λ is the expected number of occurrences during a certain time interval here.
If we interpret non-negative numbers (such as pixel intensities in an image) as photon counts (e.g.
by virtually multiplying each value by some very large number), we can slightly abuse the notation
and assume that a pixel Xij is generated by a Poisson process with parameter [WH]ij . If we further
assume that all entries of X are independent of each other (the dependency structure is later induced
by the matrix product), we can write

P (X|W,H) =
∏
i

∏
j

[WH]Xijij exp(−[WH]ij)
Xij !

(7.5)

Taking the logarithm yields

ln(P (X|W,H)) =
∑
i

∑
j

Xij ln [WH]ij − [WH]ij − ln(Xij !) (7.6)

Stirling’s formula (ln(n!) ≈ n ln(n)− n for n >> 1) leads to an approximation

ln(P (X|W,H)) ≈
∑
i

∑
j

Xij ln
[WH]ij
Xij

− [WH]ij +Xij (7.7)

which is exactly the negative of the generalized Kullback-Leibler divergence for NMF DKL(X,WH)
. Again, the non-negativity constraints must be stated explicitly.
The two preceding examples show that the two widespread plain cost functions evolve automatically
in a maximum likelihood approach by assuming either additive Gaussian noise or Poisson noise.
However, the non-negativity constraint on the parameter matrices must be claimed in addition to
the maximum likelihood procedure. Similarly, the assumption of multiplicative Gamma noise can be
shown to lead to the Itakura-Saito divergence [FBD09].

7.1.2 Regularized NMF as MAP estimation

In paragraph 6.1.3, we introduced MAP estimation as maximization of the following quantity

P (Θ|X) ∝ P (X|Θ)P (Θ) (7.8)
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where X is the data and Θ are the parameters of a fixed model.
In the NMF-setting, the parameters are given by the two factor matrices Θ = {W,H}. In a Bayesian
setting, any prior knowledge must be incorporated by prior distributions. So for NMF, we need to
formulate the non-negativity e.g. of W by a prior distribution which is nonzero only if every entry
Wik ≥ 0.
There are lots of possible probability distributions on the non-negative reals, such as Exponential,
Gamma, Beta and others. Moreover, a non-negative distribution can be easily derived from any
distribution over the whole reals by truncating all negative elements and re-normalizing the remaining
distribution such that is integrates to 1.
An example is the rectified Gaussian distribution is the rectified Gaussian distribution

N+(x|µ, σ) =:

{
1

ZN+
e−

1
2 ( x−µσ )2

, 0 ≤ x <∞
0 otherwise

(7.9)

where the normalizing constant is given by

ZN+ =
1
2
σ
√

2π erfc
(
− µ

σ
√

2

)
and erfc(z) =: 2√

π

∫∞
z

exp (−t2)dt is the complementary error function.
The absence of additional knowledge on a parameter Wik except its non-negativity could e.g. be
encoded by

P (Wik) =
{
CW , if 0 ≤Wik ≤Wmax

0 else. (7.10)

where CW and Wmax are constants. Note that the actual value of Wmax is arbitrary, but must be
finite such that the distribution can be normalized

∫
P (Wik)dWik = 1⇒ CW = 1

Wmax
.

It is customary for NMF settings, to assume the two factor matrices independent a priori:

P (W,H) = P (W)P (H)

this states that without knowing X the knowledge of the matrix H does not improve our knowledge
on the matrix W.
Further a priori independence assumptions can be stated as:

P (W) =
∏
i

∏
k

P (Wik) (7.11)

P (H) =
∏
k

∏
j

P (Hkj) (7.12)

Under these assumptions, NMF can be stated as MAP estimation maximizing the following quantity:

ln ((P (X|W,H)P (W,H))
= ln(P (X|W,H)) + ln(P (W,H))
= ln(P (X|W,H)) + ln(P (W)) + ln(P (H))

=
∑
i

∑
j

lnP (Xij |W,H) +
∑
i

∑
k

lnP (Wik) +
∑
k

∑
j

lnP (Hkj)

Note that the last independence assumptions are not necessary in general. One can also model the
correlations between factors or properties within a factor (see e.g. [SL08]).
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Figure 7.1: Examples for the exponential distribution function p(t) = α exp(−αt). The parameter
α > 0 determines the slope of the function. Large α leads to increased preference of small values.

Non-negative sparse coding

Non-negative sparse coding [Hoy02] as discussed in chapter 3 can be derived in a MAP framework
under the following assumptions:

• P (X|W,H) =
∏
i

∏
j N (Xij ; [WH]ij , σ2

r)

• P (W,H) = P (W)P (H)

• P (W) =
∏
i

∏
k α exp(−αWik), α > 0

• P (Hkj) =
{

const., 0 ≤ Hkj ≤ Hmax

0, else.

MAP estimation means the maximization of the following quantity w.r.t W and H

ln(P (X|W,H)) + ln(P (W,H)) =

− 1
2σ2

r

∑
i

∑
j

(Xij − [WH]ij)
2 − α

∑
ik

Wik + constant terms

Multiplication by −2σ2
r and setting λ := 2σ2

rα ≥ 0 shows that this is equivalent to the minimization
of ∑

i

∑
j

(Xij − [WH]ij)2 + λ
∑
ik

Wik (7.13)

which is essentially the cost function used in [Hoy02] for non-negative sparse coding. (This interpre-
tation can also be found in [SL08]).
The idea of sparse coding is to encourage small values in the weight matrix W. The larger the
parameter α is set, the more are small values preferred over large ones since the exponential function
is steeper decreasing (see figure 7.1). Thus, sparse representations can be are favored by introducing
an exponential prior distribution on the weight matrix W. Note that other choices are possible to
enforce sparsity, e.g. a rectified Gaussian with mean parameter µ ≤ 0.
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7.2 Bayesian Nonnegative Matrix Factorization

The incorporation of Bayesian techniques to NMF is a natural step. Since NMF has in general no
unique solution (see the discussion in chapter 3) it is necessary to introduce some additional constraints
reflecting our prior knowledge on the system. The Bayesian formalism offers a possibility to do so.
It is not accidental that the Richardson-Lucy algorithm which was first presented in 1972 in a paper
titled Bayesian-Based Iterative Method of Image Restoration [Ric72] is one of the forefathers of modern
NMF algorithms [CZPA09].
As discussed in the previous section, it is well known in the NMF-literature, that the quadratic
cost function (2.4) can be derived by a maximum likelihood approach assuming additive Gaussian
noise, while the KL-divergence for NMF and the Itakura-Saito divergence can also be placed in a
probabilistic framework by maximum likelihood estimation assuming Poisson noise or multiplicative
Gamma noise respectively (see e.g. [CZA06], [SL08], [FC09]).
Several papers explicitly suggest Bayesian techniques to incorporate prior knowledge on the factor
matrices in NMF.
Moussaoui et al. [MBCMD04] present a Bayesian method for positive source separation and assign
independent Gamma priors for sources and mixtures.
Gaussian process priors for NMF are proposed by Schmidt et al. [SL08]. The matrices W and H are
assumed to be independently determined by a Gaussian process connected by a link function.
A slow variation in temporal structures is a desired property for the separation of audio signals and has
been incorporated e.g. by Markov-chain inverse Gamma prior distributions. For example, Virtanen
et al. [VCG08] propose Bayesian extensions for audio signal modeling and utilize a Poisson likelihood
and Gamma chain priors to model the spectral smoothness in natural sounds. Further, Bertin et al.
[BBV09] enforce spectral harmonicity by imposing that the basis components are expressed as linear
combinations of fixed narrow-band harmonic spectra and temporal continuity of the weights.
In the above examples, the Bayesian approach means to use not only the likelihood but to incorporate
prior knowledge on the sources and weights and perform MAP estimation. In MAP techniques,
however, the actual value of the posterior distribution is not exploited since the location of the
maximum is the only quantity of interest. In the introduction to Bayesian methods in chapter 6, we
have seen that Bayesian techniques can provide much more than just constrained optimization. So
called full Bayesian approaches which go beyond MAP estimation and utilize the Bayesian framework
e.g. for model selection to NMF have also been studied recently: Schmidt et. al. [SWH09] demonstrate
sampling schemes a Gaussian likelihood and exponential priors to evaluate the posterior distribution
of parameters. Cemgil [Cem09] discusses a variational Bayes approach (as introduced in section 6.2)
and sampling methods for the Poisson likelihood. Further, Févotte et al. [FC09] sketch the use of
MCMC and variational Bayes methods to perform Bayesian inference on NMF problems using the
Euclidean, KL-divergence and Itakura-Saito divergence. Tan and Févotte [TF09] discuss a technique
called automatic relevance determination which exploit Bayesian inference to automatically determine
the optimal number of components, given some suitable assumptions, in a KL-NMF setting.

7.2.1 Bayesian NMF

Bayesian non-negative matrix factorization (Schmidt et al. [SWH09]) assumes a Gaussian likelihood,
independent exponential priors on W and H with scales αik, βik and an inverse gamma with shape
k and scale θ prior distribution for the noise variance :

• P (X|Θ) =
∏
i

∏
j N (Xij ; [WH]ij , σ2

r)

• P (W) =
∏
i

∏
k αik exp(−αikWik)

• P (H) =
∏
k

∏
j βkj exp(−βkjHkj)
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• P (σ2
r) = θk

Γ(k) (σ2
r)k−1 exp(− θ

σ2
r
)

According to Bayes’ rule, the posterior distribution of all parameters in the model is given by

P (W,H, σr|X) ∝ P (X|W,H, σr)P (W)P (H)P (σr) (7.14)

The joint posterior density is approximated in a sampling scheme by iteratively sampling one pa-
rameter while keeping all others fixed. Expressions are derived for the conditional posterior densities
of the model parameters P (Wik|X,W¬ik,H, σ2

r), P (Hkj |X,W, H¬kj , σ
2
r) and P (σ2

r |X,W,H), where
the index ¬ik depicts all entries of a matrix except entry ik.
A Gibbs sampler [GG87] is used to maximize the posterior density of the parameters by iteratively
drawing samples from these conditional posterior distributions which converge towards the joint pos-
terior distribution. Fortunately, there are closed forms of the densities to be drawn from and hence no
samples need to be stored and the normalization constant can be computed. The authors demonstrate
that the procedure is able to determine the correct number of components in a toy example and in a
chemical shift imaging (CSI) dataset.
This method is related to a bilinear Bayesian approach [OSAMB99] for spectral decomposition which
uses a modified commercial MCMC toolbox, and the Bayesian non-negative source separation method
of Moussaoui et al. [MBMDC06] which incorporates a hybrid Gibbs-Metropolis-Hastings procedure.
The direct Gibbs sampling procedure [SWH09] is faster than its precursors. Moreover, it addresses
the problem of model order selection for NMF.

7.2.2 Automatic Relevance Determination

Tan and Févotte [TF09] discuss automatic relevance determination for KL-NMF for model order
selection which does not need to evaluate the evidence by formulating a MAP criterion:

CMAP (W,H, β) = − lnP (W,H, β|X) (7.15)
= − lnP (X|W,H)− lnP (W|β)− lnP (H|β)− lnP (β) (7.16)

using KL-divergence log likelihood and independent half-normal priors on each column of W and row
of H with precision parameter βk

P (Wik) =
√

2
βkπ

exp(−1
2
βkW

2
ik), Wik ≥ 0 (7.17)

P (Hkj) =
√

2
βkπ

exp(−1
2
βkH

2
kj), Hkj ≥ 0 (7.18)

The precision parameters βk are provided with a Gamma prior

P (βk|ak, bk) =
bakk

Γ(ak)
βak−1
k exp(−βkbk), βk ≥ 0 (7.19)

with fixed hyperparameters a and b.
A multiplicative algorithm optimizes CMAP in eq. (7.15) by iteratively updating H, W and β.
The data automatically determines the optimal values of the hyperparameters β. The algorithm is ini-
tialized with a relatively large value K of components and successively drives unnecessary components
to extinction. This property results from Bayesian inference: a subset of the precision parameters
will be driven to an upper bound which corresponds to a sharp peak at zero for the priors on W∗k
and row Hk∗ and leads to an effective extinction of column W∗k and row Hk∗. The effective number
of components is determined by the number parameters βk which are not driven to an upper bound
during the iterations.
The effect of automatic relevance determination in Bayesian inference was earlier described by MacKay
[Mac95] for supervised neural networks.
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7.2.3 Bayesian Inference for Nonnegative Matrix factorization models

The paper of Cemgil [Cem09] nicely explains the statistical framework of NMF for the KL-divergence.
It shows that adding Bayesian priors is equivalent to imposing regularization constraints to the NMF
cost function and further demonstrates how the Bayesian formalism allows inference of further prop-
erties such as the best number of components.

The statistical perspective of KL-NMF

Suppose there are two sets of parameters ΘW and ΘH which parameterize some probability distri-
butions p(W|ΘW ) and p(H|ΘH).
First, the latent sources Sikj are defined for i = 1, . . . , N j = 1, . . . ,M k = 1, . . . ,K. Each variable
Sikj can be drawn from a Poisson distribution with parameter WikHkj

Second, the observed data is given by
Xij =

∑
k

Sikj (7.20)

Hierarchical model

This leads to the following hierarchical model:

1. For i = 1, . . . , N , j = 1, . . . ,M , k = 1, . . . ,K:
Draw variables Wik and Hkj from some parameterized prior distributions

Wik ∼ p(Wik|ΘW ) and Hkj ∼ p(Hkj |ΘH) (7.21)

2. For i = 1, . . . , N , j = 1, . . . ,M , k = 1, . . . ,K:
Draw variable Sikj from a Poisson distribution

Sikj ∼ exp (Sikj ln(WikHkj)−WikHkj − ln Γ(Sikj + 1)) (7.22)

3. For i = 1, . . . , N , j = 1, . . . ,M
Compute

Xij =
∑
k

Sikj (7.23)

Maximum Likelihood

The log likelihood of the observed data X can be written as

LLX(W,H) =: lnP (X|W,H) = ln
∫

S

p(X|S)p(S|W,H)dS (7.24)

where all possible values of the tensor S are integrated over or marginalized out. The logarithm can
be brought inside the integral by introducing an instrumental distribution q(S) where

∫
S
q(S)dS = 1

and applying Jensen’s inequality [Jen06]

LLX(W,H) ≥
∫

S

q(S) ln
p(X|S)p(S|W,H)

q(S)
dS (7.25)

An EM-algorithm [DLR77] is applied which iteratively updates the latent variables S and parameters
W,H via

E-step q(S) = P (S|X,W,H) (7.26)
M-step (W,H) = argmax(W,H) 〈lnP (S,X|W,H)〉q(S) (7.27)
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The resulting equations turn out to be identical to the multiplicative NMF update rules for KL-
divergence [LS01], given in eq. 2.7 in chapter 2.

Full Bayesian Inference

Given the hyperparameters Θ =
{
ΘW ,ΘH

}
the evidence can be obtained by integrating over all

hidden variables and parameters

P (X|Θ) =
∫ ∫ ∫

P (X,S,W,H|Θ)dWdHdS (7.28)

=
∫
P (X|S)P (S|W,H)P (W,H|Θ)dWdHdS (7.29)

(7.30)

A variational Bayes algorithm [GB00b],[Att00] as described in section 6.2 is derived which iteratively
maximizes a lower bound BV B given by

BV B =
∫ ∫ ∫

q ln
P (X,S,W,H|Θ)

q
dWdHdS ≤ lnP (X|Θ) (7.31)

by the updates

q(S) ∝ exp
(
〈lnP (X,S,W,H|Θ)〉q(W)q(H)

)
(7.32)

q(W) ∝ exp
(
〈lnP (X,S,W,H|Θ)〉q(S)q(H)

)
(7.33)

q(H) ∝ exp
(
〈lnP (X,S,W,H|Θ)〉q(S)q(W)

)
(7.34)

The instrumental distribution q in eq. (7.31) is assumed to have a completely factorized form

q = q(S,W,H) =
∏
i

∏
k

∏
j

q(Sikj)
∏
i

∏
k

q(Wik)
∏
k

∏
j

Hkj (7.35)

The necessary expectations are functions of the sufficient statistics of the variational distributions q
and are derived for independent Gamma priors on Wik and Hkj which are conjugate to the Poisson
likelihood.
The paper further discusses a MCMC sampling algorithm which is omitted here.
Excellent results for model order selection according to the log evidence bound BV B and the sampling
algorithm on toy data and face images are presented.
This paper was discussed at length here since it remarkably summarizes the Bayesian approaches
to NMF, and, as a by-product shows that the original Lee-Seung algorithm for KL-NMF is an EM
algorithm and the variational Bayes algorithm a generalization thereof.
Févotte and Cemgil [FC09] present an EM algorithm for Euclidean NMF and mention that the update
equations differ from the usual multiplicative Lee Seung updates [LS01].
In paragraph 8.2, a counterpart to the variational Bayes algorithm discussed here for Euclidean NMF
using rectified Gaussian priors will be presented, whose maximum likelihood version turns out to be
identical to the Lee-Seung algorithm.



Chapter 8

Bayesian extensions to NMF

Although non-negative matrix factorization has become a popular analysis tool for non-negative data
sets (see the literature survey in chapter 2), there are still some open issues remaining partly unsolved.
Two important problems concern the uniqueness (discussed in chapter 3) and the determination of
the optimal number of underlying components.
The emergence of Bayesian techniques in combination with NMF (as reviewed in chapter 7.2) in the
recent past shows promising results towards the solution of the mentioned problems.
Usually, Bayesian methods are used to incorporate prior knowledge into the NMF problem. The
additional constraints expressed by prior distributions on the parameter matrices then induce some
kind of uniqueness to the NMF solutions. In section 8.1 we will see what happens if we use the
Bayesian formalism to express the absence of prior knowledge. A Bayesian optimality criterion for
NMF solutions in is derived using a Laplace approximation. In the special case of a Gaussian likelihood
a simple criterion arises from the general procedure.
A Gaussian likelihood counterpart to the variational Bayes NMF algorithm by Cemgil [Cem09] which
was discussed in paragraph 7.2 is given in section 8.2.2 and its ability to determine the optimal number
of components is investigated in simulations.
The Bayesian approach to NMF treats the factor matrices W and H as parameters, while the re-
construction error between the data X and its approximation WH is expressed by the logarithm of
a likelihood function P (X|W,H). The likelihood function can contain additional parameters, such
as the standard deviation σr in the Gaussian likelihood case. Further, prior distributions P (W)
and P (H) have to be assigned which can also have extra parameters called hyperparameters. The
Bayesian model for NMF is then specified by the likelihood function and the form of the priors plus
the factorization rank K which is the number of columns/rows in W/H.
Once all assumptions have been stated properly, inference follows automatically by the famous Bayes’
formula:

P (W,H,Θ|X,K)P (X|K) = P (X|W,H,Θ)P (W,H,Θ|K) (8.1)

where Θ denotes eventually additional parameters.
In section 8.2.2 we will interpret different models by different factorization ranks K and see how
Bayes can help to determine the optimal number of sources in a given data set under certain prior
assumptions.

8.1 The Bayesian approach to Uniqueness

We discussed the uniqueness ambiguity of an exact NMF problem X = WH in detail in chapter 3
from a geometrical point of view. Here, we build up on this and formulate the problem in a Bayesian
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context by stating all assumptions at the beginning. Each observation is stored in a row of the data
matrix X. These M-dimensional data vectors X1∗, . . . ,XN∗ ≥ 0 lie in the non-negative orthant. We
assume that each vector Xi∗ can be represented as a linear combination

Xi∗ =
K∑
k=1

WikHk∗ + Ei∗ (8.2)

where H1∗, . . . ,HK∗ ≥ 0 are the hidden basis vectors and Wi1, . . . ,WiK are the weights which are
necessary to describe vector Xi∗ in basis H. We further assume the entries of the noise Ei∗ to be
independent identical distributed according to a Gaussian with zero mean and standard deviation σr
N (0, σr).
If the number of basis components K is smaller than the original data dimension M , the basis vectors
span a K-dimensional subset of the M -dimensional non-negative orthant. W ≥ 0 means that the
data X lies in the positive span of the vectors given by the rows of H, or that the basis vectors enclose
the data in a non-negative fashion. We assume the noise level σr to be small such that the association
of basis vectors enclosing the data still holds approximately, and may be slightly violated by single
outer points.
Subtracting the noise from each observation,

Xi∗ −Ei∗ =
K∑
k=1

WikHk∗ (8.3)

the non-negative superposition model holds again. Note that the assumption of additive i.i.d. noise
Eij is only an approximation, since the left hand side of eq. (8.3) could be negative in principle if some
Xij − Eij < 0. Since the right hand side of eq. (8.3) is non-negative by definition and the observed
data is also non-negative, the noise is not independent from the data and small Xij are related to
small noise Eij in practice.
Keeping the noise parameter σr small in mind, this can be neglected here.
The ambiguity of NMF is an intrinsic problem of the matrix multiplication since any invertible matrix
S induces an alternative solution if WS−1 ≥ 0 and SH ≥ 0 since

X = WH = WS−1SH (8.4)

(see sections 3.1.2 and 3.2).

8.1.1 The most probable matrix H given X

Given a factorization rank K and a non-negative data set X, we are interested in the most probable
non-negative matrix H enclosing X via non-negative weights W in absence of any additional prior
information. This requires the computation of the posterior distribution of H, which can be written
according to Bayes’ rule as

P (H|X) =
P (X|H)P (H)

P (X)
(8.5)

We can formalize the absence of further knowledge on the values of H (except their non-negativity)
by assuming a flat prior

P (Hkj) =
{
CHk , if 0 ≤ Hkj ≤ Hk,max

0 else. (8.6)

where CHk and Hk,max are suitable non-negative constants such that the prior can be normalized∫
P (Hkj)dHkj = 1.
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Figure 8.1: Laplace’s method approximates a complicated function (solid) by a Gaussian around its
maximum (dotted) to estimate its integral (taken from [Mac03])

Assuming independent flat priors of the form (8.6) for every Hkj , according to eq. (8.5) the posterior
P (H|X), is proportional to P (X|H), which can be computed via

P (X|H) =
∫
P (X|W,H)P (W)dW (8.7)

The last expression represents the likelihood integrated over all possible Wik and involves NK dimen-
sions.

Laplace’s method

We can approximately solve the typically complicated integral in eq. (8.7) utilizing Laplace’s method
which is also known as saddle point approximation (see e.g. [Mac03]) as follows:
Let θ be a L-dimensional vector and P̃ (θ) an un-normalized probability density. Expanding the
logarithm of the integrand in ∫

P̃ (θ)dθ (8.8)

by a Taylor series around its maximum θ∗ yields

ln P̃ (θ) ≈ ln P̃ (θ∗)− 1
2

(θ − θ∗)TA(θ − θ∗) + ... (8.9)

where the first derivatives are zero due to the maximum condition and

Aij = − ∂2

∂θi∂θj
ln P̃ (θ)

∣∣∣∣
θ=θ∗

is the negative L× L Hessian matrix collecting the second order partial derivatives w.r.t. the entries
of vector θ.
Exponentiating both sides of eq. (8.9) yields

P̃ (θ) ≈ P̃ (θ∗) exp
(
−1

2
(θ − θ∗)TA(θ − θ∗)

)
(8.10)
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and the original integral can be approximated by the well-known L-dimensional Gaussian

∫
P̃ (θ)dθ ≈ P̃ (θ∗)

√
(2π)L

det(A)
(8.11)

8.1.2 Laplace’s approximation for NMF

Utilizing Laplace’s method, the integral (8.7) can be approximated by a Gaussian integral around the
maximum of the integrand, yielding

P (X|H) ≈ P (X|W∗,H)P (W∗)(2π)
NK
2 det−

1
2 (A(W∗)) (8.12)

where

A(W∗) =: − ∇W∇W {ln (P (X|W,H)P (W))}|W=W∗ (8.13)

is a NK ×NK matrix containing the negative second order derivatives w.r.t. all entries Wik at the
maximum.
Depending on the form of the likelihood P (X|W,H) and prior W, the second order Taylor approxi-
mation is more or less accurate. In a small surrounding of the maximum, it is always valid, but the
integrand can in general have various shapes with more ore less dominating maxima (see Fig. 8.1).

8.1.3 The Bayesian optimality condition for Gaussian NMF

Here we evaluate the Laplace approximation (8.12) in case of a Gaussian likelihood and independent
flat priors on W of the form.

P (Wik) =
{
CW , if 0 ≤Wik ≤Wmax

0 else. (8.14)

In case of the Gaussian likelihood for NMF

P (X|W,H) =
∏
i

∏
j

1√
2πσr

e
− 1

2

(
Xij−[WH]ij

σr

)2

(8.15)

the first order derivatives of ln(P (X|W,H)P (W) w.r.t. the entries of W are given by

∂

∂Wab
ln(P (X|W,H)P (W)) =

1
σ2
r

∑
j

(Xaj − [WH]aj)Hbj (8.16)

and the second order derivatives in eq. (8.13) are

∂2

∂Wab∂Wcd
ln(P (X|W,H)P (W)) = − 1

σ2
r

∑
j

HbjHdjδac (8.17)

leading to the following negative Hessian matrix of size NK ×NK:



8.1. THE BAYESIAN APPROACH TO UNIQUENESS 95

A =
1
σ2
r



[HHT ]11 0 0 · · · [HHT ]1K 0 0

0
. . . 0 · · · 0

. . . 0
0 0 [HHT ]11 · · · 0 0 [HHT ]1K

[HHT ]12 0 0 · · · [HHT ]2K 0 0

0
. . . 0 · · · 0

. . . 0
0 0 [HHT ]12 · · · 0 0 [HHT ]2K

...
. . .

...

[HHT ]1K 0 0 · · · [HHT ]KK 0 0

0
. . . 0 · · · 0

. . . 0
0 0 [HHT ]1K · · · 0 0 [HHT ]KK


where we exploited the symmetry of the matrix HHT = (HHT )T .
We can calculate the required det(A) using standard manipulations from linear algebra as follows.
For simplicity, we denote the matrix Ã := σ2

rA. Ã can be brought to upper triangular form Ã/ by
elementary row operations as shown in the sequel.

Computing the triangular form

We will sketch the operations to bring Ã to upper triangular form Ã/. The first entry to be eliminated
is [HHT ]12 on pos. (N+1,1). Subtracting

[HHT ]12

[HHT ]11
× row 1

from row (N + 1) yields a new diagonal entry

[HHT ]22 −
([HHT ]12)2

[HHT ]11
(8.18)

on pos. (N+1,N+1) and zeros on positions (N+1,1),. . . ,(N+1,N) of the new intermediate matrix.
The second entry of interest is [HHT ]12 on pos. (N+2,2). It can be eliminated by subtracting

[HHT ]12

[HHT ]11
× row 2

from row (N + 2), ending up with zeros on positions (N+2,1),. . . ,(N+2,N+1) and a diagonal entry
(N + 2, N + 2) given also by eq. (8.18). This scheme can be continued for the whole block (N +
1, 1) . . . (2N,N), and leads to N identical diagonal entries of the form (8.18).
In fact, the whole matrix Ã can be brought to an upper triangular form Ã/ by exactly the same
row manipulations which are necessary when transforming the simpler K × K matrix HHT to its
triangular form (HHT )/. Moreover, the resulting diagonal entries of Ã/ are N respective copies of
the diagonal entries of the corresponding triangular matrix (HHT )/.
Let λ1, . . . , λK denote the eigenvalues of HHT . Then then Ã has the eigenvalues (λ1)N , . . . , (λK)N ,
and

det(Ã) =
K∏
k=1

(λk)N = (
K∏
k=1

λk)N = (det(HHT ))N (8.19)
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and
det(A) = det(σ−2

r Ã) = σ−2NK
r det(Ã) = σ−2NK

r (det(HHT ))N (8.20)

The matrix A is well-behaved if its smaller counterpart HHT does so. This is the case if the factor-
ization rank is at least K.
Note further that in the current case (Gaussian likelihood and independent flat priors on W) all
terms in the Taylor expansion of order higher than two are zero and the expression given by eq.
(8.12) becomes an exact equality.
Taking the logarithm of eq. (8.12) and plugging in the result above,

lnP (X|H) =− 1
2σ2

r

∑
i

∑
j

(Xij − [W∗H]ij)
2 − N

2
ln det(HHT )

+NK lnCW +
NK

2
ln(2π) +NK lnσr (8.21)

The maximum of the above quantity w.r.t. H is the MAP estimate w.r.t. W and H since the
expansion is around the maximum value W∗.
Neglecting constants w.r.t. W and H, the optimal solutions of a given NMF problem in absence of
any prior knowledge on the factor matrices except non-negativity are given by those H ≥ 0,W ≥ 0
for which

BOC := − 1
2σ2

∑
i

∑
j

(Xij − [WH]ij)
2 − N

2
ln det(HHT ) (8.22)

is maximal.
We call the just derived criterion the Bayesian optimality condition for Gaussian NMF.

Geometrical interpretation

Geometrically, the determinant det(HHT ) describes the volume spanned by the vectors H1∗, . . . ,HK∗.
the last term in eq. (8.22) can thus be interpreted as a penalty term constraining large volumes. Re-
markably, the BOC describes the same solution as the one suggested by the determinant criterion
criterion in chapter 3, where the geometrically motivated regularization term α det(HHT ) was ap-
pended to the squared cost function and yielding a constrained minimization problem in eq. (3.8).
The geometrical motivation stipulated that the basis vectors should only span regions of the data
space if the observed data necessitates it. Due to the enclosing by non-negative weights W, this im-
plies that the volume spanned by the basis vectors H1∗, . . . ,HK∗ is minimal (under a normalization
constraint to exclude trivial solutions).
Concluding, we show that the detNMF algorithm introduced in paragraph (3.2.4) in each step de-
creases an upper bound to the negative of the BOC given by eq. (8.22).

Relation between the BOC and the detNMF criterion

The function f(t) = ln(t) is concave and hence is always bounded from above by a linear Taylor
approximation:

ln(t) ≤ ln t0 +
t− t0
t0

, for any t0 > 0 (8.23)

Setting a = det−1(H0HT
0 ) and b = ln det(H0H0

T ) − 1 which are constants w.r.t. H for some fixed
H0, we have

ln det(HHT ) ≤ a det(HHT ) + b (8.24)
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and thus

−σ2
rBOC =

∑
i

∑
j

(Xij − [WH]ij)
2 +Nσ2

r ln det(HHT ) (8.25)

≤
∑
i

∑
j

(Xij − [WH]ij)
2 +Nσ2

r(adet(HHT ) + b) (8.26)

Minimization of the latter expression implies maximization of eq. (8.22). Dropping the last constant
w.r.t. H, and setting α = Nσ2

r det−1(H0HT
0 ) we see that this is equivalent to the minimization of∑

i

∑
j

(Xij − [WH]ij)
2 + α det HHT (8.27)

which is exactly the detNMF cost function 3.8 proposed in chapter 3.
The parameter α depends on the number of observations N , the noise parameter σr and the actual
value H0.
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8.2 Variational methods

After we introduced the basic concept of variational methods in paragraph (6.2) and Cemgil’s appli-
cation thereof to Kullback-Leibler NMF (7.2.3), this section presents an analogon for Euclidean NMF.
Before we derive the Bayesian NMF algorithm, a maximum likelihood version is discussed which can
be seen as an introductory exercise for the later generalization.

8.2.1 Maximum likelihood

Here we show that the multiplicative update rules for Euclidean NMF presented by Lee and Seung
[LS01] can be interpreted as a variational maximum likelihood technique which optimizes a Jensen
[Jen06] bound.
Starting with the squared Euclidean distance, we utilize the convexity of the quadratic function and
derive an upper bound

E =
1
2

∑
i

∑
j

(Xij − [WH]ij)2 (8.28)

=
1
2

∑
i

∑
j

X2
ij − 2Xij [WH]ij +

(∑
k

WikHkj

)2


=
1
2

∑
i

∑
j

X2
ij − 2Xij [WH]ij +

(∑
k

qikj
WikHkj

qikj

)2


≤ 1
2

∑
i

∑
j

(
X2
ij − 2Xij [WH]ij +

∑
k

qikj

(
WikHkj

qikj

)2
)

=
1
2

∑
i

∑
j

(
X2
ij − 2Xij [WH]ij +

∑
k

1
qikj

(WikHkj)
2

)
=: Eq (8.29)

where qikj are auxiliary variables obeying∑
k

qikj = 1 for all i, j respectively. (8.30)

The partial derivative of the plain cost function E in eq. (8.28) w.r.t one entry Hkj

∂E

∂Hkj
= −

∑
i

(Xij − [WH]ij)Wik (8.31)

depends on the whole column H∗j and thus a usual gradient algorithm leads to inter-dependent
parameters during one update.
Introducing the auxiliary variables qikj leads to a decoupling of the Hkj : The partial derivative of the
bound Eq (8.29) w.r.t. Hkj

∂Eq
∂Hkj

= −
∑
i

(Xij −
WikHkj

qikj
)Wik (8.32)

does not depend on other entries of H except Hkj .
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optimal qikj

The auxiliary variables qikj can be chosen such as to make the bound as tight as possible by setting

∂

∂qikj

(
Eq + λij

(∑
k

qikj − 1

))
= 0 (8.33)

where the Lagrange multipliers λij ensure the sum-to-one constraint (8.30). Solving (8.33) yields

0 = − (WikHkj)
2

2q2
ikj

+ λij

⇔ qikj =
WikHkj√

2λij

The Lagrange parameters λij can be eliminated using the constraint (8.30)

1 =
∑
k

qikj =
∑
k

WikHkj√
2λij

⇔
√

2λij =
∑
k

WikHkj

and finally

qikj =
WikHkj∑
kWikHkj

(8.34)

There is an intuitive interpretation of the optimal auxiliary variables qikj : Since Xij ≈ [WH]ij is the
j’th dimension of variable i, from eq. (8.34) we see that qikj is the contribution of the k’th source to
[WH]ij , normalized by the contributions of all K sources [WH]ij .

Hence, there is a clear relation to the classic EM- algorithm [DLR77] if we interpret the source
contributions qikj as hidden variables and we alternate between updating the hidden variables qikj
(E-step) and the parameters Hkj and Wik (M-step).

This general interpretation of the EM- algorithm as lower bound maximization was mentioned in
[NH98] and [Min98].

An iterative procedure which is guaranteed not to increase the bound Eq then alternates between the
following steps:

Solve for all i, k, j 0 !=
∂

∂qikj

(
Eq + λij(

∑
k

qikj − 1)

)
(8.35)

Solve for all i, k 0 !=
∂Eq
∂Wik

(8.36)

Solve for all k, j 0 !=
∂Eq
∂Hkj

(8.37)
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optimal Hkj

The optimal Hkj are gained by solving

0 =
∂Eq
∂Hkj

= −
∑
i

XijWik +
∑
i

Hkj
W 2
ik

qikj

⇔ Hkj =
∑
iXijWik∑
i
W 2
ik

qikj

(8.38)

Plugging in the optimal qikj from eq. (8.34) yields

Hkj =
∑
iXijWik∑

i
W 2
ik

∑
lWilHlj

WikHkj

(8.39)

= Hkj

∑
iXijWik∑

iWik

∑
lWilHlj

(8.40)

= Hkj
[WTX]kj

[WTWH]kj
(8.41)

optimal Wik

In straight analogy, we can compute the optimal Wik;

0 =
∂Eq
∂Wik

(8.42)

= −
∑
j

XijHkj +
∑
j

Wik

H2
kj

qikj
(8.43)

⇔Wik =

∑
j XijHkj∑
i

H2
kj

qikj

(8.44)

= Wik
[XHT ]ik

[WHHT ]ik
(8.45)

Equations (8.45) and (8.41) constitute the well-known Lee-Seung algorithm [LS99] for Euclidean NMF
which we discussed already in the introductory NMF chapter 2, eq. (2.6).
We have just shown that the Lee-Seung algorithm for Euclidean NMF is generalized EM algorithm,
where the updates are performed in the following order:

1. update all qikj via equation 8.34

2. update all Hkj via equation 8.38

3. update all qikj via equation 8.34

4. update all Wik via equation 8.44

Steps (1) and (3) constitute a variational E-step, which computes an upper bound of Eq and minimizes
it, while steps (2) and (4) are usual M -steps which update the parameters.
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This example is discussed in detail as it nicely illustrates the generalized EM algorithm as bound
optimization instead of the cost function itself.
Note that the non-negativity constraints on W and H need not be mentioned at any point and are
conserved just by the multiplicative structure. The parameters need only be initialized by non-negative
values.

8.2.2 Variational Bayes for Gaussian NMF

This section presents a variational Bayes algorithm for NMF under assumptions of a Gaussian likeli-
hood and rectified Gaussian prior distributions. It can be interpreted as a variational Bayes extension
to the Euclidean NMF algorithm by Lee and Seung [LS99] in its generalized EM interpretation given
in the preceding paragraph (8.2.1). Here, probability distributions on the parameter matrices and
their expectations are treated rather than point estimates in ML or MAP estimation techniques.
A similar couple of a maximum likelihood method together with its variational Bayesian extension
was discussed for the Aspect Bernoulli model by Bingham and Kabán et al. ([KBH04], [BKF09],
[KB08], see also paragraph (5.6.2)).
Variational methods have been extensively used for Bayesian learning tasks (see also [JGJS98], [Bis99],
[Att00], [GB01], [HK07], [KB08] for examples).
To keep this section self-contained, we will give the whole derivation here, although some issues have
already been discussed in preceding sections (e.g. in paragraphs 6.2, 7.2).
The main goal is to find a tractable approximation of the log evidence term

lnP (X) = ln
∫
P (X|W,H)P (W,H)dWdH (8.46)

which requires K(N +M) integrations over all parameters Hkj and Wik.
The first step is to bring the logarithm into the integral. This can be done by introduction of a
variational probability density Q(W,H) such that∫

Q(W,H)dWdH = 1 (8.47)

and application of Jensen’s inequality [Jen06]

lnP (X) ≥
∫
Q(W,H) ln

P (X|W,H)P (W,H)
Q(W,H)

dWdH

= 〈lnP (X|W,H)〉Q(W,H) +
〈

ln
P (W,H)
Q(W,H)

〉
Q(W,H)

:= BQ (8.48)

where 〈·〉Q denotes the expectation w.r.t. Q.
It can be shown that the lower bound BQ equals the log evidence lnP (X) if Q is the joint posterior
distribution of the parameters, Q(W,H) = P (W,H|X) (see section 6.2, [Gha04])
This posterior is intractable in general, but sampling procedures can be applied to approximate it
(see [SWH09]). Here, we follow a variational approach which is a variant of the Variational Bayesian
EM Algorithm [Att00], [GB01] which was introduced in paragraph 6.2.2.
The following simplifying assumptions are made:

Q(W,H) =
∏
i

∏
k

Q(Wik)
∏
k

∏
j

Q(Hkj) (8.49)

P (W,H) =
∏
i

∏
k

P (Wik)
∏
k

∏
j

P (Hkj) (8.50)
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The first assumption (8.49) implies that equality in (8.48) cannot be reached in general. Instead an
approximation of the actual posterior distribution which is completely factorized will be computed.
The second assumption (8.50) expresses that the parameters are independent a priori. This limitation
is not necessary in general, but reasonable if we do not have explicit prior knowledge. A priori inde-
pendence means here that knowledge of one parameter Hkj does not contain additional information
about any other parameter’s value before the data arrives. In the NMF model, all dependencies are
modeled by the matrix product X ≈ WH, and the a priori independence assumption is suggestive
and will simplify the computations.
We further assume the Gaussian likelihood for NMF

P (X|Θ) =
∏
i

∏
j

N (Xij ; [WH]ij , σ2
r) (8.51)

Putting everything together, the bound BQ from eq. 8.48 takes the form

BQ = − NM

2
ln(2π)−NM lnσr

− 1
2σ2

r

∑
i

∑
j

{X2
ij

−2Xij

∑
k

〈Wik〉Q(Wik) 〈Hkj〉Q(Hkj)

+
〈
([WH]ij)2

〉
Q(W),Q(H)

}

+
∑
i

∑
k

〈
ln
P (Wik)
Q(Wik)

〉
Q(Wik)

+
∑
k

∑
j

〈
ln
P (Hkj)
Q(Hkj)

〉
Q(Hkj)

(8.52)

Equation (8.52) contains coupled expectations of the form
〈
([WH]ij)2

〉
Q(W),Q(H)

. Application of
Jensen’s inequality once more by the same trick which was used in eq. (8.29) in the maximum
likelihood version decouples these terms and leads to an additional lower bound

BQ ≥ − NM

2
ln(2π)−NM lnσr

− 1
2σ2

r

∑
i

∑
j

{X2
ij

−2Xij

∑
k

〈Wik〉Q(Wik) 〈Hkj〉Q(Hkj)

+
∑
k

1
qikj

〈
(Wik)2

〉
Q(Wik)

〈
(Hkj)2

〉
Q(Hkj)

}

+
∑
i

∑
k

〈
ln
P (Wik)
Q(Wik)

〉
Q(Wik)

+
∑
k

∑
j

〈
ln
P (Hkj)
Q(Hkj)

〉
Q(Hkj)

=: Bq (8.53)

The price to pay for the decoupling comprises additional parameters qikj such that
∑
k qikj = 1

for every observation ij. Bq is always a lower bound to the log evidence and we gain the best
approximation to lnP (X) if we maximize it w.r.t. all variational distributions Q(Wik) and Q(Hkj)
as well as the decoupling parameters qikj .
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Note that a strict Bayesian approach would require assigning a prior distribution to the noise param-
eter σr as well and performing one more integration. Following the discussion in [Mac92a], we assume
that the distribution P (σr|X,W,H) is sharply peaked at the maximum. Thus, we can maximize Bq
w.r.t. σr instead of performing another integral.
The optimal variational densities can be obtained by solving the following equations using variational
calculus (see e.g. [Bis96] for a brief introduction to the necessary background )

0 !=
∂

∂Q(Hkj)

(
Bq − λHkj

(∫
Q(Hkj)dQ(Hkj)− 1

))
(8.54)

0 !=
∂

∂Q(Wik)

(
Bq − λWik

(∫
Q(Wik)dQ(Wik)− 1

))
(8.55)

where λHkj and λWik are Lagrange parameters ensuring that Q(Hkj) and Q(Wik) are densities. Further,
the bound has to be maximized w.r.t. to the additional parameters by solving

0 !=
∂

∂qikj

(
Bq − λqikj

(∑
k

qikj − 1

))
(8.56)

with Lagrange multipliers λqikj .
Straightforward computation (see appendix C.1) leads to the following form for the optimal Q(Hkj):

Q(Hkj) ∝ P (Hkj) exp
(
αHkj(Hkj)2 + βHkjHkj

)
(8.57)

where

αHkj = − 1
2σ2

r

∑
i

1
qikj

〈
(Wik)2

〉
Q(Wik)

(8.58)

and

βHkj =
1
σ2
r

∑
i

Xij 〈Wik〉Q(Wik) (8.59)

The optimal Q(Wik) can be computed in complete analogy:

Q(Wik) ∝ P (Wik) exp
(
αWik (Wik)2 + βWikWik

)
(8.60)

where

αWik = − 1
2σ2

r

∑
j

1
qikj

〈
(Hkj)2

〉
Q(Hkj)

(8.61)

and

βWik =
1
σ2
r

∑
j

Xij 〈Hkj〉Q(Hkj)
(8.62)

Note that the distribution Q(Hkj) depends on the first and second order expectations 〈Wik〉Q(Wik)

and
〈
(Wik)2

〉
Q(Wik)

w.r.t. Q(Wik) and vice versa.
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The decoupling parameters qikj make the bound as tight as possible if they are set to

qikj =

√
〈(Wik)2〉Q(Wik) 〈(Hkj)2〉Q(Hkj)∑

k

√
〈(Wik)2〉Q(Wik) 〈(Hkj)2〉Q(Hkj)

(8.63)

Further, the optimal noise parameter σr is given by

σ2
r =

1
NM

∑
i

∑
j

{
X2
ij

− 2Xij

∑
k

〈Wik〉Q(Wik) 〈Hkj〉Q(Hkj)

+
∑
k

1
qikj

〈
(Wik)2

〉
Q(Wik)

〈
(Hkj)2

〉
Q(Hkj)

}
(8.64)

(see appendix (C.1) for the derivations).
Before the expectations w.r.t. the distributions Q(Wik), Q(Hkj) can be evaluated, the prior distri-
butions P (Wik), P (Hkj) need to be specified. Here we utilize the concept of conjugate priors as
discussed in paragraph (6.1.3).

Conjugate priors

If we assume the prior on Hkj to be of the form

P (Hkj) ∝ exp
(
(αHk0(Hkj)2 + βHk0Hkj

)
(8.65)

then the variational distribution will retain the same functional form

Q(Hkj) ∝ exp
(
(αHk0 + αHkj)(Hkj)2 + (βHk0 + βHkj)Hkj

)
(8.66)

This property is known as conjugacy in Bayesian literature [RS61]. Of course, we could chose other
forms, but conjugacy renders the computations easier.

The rectified Gaussian distribution

A prior of the form (8.65) which is nonzero on the non-negative reals only is given by the rectified
Gaussian distribution. It evolves from a usual Gaussian by truncating all negative entries an re-
normalizing the integral to one.

N+(θ|µ, σ) =:

{
1

ZN+
e−

1
2 ( θ−µσ )2

, 0 ≤ θ <∞
0 otherwise

(8.67)

The normalization constant is given by

ZN+ =
1
2
σ
√

2π erfc
(
− µ

σ
√

2

)
(8.68)

where
erfc(z) =:

2√
π

∫ ∞
z

exp (−t2)dt (8.69)

is the complementary error function.
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Figure 8.2: Examples for the rectified Gaussian distribution with different parameters

The rectified Gaussian distribution can model a variety of different shapes (see Fig. 8.2 for examples)
For a < 0 and b 6= 0 the distribution has a Gaussian, for a = 0 and b 6= 0 an Exponential, and for
a = 0 b = 0 it has a Uniform shape.
The expectations required for our purpose w.r.t. a rectified Gaussian distribution are given by

〈θ〉N+ = µ+
σ2

ZN+
e−

µ2

2σ2 (8.70)

〈θ2〉N+ = σ2 + µ · 〈θ〉N+ (8.71)

(see appendix C.2)

The VBNMF update rules

We chose the prior distributions on W to be rectified Gaussians

P (Wik) ∝

[
exp

(
−1

2

(
Wik − µW0k

σW0k

)2
)]+

, Wik ≥ 0, 0 else (8.72)

where [·]+ indicates the truncation at zero and µW0k , σW0k denote the parameters of the prior distri-
butions. One of them is assumed for each column W∗k which expresses our belief that the a priori
weights of source k are assumed to be drawn from the same distribution. Similarly, we chose the prior
distribution on each row Hk∗ to be

P (Hkj) ∝

[
exp

(
−1

2

(
Hkj − µHk0

σHk0

)2
)]+

, Hkj ≥ 0, 0 else (8.73)

Due to the conjugacy principle, it follows that

Q(Wik) ∝

[
exp

(
−1

2

(
Wik − µWik

σWik

)2
)]+

(8.74)
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and

Q(Hkj) ∝

[
exp

(
−1

2

(
Hkj − µHkj

σHkj

)2
)]+

(8.75)

where

µWik
=
µWik

σ−2
Wik

+ (σr)−2
∑
j Xij 〈Hkj〉Q(Hkj)

σ−2
Wik

+ (σr)−2
∑
j q
−1
ikj

〈
H2
kj

〉
Q(Hkj)

(8.76)

σWik
=

σ−2
Wik
− (σr)−2

∑
j

q−1
ikj〈H

2
kj〉Q(Hkj)

− 1
2

(8.77)

and

µHkj =
µHkjσ

−2
Hkj

+ (σr)−2
∑
iXij 〈Wik〉Q(Wik)

σ−2
Hkj

+ (σr)−2
∑
i q
−1
ikj 〈W 2

ik〉Q(Wik)

(8.78)

σHkj =

(
σ−2
Hkj
− (σr)−2

∑
i

q−1
ikj

〈
W 2
ik

〉
Q(Wik

)

)− 1
2

(8.79)

Equations (8.76)-(8.79) follow by quadratic complement (see appendix C.2).
If we have no knowledge on the actual values of the prior parameters, these hyperparameters µW0k ,
σW0k and µHk0 , σHk0 can also be updated by the algorithm by solving the implicit equations (8.80)-
(8.83) by iteration:

∂Bq
∂µW0k

!= 0 ⇔ µW0k =
1
N

∑
i

〈Wik〉Q(Wik) −
σ2
W0k

ZWk

e
−
µ2
W0k

2σ2
W0k (8.80)

∂Bq
∂σW0k

!= 0 ⇔ σW0k =


∑
i

〈
(Wik − µW0k)2

〉
Q(Wik)

N

1− µW0k
ZWk

e
−
µ2
W0k

2σ2
W0k





1
2

(8.81)

and

∂Bq
∂µHk0

!= 0 ⇔ µHk0 =
1
N

∑
j

〈Hkj〉Q(Hkj)
−
σ2
Hk0

ZHk
e
−
µ2
Hk0

2σ2
Hk0 (8.82)

∂Bq
∂σHk0

!= 0 ⇔ σHk0 =


∑
j

〈
(Hkj − µHk0)2

〉
Q(Hkj)

M

1− µHk0
ZHk

e
−
µ2
Hk0

2σ2
Hk0





1
2

(8.83)

(see appendix C.3 for the derivations).
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The VBNMF algorithm

The overall Variational Bayes NMF (VBNMF) algorithm can be summarized by

• set hyperparameters µHk0 , σHk0,µW0k,σW0k

• initialize µHkj, σHkj, µWik
, σWik

and σr

• Repeat

1. compute all qikj via eq. (8.63)

2. update all µHkj, σHkj using eqns. (8.78, 8.79)

3. update all µWik
and σWik

using eqns. (8.76,8.77)

4. update σr via eq. (8.64) *

5. update hyperparameters using eqns. (8.80)-(8.83) *

6. compute Bq (eq. 8.53) **

until convergence

Steps 4− 5 * are optional if no prior knowledge exists, step 6 ** can be performed only occasionally
testing convergence. The hyperparameter update equations (5) need to be iterated in sub-loops, since
they have to be solved self-consistent.
Since the overall algorithm is a generalized EM algorithm (see paragraph 6.2.2 and [Att00], [GB01])
convergence towards a local optimum is assured.
To avoid getting stuck in a local optimum, the overall procedure should be repeated several times using
different initializations. To save computational time, the maximum likelihood estimates gained via
some standard NMF algorithm can be used to derive the necessary initial values. For example, σHkj
can be approximated by a Gaussian approximation similar as in paragraph (8.1) from HML

kj , while
µHkj can be estimated if we associate 〈Hkj〉N+(µHkj ,σHkj ) = HML

kj . Similarly, the hyperparameters

µHk0 and σHk0 can be estimated from the distributions of the whole row HML
k∗ .

8.2.3 Simulations

Toydata with valid and violated prior assumptions

Artificial datasets were generated using the fixed 3× 5 matrix

H =

 3 1 0 1 3
1 2 3 4 5
0 3 3 3 0

 (8.84)

which is familiar from the simulations in chapter 3. Each row of matrix W was generated by a rectified
Gaussian distribution with parameters set to µ0k = 3k and σ0k = 3k. We discuss the two cases where

1. matrix W obeys the prior assumptions and is generated from a rectified distribution (figure 8.3,
left)

2. several entries of the matrix W are set to zero, such that the Wik are drawn from a mixture of
a rectified Gaussian and a peak at zero (figure 8.3, right)
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to investigate the robustness of the technique w.r.t. violations of the prior assumptions.
The data X was then generated according to

X = WH +N (0, σr) (8.85)

where negative elements in X were set to zero. The VBNMF algorithm was applied while varying
the factorization rank K = 2, . . . , 8. We algorithmically update the hyperparameters as well, since in
general this prior knowledge is not available. Note that the fixed matrix H given by equation (8.84)
does not obey the prior distribution assumed. Since the size of H : 3 × 5 is small compared to the
size of W : 1000× 3, the violation can be ignored.

Figure 8.3: Histograms of the original columns of the 1000 × 3 matrix W; left: rectified Gaussian
P (Wik) = N+; right: rectified Gaussian with additional peak at 0: P (Wik) = τN+ +(1−τ)δ(Wik−0)

Several instances of the noise parameter σr were tested and we eliminated possible negative data
entries induced by the noise by setting them to zero. Note that this truncation constitutes a slight
violation of the likelihood assumption which increases with varying noise level. If the assumption
concerning the distribution of W holds true and the entries of each column W∗k are drawn from
rectified Gaussian distribution (Fig. 8.3, left)

P (Wik) = N+(µ0k, σ0k) (8.86)

the correct number of sources is detected by the VBNMF algorithm for various noise levels (see Fig.
8.4)
If the assumption on the prior of W is violated by adding a delta peak at zero to the rectified Gaussian
distribution (Fig. 8.3, right)

P (Wik) = τN+ + (1− τ)δ(Wik) (8.87)

the true number of sources K = 3 is detected only in the noise-free case (see Fig. 8.5). If the noise
level is low (σr = 1 here) the log evidence bound Bq overestimates the number of sources slightly,
while in case of high noise levels, the used model comes to a wrong answer.
The simulations consider the two cases where the assumed model either conforms to the prior as-
sumptions or where the distribution of matrix W is not identical to the assumed prior form. In the
first case, the VBNMF algorithm could indeed recover the correct number of sources by showing a
clear maximum at K = 3 (see Fig. 8.4). In the second case, the algorithm recovered the correct K
only in the absence of noise and failed at high noise levels.
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Figure 8.4: The log evidence bound Bq (y-axis) w.r.t. the number of components K (x-axis) for
various reconstruction errors σr if the model assumptions hold true. top,left: no noise; top,right:
σr = 1; bottom,left: σr = 10; bottom,right: σr = 20. The correct number of sources K = 3 is
recognized in all cases.

Recall the individual components of the log evidence bound Bq

Bq =
NM

2
ln(2π) (8.88)

− NM lnσr (8.89)

− 1
2σ2

r

∑
i

∑
j

{X2
ij (8.90)

−2Xij

∑
k

〈Wik〉Q(Wik) 〈Hkj〉Q(Hkj)
(8.91)

+
∑
k

1
qikj

〈
(Wik)2

〉
Q(Wik)

〈
(Hkj)2

〉
Q(Hkj)

} (8.92)

+
∑
i

∑
k

〈
ln
P (Wik)
Q(Wik)

〉
Q(Wik)

(8.93)

+
∑
k

∑
j

〈
ln
P (Hkj)
Q(Hkj)

〉
Q(Hkj)

(8.94)

Terms (8.88)-(8.92) are the expected log likelihood 〈lnP (X|WH, σr)〉Q under the variational distri-
bution Q If the number of parameters K grows, the expected maximum log likelihood grows as well
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Figure 8.5: The log evidence bound Bq (y-axis) w.r.t. the number of components K (x-axis) for
various reconstruction errors σr if the prior distribution assumption is violated. top,left: no noise;
top,right: σr = 1; bottom,left: σr = 10; bottom,right: σr = 20. Only in the noise-free case the true
number K = 3 is detected.

since the product WH can be more flexible adjusted to the data. To prevent the algorithm from
over-fitting, a too large number of parameters must be penalized.
Term (8.93) can be written as

∑
i

∑
k

∫
Q(Wik) ln

P (Wik)
Q(Wik)

dQ(Wik) = −
∑
i

∑
k

KL(Q(Wik)||P (Wik)) (8.95)

which is the sum of negative KL-divergences KL(Q||P ). As a consequence of Gibb’s inequality, each
summand is negative (see section 6.2.1). If the number of components K is increased, the sum over
k involves more terms.
Here, the parameters are bundled such that each entry of the k’th column W∗k shares the same
hyperparameters µW0k and σW0k . Hence, with increasing K there are more individual penalty terms.
If the gain in the log likelihood is small compared to the cost of extra parameters, the overall bound
Bq will be larger if extra penalization is avoided. This can be done by setting the distributions
corresponding to a whole column Q(W∗k) to the prior distribution P (Wik).
Similarly, the term (8.94) penalizes large numbers of basic patterns Hk∗.
The benefit of the Bayesian approach is that the balance between the log likelihood terms and the
penalty terms is induced by formalism from the prior assumptions.
So, if applied to a system which fulfills all assumptions properly, a Bayesian approach will give
satisfactory answers.
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If some of the assumptions are violated in the system under investigation instead, the Bayesian
formalism will also give an answer, but one must keep in mind that the Bayesian answer is always a
consequence of the prior assumptions.
So the main focus when applying a Bayesian approach should be to carefully check the validity of the
prior assumptions.

VBNMF for binary toydata

Here we investigate the potential of the VBNMF algorithm on a binary toydata set, similar to the
one used in chapter (5).
The basic patterns given by the 4 × 900 matrix H are those familiar from the simulations on the
binary NMF problem and are shown in Fig. (8.6), left. The original 1000 × 4 weight matrix W is
given by columns with characteristic shapes, e.g. sinusoid or sawtooth which are easily recognized by
visual inspection, but, of course unknown to the VBNMF algorithm (see Fig. 8.6, center).

Figure 8.6: left: original H; first row: H1∗ H2∗, second row: H3∗, H4∗. center: original weights W;
from top to bottom: W∗1, . . . ,W∗4. The last row contains weights for a constant pattern modeling
noise. right: histograms of the columns W∗k.

We added an extra component to reflect one noisy pattern by adding a row of ones to H and one
column to W. Alternatively, we can express the noise pattern explicitly by an N -dimensional column
vector c.
In the simulation here, the entries of c are gradually increasing with the row index i (see Fig. 8.6,
center, last row).
The Bernoulli parameter Θij was then generated by

Θij = 1− exp(−[WH]ij + ci) (8.96)

and the binary data X was derived by setting Xij = 1 with probability Θij given by eq. 8.96.
We demonstrated in chapter 5 that the binNMF algorithm detects the correct basis patterns and
weights if the actual number of components K is known.
However, the binNMF algorithm is a maximum likelihood technique which optimizes the Bernoulli
log likelihood (8.97)

LL =
N∑
i=1

M∑
j=1

{Xij ln(1− exp (−[WH]ij))− [WH]ij +Xij [WH]ij} (8.97)

and has no in-built mechanism which penalizes too much parameters. It would be an interesting task
to create a variational Bayes analogon for the Bernoulli likelihood case. Due to the logarithm and the
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non-linearity [1 − exp([WH]ij)], the development of such an algorithm turned out to be much more
complicated than for usual NMF.
However, we have seen in paragraph (5.3.4) that a rough approximation of the Bernoulli log likelihood
(8.97) is given by the much simpler quadratic form

E(α,W,H) =
N∑
i=1

M∑
j=1

(ln(1− αXij) + [WH]ij)
2 (8.98)

It involves an additional parameter α and leads to an NMF problem

X̃ ≈WH where X̃ij = − ln(1− αXij) (8.99)

Here, we set α = 0.6 which leads empirically to quite good approximations of the original data.
Obviously, the reconstruction error in this approximation

Eij := ln(1− 0.6Xij) + [WH]ij (8.100)

is not distributed according to a Gaussian with mean zero (see Fig. 8.7, left). which is the likelihood
assumption of the VBNMF algorithm (see paragraph 8.2.2).
Although knowing that the assumptions on the form of the likelihood and the prior distributions are
not really valid in the present example, the VBNMF algorithm was applied to this toydata set.
For each K = 2 . . . , 19, the Alternating Least Squares (ALS) NMF algorithm as described in para-
graphs (2.4.2) and (5.3.4) was run for a fixed α = 0.6. The solutions WALS and HALS were used as
initializations for 〈W〉Q and 〈H〉Q.
The initial values of the parameters µHkj , σHkj , µWik

,σWik
and σr and hyperparameters µHk0 , σHk0 and

µW0k ,σW0k were approximated from the ALS solutions and their statistics. This method empirically
yields good initializations. An alternative, but time consuming approach would be to use multiple
different random initializations, since the VBNMF algorithm can be stuck in local maxima.

Figure 8.7: left: Histogram of the approximation error in the binary toydata set Eij = ln(1−0.6Xij)+
[WH]ij . Obviously the noise is not distributed according to a zero mean Gaussian as stated in the
likelihood assumption of the VBNMF algorithm. right: The log evidence bound B (y-axis) w.r.t. the
number of components K (x-axis) in the binary toydata example has a maximum at K = 5

The results gained by the VBNMF algorithm are surprisingly good. Even if most assumptions were
violated in this toy data example, the plot of the log evidence bound (see Fig. (8.7), right) has a clear
maximum at K = 5.
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Figure 8.8: Expected basic patterns 〈H〉Q (left) and weights 〈W〉Q (right) using VBNMF and K = 5.
The four original patterns (compare Fig. (8.6) and their weights are well approximated. The weights
of an additional noise pattern differ from the original shape. One possible reason is the additional
noise induced by the ”binarization” of the data.

Optical inspection shows good approximations of the four original patterns plus one noise component.
Even more interesting is the behavior of the VBNMF algorithm if K is chosen too large. In figure (8.9)
an example for K = 10 is given. The ALS approximation decomposes the data in K = 10 components,
some of which resemble the original patterns Hk∗ and weights W∗k, while some of which are mixtures
of these in order to fit the data X̃ well. All available components are used in the approximation.
Initialized by the ALS solution, the VBNMF algorithm retains only five components while driving
the remaining parameters to constants. Four of the retained components (1,5,6 and 10 in Fig. 8.9,
upper right subplot) can be recognized as good approximations to the original patterns and weights.
The fifth retained component (9) is interesting as well: it represents the algorithm’s approximation of
the remaining reconstruction error which was generated by a uniform pattern plus the noise resulting
from the binary realization.
Since the algorithm has the freedom to adjust the prior hyperparameters during the optimization,
the prior distributions P (Wik) and P (Hkj) of not necessary components are driven towards narrow
Gaussian peaks.
In order to avoid large penalizations, the corresponding variational distributions Q(Wik) and Q(Hkj)
are set equal to the priors. The images showing the expectations 〈W〉Q and 〈H〉Q show that these
components are constant.
This effect is called Automatic Relevance Determination and was discussed by MacKay [Mac95] in a
neural networks context and in [TF09] for NMF (see section 7.2.2). Note that the prior assumptions,
namely the likelihood function and the parametric family of the prior distributions, as well as the
independence assumptions on the prior and variational distributions determine the extent of this
effect.
As this example shows, the VBNMF algorithm is, up to some degree, tolerant with respect to violations
of these assumptions. General considerations of tolerance are an interesting topic, but will not further
be discussed here.
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Figure 8.9: VBNMF in a binary toy data example where K = 10; top,left: basic patterns HALS ;
top,right: expected basic patterns 〈H〉Q; Upper row: H1∗, . . . ,H4∗, second row: H5∗, . . . ,H8∗, third
row: H9∗ and H10∗. bottom,left: weights WML; bottom,right: expected weights 〈W〉Q; Only relevant
components (1,5,6,9 and 10) are retained while the others are switched off. Component 9 is an attempt
to explain the remaining reconstruction error.
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VBNMF for binary real world data

The performance of the VBNMF algorithm is tested on a real world data set which is a subset of
1000 wafers from the data familiar from real world example I in paragraph (5.5.1). This reduction
was necessary due to memory problems when using the whole data set (for K > 10, especially the
handling of the N ×K ×M decoupling parameters qikj e.g. > 3000× 10× 500 = 15.000.000 for the
whole data set in real world example I and the computations of the expectations 〈〉Q may require
better implementations than the prototype used in this simulations).
The approximation given in eq. (8.99) using α = 0.6 was used to transform the binary problem
(roughly) into an NMF problem.

Figure 8.10: The log evidence bound B (y-axis) w.r.t. the number of components K (x-axis) in the
binary real world example has an maximum at K = 5

Varying the number of components yields a maximum of the log evidence bound Bq at K = 5 (see
Fig. 8.10).
Visual inspection of the expected basic patterns 〈H〉Q for K = 5, 6, 7 in figure 8.11 shows that although
there is some consistency, some patterns differ from each other. According to the log evidence bound,
Bq(K = 5) > Bq(K = 7) > Bq(K = 6). This ranking follows by Bayesian formalism from the prior
assumptions (assuming that we did every run many times and reach the global maximum for each
K) and the VBNMF algorithm tries to explain the data by patterns W and H which are distributed
according to rectified Gaussian distributions a priori. Growing numbers of parameters are penalized
by the deviation of the variational distributions Q from this prior distribution P . In order to keep
the penalty terms small, those components are favoured which better resemble the prior assumption.
Figure 8.12 shows the approximate maximum likelihood solutions WALS , HALS and the VBNMF
expectations 〈W〉Q, 〈H〉Q for K = 15. The automated relevance determination effect is obvious: only
five components are retained, while the rest is driven to extinction. A comparison of the histograms
of the related expected weights in the bottom of the figure shows, that the extincted components
are distributed according to a narrow peak Gaussian, and the retained components are distributed
according to rectified Gaussians.
In contrast, all approximate maximum likelihood counterparts gained by ALS (8.12, bottom left) have
a clear peak at zero in the distribution of the weights W∗k. This observation suggests that a more
flexible shape for the prior distributions, such as a mixture of a rectified Gaussian and a delta peak
at zero

P (Wik) = τN+ + (1− τ)δ(Wik) (8.101)
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Figure 8.11: Expected basic patterns 〈H〉Q in a real world example. All five patterns for K = 5 (left)
appear for K = 6 (center) and K = 7 (right)

.

would better suit the underlying data and interprete more than five components to be valuable in
this example. Note that priors of the form (8.101) are also conjugate to the Gaussian likelihood. The
necessary computations are somewhat cumbersome, but straight forward.
Other even more flexible possible forms are mixtures of (rectified) Gaussians

P (Wik) ∝
∑
t

αtN+(µt, σt),
∑
t

αt = 1 (8.102)

Note that (8.101) can be interpreted as a special case of (8.102).
In my experiments with these more flexible shapes of prior distributions, I observed that the necessary
hyperparameter updates (the respective analogons to equations (8.80)-(8.83) plus updates for each
parameter αt in eq. 8.102) need more carefulness, but work in principle. Every update of a mixture
distribution (8.102) requires the estimation of an optimal solution to a one-dimensional mixture-of-
rectified-Gaussians model. Even usual Gaussian mixture models without truncation at zero are known
to have many locally optimal solutions [Mac03]. Hence, a more sophisticated update procedure than
the one used in the VBNMF algorithm, at least for the hyperparameters is needed.
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Figure 8.12: Automatic relevance determination by VBNMF shown in an real data example where
K = 15 top,left: basic patterns HALS gained by approximate maximum likelihood top,right: expected
basic patterns 〈H〉Q gained by VBNMF, initialized by HALS . bottom,left: histograms of weights
WALS bottom,right: histograms of expected weights 〈W〉Q Only relevant components are retained
while the others are switched off by setting the respective basic pattern Hk∗ to a constant value and
the distribution of the related weights W∗k to a narrow Gaussian peak.
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8.3 Discussion

In this chapter two yet partly unsolved problems concerning NMF decompositions X ≈ WH were
addressed employing Bayesian methods.
A Bayesian criterion of a best solution, given the correct number of components K, was obtained
by integrating over all possible weight matrices W to estimate the posterior distribution of the basis
matrix H. In order to render the related high dimensional integral tractable, a Laplace approximation
was utilized. In case of a Gaussian likelihood this method yields a simple Bayesian optimality criterion
for NMF named BOC. It was shown that in the Gaussian likelihood case the BOC describes the same
optimal solution as described by the determinant criterion in the noise-free case which was presented
in chapter 3.2.4.
Further, a variational Bayes NMF algorithm for a Gaussian likelihood and rectified Gaussian priors
named VBNMF was introduced which can be seen as a Bayesian generalization of the multiplicative
Lee-Seung algorithm for Gaussian NMF. Both algorithms (the maximum likelihood procedure and its
Bayesian extension) are based on Jensen’s inequality to decouple parameters or expectations thereof
by introducing a bound containing auxiliary variables.
Although variational Bayes procedures have already been applied previously to the NMF problem,
a complete derivation for the Gaussian likelihood case with simulations has not been published so
far. While [Cem09] concentrates on the KL-divergence cost function for NMF, [FC09] mentions the
feasibility of the method in the Gaussian likelihood case only. Furthermore they mention that their
maximum likelihood version for Gaussian NMF does not coincide with the original multiplicative
NMF algorithm, while the method presented here does so.
The non-negative factor analysis based on Bayesian learning presented in [HK07] has also some par-
allels with the VBNMF method. The paper mentions that the computations with rectified Gaussian
priors are only possible if their location parameter is set to zero and present some special constuction
of a Gaussian prior and a rectification. Maybe the Jensen trick and the additional parameters qikj
circumvent this problem in case of the VBNMF algorithm, since the location parameters µHk0 and
µW0k are free and the model is still tractable.
In this respect, the VBNMF algorithm as a direct generalization of the Lee-Seung multiplicative NMF
algorithm for Euclidean NMF seems to be a new contribution to the best of my knowledge.
In simulation studies, the ability of the VBNMF algorithm to automatically detect the optimal number
of components in constructed toydata was demonstrated. If all prior assumptions are valid, the correct
number K is perfectly determined by the algorithm. Moreover, if the prior assumptions are slightly
violated or even if the likelihood function differs from the model assumption, the correct factorization
rank can be determined by either evaluating the lower bound to the log evidence Bq or by automatic
relevance determination.
Decompositions of binary real world data show that the VBNMF algorithm in principle does dis-
tinguish between important and irrelevant components. Potential improvement of the method could
be achieved by allowing more flexible shapes for the prior distributions which better suit the data.
However, this improvement requires more sophisticated optimization strategies for the determination
of optimal hyperparameter estimates.



Chapter 9

Summary and outlook

This thesis investigated extensions to the Non-negative matrix factorization (NMF) machine learning
technique and their potential usefulness for failure analysis in semiconductor microchip manufacturing.
As reviewed in the introduction (chapter 1), there is a huge arsenal of data analysis techniques used
to gather information from the immense amount of data arising during and after wafer fabrications.
The main idea followed here is to apply Blind Source Separation techniques, which interpret the wafer
fabrication as a black box in which a set of underlying root causes somehow generates malfunctions
on the chips.
NMF is suitable to discover latent structures in high dimensional data which are generated as strictly
additive linear combinations of non-negative variables.
Chapter 2, gave an introduction to the NMF technique and motivated NMF problems by an air pol-
lution example. After an overview of application fields of NMF so far, the basic principles concerning
non-negatively constrained optimization are discussed. Further, two main problems are highlighted:
The uniqueness problem of NMF and the lack of adequate methods to determine an optimal number
of components in previously unknown data.
Before NMF was tested in a practical environment, the uniqueness issue was discussed in detail in
chapter 3. By geometrical considerations the ambiguity of NMF to produce unique solutions was
explained and a determinant criterion was introduced to fix this uniqueness problem. An algorithm
named detNMF was designed which incorporates the determinant criterion directly and simulations
demonstrate its ability to recover the correct solutions in constructed toydata examples. A further
illustrative example was provided which distinguishes the new method from an established approach
based on sparsity assumptions. Further, an alternative explanation of the apparent superiority of so
called multilayer approaches for NMF could be derived by means of the determinant criterion.
In chapter 4, NMF was directly applied to a real world data set which was generated from measurement
data containing different test categories called BINs. It was demonstrated that NMF clearly recovers
the structure of the data. However, the determination of an optimal number of underlying components
turned out to be tricky. While in this chapter, the existing NMF methodology was applied to suitable
aggregated data which approximately satisfies the linear NMF model, chapter 5 presents a completely
new developed extension of NMF for binary data.
The new method called binNMF (binary Non-negative matrix factorization) is based on a superposi-
tion approximation for fail probabilities of single chips. It turned out that these pass/fail probabilities
can be modeled by means of a nonlinear function of two non-negative matrices. These parallels to
usual NMF were exploited to develop an effective two stage optimization procedure which was demon-
strated to discover localized features in binary test data sets.
The rest of the thesis is dedicated to the use of Bayesian techniques in combination with NMF and
their ability to answer the two questions concerning the uniqueness and the optimal number of sources.

119



120 CHAPTER 9. SUMMARY AND OUTLOOK

After two literature chapters on Bayesian methods in general (6), and their combination with NMF
(7) further Bayesian extensions to NMF were presented in chapter 8. The idea behind these extensions
was to exploit the statistical well-founded Bayesian methodology in order to find answers to the two
main problems of usual NMF: uniqueness and the optimal number of components.
In the first part, a Bayesian optimality criterion was derived which describes the optimal solution of a
NMF problem in absence of prior knowledge, formulated as MAP (maximum a posteriori) estimation.
Unlike usual Bayesian approaches which try to explicitly model certain characteristics such as sparse-
ness or smoothness of the components directly, here we used the Bayesian formalism to explicitly
model the absence of prior information. An optimal set of basis vectors can be determined then by
integrating over all possible weight matrices, given the correct factorization rank.
In the special case of a Gaussian likelihood, the Bayesian criterion can be shown to describe the same
optimal solution which was proposed in chapter 3 by the determinant criterion. Unlike the usual
direct implementation of certain characteristics in usual Bayes NMF approaches, here and in the
determinant criterion an indirect relation between the basis components follows automatically from
geometrical considerations and the Bayesian formalism.
In the second part of chapter 8, a variational Bayes algorithm named VBNMF was developed. It is
based on the assumptions of a Gaussian likelihood and independent rectified Gaussian prior distri-
butions on the parameter matrices. It was shown that the VBNMF algorithm is a direct Bayesian
extension to a popular multiplicative NMF algorithm.
Simulations demonstrate that the VBNMF is able to discover the actual number of components in
toydata sets. Remarkably, the correct number of components could also predicted well in cases where
not all a priori assumptions hold true.
Application on real binary data demonstrates the general power of the method to allow conclusions
on the actual number of components under certain assumptions. At the same time, the real data
application shows the direction of further improvements by modeling more flexible shapes for the
prior distributions.

9.1 Main contributions

To the best of my knowledge, NMF techniques have not been applied to the kind of wafer test data
investigated here so far.
Separate from the exploration of this new application field for NMF and extensions, a variety of new
aspects concerning the general methodology were developed here for the first time.
These findings can best be summarized by the expression extensions to NMF. First, the charac-
terization of optimal solutions by a determinant criterion (chapter 3), its distinction from sparsity
approaches and the simple explanation of the superiority of multilayer NMF algorithms over usual
ones by means of the determinant criterion are original contributions which have been presented at
the ICA conference 2009 [SPTL09].
The complete binNMF methodology including its optimization strategy as discussed in chapter 5 is
a new extension of NMF to binary data sets. Although there are some approaches to the analysis of
binary datasets in the literature, none of the existing techniques covers all aspects required for the
special kind of binary pass/fail data considered here (see the discussion in paragraph 5.6). Parts of
this chapter have been published GfKl conference 2008 [SPL10], and the at the ICA conference 2009
[SPL09].
Finally, the Bayesian extensions discussed in chapter 8 contain partly novel contributions.
As the discussion in paragraph 8.3 shows, the VBNMF algorithm as discussed here seems to be new
in this form. However, there are several possibilities to develop a variational Bayes extension for NMF
as has been mentioned elsewhere.
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The Bayesian optimality criterion developed in section (8.1) is new and provides an alternative view
on the determinant criterion.

9.2 Outlook

This thesis concludes with Bayesian approaches to determine the optimal number of components.
As suggested in paragraph (8.2.3), more flexible forms for the prior distributions such as a mixture
of rectified Gaussian distributions or at least a mixture of a rectified Gaussian and a delta peak
at zero would better suit the real world data considered. First experiments were promising, but
algorithmical problems forced my decision to end the thesis at this point and leave some room for
future investigations.

Bayesian binNMF

Another interesting option is a variational Bayesian extension of the binNMF technique from chapter
5, since the quadratic approximation to the Bernoulli likelihood seems somewhat brute. The main
problem herewith is to find a way to decouple the necessary expectations of the form

〈ln(1− exp (−[WH]ij))〉Q(W,H) (9.1)

It is not clear whether a suitable form for the variational distribution Q(W,H) can be found.
Again, a Jensen bound can be introduced [JJ99] to get the sum over k out of the nonlinear function:

ln

(
1− exp

(
−
∑
k

zk

))
= ln

(
1− exp

(
−
∑
k

qk
zk
qk

))
≥
∑
k

qk ln
(

1− exp
(
−zk
qk

))
(9.2)

and a further possible simplification is induced by

ln(1− exp(−x)) = −
∞∑
l=0

ln(1 + exp(−2lx)) (9.3)

where each term on the right hand side can be approximated by a quadratic expression (see [JJ96]),
but the design of an effective algorithm seems to imply further complications. For example the straight
forward computation of the required update rules for the parameters qk does not have a closed form
due to the non-linearity.
Maybe, sampling techniques provide a better alternative in this case.

Tensor factorizations

Another natural extension of this work is the design of suitable tensor factorization algorithms. As
mentioned in the literature survey for NMF in chapter 2, the extension of non-negative matrix fac-
torization to the non-negative tensor factorization is an area of active current research [CZPA09].
In the applications discussed here, the data was aggregated to form a matrix containing either the
wafer and chip information or the wafer and BIN category in its columns. A straight generalization
thereof is a tensor containing wafer and chip and test information. (see Fig. 9.1).
The decomposition of such higher order tensors into some underlying components is expected to reveal
hidden information which can not be extracted from aggregated matrices.
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Figure 9.1: In general, wafer test data has at least three dimensions: while the wafer index i = 1, . . . , N
and chip index j = 1, . . . ,M can be used to determine a N ×M matrix e.g. of pass/fail data which
can be decomposed by the binNMF algorithm, a different N × T matrix containing wafer indices and
different test categories can be decomposed by usual NMF. A natural extension is the decomposition
of the N×M×L tensor containing wafer, chip and test information. Non-negative tensor factorization
(NTF) [CZPA09] or a tensor extension of the binNMF technique applied to wafer test data seem to
be worth future investigations.
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A The derivative of the determinant

Here we show that the derivative of the determinant which is required for the detNMF algorithm in
paragraph 3.2.4 is given by

∂ det(HHT )
∂Hlm

= 2 det(HHT )
[
(HHT )−1H

]
lm

(4)

We utilize that

det(HHT ) = eln(det(HHT )) = eln(det(PHHTP−1))

= etr ln(det(PHHTP−1)) = etr ln(HHT )

where P is the matrix which transforms HHT into diagonal form PHHTP−1 and tr denotes the trace
of a matrix summing over all diagonal elements. We further assume that the expression ln(HHT ) can
be defined (in some suitable way) .
Then,

∂ det(HHT )
∂Hlm

=
∂

∂Hlm
etr ln(HHT )

= etr ln(HHT )tr
∂

∂Hlm
ln(HHT )

= det(HHT )tr(HHT )−1 ∂

∂Hlm
(HHT )

= det(HHT )
∑
i

[
(HHT )−1 ∂

∂Hlm
(HHT )

]
ii

= det(HHT )
∑
i

∑
j

[
(HHT )−1

]
ij

[
∂

∂Hlm
(HHT )

]
ji

= det(HHT )
∑
i

∑
j

[
(HHT )−1

]
ij

(δljHim +Hjmδlj)

= det(HHT ){
∑
i

[
(HHT )−1

]
il
Him +

∑
j

[
(HHT )−1

]
lj
Hjm}

= det(HHT )
{[

HT (HHT )−1
]
ml

+
[
(HHT )−1H

]
lm

}
= 2 det(HHT )

[
(HHT )−1H

]
lm

In the last line, we used the fact that pinv(HT ) = (pinv(H))T , where pinv denotes the Moore-Penrose
pseudo-inverse of a matrix.
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B Other Cost functions for the binary NMF problem

The Bernoulli likelihood as discussed in section 5.2.3 is not the only possibility to handle the binary
NMF problem.
Consider the following class of cost functions :

Epq(X,W,H) :=
N∑
i=1

 M∑
j=1

∣∣∣Xij − 1 + e−[WH]ij
∣∣∣p
q

, p, q > 0, (5)

This class of cost functions is related to the Minkowski-R measure [Bis96], which is used as error
function e.g. in neural network applications.
Observations Xij = 1 will be approximated by large [WH]ij , while observations Xij = 0 by small
[WH]ij in order to keep the value of Epq small. The individual penalty terms depend on the actual
value of p and q leading to different characteristics of the optimal solutions.
In the simulations, a non-negatively constrained gradient descent algorithm in Epq

Wik ← Wik − ηW
∂Epq
∂Wik

(6)

Hkj ← Hkj − ηH
∂Epq
∂Hkj

(7)

was implemented.
See Fig. 2 for the evolution of the cost function Epq during the first 1000 iterations in 50 random
initializations on a toy dataset. The constellations (p = 1, q = 2), (p = 1, q = 3) and (p = 3, q = 2)
seem to have many local minima (in this toy data simulation). In Fig. 3, the basic patterns of the
run with the smallest cost function is shown.
The three cases mentioned are local minima indeed which do not resemble the original images. The
case (p = 1, q = 1), does not capture the graded change from the center to the edges well. The cases
p = 2 with the quadratic error in the second row of Fig. 3 lead to the best approximations of the
original images H while the cases p = 3, q = 1 and q = 3 in the last row are slight mixtures of the
original images.
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Figure 2: Evolution of the cost function Epq for 50 random initializations. from top to bottom:
p = 1, 2, 3, from left to right: q = 1, 2, 3.
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Figure 3: Examples showing the best approximations according to Epq in eq. 5 among 50 randomly
initialized runs. from top to bottom: p = 1, 2, 3, from left to right: q = 1, 2, 3.
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C VBNMF computations

C.1 Derivation of the VBNMF updates

VBNMF update rules for Q(Hkj),Q(Wik)

Formal partial derivative of the log evidence bound Bq in eq. (8.53) w.r.t the instrumental distribution
Q(Hkj) under the normalization constraint yields

∂

∂Q(Hkj)

(
Bq − λHkj

(∫
Q(Hkj)dQ(Hkj)− 1

))
=

1
2σ2

r

{
2
∑
i

Xij 〈Wik〉Q(Wik)Hkj −
∑
i

1
qikj

〈
(Wik)2

〉
Q(Wik)

(Hkj)2

}
+ lnP (Hkj)− lnQ(Hkj)− 1− λHkj

Setting this to zero and solving for Q(Hkj) leads to

Q(Hkj) ∝ P (Hkj) exp

(
− 1

2σ2
r

{∑
i

1
qikj

〈
(Wik)2

〉
Q(Wik)

(Hkj)2 − 2
∑
i

Xij 〈Wik〉Q(Wik)Hkj

})

where the normalization constant depends on the choice of the prior distribution P (Hkj).
Similarly,

∂

∂Q(Wik)

(
Bq − λWik

(∫
Q(Wik)dQ(Wik)− 1

))
= 0

leads to

Q(Wik) ∝ P (Wik) exp

− 1
2σ2

r

∑
j

1
qikj

〈
(Hkj)2

〉
Q(Hkj)

(Wik)2 − 2
∑
j

Xij 〈Hkj〉Q(Hkj)
Wik




VBNMF update rule for qikj

∂

∂qikj

(
Bq − λqij

(∑
k

qikj − 1

))
= 0

1
q2
ikj

〈
(Wik)2

〉
Q(Wik)

〈
(Hkj)2

〉
Q(Hkj)

= 2σ2
rλ

q
ij

eliminating the Lagrange multiplier λqij via
∑
k qikj = 1 leads to

qikj =

√
〈(Wik)2〉Q(Wik) 〈(Hkj)2〉Q(Hkj)∑

k

√
〈(Wik)2〉Q(Wik) 〈(Hkj)2〉Q(Hkj)
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VBNMF update rule for σr

The variance of the reconstruction error σr can be updated by solving

∂Lq
∂σr

= 0

⇔ NM

σr
=

1
σ3
r

∑
i

∑
j

{
X2
ij − 2Xij

∑
k

〈Wik〉Q(Wik) 〈Hkj〉Q(Hkj)

+
∑
k

1
qikj

〈
(Wik)2

〉
Q(Wik)

〈
(Hkj)2

〉
Q(Hkj)

}

⇔ σ2
r =

1
NM

∑
i

∑
j

{
X2
ij − 2Xij

∑
k

〈Wik〉Q(Wik) 〈Hkj〉Q(Hkj)

+
∑
k

1
qikj

〈
(Wik)2

〉
Q(Wik)

〈
(Hkj)2

〉
Q(Hkj)

}

C.2 Rectified Gaussian Computations

Gaussian distribution:

N (θ|µ, σ) =
1

σ
√

2π
e−

1
2 ( θ−µσ )2

, −∞ < θ <∞ (8)

〈θ〉N = µ (9)
〈θ2〉N = σ2 (10)

Rectified Gaussian distribution:

The Rectified Gaussian distribution is generated from a usual Gaussian by truncating all negative
values and renormalizing the integral over the positive reals to one:

N+(θ|µ, σ) =
1

ZN+
e−

1
2 ( θ−µσ )2

, 0 ≤ θ <∞, 0 otherwise (11)

with normalization constant ZN+ = 1
2σ
√

2π erfc
(
− µ

σ
√

2

)
and erfc(z) = 2√

π

∫∞
z

exp (−t2)dt is the complementary error function.
The sufficient statistics for the rectified Gaussian are

〈θ〉N+ = µ+ e−
µ2

2σ2

√
2σ

√
π erfc

(
− µ

σ
√

2

) = µ+
σ2

ZRG
e−

µ2

2σ2 (12)

〈θ2〉N+ = σ2 + µ2 + e−
µ2

2σ2

√
2µσ

√
π erfc

(
− µ

σ
√

2

) = σ2 + µ〈θ〉N+ (13)
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proof:

〈θ〉N+ =
1

ZN+

∫ ∞
0

e−
1
2 ( θ−µσ )2

θdθ

=
1

ZN+

∫ ∞
− µ

σ
√

2

e−u
2
(µ+

√
2σu)

√
2σdu

=
1

ZN+

(
√

2σµ
∫ ∞
− µ

σ
√

2

e−u
2
du+ σ2

∫ ∞
− µ

σ
√

2

e−u
2
2udu

)

= µ+
σ2

ZN+

[
−e−z

]∞
µ2

2σ2

= µ+
σ2

ZN+
e−

µ2

2σ2

= µ+ e−
µ2

2σ2

√
2σ

√
π erfc

(
− µ

σ
√

2

)

〈θ2〉N+ =
1

ZN+

∫ ∞
0

e−
1
2 ( θ−µσ )2

θ2dθ

=
1

ZN+

(
−σ2

∫ ∞
0

e−
1
2 ( θ−µσ )2

(
−θ − µ

σ2

)
θdθ +

∫ ∞
0

e−
1
2 ( θ−µσ )2

µθdθ

)
=

1
ZN+

(
−σ2

[
θe−

1
2 ( θ−µσ )2]∞

0
+ σ2

∫ ∞
0

e−
1
2 ( θ−µσ )2

dθ +
∫ ∞

0

e−
1
2 ( θ−µσ )2

µθdθ

)
= σ2 + µ〈θ〉N+

= σ2 + µ2 + e−
µ2

2σ2

√
2µσ

√
π erfc

(
− µ

σ
√

2

)
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Quadratic complement

−1
2

(
θ − µ
σ

)2

+Aθ2 +Bθ

= −
(

1
2σ2
−A

)
θ2 +

( µ
σ2

+B
)
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2σ2
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1− 2σ2A
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)(
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2σ2

1− 2σ2A
θ

)
− µ2

2σ2

= −
(
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2

)(
θ2 − 2
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θ

)
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2σ2
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(
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2

)(
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√

1
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2
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(
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2

)(
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2σ2

= −1
2

(
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)2

+
1
2

(
µ′2

σ′2
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)

C.3 Derivation of the hyperparameter updates

Here we derive the update equations for the hyperparameters µW0k and σW0k of the prior distribution
for the coefficients Wik

P (Wik|µ0k, σW0k) =
1

ZWk

e
− 1

2

(
Wik−µW0k

σW0k

)2

(14)

where the normalization constant is ZWk
=
∫∞

0
e
− 1

2

(
Wik−µW0k

σW0k

)2

dWik.

Setting the derivative of the log evidence bound Bq (8.53) w.r.t. the hyperparameter µW0k yields

0 !=
∂Bq
∂µW0k

⇔ 0 =
∂

∂µW0k

∑
i

∑
k

〈ln(P (Wik))〉Q(Wik)

⇔ 0 =
∂

∂µW0k

∑
i

∑
k

〈
− ln(ZWk

)− 1
2

(
Wik − µW0k

σW0k

)2
〉
Q(Wik)

⇔ 0 =
∑
i

− 1
ZWk

∂ZWk

∂µW0k

+

〈
Wik − µW0k

σ2
W0k

〉
Q





132 APPENDIX

The partial derivative of the normalization constant ZWk
w.r.t µW0k is

∂ZWk

∂µW0k

=
∫ ∞

0

e
− 1

2

(
Wik−µW0k

σW0k

)2

Wik − µW0k

σ2
W0k

dWik

= ZWk

〈
Wik − µW0k

σ2
W0k

〉
P (Wik)

=
ZWk

σ2
W0k

〈Wik〉P (Wik) −
ZWk

µW0k

σ2
W0k

so,

∂Bq
∂µW0k

=
1

σ2
W0k

∑
i

(
〈Wik〉Q(Wik) − µW0k − 〈Wik〉P (Wik) + µW0k

)

=
1

σ2
W0k

∑
i

〈Wik〉Q −

µW0k +
σ2
W0k

ZPk
e
−
µ2
W0k

2σ2
W0k



where we used eq. (12) for 〈Wik〉P (Wik) in the second line. Setting this to zero and solving for µW0k

yields the implicit equation

µW0k =
1
N

∑
i

〈Wik〉Q(Wik) −
σ2
W0k

ZWk

e
−
µ2
W0k

2σ2
W0k (15)

Setting the derivative of the log evidence bound Bq (8.53) w.r.t. the hyperparameter σW0k yields

∂ZPk
∂σW0k

=
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0

e
− 1

2

(
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)2
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〈
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σ3
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〉
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W 2
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and
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where we used eqs. (13) and (12). Setting this to zero and solving for σW0k yields the implicit equation
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