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Abstract

Matrix factorization is a fundamental technique in machine
learning that is applicable to collaborative filtering, informa-
tion retrieval and many other areas. In collaborative filtering
and many other tasks, the objective is to fill in missing ele-
ments of a sparse data matrix. One of the biggest challenges
in this case is filling in a column or row of the matrix with
very few observations. In this paper we introduce a Bayesian
matrix factorization model that performs regression against
side information known about the data in addition to the ob-
servations. The side information helps by adding observed
entries to the factored matrices. We also introduce a nonpara-
metric mixture model for the prior of the rows and columns
of the factored matrices that gives a different regularization
for each latent class. Besides providing a richer prior, the
posterior distribution of mixture assignments reveals the la-
tent classes. Using Gibbs sampling for inference, we apply
our model to the Netflix Prize problem of predicting movie
ratings given an incomplete user-movie ratings matrix. In-
corporating rating information with gathered metadata infor-
mation, our Bayesian approach outperforms other matrix fac-
torization techniques even when using fewer dimensions.

Introduction

Matrix factorization is an important technique in machine
learning which has proven to be effective for collaborative
filtering (Koren 2008), information retrieval (Deerwester
et al. 1990), image analysis (Lee and Seung 1999), and
many other areas. A drawback of standard matrix factor-
ization algorithms is that they are susceptible to overfitting
on the training data and require careful tuning of the regu-
larization parameters and the number of optimization steps.
Bayesian approaches to matrix factorization (Salakhutdi-
nov and Mnih 2008; Porteous, Bart, and Welling 2008;
Blei, Ng, and Jordan 2003) attempt to address this weakness
by integrating over model parameters and hyperparameters,
thus allowing for complex models to be learned without re-
quiring much parameter tuning.

Recent research using the Netflix Prize (Koren 2008)
has shown that combining latent factor models with other
models, such as neighborhood models, can improve per-
formance. Although for the anonymized Netflix Prize
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data set there is not much additional information avail-
able for the customers, for many applications it is ex-
pected that additional side information about the customers
or movies/products would be available and beneficial to in-
corporate into a model. Incorporating side information is
particularly important when there are few observations, as
in the case of a new movie or product.

We also introduce a Dirichlet process mixture of normal
distributions as a prior for the matrix decomposition. The
prior plays an important role in regularization when there
are few observations for a row or column. In particular
we expect that there are latent classes for the entities and
regularization should be performed per class. Using the
Netflix data, we confirm that latent classes can be discov-
ered by examining the posterior distribution of the mixtures.
We also evaluate our prediction performance on the Net-
flix Prize problem of predicting movie ratings and find that
our approach is able to outperform other Bayesian and non-
Bayesian matrix factorization techniques.

Our main contributions are the following: (1) We describe
a general scheme for seamlessly incorporating known infor-
mation; (2) We introduce a fully Bayesian nonparametric
model which can be learned via a scalable Gibbs sampling
algorithm; (3) We apply our approach to the Netflix Prize
problem and are able to outperform many other factoriza-
tion techniques without requiring tuning of parameters.

In the next section, we discuss related factorization ap-
proaches. We then describe our model in steps, first intro-
ducing the simpler related Bayesian probabilistic matrix fac-
torization (Salakhutdinov and Mnih 2008), then adding side
information and Dirichlet process mixture extensions to the
model. Next, we present experiments showing the efficacy
of our approach on the Netflix Prize problem. Finally, we
conclude with a discussion of the applicability of our ap-
proach to more general machine learning problems.

For ease of explanation we will use movie ratings as an
example throughout the paper and refer to movies and users.
However, the model is general in form and not specialized
for movie ratings or the Netflix competition.

Related work

Bayesian matrix factorization is a technique of growing
interest. The work most closely related to our own is
the Bayesian probabilistic matrix factorization model of



(Salakhutdinov and Mnih 2008) which features a Gaussian
bi-linear factor model complete with Gaussian-Wishart pri-
ors. This model was applied to the Netflix problem and
learned via Gibbs sampling. The Matchbox Bayesian rec-
ommendation system (Stern, Herbrich, and Graepel 2009)
is another bi-linear model featuring feedback and dynamics
models and a similar mechanism to incorporate known infor-
mation, with expectation propagation as the inference algo-
rithm. (Agarwal and Chen 2009) also introduce a model that
also incorporates side information with latent factors. How-
ever, in their model the regression coefficients for the side
information are treated separately from the latent factors. In
our work the regression coefficients for side information are
treated jointly with the rest of the latent factors. Variational
Bayesian factorization methods have also been applied to the
Netflix problem (Lim and Teh 2007).

On a more general level, nonparametric Bayesian factor-
ization models such as those based on Indian Buffet Pro-
cesses have been developed (Ghahramani, Griffiths, and Sol-
lich 2007). While these models adaptively adjust the inner
dimensionality of the matrix factorization, our model is non-
parametric in the sense that the number of underlying data
clusters can increase. Thus these techniques are potentially
complementary to our approach.

Finally, there exist numerous non-Bayesian matrix factor-
ization techniques, including variants of singular value de-
composition, and these techniques have been successfully
applied to the Netflix problem (Koren 2008; Takdcs et al.
2009). Later in the paper, we will show that our approach is
competitive to both Bayesian and non-Bayesian techniques.

Model

First we will review BPMF which is a special case of our
model. Reviewing BPMF will help to make our contribu-
tions clear. Next we will extend the model to include side
information about movies, users or ratings. Finally, we in-
troduce non-parametric prior distributions over latent feature
vectors to complete the full model.

Bayesian probabilistic matrix factorization

Latent factor matrix factorization models for collaborative
filtering assume that users and movies can be represented by
vectors of latent factors U;, V;;, where 7 and j designate the
particular user and movie. Given the latent factor vectors
for users and movies, a user’s rating for a movie is predicted
by the inner product of those vectors, r;; = vl V;. In this
way the matrix of all ratings R is factored into U7V = R.
The parameters of the model, are learned given the sparsely
observed ratings matrix R.

BPMF (Salakhutdinov and Mnih 2008) puts matrix fac-
torization in a Bayesian framework by assuming a gen-
erative probabilistic model for ratings with prior distribu-
tions over parameters. The full joint distribution of BPMF,
p(R,U,V,0,,0,|0,00) can be written as the product of
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Figure 1: Top: Graphical model for Bayesian probabilis-
tic matrix factorization (BPMF). Bottom: Graphical model
for Bayesian matrix factorization with side information
(BMFSD).

the following conditional distributions (Figure 1),
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where ©, = {As,ux}, £ = wuw,v, and Oy =
{Ao, vo, tto, Bo}. In words, BPMF has the following gen-
erative process:

1. For each user ¢ sample a vector of parameters
U; ~ N(UiWuaAu),

2. For each movie j sample a vector of parameters
Vi~ N(Vj“%a Ay),

3. For each movie j rated by user ¢ sample a rating
rij ~ N(Rij; Ul'V;, o),

where the parameters of the multivariate normal distribu-
tions for parameter vectors, (0,,0,,), are given a normal-
Wishart prior. The posterior predictive distribution of a rat-
ing r;; is found by marginalizing over model parameters,
{U, V} and hyperparameters, {©,,©,} :

p(rij|R™,00) =

// p(rij |U17 ‘/j)p(Uv V|R_|ij7 @ua 61))p(®1l,7 @v|®0)-



Since marginalizing over model parameters is analytically
intractable, approximate inference using MCMC is per-
formed.

Bayesian matrix factorization with side
information

BPMF performs matrix factorization and prediction of new
ratings based solely on the existing ratings. However, we
would prefer a model that includes extra information if avail-
able. For example, if the user has explicitly told us they
have a preference for a certain type of movie, we would want
to incorporate that information into the model. As another
motivating example outside movie recommendation, a bank
may want to offer new products to its customers. However,
besides monitoring the responses of customers to products in
the past (similar to ratings) it also has an enormous amount
of side information about those customers to exploit.

Next we show how it is possible to extend BPMF to in-
clude side information about movies, users or ratings. In the
extended version, BPMF with side information (BMFSI),
instead of just generating a rating from the product of la-
tent factor vectors U] V; we augment U, V with additional
terms that contain information about the movie, user or rat-
ing. The augmented version of V; is now specific to a rating,
Vi = {V;, X};}. Vj contains the free parameters that will
be learned for user j and X7, contains additional side infor-
mation about the rating against which the user ¢ can regress.
U}, is similarly augmented.

We still calculate the predicted mean of each rating by tak-
ing the inner product of the augmented vectors U}; and V.
To understand the consequences of this change we further
segment Uipj and Vﬁ into three parts and examine how each
part plays a role in calculating 7;;. The parts are depicted in
table 1, and described below.

e The mean estimate of a rating is determined by the sum-
product of the parts of the vectors UZT and V:
Hij = U(Z;;Vaj + Ug;Xﬁ + X%T‘/bj

o The first term, U, g; Vaj» 1s the matrix factorization term. If
this is the only term, the model is BPMF.

e The second term, Ub]; X?, is the result of user ¢’s linear
regression against the features of the movies they have
rated or features of the rating itself. For example, if X
contains a flag indicating whether or not it is an action
movie then the corresponding variable in U} indicates the
user’s bias towards action movies. X can also contain
rating-specific information, such as the date of the rating.
In this case the corresponding variable in U} indicates the
user’s trend in ratings over time.

e The third term, Xi"jTVbj, is the complement to the sec-
ond term and is the result of the movie’s linear regression
against features of the user or the rating-specific informa-
tion. For example, just as in the second term, X ;}T could
contain the date of the rating. The corresponding vari-
able in the movie’s vector Vj; indicates how the movie’s
ratings have trended over time. Xi“jT could also contain
information about the user who made the rating, such as

U5 Uai | Uni | X3
Vi Vs [ X5 [ oo

Table 1: The rating for user ¢ of movie j, r;;, comes from
the product of the augmented feature vectors Ug, Vf; In this
table the feature vectors are arranged so that the sections
of vectors that are multiplied together are adjacent to each
other.
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Figure 2: BMFSI with Dirichlet process mixtures

whether or not the user is married. The movie can then
learn a bias about how married users rate the movie.

The model is very flexible as to what features are put
into X7 and X7;. The features can be user-specific, movie-
specific, or rating-specific. The only limitation is that they
will be linearly combined in the final prediction. X and
X7; can be the same size or different sizes. The feature vec-
tors can be symmetric or different for users and movies.

The only change in the model specification is that U? and
VP now replace U, V in the analogous BPMF equation 1, to

give the following distribution for R
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The prior distributions for U;, V; remain the same as in
BPMF equations 2 and 3 and are not replaced by U/, V.
However, the conditional distribution p(U;|©,, VP, R) is
different. In order to find the posterior distribution of a rating
r;; We again want to marginalize over the model parameters
and hyperparameters.

Although the posterior distribution of r;; is intractable as
it is for BPMF, we can still derive an efficient Gibbs sampler
to calculate an approximation. The Gibbs sampler works by
cycling through the latent variables U, V' and the parameters
O, 0,, sampling each conditioned on the current values of
all the other variables. The use of conjugate priors provides
us with a convenient form for the conditional distributions
of the latent variables.

BMFSI with Dirichlet process mixture prior

The BMFSI model assumes that every user and movie draws
their vector of free parameters, U; and Vj, from a single
common multivariate normal distribution with a full covari-
ance matrix. However, we expect that there are clusters of
movies or users that are more similar to each other then to



the population in general. Consequently, a better genera-
tive model might be one where there are groups of users
or movies and they draw their vector of latent factors from
group specific distributions. In the generative process for
this new model, instead of drawing a factor vector from a
single common distribution, each user or movie first picks a
group and then draws a vector from that group’s distribution.
So a user might first pick an action film group and then draw
a vector of factors from the action group’s distribution. To
summarize, the model would have the following generative
process:

1. For each user 7, sample a group assignment

Z ~ Ty,

2. For each movie j, sample a group assignment

zj” ~ Ty

3. For each user i, sample a vector of parameters

4. For each movie j, sample a vector of parameters

V}' NN(VHNZ}J?AZ;)

5. For each movie j rated by user ¢, sample a rating
T
Tij ~ N(Tij; U;D ijp’ O’)

Since a priori we have no knowledge of the number of
groups, we would like to use a non-parametric distribution
that does not require us to specify the number of groups. To
this end we use a Dirichlet process mixture (Antoniak 1974;
Ferguson 1973) to model the user and movie latent feature
vectors. The Dirichlet process mixture model has support
for a countably infinite number of mixture components but
only a few will dominate in the posterior, providing us with
a convenient non-parametric distribution to work with. We
will again want to marginalize over the parameters to find
the posterior distribution of the rating predictions r;;. Con-
ditioned on the group assignment variables the Gibbs sam-
pling algorithm is the same as the one for BMFSI, with the
exception that there are per group GUQ, @vg parameters to
sample. Conditioned on the sampled value for U, V, sam-
pling of the 2, 2" is according to a Dirichlet process mix-
ture model with U, V' acting as data vectors. We use Algo-
rithm 2 in (Neal 2000). Details of the sampling algorithm
are provided in the supplementary material.

If we look at the samples of assignment variables from
the posterior distribution of the model when applied to the
Netflix prize data set we find support for our expectation
that there are multiple distinct groups. In particular we find
clusters of movies that are easily recognized as having com-
mon characteristics. We analyzed the assignment variables
z from one sample of the Gibbs sampler after 200 iterations
to inspect the clusters. For each of the 14 clusters found,
we picked the top 5 largest movies by number of ratings and
viewed their titles. The results from a qualitatively represen-
tative sample of the clusters are found in Table 3. The clus-
ters of movies found by the model contain groups of movies
for which we would expect the distribution of latent factors
to be similar. There are also clusters of users, but they are
more difficult to interpret because we lack labels.

Experiments

We evaluate our approach on the well-known Netflix Prize
competition', an ideal collaborative filtering problem with a
well-defined system for objectively comparing different so-
Iutions. The Netflix Prize data set is a sparse user-movie
matrix of over 100,000,000 ratings where there are 480,189
users and 17,700 movies. Each rating is an integer from 1
to 5, and the date when the user rated the movie is also pro-
vided.

The objective of the competition is to predict ratings for a
held-out portion of the data matrix, known as the Quiz set.
Netflix also identifies a Probe set, a subset of the ratings in
the given data matrix, which was generated using the same
process that generated the Quiz set; thus, the Probe set is
useful for internal evaluation. The evaluation metric used is
the root mean squared error (RMSE) between the predicted
ratings and the actual held-out ratings. To perform internal
RMSE calculations for our experiments, we create a new
Probe set consisting of 10% of the original Probe set, and
we train on the rest of the given data (including the other
90% of the original Probe set). We also report results on the
Quiz set.

We regress against the following side information in our
experiments: the date (normalized from O to 1), a date flag
(which indicates whether the rating’s date was before March
12, 2004, where a change in the average rating was ob-
served), the user’s previous two ratings, and if available,
the rating the user gave the K most similar movies mea-
sured by Pearson’s correlation coefficients. We typically set
K = 5. We also tried using other movie metadata which
we extracted from Wikipedia (e.g. movie director, actors,
languages) but we found that these Wikipedia-extracted fea-
tures do not improve performance measured by RMSE.

The parameters that need to be manually set in our model
are the number of user and movie dimensions D,,, D,,, and
the o, o, ©¢ parameters (when D,, = D, we just use D
to specify both). For all our experiments we set o = 0.8.
Ay is set to the identity for all runs. po = 0O for all runs.
Bo = .8 for all runs. We set @« = .01 for runs with side
information and DP mixtures, o = .0000001 for DP mixture
runs without side information.

We ran our collapsed Gibbs samplers on a heterogeneous
collection of machines, ranging from dual-core machines
with 8GB RAM to 16-core machines with 128GB RAM.
Parallelization across cores was achieved through OpenMP.

Since our approach is based on Gibbs sampling, it is im-
portant to average over many different samples in order to
achieve good results. Figure 3(a) shows the Probe RMSEs
for individual samples as well as the online average of sam-
ples during the sampler burn-in period, for various D. While
each individual sample gives a fairly high RMSE (e.g. 0.93),
averaging over samples from the posterior predictive distri-
bution gives a substantially better RMSE (e.g. 0.89). In Fig-
ure 3(b), we run the sampler starting from the burn-in posi-
tion and show the effect of averaging over multiple samples.
As the number of samples approaches one hundred, there is
little improvement from adding more samples.

"http://www.netflixprize.com
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Figure 3: Top: Probe RMSEs during burn-in, for various D.
Bottom: Probe RMSE after burn-in, with online averaging
of samples.

D Probe RMSE | Quiz RMSE
45 0.8970 -

45 (DP) 0.8957 0.8988
45 (S 0.8866 0.8909
45 (DP, SI) 0.8865 0.8907

Table 2: RMSEs for the model with/without side informa-
tion (SI) and the Dirichlet process (DP).

We investigate the benefits of incorporating additional
side information as well as activating the full nonparametric
model. We perform runs with and without Dirichlet pro-
cesses (DP), and with and without side information (SI).
As shown in Table 2, a significant improvement is achieved
when side information is included 2. In Figure 4, we exam-
ine the mean of the coefficients (diagonal of A,,A,) for the
side information dimensions and the collaborative filtering
dimensions. In particular, the large coefficients in user di-
mensions 40-44 correspond to the side information for the
five nearest neighbors, suggesting that this additional infor-
mation plays a key factor in the model and in prediction.

Our results in Table 2 suggest that the multi-group model
with Dirichlet process mixtures only marginally improves
upon the single group model with side information for the
Netflix prize data set. While this RMSE gain is insignif-
icant for this data set, there are other benefits to having a

2To ensure a fair comparison, whenever we include side infor-
mation dimensions, we remove the equivalent number of free di-
mensions.

Twilight Zone: Vol. 16
Twilight Zone: Vol. 22
Twilight Zone: Vol. 2
Twilight Zone: Vol. 25
Twilight Zone: Vol. 1

Sopranos: Season 1
Sopranos: Season 2
Sopranos: Season 3
South Park: Bigger,
Sopranos: Season 4

Star Trek II: The Wrath of Khan
Star Trek: Nemesis

Star Trek: First Contact

Planet of the Apes

Star Trek: Insurrection

Indiana Jones - Last Crusade

The Matrix

Raiders of the Lost Ark

Harry Potter - Chamber of Secrets
The Matrix: Reloaded

Table 3: Largest movies by number of ratings for four dif-
ferent movie clusters.
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Figure 4: Coefficients learned on 45D run.

Dirichlet process mixture model, such as the creation of
clusters which are interpretable. After performing a hier-
archical D=45 run, the sampler was able to find interesting
movie clusters: a “Star Trek” cluster, an action movie clus-
ter, a “Lord of the Rings” cluster, among many others. Ta-
ble 3 shows the movie titles for four different clusters. The
thematic cohesiveness within each cluster indicates that the
model is able to learn coherent clusters of data points.

In summary, Table 4 shows the best RMSEs for compet-
ing factorization approaches. We find that our approach gen-
erally outperforms both Bayesian and non-Bayesian factor-
ization techniques. We note that integrated models which
combine matrix factorization with neighborhood models or
time models can generally perform better than the factoriza-
tion techniques below (Koren 2008). In addition, bagging
results over many different methods can yield significantly
better RMSEs, as evidenced by the final Netflix competition
winner. However, we restrict our attention to matrix factor-
ization and find that our approach is competitive with the
other matrix factorization techniques.

Discussion

We have shown that our Bayesian approach is competitive
with other Bayesian and non-Bayesian factorization tech-
niques. A benefit to our approach is that it can seamlessly
handle additional information within the framework of a
Bayesian factorization model, without requiring the tuning
of many different parameters. Our results suggest that addi-
tional side information can act as a useful informative prior
that can significantly improve results.



Method

| Quiz RMSE | % Improvement |

Cinematch Baseline 0.9514 0%
Variational Bayes (Lim and Teh 2007) 0.9141 3.73%
Matchbox (Stern, Herbrich, and Graepel 2009) 0.9100 4.14%
BPMF, D=60 (Salakhutdinov and Mnih 2008) 0.8989 5.25%
BPMF, D=300 (Salakhutdinov and Mnih 2008) 0.8954 5.60%
SVD++, D=50 (Koren 2008) 0.8952 5.62%
SVD++, D=200 (Koren 2008) 0.8911 6.03%
BRISMF D=250 (Takacs et al. 2009) 0.8954 5.60%
BRISMF, D=1000 (Takacs et al. 2009) 0.8904 6.10%
BMEFSI (our model), D=45 0.8907 6.07%
BMFSI (our model), D=100 0.8875 6.39%

Table 4: Comparison between our model and other factorization techniques

The addition of Dirichlet process mixtures to the model
provides a more flexible prior for the latent feature vectors
and also discovers interpretable latent structure in the data.
When used in combination with the side information it can
provide a novel means of exploring groups in the data. For
example, if the users are made up of married and un-married
people with different preferences, then the model will likely
form at least two groups for married and un-married users.
Based on the mean latent factors of these groups, fi,4, We
could then examine group wide preferences for movies (or
products) by plotting the inner-product of p,, with all the
individual product vectors V;V;.

Possible extensions of our approach include using non-
parametric techniques for adjusting the inner dimensional-
ity D in tandem with our nonparametric approach over user
clusters. Another facet of our approach that can be improved
is the selection of side information to include.

In conclusion, we find that our Bayesian matrix factor-
ization model that simultaneously performs regression on
side information is scalable and produces accurate results
on the Netflix Prize data. We believe that our factorization
approach is applicable to problems in collaborative filtering,
computer vision, and information retrieval, and adapting our
approach to these domains remains future work.
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